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Abstract
Background: MicroRNAs play an important functional role in post-transcriptional gene
regulation. One of the largest known microRNA clusters is located within the imprinted Dlk1/Gtl2
region on human chromosome 14 and mouse chromosome 12. This cluster contains more than 40
microRNA genes that are expressed only from the maternal chromosome in mouse.

Results: To shed light on the function of these microRNAs and possible crosstalk between
microRNA-based gene regulation and genomic imprinting, we performed extensive in silico analyses
of the microRNAs in this imprinted region and their predicted target genes.

Bioinformatic analysis reveals that these microRNAs are highly conserved in both human and
mouse. Whereas the microRNA precursors at this locus mostly belong to large sequence families,
the mature microRNAs sequences are highly divergent.

We developed a target gene prediction approach that combines three widely used prediction
methods and achieved a sufficiently high prediction accuracy. Target gene sets predicted for
individual microRNAs derived from the imprinted region show little overlap and do not differ
significantly in their properties from target genes predicted for a group of randomly selected
microRNAs. The target genes are enriched with long and GC-rich 3' UTR sequences and are
preferentially annotated to development, regulation processes and cell communication.
Furthermore, among all analyzed human and mouse genes, the predicted target genes are
characterized by consistently higher expression levels in all tissues considered.

Conclusion: Our results suggest a complex evolutionary history for microRNA genes in this
imprinted region, including an amplification of microRNA precursors in a mammalian ancestor, and
a rapid subsequent divergence of the mature sequences. This produced a broad spectrum of target
genes. Further, our analyses did not uncover a functional relation between imprinted gene
regulation of this microRNA-encoding region, expression patterns or functions of predicted target
genes. Specifically, our results indicate that these microRNAs do not regulate a particular set of
genes. We conclude that these imprinted microRNAs do not regulate a particular set of genes.
Rather, they seem to stabilize expression of a variety of genes, thereby being an integral part of the
genome-wide microRNA gene regulatory network.
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Background
MicroRNA function and biogenesis
MicroRNAs are small (~20–23 nucleotides) non-coding
ribonucleic acid (RNA) molecules encoded in the
genomes of many eukaryotes and viruses. They bind to
partially complementary sites in the messenger RNAs
(mRNAs) of their target genes, thereby inducing the post-
transcriptional mechanisms of gene silencing [1]. Esti-
mates suggest that microRNAs might regulate up to 30%
of all genes [2]. The presumed number of unidentified
microRNAs is large [3]. Currently, about 470 microRNAs
are annotated in Homo sapiens (human) and about 380 in
Mus musculus (mouse) based on miRBase version 9.0.
MicroRNA-encoding genes are widely distributed across a
genome and occur in intergenic regions and in the introns
of both protein-coding and non-coding genes. Intronic
microRNAs are primarily expressed with their host gene. If
not, the microRNA encoding sequences cluster at distinct
genomic positions and are often coexpressed as a single
polycistronic transcript within 50 kilobases [4].

In the nucleus, the RNAse enzyme Drosha and its co-fac-
tor Pasha cleave the long microRNA precursor transcript
into a 70 nt to 90 nt long pre-microRNA, which has a char-
acteristic hairpin structure. This pre-microRNA is then
exported to the cytoplasm, where the enzyme Dicer proc-
esses it. The remaining microRNA duplex is incorporated
into the RNA induced silencing complex (RISC). During
this process the microRNA duplex is unwound and one of
the RNA strands is expelled. The mature microRNA
remains in the RISC and binds to partially complementary
sites in the mRNAs of its target genes and prevents their
translation. mRNA degradation, spatial separation or
direct inhibition of the translation process may silence the
transcript [1,5,6].

Like microRNA biogenesis, the target recognition process
is not fully understood. The role played by RISC compo-
nents also remains unclear. However, it is well established
that the primary microRNA sequence is important for tar-
get recognition. Several criteria have been developed and
provide the current foundation for target gene prediction.
First, sequence complementarity in the seed region (bases
2–8 starting 5') of the mature microRNA is widely
regarded as crucial for binding [2,7,8]. Second, 3' matches
can compensate for minimal 5' pairing [9]. Third, a single
mRNA sequence can contain several sites, either for one or
several different microRNAs, which appears to increase
silencing efficiency [10,11]. Fourth, since most microRNA
binding sites are apparently located in the 3' untranslated
region (3' UTR), searches for target sites are usually
restricted to this area [2,9,12,13].

Imprinting and the Dlk1/Gtl2 region
One of the largest microRNA clusters is on human chro-
mosome 14q32. Its orthologous region in mouse is situ-
ated on the long arm of chromosome 12. About 10% of
the microRNAs currently known in mouse and human are
located in this cluster. This cluster is located within a well-
known imprinted region that is characterized by parental-
origin-specific mono-allelic expression of the encom-
passed genes (genomic imprinting is an epigenetically
heritable mechanism that has been extensively reviewed
[14-16]). In the Dlk1/Gtl2 region, six imprinted genes
have been annotated; three are paternally expressed
(Dlk1/DLK1, Rtl1/RTL1, Dio3/DIO3), and four are mater-
nally expressed (Gtl2/MEG3, anti-Rtl1, Rian/MEG8, Mirg)
[16-18]. Some of these genes have different names in
mouse and human. To avoid confusion, we will only use
the mouse name. While the paternally expressed genes
encode proteins, the maternally expressed genes represent
non-coding RNAs. Analyses of numerous microRNAs in
this region revealed that the microRNAs are transcribed
only from the maternal chromosome in mouse [19,20].
For their human orthologs, it is likely that these microR-
NAs share the murine imprinting pattern; however, this
has not been experimentally validated. Pronounced tran-
scription of the intergenic regions between Gtl2 and Mirg
suggests that these microRNAs are embedded in long non-
coding transcripts that may run from the Gtl2 promoter to
as far as the 3' end of Mirg [20]. In the orthologous human
genomic sequence, the presence of numerous expressed
sequence tags (EST) suggests substantial transcription of
the region downstream from Rian. Figure 1 depicts the 42
human microRNAs and the 42 mouse microRNAs based
on information from miRBase [21] version 9.0 and the
annotated transcripts for the Dlk1/Gtl2 region.

In both organisms the microRNA precursor sequences are
organized in two groups: the first between Gtl2 and Rian
[22], and the second between Rian and the 3' end of Mirg
[19]. Most of the pre-microRNAs in the second cluster are
arranged in tandem arrays of closely related sequences
and are presumably the result of sequence duplications.
Seitz et al. [19] identified the microRNAs in this second
cluster and identified three different hairpin sequence
families, one family with 24 members, one with six mem-
bers and one with four members. These families have
been incorporated into the miRBase [21] families indi-
cated in figure 1.

Deregulation of imprinted gene expression in this region
causes hypertrophy in sheep hind muscles [17], abnor-
malities in muscle, bone and placenta, impaired embry-
onic growth and death in mouse [18,23,24], skeletal
malformations and various other abnormalities in human
[25]. The observed phenotypes have not been mapped to
specific transcripts, and the potential functional involve-
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ment of these microRNAs remains unclear. Although not
extensively analyzed, strong expression of Mirg and the
imprinted microRNAs has been observed in the mouse
brain [20]. Since expression of Gtl2 and Mirg has been
observed in several mouse organs, including skeletal mus-
cle, tongue, limbs and placenta, during early stages of
development [20], it appears likely that these microRNAs
also appear in the tissues affected. Thus, deregulation of
these imprinted microRNAs might contribute to the
observed phenotypes.

The high sequence similarities observed between many of
the imprinted microRNA genes suggest that the mature
microRNAs may also be similar and silence the same tar-
get genes [19,26-28]. To test this, we systematically com-
pared the pre-microRNA and mature sequences of the
imprinted microRNAs on human chromosome 14 and
mouse chromosome 12. As suggested by the phenotypes
of the imprinting mutations and tissue-specific expression
patterns, these microRNAs may silence specific subsets of
genes that play a role in organ development, such as brain
and muscle. Since possible target genes have been identi-
fied for only a few imprinted microRNAs, e.g. miR-134,

miR-376a, miR-370, and the microRNAs embedded in the
antisense transcript of the Retrotransposon-like 1 (Rtl1)
gene [19,22,29-32], we established a pipeline that com-
bines different algorithms to predict microRNA target
genes computationally.

We decided to exploit the diversity of available target pre-
diction methods by combining their results. In multiple
areas of bioinformatics (e.g. protein structure prediction,
protein function prediction and gene prediction) such
consensus methods have achieved higher prediction accu-
racy and robustness than any of the underlying algorithms
alone. Studying the predicted target genes of the Dlk1/Gtl2
microRNAs in terms of their sequence features, expression
patterns and gene ontology annotations, we find that the
microRNAs in the imprinted region may target a similarly
broad spectrum of genes as a group of randomly selected
microRNAs that are located elsewhere in the genome.

Results
Sequence similarities of microRNAs
We examined 31 mature microRNAs with orthologs in
both human and mouse, as well as 14 uniquely human

MicroRNA cluster in the Dlk1/Gtl2 region of human and mouseFigure 1
MicroRNA cluster in the Dlk1/Gtl2 region of human and mouse. Maternal expression of the transcripts is indicated in light 
magenta (Gene-trap locus 2 (Gtl2)/Maternally Expressed Gene 3 (MEG3), anti-Retrotransposon-like 1 (anti-Rtl1), RNA imprinted and 
accumulated in nucleus (Rian)/Maternally Expressed Gene 8 (MEG8), microRNA containing gene (Mirg)) and paternal expression in 
light blue (Delta-like homolog 1 (Dlk1), Retrotransposon-like 1 (Rtl1), iodothyronine deiodinase 3 (Dio3)). The figure designates by 
color the microRNAs (all maternally expressed) based on miRBase families with more than one member in mouse and human. 
Hairpin identifiers marked in red were not available in miRBase version 8.0 and were excluded from the target prediction anal-
ysis. The gene length and distances are not depicted to scale.
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mature microRNAs and 12 microRNAs unique to mouse
(see Additional file 1). We investigated the similarities
among these microRNAs and to other microRNAs in each
species, as well as their degree of conservation between
the two species. The goal of this analysis was to under-
stand the structural and functional similarities as well as
the uniqueness of the microRNAs in the Dlk1/Gtl2 region
more fully, and to investigate further the previous claim
that this microRNA cluster emerged through tandem
duplications [19,28].

We combined pairwise alignment and graph analysis
methods to analyze the pre-microRNA and mature
sequence similarities within the Dlk1/Gtl2 region and also
to other microRNAs at different genomic locations. To
assess the sequence similarities between two pre-microR-
NAs or mature microRNAs, we defined the similarity quo-
tient SQ (cutoff 0.75) as the ClustalW [33] pair alignment
score divided by the minimum of the two alignment
scores of each sequence. The SQ value can be regarded as
a measure of similarity that is based on the shorter
sequence, because conventional sequence identity would
severely penalize length differences between sequences,
which occur often in sequence annotation. Briefly, align-
ments for all pairs of microRNA sequences were calculated
and graphs were generated from the resulting SQ values
(with sequence identifiers as nodes and an edge between
two nodes if the sequences were similar) for each species
and sequence type (human: Figure 2, mouse: Additional
file 2).

The pre-microRNA sequence graphs indicate that the clus-
ter of microRNAs between Gtl2 and Rian represents an
accumulation of microRNA precursor sequences that
show no pronounced similarities to one another. In con-
trast, the second cluster between Rian and the 3' end of
Mirg encompasses many pre-microRNA sequences with
high similarities to one another. This confirms published
data on pre-microRNA clustering, particularly in the
genomic segment between Rian and Mirg [19,26-28]. Fur-
thermore, none of the pre-microRNA sequences is similar
to microRNAs encoded outside the Dlk1/Gtl2 region, sup-
porting an absence of potential paralogues in different
genomic regions.

The high similarity of neighboring pre-microRNA
sequences in the second cluster suggests that the mature
microRNAs should be similar to one another. However,
comparing the graphs of the pre-microRNA and mature
microRNA sequences, we noticed striking differences. In
human, we see one large family of pre-microRNAs (com-
prising all hairpin families defined by Seitz et al. [19]) that
is completely decomposed for the mature microRNA
sequences. Fewer mature sequences fulfill the SQ cutoff of
0.75; therefore, smaller families and a lower connectivity

within the families are observed. As shown in the align-
ment of pre-microRNA sequences in the largest previously
defined microRNA family within the Dlk1/Gtl2 region
[19], mir-159 (see Additional file 3), these differences are
due to small sequence variations, shifts in the hairpin
structures causing different cleavage sites and differences
in the location of the mature microRNA within the hair-
pin (5' vs. 3' end). Overall, these differences in clustering
indicate an elevated divergence of the mature microRNA
sequences.

The mature microRNAs between Gtl2 and Rian are also
dissimilar, which is not surprising since their precursor
sequences lack similarities. As indicated by the data on
pre-microRNAs, only a few mature microRNAs (six in
human, two in mouse) show pairwise similarities to non-
Dlk1/Gtl2 microRNA sequences; none exhibits more than
a single link to external sequences.

Analyzing the sequence conservation between mouse and
human, most mature sequences that share the same pre-
microRNA identifiers show highly conserved mature
sequences (average SQ of 0.986). Only the mature miR-
411 sequences differ substantially from each other, due to
a different annotation of their hairpin sequences. Based
on the tandem duplication hypothesis, we also investi-
gated whether the sequence similarity is higher for any
mature sequence pairs with different pre-microRNA iden-
tifiers (all alignments are available in Additional file 4).
We found only one example, hsa-miR-376b and mmu-miR-
376a (SQ of 0.905 compared to 0.864 for mmu-miR-
376b). The murine sequence mmu-miR-376a is one nucle-
otide shorter and is aligned with two instead of three mis-
matches. Taking the shorter sequence into account, this is
no considerable difference.

Overall, our results showed high levels of sequence con-
servation between mouse and human microRNAs and a
high diversity among the Dlk1/Gtl2 mature microRNAs
within each species. The high diversity of mature micro-
RNA sequences is unexpected for a functionally con-
strained cluster that originates from sequence duplication
events, but reasonable when considering a reduced selec-
tive pressure after duplication events.

Targets of the Dlk1/Gtl2 microRNAs
To assess whether the divergence among the mature
microRNAs extends to their target genes, we predicted
putative target sites in human and mouse 3' UTR
sequences of protein coding genes and in repetitive ele-
ments for all microRNAs encoded in the Dlk1/Gtl2 region.
An equal number of non-Dlk1/Gtl2 microRNAs was ran-
domly selected and used as the reference for distinguish-
ing effects specific to the microRNA cluster within this
imprinted region (list of mature microRNAs: see Addi-
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MicroRNAs in the Dlk1/Gtl2 region exhibit unique sequence characteristicsFigure 2
MicroRNAs in the Dlk1/Gtl2 region exhibit unique sequence characteristics. Top: Graph of human microRNA sequence similar-
ities based on complete hairpin sequences and restricted to components with more than two nodes. Bottom: Graph of mature 
microRNA sequence similarities for human restricted to components with more than two nodes. Communities with heteroge-
neous microRNA identifiers are annotated based on miRBase version 9.0. The edges between nodes are shown if the similari-
ties of the respective microRNAs are described by a similarity quotient SQ ≥ 0.75.
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tional file 1). For target sequence prediction, we imple-
mented a combined target prediction using three
common prediction algorithms, miRanda, RNAhybrid
and SeedMatch. miRanda [10] is an algorithm based on a
dynamic programming alignment of microRNA and
mRNA sequences, followed by a calculation of the duplex
binding energy and filtering using empirically defined
binding rules. RNAhybrid [34] is an algorithm for short
nucleic acid hybridizations (free energy calculation) that
uses estimated p-values to determine the significance of a
predicted binding site and employs no empirical binding
rules when filtering. SeedMatch is our own algorithm
based on exact string matching of the microRNA seed
region with the mRNA sequence similar to TargetScanS
[2] or PicTar [7] that additionally searches for a perfect 3'
seed to better reflect the binding patterns introduced by
Brennecke et al. [9].

Since the different target prediction programs are known
to differ widely in the number of predictions and
obtained gene lists [35-37], combining different predic-
tors to produce an intersection or overlap of the different
results would lead to an unacceptable loss of either sensi-
tivity or selectivity [36]. Instead, we combined the predic-
tion results using unweighted majority voting based on
the predictions of complete transcripts (illustrated in Fig-
ure 3). We used three different strategies for selecting a
prediction cutoff. First, the "Classic" filter assumes that a
separation between functional and non-functional bind-
ing sites for each score is independent of a specific micro-
RNA sequence and therefore uses the same cutoff values
for all microRNAs. The "Vari" filter assumes a separation
relative to a maximum score for the specific microRNA
sequence. Lastly, the "3000" filter assumes that each
mature microRNA sequence is available in a fixed copy
number and restricts prediction results to the best 3000
target sequences. To validate our target gene prediction
approach, we tested the recovery rate of predicted target
genes in a set of 129 murine mir-134 targets, which were
independently predicted and verified with luciferase-
reporter assays by Miranda et al. [31]. A maximal, 10.665
fold enrichment was observed for non-conserved targets
using the "Vari" filter (see Additional file 5 for a detailed
description of the target gene prediction procedure and its
validation).

For all three filters, we observed that the GC content of
microRNAs is highly correlated with the number of pre-
dicted targets (plots shown in Figure 4). This correlation
likely arises from using sequence alignment and energy
scores that favor GC matches over AT matches (higher
number of hydrogen-bonds), and is consistent with the
result that the lowest correlation is observed for the
sequence-dependent "Vari" filter. In the following, we
present the results from using the "Vari" filter, which

reduces the GC effect by using cutoffs relative to the theo-
retically maximum score of each specific microRNA
sequence.

For all microRNAs in the Dlk1/Gtl2 region, we observed
on average 103 predicted targets conserved between
human and mouse from an average 454 human targets.
For the analyses reported below, we also looked for anti-
targets [13], which we define as all transcripts not con-
tained in any of the raw predictions (lower cutoffs than
used for the targets) for any of the used algorithms. The
antitargets are, therefore, independent of the different fil-
ters used. We counted on average 332 antitargets con-
served between human and mouse from 2925 human
antitargets for the Dlk1/Gtl2 microRNAs.

Targeting of repetitive elements
RNA interference should act as a defense mechanism
against the transcription of retrotransposed sequences
[38]. Since five microRNAs in the imprinted region are
encoded by the antisense strand from the Retrotransposon-
like 1 gene, we asked whether the microRNAs derived
from this imprinted region generally target retroelements
in the human or mouse genome. We predicted microRNA
binding sites for 868 repetitive human sequences and 585
mouse sequences [39]. Predominantly, Endogenous Ret-
rovirus sequences, some Non-Long Terminal Repeat
(LTR) Retrotransposon, LTR Retrotransposon, and DNA
transposon elements were predicted targets of the Dlk1/
Gtl2 microRNAs. We did not predict Variable Number
Tandem Repeats like (TAGA)n, (GACA)n, or (CGAA)n as
targets of this microRNA cluster. The number of predicted
Satellite sequences, not further classified Interspersed
Repeats and other repeats was very low. By analyzing the
enrichment for these repeat types, we found that the Dlk1/
Gtl2 microRNAs particularly target Endogenous Retrovi-
rus and L1 elements. This effect is not restricted to the anti-
Rtl microRNAs with perfect complementarity to the retro-
transposon Rtl1 (Figure 1) [17,40].

Overlap of predicted target genes
The target gene predictions enabled us to analyze the
degree of similarity among the target gene sets for micro-
RNAs within the Dlk1/Gtl2 locus. This evaluation reveals
whether high sequence similarities among the microRNA
hairpins in this region actually result in gene co-regula-
tion. For this purpose, we defined a measure of overlap in
two ways. First, we measured overlap using the number of
common genes divided by the number of unique genes in
the two sets. Since this definition penalizes large differ-
ences between the number of targets, we also defined
overlap as the fraction of common targets in the smaller
set of predicted microRNA targets. This second definition
completely ignores differences between the number of tar-
gets; therefore, microRNAs with small target sets are easily
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scored as very similar to microRNAs with large target sets.
When mouse and human mature microRNAs were plot-
ted graphically (data not shown), we observed large hubs
representing microRNAs with large target sets of mainly
GC-rich mature microRNAs, which agglomerated satel-
lites of microRNAs with small target sets.

Using the "Vari" filter strategy and predicted human tar-
gets, the highest overlap for the first measure is only
26.2% (10.0% for conserved targets), whereas the second
measure results in an overlap of up to 48.8% (55.6% for

conserved targets). With respect to the microRNA
sequence families defined above, we observe that mature
sequences must be highly similar to show a considerable
overlap in their targets. For example, the sequences with
the highest overlap of 26.2%/48.8% (hsa-miR-376a and
hsa-miR-376b) differ in only two bases (one in length and
one base substitution). Thus, the overlap in the identified
target genes results primarily from using the same
sequence motifs as binding sites. For the reference set, the
highest target overlap is 38.3% and 62.3% (38.6% and
57.4% conserved targets) for the first and second overlap

Work flow of target gene predictionFigure 3
Work flow of target gene prediction. Three programs (miRanda, RNAhybrid, SeedMatch) were used separately to predict tar-
get sites. The energy score and p-values of RNAhybrid were supplemented by an alignment score calculated from the addition-
ally provided alignment string. The overall six scores were treated as different predictors, motivated by a poor Pearson 
correlation (R2 below 0.5) of the scores within each program. Within each input, the predicted target sites were filtered ("Clas-
sic", "Vari", "3000" filter) and combined to a final prediction of microRNA target sequences. For the resulting sets, the overlap 
of the different inputs was evaluated with an unweighted voting process. The parameter n of the voting process was set to four 
with an additional conservation filter, otherwise, the filter was set to five. A detailed description of target prediction is pro-
vided in Additional file 5.
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definition respectively. The corresponding sequences, hsa-
miR-103 and hsa-miR-107, show only one base substitu-
tion.

In addition to exploring the target and antitarget lists of
individual microRNAs, we also analyzed the merged tar-
get and antitarget lists for both the Dlk1/Gtl2 microRNAs
and the randomly selected reference set. This analysis
facilitates a further investigation for a common function
of the microRNAs in the imprinted cluster. To reduce the
impact of transcripts only predicted for a small subset of
microRNAs, we removed all sequences that were predicted

for fewer than three microRNAs from the merged target
lists and fewer than 16 microRNAs from the merged anti-
target lists. In analyzing these targets and antitargets, we
notice that the average target 3' UTR length is about 2829
nt in human (2870 nt in mouse) with the "Vari" filter –
three times greater than the average 3' UTR length of all
transcripts analyzed – and that the GC content of the tar-
gets is about 6.5% higher in human (4.0% in mouse) than
the average. For the antitargets, we see the same shift in
the other direction for the 3' UTR length and GC content
(Figure 5). These observations are not unexpected given
the known preference of target predictors for guanine and

Relation between the mature microRNA's GC content and the number of predicted targetsFigure 4
Relation between the mature microRNA's GC content and the number of predicted targets. The correlation of the GC con-
tent and the number of predicted targets was exemplified for predicted human targets of the Dlk1/Gtl2 microRNAs and the 
reference set that passed the conservation filter. The horizontal axis with the number of target genes is on logarithmic scale. 
Shown are the results for all three different target site filter strategies, Classic, Vari and 3000, with their corresponding Spear-
man's rank correlation coefficients. The Classic filter uses the same cutoff values for all microRNAs, the Vari filter uses cutoff 
values relative to a maximum score for each specific microRNA sequence and the 3000 filter only keeps the best 3000 pre-
dicted target sequences (see Additional file 5).
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cytosine bases and that long sequences have a higher
probability of containing target sites. Similar results were
obtained for the targets and antitargets of the reference set.

Chromosomal distribution of predicted target genes
Imprinting regions, tandem duplications in the Hox gene
families and clustering of house-keeping genes are good

examples of genes that are not uniformly distributed over
the genome. At the chromosomal level, genes expressed in
somatic testis cells accumulate on the X chromosome
[41]. To evaluate whether target genes of microRNAs clus-
ter on distinct chromosomes due to co-regulation, co-
function or a common evolutionary history [42], we ana-
lyzed the chromosomal distribution of the predicted tar-

GC content and length distribution of 3' UTR sequencesFigure 5
GC content and length distribution of 3' UTR sequences. Shown is the density distribution of GC content and length in the set 
of all 3' UTR sequences, in the set of predicted human "Vari" targets of at least three Dlk1/Gtl2 microRNAs and in the set of 
human antitargets of at least 16 Dlk1/Gtl2 microRNAs. The frequencies of the bins are normalized to equal one for each set of 
sequences (density distribution), which corrects for the different number of sequences in each set. For a better visualization of 
the 3' UTR length, the natural logarithm of the length was used.
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get genes in our dataset. The results show a highly non-
uniform target gene distribution for the microRNAs
within both the Dlk1/Gtl2 region and the reference set. For
the microRNAs in the Dlk1/Gtl2 region, some chromo-
somes have a notably high target density (e.g. human
chromosomes 9, 15, 17, and 22), some a rather small den-
sity (e.g. 2, 4, 12, and X) and a majority around the aver-
age. For the reference set, we observed similar
chromosomal distributions.

Mammalian genomic regions can differ considerably in
their GC contents, which may bias the chromosomal dis-
tribution of potential microRNA target genes. Therefore,
we compared both the total 3' UTR GC content (concate-
nation of the sequences) and the median 3' UTR length of
the targets within each chromosome to the distribution of
the same number of randomly selected sequences from
the same chromosome. All three filter strategies, show tar-
get selection (in many cases significant with a p-value <
0.01; sampling test, data not shown) based on their 3'
UTR sequence length and GC content within each chro-

mosome. Testing whether the sequence annotation to
chromosomes is consistent with a random model of gene
distribution, seven human chromosomes show signifi-
cantly increased 3' UTR GC content, and twelve signifi-
cantly decreased GC content. Similarly seven human
chromosomes exhibit a significantly increased median 3'
UTR sequence length and four show a significantly
decreased length (Figure 6A). Comparing the target den-
sity, the median 3' UTR length, and the GC content for
each chromosome, we observed that the z-scores of the
target density follow the linear combination of the z-
scores of the median 3' UTR length and the GC content
(Figure 6B). Calculating Pearson correlation coefficients
to substantiate the visual impression, we obtain 0.945 for
mouse and 0.750 for human. These calculations show
that the observed non-uniform target distribution is likely
attributable to the non-uniform distribution of 3' UTR GC
content and length over the chromosomes. Using anti-
targets for the corresponding analyses, we obtain inverse
results (in agreement with the inverse definition of anti-
targets).

Chromosomal distribution of predicted target genes is influenced by length and GC content of 3' UTRsFigure 6
Chromosomal distribution of predicted target genes is influenced by length and GC content of 3' UTRs. The line chart of the z-
scores of human chromosomal 3' UTR GC and length distribution (A) and the line chart of the combination of these z-scores 
compared to the human "Vari" target density z-scores of at least three Dlk1/Gtl2 microRNAs (B). The scattered area in (A) 
corresponds to a p-value higher than 0.05. The values in (B) are normalized by their standard deviation to focus on the rela-
tionship and not the values. Additionally, the Pearson correlation coefficient r is given. The plots show that the observed non-
uniform distribution of the targets is probably caused by the non-uniform distribution of 3' UTR GC content and length over 
the chromosomes. For predicted murine targets a similar effect is observed, the corresponding Pearson correlation coefficient 
is 0.950. If we restrict the chromosomes included in the calculation to the chromosomes with target densities significantly dif-
ferent to a random distribution (p-value smaller than 0.01), we obtain even higher values (0.982 and 0.968 respectively).
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Imprinted genes may interact with each other within a reg-
ulatory network [43]. Co-regulation of these genes could
be mediated by common regulatory elements in
imprinted regions or by imprinted microRNAs. Thus,
imprinted regions might show enrichment of predicted
target genes. Based on this assumption we specifically
analyzed genes in imprinted regions. We found no evi-
dence for significant enrichment or depletion of
imprinted genes in the groups of predicted target or anti-
target genes. Also, the median 3' UTR lengths (human 837
nt, mouse 1154.5 nt) and GC contents (human 39.76%,
mouse 41.90%) were similar to other genes in the human
and mouse genome (Wilcoxon rank sum test with conti-
nuity correction, all p-values > 0.05).

Genomic imprinting is a mechanism of gene regulation
that only occurs in therian species. There is evidence that
imprinted gene expression in the Dlk1/Gtl2 region was
established after divergence of the marsupial and euthe-
rian lineages, at the time when the microRNAs encoding
sequences in the region were amplified [28,44,45]. Since
species divergence is related to changes in protein
sequences and changes in gene expression, a special evo-
lutionary relationship between eutherian imprinted
microRNAs and eutherian-specific genes appears likely.

Addressing this question, we tested if eutherian-specific
genes are enriched among the predicted microRNA target
genes. For this purpose, we identified 198 human genes
without orthologs in any fish, bird, marsupial, or
monotreme genomes, but shared among eutherians ([46],
for details see Material and Methods). Eutherian-specific
genes are not enriched among the predicted target genes,
but they show enrichment within the groups of anti-
targets, i.e. genes that show a depletion of microRNA-
binding sites (2.48 fold enrichment in non-conserved
antitargets, hypergeometric test p-value < 0.0001). This
effect is also observed in the antitargets of the reference set
(2.7 fold enrichment in non-conserved antitargets, hyper-
geometric test p-value < 0.0001). This enrichment in the
antitarget sets might be due to a significantly reduced 3'
UTR length (median 245.5 nt, Wilcoxon rank sum test
with continuity correction, p-value < 2.2e-16) of the euth-
erian-specific genes compared to all human transcripts
used for analysis.

Expression of predicted targets
Tissue-specific microRNA expression patterns and non-
translated RNAs encoded by the imprinted Dlk1/Gtl2
region have been analyzed in most detail in mouse, in
which these RNAs are predominantly expressed in brain,
neonatal limbs and placenta [19,20]. Imprinting muta-
tions in the region cause a number of different abnormal-
ities that affect the skeletal muscles, skeleton and placenta
[23,24]. Thus, the expression patterns of potential target

genes might highlight possible roles for aberrant target
gene expression in the observed abnormalities. To analyze
the expression of the predicted targets, we combined clus-
tered heat maps, correlation maps and box plots to a con-
densed version of the GNF gene expression atlas of mouse
and human protein-encoding transcripts [47]. In addition
to these exploratory techniques, we compared the median
gene expression value and the variance of the expression
values of the predicted targets in each tissue to the distri-
bution obtained for equally-sized random transcript
selections. This analysis revealed higher median values
and significantly lower variances in the expression values
of the predicted targets in each tissue (see Additional file
6). These two effects are also visible in the box plots (Fig-
ure 7) and are independent of the set of microRNAs used
(Dlk1/Gtl2 or reference set).

When analyzing tissue-specific gene expression patterns,
we observed a separation of the three brain tissues amy-
gdala, cerebellum and hypothalamus from the heteroge-
neous group of other tissues (Figure 8A). This result was
not specific for the targets of the imprinted Dlk1/Gtl2
microRNAs, which might be expected given the strong
expression of these microRNAs in brain. It also applies to
the target genes of the reference set. In fact, this separation
of the three brain tissues appears to be a common feature
of the target gene expression over several tissues [48]. The
relevance of these observations is supported by the fact
that the variance in antitarget expression is significantly
higher (rather than lower) and that no separation of brain
tissues was observed for the antitargets (Figure 8B). The
shift in median gene expression values and the variance of
expression values is also observed for sequences only
selected by 3' UTR sequence length and GC content. For a
high GC content and high sequence length, a higher
median and lower variance is observed, and for low GC
content and length, a lower median – observations similar
to the targets and antitargets respectively.

GO annotation of predicted targets
Imprinting mutations within the Dlk1/Gtl2 region are
associated with a broad spectrum of phenotypic abnor-
malities affecting the regulation of growth and the mor-
phology of placenta, the maturation of muscle fibers and
the ossification processes in bones [23,24]. The potential
involvement of predicted microRNA target genes in spe-
cific biological processes might highlight the impact of
deregulated microRNAs on the observed phenotypes.
Mining for over- and underrepresented Gene Ontology
(GO) terms [49] provides a well-established and scalable
way to identify common functional roles among sets of
genes. Briefly, the GO is based on the annotation of the
biological process, the molecular function and cellular
localization of the translated proteins that correspond to
the gene of interest. Over- and underrepresented GO bio-
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logical process terms were determined for the predicted
targets and antitargets (using conditional hypergeometric
tests as implemented in the GOstats bioconductor pack-
age [50]). The over-represented terms for the target genes
of the microRNAs within the Dlk1/Gtl2 region (Table )
include developmental process, anatomical structure
development, cell communication, regulation of biologi-
cal process, transport, phosphorus metabolic process and
cell adhesion. Under-represented processes include cellu-
lar metabolism, electron transport, protein biosynthesis
and metabolism, sexual reproduction, response to a biotic
stimulus (like bacteria and pathogens), DNA and RNA
metabolism and RNA processing. Again, we observed sim-
ilar results for the reference set and inverse results for the
antitargets.

To investigate whether 3' UTR length and GC content
might also correlate with specific biological processes, we
repeated our GO analysis using a selection of the longest
and GC-richest 3' UTRs, as well as on the shortest and GC-
poorest 3' UTRs. We observed highly similar GO terms,
indicating that these biological processes are correlated
with the sequence signature of the 3' UTRs.

Discussion
The results of our microRNA sequence analysis show that
microRNAs encoded within the Dlk1/Gtl2 region are well
conserved between mouse and human, both in terms of
their pre-microRNA and mature sequences. A large frac-
tion of the microRNAs in this imprinted cluster is con-
tained in large families of hairpin sequences. This is true

Gene expression of predicted target genes compared to all transcripts with annotated expression dataFigure 7
Gene expression of predicted target genes compared to all transcripts with annotated expression data. The figure shows a box 
plot of the expression values of predicted human "Vari" targets of at least three microRNAs within the Dlk1/Gtl2 region and 
randomly selected microRNAs of the reference set compared to the background (the expression values of all transcripts with 
annotated expression data).
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for the microRNAs clustering between Rian and the 3' end
of Mirg, thereby confirming previous studies that propose
multiple tandem duplications of an ancestral precursor
sequence as the evolutionary origin of these pre-microR-
NAs [19,26-28]. However, we observed that not a single
pre-microRNA between Gtl2 and Rian is member of a hair-
pin family and that there is also no mature sequence fam-
ily between Gtl2 and Rian or spanning over the whole
region from Gtl2 to the 3' end of Mirg. Hence, we see little
indication that microRNAs in the upstream region of Rian
originate from the same ancestral microRNA as the micro-
RNAs downstream of Rian.

Considering the pre-microRNA sequence family composi-
tion, a high similarity among the mature microRNAs
would be also expected. Surprisingly, unlike the pre-
microRNAs, mature sequences in the downstream region
of Rian are rather divergent, a feature that has not yet been
addressed. We observe fewer similar mature sequences
and therefore, smaller mature microRNA families. Since
the mature sequences are well conserved between mouse
and human and the orthologous pre-microRNAs also
encode the most similar mature sequences, the divergence
of these microRNAs is likely to date more than 75 million
years ago, to a common ancestor shared by mouse and
human [51]. From our observations, we suggest the fol-

lowing hypothesis: After the sequence duplication event
in a common ancestor, selective pressure on the dupli-
cates was sufficiently low to enable the pronounced diver-
sity to evolve rapidly. This divergence later became
functional and preserved in descendants.

Our analysis of sequence similarities between all mature
and pre-microRNA sequences within each species
revealed that the Dlk1/Gtl2 microRNAs show only weak
sequence similarities to other microRNAs in the genome.
This supports our hypothesis that this cluster is structur-
ally distinct from other microRNAs in both the human
and mouse genome. Possibly as a consequence of mature
microRNA sequence divergence, the predicted microRNA
target genes are diverse. Our analysis showed very little
overlap between individual microRNAs in the target lists.
Even smaller sequence families defined on the mature
microRNAs did not exhibit considerable overlaps in pre-
dicted targets, which could have hinted at a concerted spe-
cialized function of these microRNAs.

We observed a high correlation between the GC content
of the mature microRNA and the number of predicted tar-
gets, which we attributed to the greater contribution of GC
base pairing over AT base pairing in determining sequence
and energy scores during the target prediction process.

Correlation map of predicted human "Vari" target transcripts (A) and antitarget transcripts (B) with annotated expression dataFigure 8
Correlation map of predicted human "Vari" target transcripts (A) and antitarget transcripts (B) with annotated expression data. 
The figure shows the correlation map (squared Pearson correlation) of the expression values in each tissue. The expression 
values of the targets (A) show a clear separation of the three brain tissues amygdala, cerebellum and hypothalamus, from the 
heterogeneous group of other tissues. This separation is not observed for the antitargets.

ce
re

b
el

lu
m

h
yp

o
th

al
am

u
s

am
yg

d
al

a
p

la
ce

n
ta

sk
el

et
al

 m
u

sc
le

lu
n

g
h

ea
rt

liv
er

te
st

is
b

o
n

e 
m

ar
ro

w
ki

d
n

ey
p

it
u

it
ar

y
sa

liv
ar

y 
g

la
n

d
p

ro
st

at
e

tr
ac

h
ea

p
an

cr
ea

s
ad

re
n

al
 g

la
n

d
u

te
ru

s
o

va
ry

th
yr

o
id

ly
m

p
h

 n
o

d
e

th
ym

u
s

cerebellum
hypothalamus
amygdala
placenta
skeletal muscle
lung
heart
liver
testis
bone marrow
kidney
pituitary
salivary gland
prostate
trachea
pancreas
adrenal gland
uterus
ovary
thyroid
lymph node
thymus

0 0.1 0.2 0.3 0.4 0.5 0.6

Value

0
20

40
60

C
ou

nt

Color Key and Histogram

p
an

cr
ea

s
h

ea
rt

liv
er

lu
n

g
p

ro
st

at
e

th
ym

u
s

th
yr

o
id

b
o

n
e 

m
ar

ro
w

sa
liv

ar
y 

g
la

n
d

tr
ac

h
ea

ly
m

p
h

 n
o

d
e

o
va

ry
p

la
ce

n
ta

u
te

ru
s

ad
re

n
al

 g
la

n
d

p
it

u
it

ar
y

sk
el

et
al

 m
u

sc
le

ki
d

n
ey

h
yp

o
th

al
am

u
s

am
yg

d
al

a
ce

re
b

el
lu

m
te

st
is

pancreas
heart
liver
lung
prostate
thymus
thyroid
bone marrow
salivary gland
trachea
lymph node
ovary
placenta
uterus
adrenal gland
pituitary
skeletal muscle
kidney
hypothalamus
amygdala
cerebellum
testis

0 0.1 0.2 0.3

Value

0
20

60

Color Key and Histogram

C
ou

nt

TARGETS ANTITARGETSA B
Page 13 of 18
(page number not for citation purposes)



BMC Genomics 2008, 9:346 http://www.biomedcentral.com/1471-2164/9/346
While the biological relevance of this effect cannot be
fully assessed in the absence of appropriate experimental
data, we could derive a target prediction method with cut-
offs that depend on the mature microRNA sequence using
the "Vari" filter method. This reduces the GC correlation
and appears to offer a good compromise between sensitiv-
ity and specificity (see Additional file 5). Similarly, the GC
content and length of the 3' UTR target sequences was
observed to influence target gene prediction. We demon-
strated that the chromosomal densities of target sequence
predictions correlate with GC content and the length of 3'
UTRs of the genes on each chromosome. Consequently,
some chromosomes are enriched or depleted for micro-
RNA target genes.

As might be expected for mature microRNAs that do not
show pronounced similarities, the microRNAs derived
from the imprinted region target a broad spectrum of
genes. This observation does not support that these clus-
tered microRNAs fulfill one specific function. However,
their tissue-specific expression pattern suggests that they
might be able to simultaneously reduce the expression of
numerous genes in distinct cell-types.

Since the microRNAs analyzed in this study are derived
from an imprinted region their possible interactions in
regulatory networks with one another are of particular
interest. In our study, we find no evidence for a significant
enrichment or depletion of imprinted genes among the
predicted target or antitarget genes. Thus, a specific down-
regulation of imprinted genes is probably not one of the
major functions of the microRNAs within the Dlk1/Gtl2
region.

Unlike the imprinted genes, we find an enrichment of
eutherian-specific genes within the predicted antitarget
sets. This effect is apparently associated with the short 3'
UTRs of eutherian-specific genes. The short length of the
3' UTRs might be a feature caused by specific evolutionary
origins of these genes, such as possible retro-transposition
or tandem-duplication events. Due to their late occur-
rence in evolution, these genes might also have been una-
ble to accumulate an equal amount of microRNA-binding
sites. Alternatively, there might be evolutionary selection
against microRNA binding sites in recently evolved genes,
linked to an ongoing process of acquiring specific func-
tions. The enrichment of eutherian-specific genes is also
observed for the antitargets of the randomly selected
microRNAs in the reference set. Thus, the observed effect
is not due to special associations between the location of
the microRNAs within the Dlk1/Gtl2 imprinting region
and eutherian-specific genes in terms of their function or
shared evolutionary history.

The analysis of gene expression data and functional anno-
tations revealed general characteristics of microRNA target
genes. Predicted microRNA targets exhibited enhanced
expression with reduced variation in expression values
among the targeted transcripts in each tissue. Our obser-
vation is consistent with the model that post-transcrip-
tional regulation by microRNAs leads to a stabilization of
expression levels, rather than a complete silencing of tar-
get genes [52]. The target genes also exhibit characteristic
GO annotation terms, including development, regulation
and cell communication processes, which are in total
agreement with previous studies of microRNA target genes
[2,13,53,54]. Following the observation of the selection
for long and GC-rich transcripts in microRNA target gene
prediction, we noticed that sets of transcripts only selected
by the length and GC content of their 3' UTR also yield
similar results in gene expression and GO annotation. The
agreement between our results and previous findings sug-
gests a relation between the length and GC content of a 3'
UTR sequence and the biological function of the gene.
Therefore, we conclude that the differences in the
sequence properties of 3' UTR sequences might be due to
specific biological functions that depend on the effects of
post-transcriptional regulation like a microRNA mediated
stabilization of gene expression levels.

Conclusion
Although the results of our microRNA sequence analysis
showed that the imprinted Dlk1/Gtl2 microRNAs are well
conserved between mouse and human, we find that the
mature microRNAs are quite distinct among each other in
terms of their sequences and of the genes they are pre-
dicted to regulate. Co-expression of such a high number of
microRNA genes may provide an efficient way for boost-
ing different mature microRNAs in a particular cell type,
thereby influencing the activity of a high number of genes
simultaneously. Although there is no obvious relation to
the observed phenotypes for imprinting mutations within
the imprinted Dlk1/Gtl2 region [23,24], susceptible devel-
opmental processes can be substantially disturbed due to
an altered tissue-specific co-expression of those microR-
NAs. Considering the observed diversity of the microR-
NAs and their broad spectrum of potential targets in
protein-coding genes and repetitive elements, these
microRNAs might represent an important modulator of
tissue-specific gene expression and therefore, an integral
part of the microRNA gene regulation network in mouse
and human.

Methods
3' UTR sequences and sequences of repetitive elements
The 3' UTR sequences for mouse and human were down-
loaded using the UCSC Table Browser data retrieval tool
[55] from the UCSC Genome Bioinformatics Site. Tables
were created from Known Genes/knownGene with the
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fields name, chrom, strand, txStart, txEnd, proteinID,
foldUTR3.name and foldUTR3.seq. The Feb. 2006 assem-
bly (NCBIM36/mm8) was used for mouse and the Mar.
2006 assembly (NCBI 36.1/hg18) for human. Target gene
predictions were performed on 38,316 human and
30,905 murine non-redundant identifiers. For chromo-
somal distribution analysis, the set was restricted to iden-
tifiers properly assembled to a chromosomal region
giving rise to 38,153 human and 30,796 mouse IDs.
Using the tables Known Genes/hgBlastTab and Known
Genes/mmBlastTab provided by the UCSC Table Browser,
we identified 14,662 orthologous transcripts that are
unambiguously mapped between human and mouse.

We neither used a fixed number of bases where no 3' UTR
annotation was available nor extended short 3' UTR
sequences as is sometimes done to reduce heterogeneity
in the annotated 3' UTR sets. 66.98% of the human and
67.04% of the mouse 3' UTR sequences used for evalua-
tion show one of the most common polyadenylation sig-
nals (AAUAAA and AUUAAA) in the last 100 sequence
bases. The average 3' UTR length of these sets is 1,003
bases in human and 956 bases in mouse. Furthermore, we
did not mask repeats in the sequences, because microR-
NAs can target repetitive elements [56]. Additionally,
repetitive DNA elements, including retroelements, were
retrieved from Repbase Update [39] for target gene predic-
tion. We obtained FASTA files for mouse (containing 585
sequences) and human (containing 868 sequences).

MicroRNA sequences
Pre-microRNA sequences and mature microRNA
sequences used for the genome-wide study of sequence
similarities were obtained from miRBase [21] version 9.0.
Mature microRNA sequences used for prediction (see
Additional file 1) were obtained from miRBase version
8.0. There are 31 mature Dlk1/Gtl2 sequences available in
human and mouse, as well as 14 sequences only available
in human and 12 only available in mouse. The microR-
NAs of the reference set were selected as follows: from 199
mature microRNA pairs with a SQ ≥ 0.9 and a pre-micro-
RNA identifier shared between mouse and human, 31
conserved microRNAs were randomly selected. 14 human
and 12 mouse non-conserved microRNAs were randomly
selected from miRBase identifiers available in only one
species.

Pairwise sequence and multiple sequence alignments
All alignments were created with a downloaded version of
the alignment tool ClustalW 1.83 [33], obtained from
http://www.ebi.ac.uk/clustalw/. The program was used
with its default parameters. For sequence similarity com-
parisons the similarity quotient SQ was established as the
ClustalW alignment score of two sequences divided by the
minimum of the alignment scores for each sequence with

itself. This quotient has its maximum of 1, which occurs if
both sequences are equal over the length of the shorter
sequence and its minimum of 0, if the alignment score for
the sequence pair is 0.

Target gene prediction
A detailed description of the combination approach, the
SeedMatch algorithm and the parameters used is available
as supplementary text (see Additional file 5).

Expression data for mouse and human
A preprocessed version of the gene expression atlas of
mouse and human protein-encoding transcripts [47] was
kindly provided by C. Steinhoff (Max-Planck-Institute for
Molecular Genetics, Berlin). The arrays used (GNF1H and
GNF1M) are custom-designed whole genome gene
expression arrays. A map of their identifiers onto the
human and mouse RefSeq/EMBL sequence identifiers is
available using the UCSC Table Browser data retrieval tool
[55]. For human (Mar. 2006) the table Affy GNF1H/
knownToGnfAtlas2 and for mouse (Feb. 2006) the table
Affy GNF1M/knownToGnf1m was retrieved.

The data [47] was preprocessed by the Max-Planck-Insti-
tute of Molecular Genetics as follows (C. Steinhoff, pers.
comm.): For normalization of raw probe set intensities,
the calibration and variance stabilization method [57]
(VSN) was used. It was assumed that in each experiment
most genes were not differentially expressed in compari-
son to all other experiments on the same array type. For
the VSN model, parameters were estimated on a random
subset of 50% of the probes and used to transform the
entire array. Applying the median polish method [58]
after normalization, the probe-set intensities of each
probe set were summarized. Hereby, a robust additive
model was fitted across the arrays for each probe-set. Fur-
ther, a full linear model was fitted to the data [59] by spec-
ifying the corresponding parameters. Repeated
experiments were averaged and only experiments anno-
tated with tissues for human and mouse were considered
for further analyses.

The gene expression data of the predicted 3' UTR target
sequences and antitargets was evaluated using R 2.4.1 [60]
and the gplots 2.3.2 package. To investigate an effect of
the microRNAs on gene expression, the median expres-
sion value of the predicted targets and antitargets, as well
as the variance within each tissue, were calculated. 1,000
equally-sized sets of randomly chosen transcripts were
used to obtain the distribution of these features. The dis-
tributions exhibit close to normal distribution with a
mean μ and standard deviation σ. Therefore, z-scores (z =
(x-μ)/σ) and corresponding p-values were calculated for
the values obtained from the targets and antitargets. To
examine a possible interrelation with the target prediction
Page 15 of 18
(page number not for citation purposes)

http://www.ebi.ac.uk/clustalw/


BMC Genomics 2008, 9:346 http://www.biomedcentral.com/1471-2164/9/346
preference for long and GC-rich sequences, the 1,000
longest and GC-richest, as well as the 1,000 shortest and
GC-poorest transcripts, were tested. For this purpose, nor-
malized and centered 3' UTR GC content and length val-
ues of 3' UTR sequences with available expression data
were totaled, and the new value was used for sequence
selection.

Chromosomal gene distribution
The 3' UTR sequence identifiers obtained were annotated
with a chromosomal position. For non-unique chromo-
somal coordinates (chromosome name, strand, start and
end position of the transcript), only the longest 3' UTR
sequence was kept, to rule out a possible bias caused by
multiple annotated sequences for the same locus. The
number of targets over the number of sequences (target
density), as well as the number of antitargets over the
number of sequences (antitarget density), were evaluated
for each chromosome and data set. These densities were
compared to sets of randomly distributed targets or anti-
targets. For the random distributions, an equal number of
targets and antitargets were randomly chosen a thousand
times from the set of sequence identifiers. Close to normal
distributions were obtained for each chromosome. With
these values, chromosome-specific z-scores and corre-
sponding p-values were estimated for the determined tar-
get and antitarget densities using R 2.4.1 [60].

GC content and length distribution
The assumption that microRNA target prediction pro-
grams select for long and GC-rich 3' UTR sequences was
empirically verified using the length and GC content dis-
tribution of targets and antitargets. To evaluate chromo-
somal effects, the median length and overall GC content
of the predicted targets and antitargets on each chromo-
some were compared to 1,000 randomly selected sets with
the same number of 3' UTR sequences from the same
chromosome. These random sets exhibited close to nor-
mal distribution and were used to determine the mean
and standard deviation for the z-score and p-value calcu-
lations as described above. Additionally, target and anti-
target densities obtained for each chromosome were
compared to the GC content and sequence length of the 3'
UTR sequences on each chromosome. This was done by
calculating the overall GC content of the concatenation of
all 3' UTR sequences on each chromosome and relating it
to the distribution in 1,000 randomly selected sets with
the same total number of sequences per chromosome
chosen from all chromosomes. The same analysis was per-
formed for the median length of the 3' UTR sequences on
each chromosome, and z-scores and p-values were esti-
mated for both sequence properties. The results were var-
iance normalized and then added to retrieve the observed
target and antitarget densities in Figure 6. R 2.4.1 scripts
were used for these analyses of length and GC content.

Analysis of Gene Ontology annotation data
For the analysis of Gene Ontology (GO) terms [49], the
sequence identifiers were mapped onto Entrez Gene IDs
using tables of the UCSC Table Browser data retrieval tool
[55] and custom Python scripts. A map of human (Mar.
2006) and mouse (Feb. 2006) RefSeq/EMBL sequence
identifiers was obtained from the tables Known Genes/
knownToLocusLink for each organism. The analysis of
over- and under-represented Gene Ontology terms was
performed using the GOstats package from the Biocon-
ductor project BioC 2.0 [50] (containing Entrez annota-
tion data in the humanLLMappings and
mouseLLMappings packages) with R 2.5.0 [60]. We used
the conditional hypergeometric test of the GOstats pack-
age, which incorporates the relationship among the GO
terms into the significance test, similar to the approach
presented by Alexa et al. [61]. For the predicted targets and
antitargets in the 3' UTR sequence set, over-represented
and under-represented terms were calculated with all
annotated Entrez IDs as background. The test was per-
formed for the GO category "biological process" with a
significance cutoff of 0.001. To examine a possible inter-
relation between the annotated biological function and
the preference of target predictions for long and GC-rich
sequences, the 1,000 longest and GC-richest, as well as the
1,000 shortest and GC-poorest transcripts were tested for
over-represented and under-represented terms with the
same significance cutoff. To select equally for GC content
and length, the normalized and centered 3' UTR GC con-
tent and length values were totaled, and the new value was
used for sequence selection.

Imprinted genes
Imprinted transcripts were selected for analysis from the
Catalogue of Imprinted Genes [62]http://igc.otago.ac.nz/
. Transcripts with marginal experimental support were
excluded. The final set of 31 human transcripts and 36
murine transcripts is listed in Additional file 7. Hypergeo-
metric tests and Wilcoxon rank sum tests with continuity
correction were performed using using R 2.4.1 [60].

Eutherian transcripts
InParanoid Eukaryotic Ortholog Groups (version 6.0,
August 2007) [46] were used to identify human proteins
shared only among eutherians. These proteins were iden-
tified by calculating the intersection of human proteins
shared with Bos taurus, Canis familiaris, Macaca mulatta,
Mus musculus, Pan troglodytes and Rattus norvegicus. From
this intersection all proteins shared with at least one spe-
cies out of Aedes aegypti, Anopheles gambiae, Apis mellifera,
Caenorhabditis briggsae, Caenorhabditis elegans, Caenorhab-
ditis remanei, Ciona intestinalis, Danio rerio, Drosophila mel-
anogaster, Drosophila pseudoobscura, Gallus gallus,
Gasterosteus aculeatus, Monodelphis domestica, Takifugu
rubripes, Tetraodon nigroviridis, or Xenopus tropicalis were
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removed. The remaining proteins were mapped to tran-
script identifiers, and a final list of 198 proteins was used
for analysis (see Additional file 8). Hypergeometric tests
and Wilcoxon rank sum tests with continuity correction
were performed using R 2.4.1 [60].
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