	σ_{obs}^{275K} (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 278K}({ m s}^{-1})$	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 281K}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{^{283K}}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 286K}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{_{288K}}$ (s ⁻¹)	σ_{obs}^{291K} (s ⁻¹)
Ι3γ2	10.67 ± 0.21	9.36 ± 0.16	8.41 ± 0.14	7.69 ± 0.12	6.80 ± 0.09	6.28 ± 0.10	5.69 ± 0.09
Ι3δ1	8.97 ± 0.20	7.83 ± 0.15	6.99 ± 0.14	6.35 ± 0.12	5.68 ± 0.09	5.23 ± 0.10	4.77 ± 0.10
Τ7γ2	9.66 ± 0.27	8.36 ± 0.20	7.58 ± 0.18	6.90 ± 0.15	6.09 ± 0.11	5.64 ± 0.12	5.11 ± 0.12
L8ð1	4.47 ± 0.09	3.80 ± 0.08	3.46 ± 0.07	3.16 ± 0.06	2.68 ± 0.05	2.53 ± 0.05	2.20 ± 0.05
Τ9γ2	7.58 ± 0.16	6.61 ± 0.13	5.96 ± 0.12	5.46 ± 0.10	4.74 ± 0.08	4.38 ± 0.09	3.95 ± 0.09
Τ12γ2	9.06 ± 0.23	7.78 ± 0.18	6.97 ± 0.16	6.35 ± 0.13	5.45 ± 0.10	5.13 ± 0.11	4.53 ± 0.1
Ι13δ1	6.76 ± 0.17	5.97 ± 0.13	5.27 ± 0.12	4.86 ± 0.10	4.34 ± 0.08	3.94 ± 0.09	3.54 ± 0.09
V17γ2	9.27 ± 0.23	8.03 ± 0.17	7.24 ± 0.15	6.59 ± 0.12	5.77 ± 0.09	5.38 ± 0.10	4.90 ± 0.10
Τ22γ2	10.59 ± 0.26	9.18 ± 0.20	8.42 ± 0.18	7.67 ± 0.14	6.76 ± 0.11	6.37 ± 0.12	5.68 ± 0.12
Ι23γ2	10.45 ± 0.25	9.27 ± 0.18	8.29 ± 0.16	7.59 ± 0.13	6.72 ± 0.09	6.28 ± 0.10	5.63 ± 0.10
Ι23δ1	6.67 ± 0.20	5.65 ± 0.15	5.06 ± 0.14	4.56 ± 0.12	4.02 ± 0.09	3.66 ± 0.10	3.29 ± 0.10
Ι36γ2	8.03 ± 0.21	7.11 ± 0.16	6.44 ± 0.14	6.06 ± 0.12	5.45 ± 0.09	5.17 ± 0.09	4.66 ± 0.09
Ι36δ1	6.91 ± 0.16	5.97 ± 0.13	5.43 ± 0.12	4.94 ± 0.10	4.33 ± 0.08	4.10 ± 0.09	3.63 ± 0.0
L43δ2	6.63 ± 0.22	5.77 ± 0.16	5.09 ± 0.15	4.48 ± 0.12	4.04 ± 0.09	3.53 ± 0.11	3.31 ± 0.09
Ι44δ1	3.18 ± 0.14	2.71 ± 0.12	2.48 ± 0.11	2.20 ± 0.09	1.91 ± 0.07	1.79 ± 0.08	1.57 ± 0.03
L5082	9.47 ± 0.35	8.43 ± 0.25	7.51 ± 0.22	6.89 ± 0.18	6.04 ± 0.13	5.61 ± 0.15	5.03 ± 0.14
L5682	8.70 ± 0.29	7.72 ± 0.20	6.89 ± 0.18	6.28 ± 0.15	5.63 ± 0.11	4.99 ± 0.12	4.58 ± 0.12
Ι61γ2	9.93 ± 0.21	8.72 ± 0.15	7.85 ± 0.14	7.18 ± 0.11	6.36 ± 0.08	5.91 ± 0.09	5.34 ± 0.09
I61δ1	7.47 ± 0.22	6.45 ± 0.17	5.75 ± 0.16	5.19 ± 0.13	4.55 ± 0.10	4.18 ± 0.11	3.72 ± 0.1
L67δ2	3.83 ± 0.11	3.39 ± 0.09	2.99 ± 0.08	2.68 ± 0.07	2.38 ± 0.05	2.14 ± 0.06	1.95 ± 0.00
V70γ2	5.09 ± 0.14	4.44 ± 0.11	3.95 ± 0.10	3.55 ± 0.08	3.06 ± 0.06	2.74 ± 0.07	$2.46 \pm 0.0^{\circ}$
L73δ1	2.69 ± 0.05	2.35 ± 0.04	2.15 ± 0.04	1.94 ± 0.03	1.73 ± 0.03	1.61 ± 0.03	1.47 ± 0.02
$a\sigma_{obs}$ was ca	lculated using $\sigma_{obs} = \frac{1}{82}$	$\frac{1}{\Delta} \ln \frac{9I_{\alpha^2\beta}I_{\alpha\beta^2}}{I_{\alpha^3}I_{\beta^3}} . \text{ All error}$	rs ($\Delta \sigma_{obs}$) were determined	I from $\Delta \sigma_{obs} = \frac{q}{8\Delta} \left(\frac{1}{I_{q^3}} \right)$	$+\frac{1}{I_{\alpha^2\beta}}+\frac{1}{I_{\alpha\beta^2}}+\frac{1}{I_{\beta^3}}$, w	where q is the noise estim	ation from NMRF

Table SI. Cross-correlated relaxation (CCR) rates between dipolar couplings of two CH bonds (σ_{obs}) in the methyl groups of ubiquitin measured at fourteen temperatures ^{<i>a</i>} (Continued)										
	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 293K}$ (s ⁻¹)	σ_{obs}^{296K} (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{_{298K}}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 301K}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{{\scriptscriptstyle 303K}}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{\scriptscriptstyle 305K}$ (s ⁻¹)	$\sigma_{\scriptscriptstyle obs}^{_{308K}}$ (s ⁻¹)			
Ι3γ2	5.34 ± 0.07	4.84 ± 0.06	4.52 ± 0.07	4.15 ± 0.05	3.94 ± 0.06	3.69 ± 0.05	3.42 ± 0.05			
Ι3δ1	4.46 ± 0.08	4.02 ± 0.07	3.77 ± 0.07	3.52 ± 0.05	3.24 ± 0.06	3.09 ± 0.05	2.83 ± 0.05			
Τ7γ2	4.80 ± 0.09	4.43 ± 0.08	4.16 ± 0.08	3.90 ± 0.06	3.74 ± 0.07	3.52 ± 0.06	3.23 ± 0.06			
L881	2.04 ± 0.04	1.84 ± 0.04	1.70 ± 0.04	1.55 ± 0.03	1.49 ± 0.04	1.44 ± 0.03	1.32 ± 0.03			
Τ9γ2	3.67 ± 0.07	3.32 ± 0.06	3.11 ± 0.07	2.79 ± 0.05	2.72 ± 0.06	2.54 ± 0.05	2.36 ± 0.05			
Τ12γ2	4.20 ± 0.09	3.85 ± 0.07	3.60 ± 0.08	3.20 ± 0.06	3.09 ± 0.07	2.89 ± 0.06	2.63 ± 0.06			
Ι13δ1	3.29 ± 0.07	2.97 ± 0.06	2.76 ± 0.07	2.54 ± 0.05	2.35 ± 0.06	2.17 ± 0.05	2.04 ± 0.05			
V17γ2	4.55 ± 0.07	4.09 ± 0.06	3.79 ± 0.06	3.46 ± 0.04	3.26 ± 0.06	3.13 ± 0.04	2.90 ± 0.04			
Τ22γ2	5.26 ± 0.09	4.74 ± 0.08	4.48 ± 0.08	4.06 ± 0.06	3.82 ± 0.07	3.74 ± 0.06	3.35 ± 0.06			
Ι23γ2	5.27 ± 0.08	4.79 ± 0.06	4.42 ± 0.07	4.13 ± 0.05	3.89 ± 0.06	3.71 ± 0.05	3.45 ± 0.05			
Ι23δ1	3.03 ± 0.08	2.73 ± 0.06	2.54 ± 0.07	2.28 ± 0.05	2.11 ± 0.06	1.97 ± 0.05	1.79 ± 0.05			
Ι36γ2	4.42 ± 0.07	4.02 ± 0.06	3.94 ± 0.06	3.54 ± 0.04	3.36 ± 0.05	3.19 ± 0.04	2.91 ± 0.04			
I36δ1	3.41 ± 0.07	3.04 ± 0.06	2.82 ± 0.06	2.58 ± 0.05	2.44 ± 0.06	2.29 ± 0.05	2.12 ± 0.05			
L43δ2	3.06 ± 0.07	2.76 ± 0.06	2.60 ± 0.07	2.37 ± 0.05	2.19 ± 0.06	2.01 ± 0.05	1.83 ± 0.05			
I44δ1	1.45 ± 0.07	1.24 ± 0.06	1.19 ± 0.06	1.03 ± 0.04	1.01 ± 0.06	0.92 ± 0.05	0.77 ± 0.05			
L5082	4.64 ± 0.11	4.16 ± 0.09	3.85 ± 0.10	3.43 ± 0.07	3.16 ± 0.09	3.02 ± 0.07	2.84 ± 0.07			
L5682	4.19 ± 0.09	3.82 ± 0.08	3.50 ± 0.08	3.17 ± 0.06	2.89 ± 0.07	2.73 ± 0.06	2.54 ± 0.06			
Ι61γ2	5.01 ± 0.07	4.57 ± 0.06	4.24 ± 0.06	3.91 ± 0.04	3.69 ± 0.06	3.49 ± 0.04	3.22 ± 0.05			
I61δ1	3.44 ± 0.09	3.03 ± 0.07	2.82 ± 0.08	2.56 ± 0.05	2.27 ± 0.07	2.13 ± 0.06	1.96 ± 0.06			
L6782	1.81 ± 0.05	1.64 ± 0.04	1.53 ± 0.04	1.37 ± 0.03	1.30 ± 0.04	1.18 ± 0.03	1.12 ± 0.03			
V70γ2	2.27 ± 0.05	2.07 ± 0.05	1.95 ± 0.05	1.80 ± 0.04	1.70 ± 0.04	1.64 ± 0.04	1.53 ± 0.04			
L7381	1.36 ± 0.03	1.25 ± 0.02	1.21 ± 0.03	1.10 ± 0.02	1.04 ± 0.02	1.00 ± 0.02	0.94 ± 0.02			
${}^{a}\sigma_{obs} \text{ was calculated using } \sigma_{obs} = \frac{1}{8\Delta} \ln \frac{9I_{\alpha^{2}\beta}I_{\alpha\beta^{2}}}{I_{\alpha^{3}}I_{\beta^{3}}} \text{. All errors } (\Delta\sigma_{obs}) \text{ were determined from } \Delta\sigma_{obs} = \frac{q}{8\Delta} \left(\frac{1}{I_{\alpha^{3}}} + \frac{1}{I_{\alpha^{2}\beta}} + \frac{1}{I_{\beta^{3}}} + \frac{1}{I_{\beta^{3}}}\right), \text{ where } q \text{ is the noise estimation from NMRPipe, } \Delta\sigma_{obs} = \frac{q}{8\Delta} \left(\frac{1}{I_{\alpha^{3}}} + \frac{1}{I_{\alpha^{2}\beta}} + \frac{1}{I_{\beta^{3}}} +$										

is the constant time evolution and I_i is the intensity of each peak in the quartet ($i = \alpha^3, \alpha^2 \beta, \alpha \beta^2, \beta^3$).

Table SII. Methyl group order parameters (S_{axis}^2) calculated at fourteen temperatures ^a														
	275 K		278 K		28	1 K	28	3 K	28	286 K		288 K		1 K
	τ_c (ns) 11.45		τ_c (ns)	10.23 τ_c (ns) 9.17		9.17	τ_c (ns) 8.55		τ_c (ns) 7.72		τ_c (ns) 7.22		τ_c (ns)	6.55
	σ_{rigid} (s ⁻¹)	10.95	$\sigma_{rigid}(s^{-1})$	9.80	$\sigma_{rigid}(s^{-1})$	8.79	$\sigma_{rigid}(s^{-1})$	8.21	$\sigma_{rigid}(s^{-1})$	7.42	$\sigma_{rigid}(s^{-1})$	6.95	$\sigma_{rigid}(s^{-1})$	6.32
	S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2	
Ι3γ2	0.97 ± 0.02		0.96 ± 0.02		0.96 ± 0.02		0.94 ± 0.01		0.92 ± 0.01		0.90 ± 0.01		0.90 ± 0.01	
Ι3δ1	0.82 ± 0.02		0.80	0.80 ± 0.02 0.80		± 0.02	0.77 ± 0.01		0.77 ± 0.01		0.75 ± 0.01		0.75 ± 0.02	
Τ7γ2	0.88 ± 0.02		0.85	± 0.02	0.86 ± 0.02		0.84 ± 0.02		0.82 ± 0.01		0.81 ± 0.02		0.81 ± 0.02	
L881	0.41	± 0.01	0.39	± 0.01	0.39 :	± 0.01	0.38 ± 0.01		0.36 ± 0.01		0.36 ± 0.01		0.35 ± 0.01	
Τ9γ2	0.69 ± 0.01		0.68	0.68 ± 0.01 0.68 ± 0.01		± 0.01	0.67	± 0.01	0.64 ± 0.01		0.63 ± 0.01		0.63 ± 0.01	
Τ12γ2	0.83 ± 0.02		0.79 ± 0.02		0.79 ± 0.02		0.77 ± 0.02		0.73 ± 0.01		0.74 ± 0.02		0.72 ± 0.02	
Ι13δ1	0.62 ± 0.02		0.61 ± 0.01		0.60 ± 0.01		0.59 ± 0.01		0.58 ± 0.01		0.57 ± 0.01		0.56 ± 0.01	
V17γ2	0.84 ± 0.02		0.82 ± 0.02		0.82 ± 0.02		0.80 ± 0.01		0.78	0.78 ± 0.01		0.77 ± 0.01		± 0.02
Τ22γ2	0.97 ± 0.02		0.94	± 0.02	$2 0.96 \pm 0.02$		0.93 ± 0.02		0.91 ± 0.01		0.92 ± 0.02		0.90 ± 0.02	
Ι23γ2	0.95 ± 0.02		0.94	± 0.02	0.94 ± 0.02		0.92 ± 0.02		0.90 ± 0.01		0.90 ± 0.01		0.89 =	± 0.02
Ι23δ1	0.61	± 0.02	0.58	± 0.02	0.58 ± 0.02		0.56 ± 0.01		0.54 ± 0.01		0.53 ± 0.01		0.52 =	± 0.02
Ι36γ2	0.73	± 0.02	0.73	± 0.02	0.73 ± 0.02		0.74 ± 0.01		0.73 ± 0.01		0.74 ± 0.01		0.74 ± 0.01	
Ι36δ1	0.63	± 0.02	0.61	± 0.01	0.62 ± 0.01		0.60	0 ± 0.01 0.58 ± 0.01		± 0.01	0.59 ± 0.01		0.57 ± 0.01	
L43δ2	0.60	± 0.02	0.59	± 0.02	0.58 ± 0.02		0.55 ± 0.01		0.54 ± 0.01		0.51 ± 0.02		0.52 ± 0.02	
Ι44δ1	0.29	± 0.01	0.28	± 0.01	0.28 ± 0.01		0.27 ± 0.01		0.26 ± 0.01		0.26 ± 0.01		0.25 ± 0.01	
L5082	0.87	± 0.03	0.86	± 0.03	0.85 ± 0.03		0.84 ± 0.02		0.81 ± 0.02		0.81 ± 0.02		0.80 ± 0.02	
L5682	0.79 ± 0.03		0.79	± 0.02	0.78 ± 0.02		0.77 ± 0.02		0.76 ± 0.01		0.72 ± 0.02		0.73 ± 0.02	
Ι61γ2	0.91	0.91 ± 0.02 0.89 ± 0.02		0.89 ± 0.02		0.87 ± 0.01		0.86 ± 0.01		0.85 ± 0.01		0.85 ± 0.01		
I61δ1	0.68	0.68 ± 0.02 0.66 ± 0.02		0.65 ± 0.02		0.63 ± 0.02		0.61 ± 0.01		0.60 ± 0.02		0.59 ± 0.02		
L6782	0.35	± 0.01	0.35	± 0.01	0.34 ± 0.01		0.33 ± 0.01		0.32 ± 0.01		0.31 ± 0.01		0.31 ± 0.01	
V70γ2	0.46	± 0.01	0.45	± 0.01	0.45 :	± 0.01	0.43	± 0.01	0.41	± 0.01	0.39 ± 0.01		0.39 =	± 0.01
L73δ1	0.25 ± 0.01		0.24	± 0.00	0.24 ± 0.00		0.24 ± 0.00		0.23 ± 0.00		0.23 ± 0.00		0.23 ± 0.01	

^{*a*}Given at each temperature are the rotational correlation time (τ_c) and the CCR rate between dipolar couplings of two CH bonds in the absence of local motion (σ_{rigid}). σ_{rigid} is calculated

using
$$\sigma_{rigid} = \frac{1}{45} \tau_c \left(\frac{\mu_0 h \gamma_H \gamma_C}{8 \pi^2 r_{CH}^3} \right)^2 \left(2 + \frac{3}{2(1 + (\omega_c \tau_c)^2)} \right)$$
, where μ_0 is the permeability of a vacuum, *h* is the Planck constant, γ_H and γ_C are the gyromagnetic ratios of ¹H and ¹³C, respectively, r_{CH}

is the CH bond length, ω_c is the Larmor frequency of ¹³C and τ_c is the rotational correlation time. S_{axis}^2 is derived from $S_{axis}^2 = \frac{\sigma_{obs}}{\sigma_{rigid}}$. The error (ΔS_{axis}^2) is determined using $\Delta S_{axis}^2 = \frac{\Delta \sigma_{obs}}{\sigma_{rigid}}$.

Table SII. Methyl groups order parameters (S_{axis}) calculated at fourteen different temperatures "(<i>continued</i>)															
	293 K		29	96 K	29	8 K	30	01 K	30)3 K	30	5 K	308	3 K	
	τ_c (ns) 6.15		τ_c (ns) 5.61		τ_c (ns)	5.28	τ_c (ns)	(ns) 4.84	τ_c (ns)	4.57	τ_c (ns)	4.32	τ_c (ns)	3.98	
	σ_{rigid} (s ⁻¹)	5.95	σ_{rigid} (s ⁻¹)	5.44	σ_{rigid} (s ⁻¹)	5.13	σ_{rigid} (s ⁻¹)	4.72	σ_{rigid} (s ⁻¹)	4.47	σ_{rigid} (s ⁻¹)	4.24	σ_{rigid} (s ⁻¹)	3.93	
	S	S_{axis}^2 S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2		S_{axis}^2			
Ι3γ2	0.90 ± 0.01 0.89		± 0.01	0.88 ± 0.01		0.88 ± 0.01		0.88 ± 0.01		0.87 ± 0.01		0.87 ± 0.01			
Ι3δ1	0.75	0.75 ± 0.01 0.74 ± 0.01		0.73 ± 0.01		0.74 ± 0.01		0.72 ± 0.01		0.73 ± 0.01		0.72 ± 0.01			
Τ7γ2	0.81 ± 0.02 0.81 ± 0.01		± 0.01	0.81 ± 0.02		0.82 ± 0.01		0.84	0.84 ± 0.02		0.83 ± 0.01		0.82 ± 0.01		
L8 ð 1	0.34 ± 0.01		0.34 ± 0.01 0.33 ± 0.01		± 0.01	0.33 ± 0.01		0.33	0.33 ± 0.01		0.34 ± 0.01		0.34 ± 0.01		
Τ9γ2	0.62 ± 0.01		0.61 ± 0.01		0.61 ± 0.01		0.59 ± 0.01		0.61 ± 0.01		0.60 ± 0.01		0.60 ± 0.01		
Τ12γ2	0.71 ± 0.01		0.71 ± 0.01		0.70 ± 0.02		0.68 ± 0.01		0.69 ± 0.02		0.68 ± 0.01		0.67 ± 0.02		
Ι13δ1	0.55 ± 0.01		0.55 ± 0.01		0.54 ± 0.01		0.54 ± 0.01		0.53	0.53 ± 0.01		0.51 ± 0.01		0.52 ± 0.01	
V17γ2	0.76 ± 0.01		0.75 ± 0.01		0.74 ± 0.01		0.73 ± 0.01		0.73	0.73 ± 0.01		0.74 ± 0.01		0.74 ± 0.01	
Τ22γ2	0.88 ± 0.02 (0.87	± 0.01	0.87 ± 0.02		0.86 ± 0.01		0.85 ± 0.02		0.88 ± 0.01		0.85 ± 0.02		
Ι23γ2	0.88 ± 0.01		0.88	± 0.01	0.86	± 0.01	0.88 ± 0.01		0.87 ± 0.01		0.88 ± 0.01		0.88 ± 0.01		
Ι23δ1	0.51	± 0.01	0.50	0.50 ± 0.01		0.49 ± 0.01		0.48 ± 0.01		0.47 ± 0.01		0.46 ± 0.01		0.46 ± 0.01	
Ι36γ2	0.74	± 0.01	0.74	$.74 \pm 0.01$ 0.77 ± 0.01		± 0.01	0.75 ± 0.01		0.75 ± 0.01		0.75 ± 0.01		0.74 ± 0.01		
Ι36δ1	0.57	± 0.01	0.56	± 0.01	0.55 ± 0.01		0.55 ± 0.01		0.55 ± 0.01		0.54 ± 0.01		0.54 ± 0.01		
L4382	0.52	± 0.01	0.51	± 0.01	0.51 ± 0.01		0.50 ± 0.01		0.49 ± 0.01		0.47 ± 0.01		0.47 ± 0.01		
Ι44δ1	0.24	± 0.01	0.23	± 0.01	0.23 ± 0.01		0.22 ± 0.01		0.23 ± 0.01		0.22 ± 0.01		0.20 ± 0.01		
L5082	0.78 ± 0.02 0.76 ± 0.02		± 0.02	0.75 ± 0.02		0.73 ± 0.01		0.71 ± 0.02		0.71 ± 0.02		0.72 ± 0.02			
L5682	0.70	0.70 ± 0.02 0.70 ± 0.01		± 0.01	0.68 ± 0.02		0.67 ± 0.01		0.65	0.65 ± 0.02		0.64 ± 0.01		0.65 ± 0.02	
Ι61γ2	0.84	$0.84 \pm 0.01 \qquad \qquad 0.84 \pm 0.01$		0.83 ± 0.01		0.83 ± 0.01		0.82 ± 0.01		0.82 ± 0.01		0.82 ± 0.01			
I61ð1	0.58	0.58 ± 0.01 0.56 ± 0.01		0.55 ± 0.02		0.54 ± 0.01		0.51	0.51 ± 0.02		0.50 ± 0.01		= 0.01		
L6782	0.30	± 0.01	0.30	± 0.01	0.30 ± 0.01		0.29 ± 0.01		0.29 ± 0.01		0.28 ± 0.01		0.29 ± 0.01		
V70γ2	0.38	± 0.01	0.38	± 0.01	0.38	± 0.01	0.38	± 0.01	0.38	± 0.01	0.39 :	0.39 ± 0.01		= 0.01	
L7381	0.23 ± 0.01		0.23 ± 0.00 0.24 ± 0.01		0.23 ± 0.00		0.23 ± 0.01		0.24 ± 0.00		0.24 ± 0.01				

 \mathbf{C}^2 1.00 a

^{*a*}Given at each temperature are the rotational correlation time (τ_c) and the CCR rate between dipolar couplings of two CH bonds in the absence of local motion (σ_{rigid}). σ_{rigid} is calculated

using $\sigma_{rigid} = \frac{1}{45} \tau_c \left(\frac{\mu_0 h \gamma_H \gamma_C}{8\pi^2 r_{CH}^3}\right)^2 \left(2 + \frac{3}{2(1 + (\omega_c \tau_c)^2)}\right)$, where μ_0 is the permeability of a vacuum, *h* is the Planck constant, γ_H and γ_C are the gyromagnetic ratios of ¹H and ¹³C, respectively, r_{CH}

is the CH bond length, ω_c is the Larmor frequency of ¹³C and τ_c is the rotational correlation time. S_{axis}^2 is derived from $S_{axis}^2 = \frac{\sigma_{obs}}{\sigma_{rigid}}$. The error (ΔS_{axis}^2) is determined using $\Delta S_{axis}^2 = \frac{\Delta \sigma_{obs}}{\sigma_{rigid}}$.