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Abstract
Background: Recent genome-wide association (GWA) studies have provided compelling
evidence of association between genetic variants and common complex diseases. These studies
have made use of cases and controls almost exclusively from populations of European ancestry and
little is known about the frequency of risk alleles in other populations. The present study addresses
the transferability of disease associations across human populations by examining levels of
population differentiation at disease-associated single nucleotide polymorphisms (SNPs).

Methods: We genotyped ~1000 individuals from 53 populations worldwide at 25 SNPs which
show robust association with 6 complex human diseases (Crohn's disease, type 1 diabetes, type 2
diabetes, rheumatoid arthritis, coronary artery disease and obesity). Allele frequency differences
between populations for these SNPs were measured using Fst. The Fst values for the disease-
associated SNPs were compared to Fst values from 2750 random SNPs typed in the same set of
individuals.

Results: On average, disease SNPs are not significantly more differentiated between populations
than random SNPs in the genome. Risk allele frequencies, however, do show substantial variation
across human populations and may contribute to differences in disease prevalence between
populations. We demonstrate that, in some cases, risk allele frequency differences are unusually
high compared to random SNPs and may be due to the action of local (i.e. geographically-
restricted) positive natural selection. Moreover, some risk alleles were absent or fixed in a
population, which implies that risk alleles identified in one population do not necessarily account
for disease prevalence in all human populations.

Conclusion: Although differences in risk allele frequencies between human populations are not
unusually large and are thus likely not due to positive local selection, there is substantial variation
in risk allele frequencies between populations which may account for differences in disease
prevalence between human populations.
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Background
A broadly accepted model for the genetic architecture of
complex disease is the common disease – common vari-
ant (CDCV) hypothesis. This hypothesis proposes that
risk alleles for common complex diseases should be com-
mon (i.e. ≥ 5%) and thus are likely old and found in mul-
tiple human populations, rather than being population
specific [1-4]. From analyses of genome-wide polymor-
phism data from populations of African, Asian and Euro-
pean ancestry, it has been shown that common alleles in
one population are frequently both shared and common
among human populations [5-7]. However, a recent com-
prehensive study of 3,873 genes from African, Asian, Lat-
ino/Hispanic, and European Americans found that
common alleles in one population were frequently not
common in another population [8]. Similarly, from a
meta-analysis of disease-association studies, Ioannidis et
al. (2004) argued that the frequencies of disease-associ-
ated alleles show "large heterogeneity between races" [9].
These observations suggest that the frequency of a risk
allele discovered in one population is not always a strong
predictor of the frequency of that risk allele in other pop-
ulations. This raises the question of whether risk alleles
discovered in one population account for disease preva-
lence across all human populations. Thus, it remains
unknown how well the CDCV model accounts for disease
prevalence across populations on a worldwide scale.

In addition to evaluating the extent to which disease-asso-
ciated alleles differ in frequency between populations, it is
of great interest to determine what evolutionary forces are
responsible for the observed degree of population differ-
entiation at disease-associated SNPs. Because disease is so
tightly linked to survival and reproductive success, it fol-
lows that disease has likely been a strong selective force in
human evolution. Moreover, alleles that cause disease in
contemporary environments may have been positively
selected in ancestral environments. For example, the
thrifty gene hypothesis posits that populations whose
ancestral environments were characterized by periods of
feast and famine may have experienced selection for a
"thrifty genotype" that promotes efficient fat and carbohy-
drate storage [10]. Though formerly advantageous, thrifty
genotypes may be causing obesity and type 2 diabetes in
contemporary environments where food is often abun-
dantly available. Previous studies have suggested that
genes associated with complex diseases such as cardiovas-
cular disease [11-14] and type 2 diabetes [15-17] have
been targets of positive natural selection. If disease genes
have often been targeted by selection, then identifying
loci that have experienced selection may aid in disease-
related research [18].

Local (i.e. geographically-restricted) positive selection
results in large allele frequency differences between popu-

lations [e.g. [19,20]]. The Fst statistic captures the differ-
ence in allele frequency between populations at any given
SNP and ranges from 0 (no differentiation) to 1 (fixed dif-
ference between populations). Thus, when compared to a
set of random SNPs in the genome, positively selected
alleles tend to accumulate in the top tail of the Fst distri-
bution [21-23]. It has previously been shown that local
positive selection has had no widespread effect on disease
allele frequency differences between populations: on aver-
age, disease-associated SNPs showed allele frequency dif-
ferences between populations similar to those observed
for random SNPs [24]. Individually, however, several dis-
ease-associated alleles appear to have been driven to high
frequency by positive selection in certain human popula-
tions and thus may be responsible for large differences in
disease prevalence between populations [15,25].

The conclusions drawn from previous studies that have
evaluated levels of population differentiation at disease-
associated SNPs are limited for two reasons. First, these
studies relied on many disease-gene associations that have
not been successfully replicated and thus likely do not
represent true associations. Second, previous studies
made use of disease allele frequencies from a small
number of populations (i.e. ≤ 4). To address the strength
of the CDCV model on a worldwide scale and to evaluate
the effects of local positive selection on worldwide risk
allele frequencies, we present allele frequencies and levels
of population differentiation across 53 populations for 25
SNPs which show replicated association with the follow-
ing common complex human diseases: Crohn's disease,
type 1 diabetes, type 2 diabetes, rheumatoid arthritis, cor-
onary artery disease and obesity [17,26-42]. These newly
identified genetic variants came from recent genome-wide
association (GWA) study data, which have revolutionized
approaches for identifying disease loci [43].

Methods
The 25 SNPs from Table 1 were genotyped in the HGDP-
CEPH Panel [44]. Atypical and related individuals were
removed [45], which resulted in 952 individuals from 53
populations. SNPs were genotyped by KBioscience using
the KASPar chemistry, a competitive allele specific PCR
SNP genotyping system [46].

All of the genotype calls were confirmed by visual inspec-
tion. After Bonferroni correction for 25 comparisons,
there remained 4 SNPs for which a population was out of
Hardy-Weinberg equilibrium at p < 0.002. The genotype
calls in these cases were re-confirmed by visual inspection
of the cluster plots and no data were removed. The
amount of missing data per SNP ranged from 2.0% –
5.4% with a mean of 3.3%. These data are accessible from
the CEPH database [47] or by request to the correspond-
ing author.
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Global Fst [48], the degree of differentiation among the 7
geographic regions represented in the CEPH-HGDP
panel, was calculated for each of the 25 SNPs. Results were
largely the same when global Fst was calculated among all
53 populations. We obtained an empirical Fst distribution
from 2750 autosomal markers (2540 SNPs [49] and 210
indels [50]) previously typed in 927 individuals from the
CEPH-HGDP panel. Global Fst values for the disease-
associated SNPs were calculated from the same set of 927
individuals to allow for an unbiased comparison to the
empirical distribution. For each disease-associated SNP, a
P value was calculated as the proportion of Fst values from
the empirical distribution that were ≥ the observed Fst
value. We found that global Fst is weakly but significantly
correlated with global minor allele frequency (R2 =
0.0152, P = 5.04 × 10-23, see Additional file 1) and that the
Fst distribution often differs significantly between minor
allele frequency bins (Additional file 2). We therefore pro-

vide corrected P values (Pcor) for each Fst value by compar-
ing only to SNPs from the empirical distribution that fall
into the same minor allele frequency bin.

Results
We genotyped the HGDP-CEPH Human GenomeDiver-
sity Cell Line Panel [44] for 25 disease-associated SNPs
recently identified from GWA studies [26-28]. The global
and regional allele frequencies for each disease-associated
SNP are summarized in Table 1. To visualize worldwide
risk allele frequencies, Figure 1 shows the allele frequency
distribution across populations for each disease-associ-
ated SNP. A summary of the maximum allele frequency
difference between any 2 of the 53 populations for each
disease-associated SNP is presented in Figure 2.

For each disease-associated SNP, global Fst, a measure of
allele frequency difference, was calculated among the 7

Table 1: Worldwide risk allele frequencies and global Fst for 25 disease-associated SNPs typed in the CEPH-HGDP panel.

Risk allele frequency

SNP1 Disease2 Replication Chr Position3 Gene4 Global 
Fst

P Pcor Global Africa Middle 
East

Europe Central 
South 
Asia

East 
Asia

America Oceania

rs10077785 CD [30] 5 131829057 0.062 0.642 0.511 0.82 0.975 0.809 0.812 0.716 0.898 0.688 0.75
rs10210302 CD [30] 2 233940839 ATG1

6L1
0.117 0.315 0.323 0.393 0.268 0.459 0.539 0.541 0.31 0.066 0.018

rs10761659 CD [30] 10 64115570 0.251 0.036 0.046 0.542 0.015 0.427 0.507 0.631 0.759 0.811 0.269
rs10811661 T2D [27] 9 22124094 CDK

N2A/
2B

0.126 0.278 0.224 0.782 0.97 0.805 0.833 0.876 0.584 0.836 0.518

rs10883365 CD [29] 10 101277754 0.04 0.8 0.65 0.459 0.48 0.541 0.497 0.43 0.449 0.161 0.643
rs10946398 T2D [27, 31] 6 20769013 CDK

AL1
0.028 0.901 0.697 0.328 0.47 0.338 0.286 0.243 0.382 0.242 0.321

rs1111875 T2D [27, 28] 1 218111919 0.179 0.131 0.183 0.525 0.828 0.664 0.588 0.487 0.232 0.685 0.554
rs11171739 T1D [32] 12 54756892 0.221 0.063 0.049 0.367 0.884 0.343 0.438 0.318 0.219 0.056 0.481
rs11805303 CD [33] 1 67387537 IL23 0.085 0.483 0.492 0.421 0.27 0.456 0.303 0.513 0.547 0.121 0.446
rs12708716 T1D [32] 16 11087374 KIAA0

350
0.071 0.57 0.398 0.648 0.411 0.592 0.611 0.645 0.773 0.849 0.571

rs13266634 T2D [27, 28] 8 114748339 SLC30
A8

0.07 0.575 0.365 0.74 0.941 0.803 0.721 0.756 0.593 0.703 0.911

rs1333049 CAD [34, 35, 36] 9 22115503 0.079 0.516 0.464 0.483 0.157 0.54 0.569 0.536 0.52 0.5 0.161
rs17234657 CD [37] 5 40437266 0.112 0.334 0.192 0.07 0.243 0.099 0.126 0.021 0.002 0.008 0
rs17696736 T1D [32] 12 110949538 C12or

f30
0.237 0.049 0.113 0.165 0 0.37 0.413 0.13 0.011 0.04 0

rs1801282 T2D [27, 38, 39] 3 12368125 PPAR
G

0.021 0.943 0.581 0.923 1 0.938 0.91 0.877 0.923 0.897 1

rs2542151 T1D/CD [29] 18 12769947 0.008 0.991 0.77 0.153 0.183 0.127 0.144 0.179 0.154 0.172 0.018
rs4402960 T2D [27] 3 186994389 IGF2B

P2
0.077 0.53 0.612 0.371 0.693 0.302 0.354 0.378 0.306 0.218 0.536

rs5215 T2D [27, 38, 39] 11 17365206 KCNJ
11

0.057 0.671 0.697 0.319 0.056 0.268 0.418 0.34 0.377 0.312 0.393

rs564398 T2D [27] 9 22019547 CDK
N2A/

2B

0.113 0.332 0.246 0.818 1 0.848 0.706 0.753 0.862 0.937 0.34

rs6679677 T1D/RA [40, 41] 1 114015850 RSBN
1

0.019 0.95 0.875 0.016 0 0.019 0.055 0.013 0.004 0 0

rs6887695 CD [29] 5 158755223 0.028 0.898 0.741 0.362 0.381 0.383 0.281 0.299 0.409 0.371 0.643
rs7901695 T2D [27, 28, 31] 10 114744078 TCF7

L2
0.213 0.073 0.08 0.281 0.629 0.438 0.325 0.321 0.044 0.087 0.054

rs9858542 CD [29] 3 49676987 BSN 0.094 0.432 0.318 0.222 0.23 0.301 0.317 0.331 0.077 0.016 0.143
rs9939609 T2D/OB [27, 42] 16 52378028 FTO 0.101 0.391 0.446 0.315 0.471 0.41 0.426 0.348 0.157 0.048 0.25

1 All SNPs were initially obtained from the WTCCC [26], except rs13266634 which was not well tagged by the Affymetrix GeneChip Human Mapping 500 K platform but was 
reported elsewhere as a T2D candidate [27, 28].
2 CD = Crohn's disease; T2D = type 2 diabetes; T1D = type 1 diabetes; CAD = coronary artery disease; RA = rheumatoid arthritis; OB = obesity.
3 Positions refer to NCBI Build 35 coordinates.
4 Blank cells indicate that the SNP does not fall within or near a known coding gene.
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geographical regions represented in the HGDP-CEPH
panel. It has been shown from empirical data and from
simulations with varying parameters that alleles that have
been targets of local positive selection tend to accumulate
in the top tail of the Fst distribution [19-23]. Uncorrected
P values (P) and P values corrected for allele frequency

(Pcor) were generated by comparing each observed global
Fst value to an empirical global Fst distribution from 2750
markers typed in the same samples (see Materials and
Methods for details). The global Fst value and the corre-
sponding P value for each of the 25 disease-associated
SNPs are summarized in Table 1. The empirical global Fst

Risk allele frequency across populations for 25 disease-associated SNPsFigure 1
Risk allele frequency across populations for 25 disease-associated SNPs. The title of each histogram includes the 
dbSNP ID and the disease with which each SNP is associated. Abbreviations for disease names can be found in Table 1. Note 
that the Y axes have different scales across histograms.
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distribution is shown in Figure 3 along with the 4 most
highly differentiated disease-associated SNPs (i.e. SNPs
with uncorrected P values < 0.1).

To determine whether the mean global Fst of 0.100 for the
25 disease-associated SNPs is unusually high, this value
was compared to a distribution of mean global Fst values
from 25 SNPs sampled at random 10,000 times from the
empirical distribution. We found that disease-associated
SNPs are not more differentiated than random markers (P
= 0.462, Pcor = 0.500). This analysis was repeated for
groups of SNPs associated with each of the diseases listed
in Table 1. In no case were the disease-associated SNPs
more differentiated than expected at random (P and Pcor >
0.3 in every case).

Global Fst provides a rough measure of the magnitude of
allele frequency differentiation worldwide, but local posi-
tive selection acting at finer geographical scales will likely
remain undetected using this measure. To examine the
patterns of population differentiation at a more refined
geographical scale, we calculated Fst for every pairwise
comparison among the 53 populations and 7 geographic
regions to produce 53 × 53 and 7 × 7 Fst matrices, respec-
tively. Each Fst value was then compared to the corre-
sponding empirical distribution of Fst values to generate
a P value without correction for allele frequency.

Figure 4 shows risk allele frequencies across populations
and the two Fst matrices for the most highly-differentiated

disease SNP rs10761659, a variant associated with
Crohn's disease. Allele frequency and Fst estimates for
populations with small sample sizes and/or missing gen-
otypes may be unreliable and sample size is therefore also
included in Figure 4. For rs10761659, the risk allele is rare
in Africa but is found at high frequency in most non-Afri-
can populations. The degree of differentiation at this SNP
is unusually high compared to the empirical distribution
as indicated by the low P values (i.e. dark boxes in Figure
4) in population pairwise comparisons between Africans
and most non-African populations. We have produced
similar plots for all 25 disease-associated SNPs for visual
inspection (Additional file 3).

Discussion
The extent to which the CDCV hypothesis is applicable
across human populations depends in part on the extent
to which common risk alleles identified in one popula-
tion are also common in other populations. The majority
of disease association studies are conducted using case-
control cohorts of European ancestry. The degree to which
associations established in these studies can be extended
to other populations remains an open question. In addi-
tion, it remains unclear how often differences in risk allele
frequencies between populations are due to the action of
local positive selection. The present study takes a first step
in addressing these issues by quantifying the degree of
allele frequency differentiation between worldwide popu-
lations for 25 SNPs associated with 6 common complex
diseases.

Many of the disease-associated SNPs studied here show
substantial heterogeneity in allele frequencies across
human populations (Figure 1). In some cases, risk allele
frequencies remain generally low or high across all 53
populations. However, in several cases risk allele frequen-
cies vary across a large portion of the allele frequency spec-
trum. Maximum allele frequency differences between any
2 populations ranged from 0.10 to 1.0 across SNPs with a
mean of 0.65 (Figure 2). For 7 of the 25 SNPs, the maxi-
mum allele frequency difference between any 2 popula-
tions was > 0.75. Thus, some risk alleles are found at
substantially different frequencies between populations.

To further quantify the allele frequency differences
between populations for the disease-associated SNPs, we
compared Fst values for the disease-associated SNPs to an
empirical Fst distribution generated from 2750 random
markers genotyped in the same samples. The average glo-
bal Fst of the disease-associated SNPs is not unusually
high compared to the empirical global Fst distribution.
This is also the case when global Fst values were averaged
across SNPs in each disease category. Thus, disease-associ-
ated SNPs do not show more population differentiation
than random SNPs, in agreement with a previous study

The maximum difference in risk allele frequency between any 2 of the 53 populations in the CEPH-HGDP panel across the 25 disease-associated SNPsFigure 2
The maximum difference in risk allele frequency 
between any 2 of the 53 populations in the CEPH-
HGDP panel across the 25 disease-associated SNPs.
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that examined a different set of disease-associated markers
in a more limited set of populations [24].

Although disease-associated SNPs do not show high Fst as
a set, individual disease-associated SNPs may be unusu-
ally differentiated. Previous studies have identified dis-
ease-associated loci that show evidence of local positive
selection in the form of unusually large allele frequency
differences between populations [14,15,17,25,51-53]. In
some cases it is the protective allele [17,53], and in others
the risk allele [15], which appears to have been driven to
high frequency by positive selection. Several of the dis-
ease-associated SNPs studied here show considerable
worldwide population differentiation and have global Fst
values within the top 10% of the empirical global Fst dis-
tribution (Figure 3). At a more refined geographical scale,
the patterns of population differentiation are extremely
varied across SNPs and many population-pairwise Fst val-
ues lie within the top 5% and even the top 1% of the
empirical distribution (see Additional file 3). For exam-
ple, the risk allele at SNP rs10761659 is absent in some
African populations and is near or at fixation in a number
of populations outside of Africa. The global Fst value for
this SNP lies within the top 5% of the empirical distribu-
tion (Figure 3) and most population pairwise compari-
sons between Africans and non-Africans are highly
significant (Figure 4). A type 1 diabetes-associated SNP,
rs11171739, also shows high levels of differentiation
between Africans and non-Africans, but in this case the

risk allele is near fixation in Africans but is at low to inter-
mediate frequency elsewhere in the world (Additional file
3). There are also cases in which a risk allele frequency is
unusually high or low in only one or a few populations.
For example, the risk allele at rs564398, a SNP associated
with type 2 diabetes, is found at unusually low frequen-
cies only in the Kalash of Pakistan and in Melanesians
(Additional file 3). These SNPs may therefore turn out to
have been the targets of local positive selection. However,
evidence for selection based on single marker Fst values
should be interpreted with caution [54]. A more in-depth
investigation of the patterns of genetic variation in and
around these loci and their effects on the phenotype is
required before conclusions can be confidently drawn.

Regardless of whether large risk allele frequency differ-
ences between populations are the result of selection or
genetic drift, these data provide several useful insights.
First, it is reasonable to assume that, if a risk allele is fixed,
absent, or close to either, it does not contribute to disease
risk variation within that population. Thus, assuming that
the risk conferred by these alleles is constant across popu-
lations (as may be the case for risk alleles found in genes
related to fundamental biological activity, e.g. cyclin
dependent kinase function and T2D/CAD risk), our data
suggest that the CDCV model does not necessarily extend
across populations since risk alleles discovered in a Euro-
pean population are sometimes absent, fixed or found at
extremely low or high frequencies in other populations.

Second, combining evidence of selection and association
may enhance power to identify genotype-phenotype rela-
tionships: a SNP with a large difference in risk allele fre-
quency between populations is a strong candidate to
explain large differences in disease prevalence between
populations [15,18]. However, despite the pattern
observed for the Crohn's disease-associated SNP
rs10761659 (Figure 4), there is no strong evidence to sug-
gest that the risk of developing Crohn's disease differs dra-
matically between individuals of African and European
ancestry [55]. Future studies are required to determine the
extent to which differences in risk allele frequencies
between populations predict disease prevalence differ-
ences between populations.

Finally, power estimates for disease association studies
rely on estimates of the risk allele frequency in a popula-
tion [56]. Inaccurate risk allele frequency estimates can
result in overestimates of power and, consequently, in
underpowered studies [57,58]. Thus, these data can aid in
the design of future association studies in populations for
which allele frequency data are scarce.

Some of the risk alleles studied here may not be disease
causing, but instead may be in linkage disequilibrium

Empirical global Fst distribution of 2750 markers typed in 927 individuals from the CEPH-HGDP panelFigure 3
Empirical global Fst distribution of 2750 markers 
typed in 927 individuals from the CEPH-HGDP panel. 
Disease-associated SNPs with global Fst values within the top 
10% of the empirical distribution are indicated.
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(LD) with the disease causing allele. Although recombina-
tion hotspot locations are generally shared across human
populations and there is substantial conservation of hap-
lotype structure worldwide [49,59], the extent of LD can
vary markedly across populations [60-63]. Because LD
breaks down differently in different populations, the risk
alleles studied here may not be associated with disease
across all human populations. Our analyses assume that
the degree of LD between the genotyped risk allele and the
true causal allele is conserved across populations. Our
interpretations should be considered in light of this
caveat.

Disease-association studies have primarily made use of
case-control cohorts of European ancestry. Studies of
worldwide patterns of genetic variation in disease-associ-
ated genes are essential to determine how transferable dis-
ease-gene associations are from one population to
another. Moreover, disease-association studies in diverse
populations are required in order to determine whether
different alleles are responsible for disease prevalence in
different populations. A strong focus on the genetics of

disease in humans worldwide is an important step in
addressing large disparities in the quality of health care
between human populations.

Conclusion
Disease-associated SNPs do not differ in frequency more
between human populations than random SNPs in the
genome. This suggests that positive local selection has not
had a strong effect on the frequencies of risk alleles in gen-
eral. Individually, however, several disease-associated
SNPs do show evidence of positive local selection. Regard-
less of whether the observed differences are due to drift or
selection, worldwide variation in risk allele frequencies is
considerable. Future studies are required to determine the
extent to which this variation is responsible for differences
in disease prevalence between populations.
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Worldwide risk allele frequencies and population differentiation for rs10761659, a SNP associated with Crohn's diseaseFigure 4
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which pairwise Fst values are significant compared to the empirical distribution at three P value thresholds (see the boxed-in P 
value legend).
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