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ABSTRACT

Recently the basic theory of essential dynamics, a method for extracting large
concerted motions from protein molecular dynamics trajectories, was described.
Here, we introduce and test new aspects. A method for diagonalizing large
covariance matrices is presented. We show that it is possible to perform
essential dynamics using different subsets of atoms and compare these to the
basic C-a analysis. Essential dynamics analyses are also compared to the normal
modes method. The stability of the essential space during a simulation is
investigated by comparing the two halves of a trajectory. Apart from the
analyses in Cartesian space, the essential dynamics in ¢/ torsion angle space
is discussed. © 1997 by John Wiley & Sons, Inc.

Introduction

T he recently introduced essential dynamics
(ED) method' can be used to separate large
concerted structural rearrangements from irrele-
vant fluctuations in a multiparticle system. The
method consists of diagonalizing the covariance
matrix of atomic fluctuations, and it has been
shown that this analysis identifies constraints or
approximate constraints (near constraints) in the
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configurational space.! As a first example, this
method was applied to a protein, lysozyme.! The
ED method was able to separate the few large,
mainly anharmonic motions (the essential sub-
space) in a lysozyme molecular dynamics (MD)
trajectory from the small, Gaussian fluctuations
(the near-constraints subspace). The ED procedure
is equivalent to a multidimensional linear least
squares fit of the trajectory, where the first eigen-
vector corresponds to the direction that fits best to
the ensemble of configurations, the second to the
second best, etc.> The principle of such a multidi-
mensional fitting was applied to protein dynamics
for the first time by Garcia.?
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The motions in the essential space are linked to
the biological function of the protein. For ther-
molysin, a large hinge-bending motion was ob-
served that opened and closed the active site.*
This motion was supported by crystallographic
data. Similar results were obtained for the histi-
dine-containing protein (HPr), where the motions
were centered around the active site histidine.’
The SH3 binding domain showed large correlated
fluctuations of two loops known to be involved in
peptide binding.® The ED method was also used to
reveal the retinol entry/exit site in the cellular
retinol binding protein, where retinol showed
strong correlations to three surface loops, which
moved apart to create a hole for the retinol.” So
far, the basic application of ED, involving all atoms
or C-a atoms only, has proved useful in investigat-
ing protein dynamics with the aim of revealing
motions with functional implications. Here, vari-
ous aspects of the ED method are tested. We prove
that even for short simulations, the ED properties
derived are stable. Furthermore, we compare ED
results to those from the normal modes (NM)
analysis. We show the application of ED in dihe-
dral space instead of Cartesian space, propose pos-
sible methods to take side chains into account, and
present a fast way for diagonalizing large covari-
ance matrices.

Methods

COMPARISON OF ESSENTIAL SPACES

The most straightforward way of comparing
essential spaces is to consider inner products of the
corresponding eigenvectors. When these projec-
tions are close to 1.0 for all the eigenvectors of the
essential space, the essential spaces spanned by the
two sets of eigenvectors are the same. However, if
one wants to compare two sets of eigenvectors,
coming from, for instance, two different simula-
tions of the same system,* it may happen that two
or more eigenvectors in one set are interchanged
with respect to the other set. Slight differences in
fluctuation in the system may result in a different
ordering of the eigenvectors because the eigenvec-
tors are ordered by the size of the eigenvalue.

Here we compare essential subspaces by calcu-
lating the average square projection of all eigen-
vectors of one set onto eigenvectors of another set.
To compare eigenvectors calculated from, for in-
stance, a covariance matrix of C-a atoms only to
those from a covariance matrix of a different set of

atoms, the components not belonging to C-a atoms
are deleted from the latter set. The resulting eigen-
vectors are renormalized and then used for the
comparison method described above. Because all
the non-C-a components were deleted, the result-
ing eigenvectors are not exactly orthogonal any-
more. The resulting error, however, is usually
small, as will be shown below.

SPLITTING COVARIANCE MATRIX

If more than about 1500 particles are used in the
ED analysis, it becomes computationally impossi-
ble to diagonalize the corresponding covariance
matrix (on the average workstation with about 64
MB of memory). Both CPU time and memory
needed for diagonalization increase rapidly with
the size of the system (approximately proportional
to N2). It is possible, however, to overcome this
problem by dividing the overall covariance matrix
in submatrices. The protein is divided in a number
of groups containing atoms equally distributed
over the protein. If the protein is to be divided in
K groups, the first atom is included in the first
group the Kth atom in the Kth group, and atom
K + 1 again in the first group. For each of the K
groups a covariance matrix is built up and diago-
nalized. It is not enough to simply combine the
eigenvectors obtained in this way because no cor-
relations between the K groups are taken into
account. To include this information, projections
were made of the subtrajectories (containing the
same atoms as the groups) onto the K eigenvector
sets. Projections onto eigenvectors are overall coor-
dinates that give information on how the system
moves in the directions described by the eigenvec-
tors. As before, the eigenvectors are ordered in
such a way that the first vector is the direction in
which the group of atoms has the largest overall
mean square positional fluctuation. Because ap-
proximately the first 10% of the eigenvectors of
each subgroup usually span a space in which more
than 90% of the motion is concentrated and be-
cause all the near-constraints eigenvectors of each
subgroup tend to be statistically independent from
any large slow motion, we can use only the first Y
eigenvectors as an approximation. The number Y
is limited by the computational resources; taking
a higher Y results in higher accuracy. If these pro-
jections are used to build up a new covariance
matrix, the original K#Ax3-dimensional matrix,
where A is the number of atoms per subgroup,
can be approximated by a K *Y dimensional one.
The covariance matrix built up in this way is
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diagonalized, now including correlations between
the first Y eigenvector coordinates of the K groups.
However, the eigenvectors obtained are expressed
in overall coordinates instead of the starting Carte-
sian coordinates. They have the first Y eigenvec-
tors of the K subgroups as a basis set instead of
the starting Cartesian basis set. To express the new
eigenvectors in the Cartesian basis set, they must
be described as linear combinations of the eigen-
vectors of the K subgroups. This is possible be-
cause eigenvectors within one subgroup are al-
ways orthogonal (symmetrical covariance matrix),
and eigenvectors belonging to different subgroups
are orthogonal because these subgroups define or-
thogonal subspaces (eigenvectors of one group
have zero components where eigenvectors from
another group have nonzero components). There-
fore the K sets of eigenvectors form an orthogonal
basis set. The new eigenvectors can be defined as

Here m, is the kth new (Cartesian) eigenvector, v;;

is the ith eigenvector from the jth subgroup, and
ocfj are the corresponding coefficients (components
of the eigenvectors of the reduced analysis). Be-
cause the trace of a matrix is unaffected by a
transformation like diagonalization, the sum of the
traces of the K diagonalized submatrices is the
same as the trace of the (diagonalized) full matrix.
This means that the sum of the eigenvalues from
the K sets is equal to the sum of the eigenvalues
from the full matrix. From the definition of the
elements of the covariance matrix it follows that
the diagonal elements of the covariance matrix
constructed from the projections are just the eigen-
values from the K subgroups.

It is possible to estimate the error produced by
the approximation presented here. The correlations
between the projections not taken into account can
be expressed in terms of the (known) diagonal
elements using the Cauchy—-Schwarz inequality,

Al < Ak

As stated above, the diagonal elements C;; and Cj i
are just the eigenvalues of the K subsets. The
maximum possible value of C;; that is neglected is
then equal to the square root of the product of the
largest eigenvalue of the K sets (the first eigen-

value from one of the K sets) and the largest

COMPARISON OF ESSENTIAL SPACES

eigenvalue that is neglected (the Y + 1 eigenvalue
from one of the K sets); hence, if Y is large (and
the Y + 1 eigenvalue close to zero) the error will
be close to zero. In general, this is an upper limit
significantly larger than the real largest neglected
C;; element. This is caused by the tendency of
subgroup eigenvectors with very small corre-
sponding eigenvalues to be statistically indepen-
dent from any large slow motion. In fact every
eigenvector with a very small eigenvalue corre-
sponds to a high frequency Gaussian fluctuation
stable (equilibrated) in a short time and hence
independent from any large slow structural change.
This implies that any C;; element in the matrix
involving a near-constraint eigenvector of one of
the subgroups and an essential eigenvector of an-
other subgroup should be almost zero.

STABILITY OF THE ED ANALYSIS

Because the ED analysis is mostly used on short
(< 1.0 ns) trajectories, it is useful to have an analy-
sis of the statistical relevance and stability of the
motions observed. The stability of the ED proper-
ties is investigated in two ways: 1) by studying the
differences in fluctuation along the essential eigen-
vectors for the two halves of the trajectory; 2) by
calculating two sets of eigenvectors from the two
halves of the trajectory and studying the inner
products between these sets. This gives a cross-
projection matrix that, if the sets are similar, should
only have high numbers near the diagonal.

NM ANALYSIS

Like ED, NM analysis® reveals large conforma-
tional changes in proteins. The methods, however,
differ on a few essential points. First, NM is based
on the shape of the potential energy function in a
(local) minimum. This minimum is assumed to be
a harmonic well, restricting the method to predic-
tion of only harmonic vibrations. Eigenvectors are
obtained by diagonalization of the Hessian matrix,
which contains derivatives of the forces with re-
spect to every coordinate as elements. The ED
method extracts large concerted motions from an
MD trajectory, in which many of such minima are
sampled, and therefore puts no restrictions to the
shape of the potential energy function. As will be
shown below, ED can be used on any set of atoms
selected from an MD simulation, thus implicitly
including solvent effects; NM is restricted to an
“all atom” analysis, where usually no solvent ef-
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fects are taken into account. Although ED is a
more general analysis than NM, the latter is a
useful method for conformational analysis because
it is much less time consuming. The basic NM
algorithm® was implemented in the GROMOS suite
of programs.” The crystal structures of SH3' and
HPr!' were energy minimized by an initial cycle
of steepest descent, followed by multiple cycles of
conjugate gradients until no energy difference
could be detected. The eigenvectors obtained by
NM analysis were converted to eigenvectors only
containing C-a coordinates, by deleting all non-C-«
components and renormalizing. These eigenvec-
tors were then projected on those from the C-a ED
analysis by the projection method described above.

MD SIMULATIONS

We chose two protein MD trajectories to test the
theories described above. The first is a 300-ps (3000
frames) equilibrium trajectory of HPr (85 residues,
785 protein atoms) described before." The second
is a 200-ps (5000 frames) equilibrium trajectory of
SH3 (57 residues, 583 protein atoms. Both MD
simulations were performed with GROMOS’ us-
ing periodic boundaries with a truncated octahe-
dron box filled with simple point charge water
molecules.'?

Results

STABILITY OF ED PROPERTIES

If one is interested in obtaining the ED proper-
ties of a protein, a sufficiently long trajectory
should be sampled of the system in equilibrium.
Because it might be argued that the initial equili-
bration of a system by MD is a nonphysical pro-
cess, one needs to be sure that this process is
excluded from the trajectory to be analyzed by ED.
Here we show, using two methods for comparing
the two halves of both the SH3 and HPr trajecto-
ries, that the essential subspace obtained from one
half of the trajectories is similar to that calculated
from the other half. Figure 1 shows the fluctua-
tions in the two halves of these trajectories pro-
jected onto the eigenvectors calculated over the
whole trajectories. Although there appear to be
some differences in dynamic behavior along these
eigenvectors, all the eigenvectors that show large
fluctuation in one-half of the trajectory also show

significant fluctuation in the other half. To further
investigate the differences between the two halves
of the trajectories, eigenvectors (C-a atoms only)
were calculated from the two halves indepen-
dently. The two resulting sets were then cross-pro-
jected (Fig. 2A, B). The plots show that all essential
eigenvectors of one set have high projections on
essential eigenvectors of the other set. Also the
near-constraints eigenvectors give high projections
close to the diagonal, indicating the sets are simi-
lar. No high projections are observed far from the
diagonal.

To estimate the amount of noise in this cross-
projection method, two further such projections
were calculated. First, eigenvectors sets (C-a atoms
only) were calculated from the first 57 residues of
HPr and all residues (also 57) of SH3 and subse-
quently cross-projected (Fig. 2C). Because two dif-
ferently folded polypeptides are now compared,
the eigenvectors are expected to be different as
indeed reflected by Figure 2C. The cross-projection
of a randomly generated set of eigenvectors onto
another shows, however, an even larger degree of
spread of the projections (Fig. 2D). So, even though
two significantly different polypeptides are com-
pared Figure 2C, some degree of overlap is ob-
served. This is probably due to the fact that
although the folds are different, a lot of the con-
straints are essentially the same.

USING DIFFERENT SETS OF ATOMS FOR ED

In most previous ED analyses"*° the covari-
ance matrix was constructed from C-o atomic dis-
placements only. We investigate how other atoms
from the backbone or side chains can be included
to gain information on the dynamics of these
groups, without losing accuracy in the C-a—C-a
correlations and without significantly increasing
the computational costs as is the case with the all
atom analysis." Two approximations of describing
side chains are used: inclusion of the terminal
atom of all side chains in the construction of the
covariance matrix and inclusion of the coordinates
of the geometrical center of the side chain. Both
these options lead to a doubling of the size of the
covariance matrix as compared to the C-a covari-
ance matrix, because there are now two particles
per residue. Figure 3 shows the comparison of the
C-a components of the eigenvectors derived from
these covariance matrices with the eigenvectors of
the pure C-a analysis. Inclusion of the side chain
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FIGURE 1. Comparison of the fluctuations along the first 10 essential eigenvectors in the two halves of the (A) HPr

and (B) SH3.

information does not lead to significant deviation
in the C-a components. A slightly closer agree-
ment is obtained when the geometrical center of
the side chain is used. This is probably due to the
fact that the geometrical center of the side chain is
defined by more than one atom, which leads to the
reduction of the noise in the atomic correlations.
Moreover, the geometrical center is closer to the
backbone, leading to stronger correlation with the

C-a atoms. The inclusion of this side chain in-
formation only leads to a small increase in the
computational cost of diagonalizing the covariance
matrix and introduces less noise in the C-a compo-
nents compared to the application of ED using all
atoms of the protein (Fig. 3).

To allow more detailed geometrical evaluations
of structures in the essential space, such as sec-
ondary structure, hydrogen bonds, and dihedral
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FIGURE 2. Projection of one set of eigenvectors onto another. (A) Eigenvectors calculated from the first half of the HPr
trajectory onto those calculated from the second half. (B) Eigenvectors calculated from the first half of the SH3 trajectory
onto those calculated from the second half. (C) Eigenvectors calculated from the first 57 residues of the HPr trajectory
onto those calculated from the SH3 trajectory. (D) One set of random eigenvectors onto another set of random

eigenvectors.

angle analyses, it is necessary to include all back-
bone atoms in the construction of the covariance
matrix. The backbone carbonyl carbon and oxygen,
nitrogen, hydrogen, and C-a carbon atoms were
used to build the covariance matrix. Although this
leads to a fivefold increase of the dimension of the
matrix, it leads to no significant deviation in the
C-a components (Fig. 3) whereas a wealth of addi-
tional information is obtained.

ANALYSIS OF THE COVARIANCE MATRIX
SPLITTING METHOD

The HPr and SH3 trajectories were split into
four and three groups of atoms, respectively, and
covariance matrices were constructed as described
in the Methods section. The all atom eigenvectors
resulting from combining the data of the submatri-
ces were compared to the all atom eigenvectors
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FIGURE 3. Comparison of various (A) HPr and (B) SH3 ED analyses to the C-a ED analysis, using the projection
method described in the Methods section. CA, C-a; SC, side chain; GC, geometrical center; TA, terminal atom.

derived directly from an all atom covariance ma-
trix. Figure 4 shows the inner products resulting
from the projection of eigenvectors of one set onto
corresponding eigenvectors of the other set. For
the essential eigenvectors, inner products close to
1.0 were obtained. For both HPr and SH3 only the
first 100 eigenvectors of the submatrices were used
for the projections and subsequent construction of
a new covariance matrix. The square root of the
product of the largest eigenvalue taken into ac-
count and the largest neglected eigenvalue (cor-
responding to the upper limit of the neglected

matrix element) was comparable to the 31st eigen-
value for HPr and the 24th eigenvalue for SH3,
suggesting that higher index eigenvectors might
be inaccurate. In practice we find that even more
eigenvectors obtained from the splitting and direct
method are similar. Hence, the splitting method
can be used to reliably reconstruct the eigenvectors
from the essential space. Roughly, one could say
that if 10% of the total number of coordinates are
used in the approximation, about 10% of the total
number of eigenvectors can be approximated reli-
ably.
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FIGURE 4. Projection of the eigenvectors resulting from an all atom covariance matrix onto corresponding eigenvectors

obtained with the covariance matrix splitting method.

ED IN DIHEDRAL SPACE

In all analyses presented above the atomic coor-
dinates in Cartesian space were used to build the
covariance matrix. For the atoms of the protein
backbone, N, H, C-a, C, and O, this results in 15
degrees of freedom per residue. However, the real
degrees of freedom in a protein backbone are rota-
tion around the N—C-a (¢) and the C-a—C (i)
bonds. A 3-D structure of the backbone of a pro-
tein can be generated from a set of ¢ and ¢
angles, assuming fixed bond lengths, bond angles,
and a planar peptide bond. Therefore, there are 2
degrees of freedom per residue in dihedral angle
space instead of 15 in Cartesian space. Moreover, if
these dihedral angles are the real degrees of free-
dom in an amino acid, there could be only a few,
localized components with a large value in an
eigenvector derived from a dihedral angle covari-
ance matrix, indicating hinge regions in the pro-
tein. We investigated the essential degrees of free-
dom in dihedral angle space for HPr and SH3.
Instead of using the correlated fluctuations around
average Cartesian coordinates for the construction
of the covariance matrix, fluctuations in the ¢ and
i angles in the protein trajectory were used. Diag-
onalization of this matrix yields a set of eigenvec-
tors and eigenvalues. The eigenvectors describe
correlated rotations around certain ¢ and ¢ angles
in the protein backbone. The eigenvalues indicate
the amplitude of these correlated rotations. In Fig-

ure 5 the eigenvector components of the first four
eigenvectors of the dihedral analysis are compared
to the ¢/ fluctuations in the four eigenvectors
with the largest eigenvalues of the Cartesian back-
bone analysis. The eigenvectors of the dihedral
angles analysis are much ““cleaner” than those of
the Cartesian analysis; that is, there is less noise
and there are only a few large components (angles)
showing a large concerted rotation. There is a
significant amount of similarity between the dihe-
dral angle eigenvectors and the ¢/ fluctuations
in the Cartesian analysis. Angles that fluctuate in
the dihedral angle analysis also show a large fluc-
tuation in the Cartesian analysis. This shows that
the dihedral angle analysis identifies 3-D motions
similar to the Cartesian space analysis. Figure 5
also shows that when there is a dihedral angle
showing a large rotation in an eigenvector, there is
an adjacent dihedral angle that shows an opposite
rotation, partially compensating the first one. These
large rotations always occur at residues that also
show a large fluctuation in their ¢/ angles in
Cartesian space (Fig. 5), but the interesting mecha-
nism of one dihedral angle compensating for the
other cannot be observed in the Cartesian space
analysis.

There are some drawbacks in the dihedral ED
analysis. The cumulative, normalized eigenvalue
curves of the HPr and SH3 dihedral space eigen-
values compared to those of the Cartesian back-
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bone analysis are shown in Figure 6. For the essen-
tial eigenvectors, the dihedral angle space curves
are less steep than the eigenvalue curves of the
Cartesian space analyses. This indicates that the
dimensionality of the essential space is larger than
that of the essential Cartesian space. In addition,
visualization of structural rearrangements de-
scribed by the eigenvectors showed unphysical
structures. This is probably due to the fact that the
bond angles and the peptide bond torsion angles
are not completely constrained. An error of a few
degrees in one dihedral angle may lead to devia-
tions of several angstroms in Cartesian space.

NM ANALYSIS

Eigenvectors resulting from the NM analysis of
SH3 and HPr were compared using the cumula-
tive inner product method described in the Meth-
ods section. The cumulative inner products of the
first 10 eigenvectors of ED projected onto the first
10 of the NM analysis (the 10 lowest frequency
modes) are shown in Table I. The cumulative inner
products for the ED eigenvectors from the two
halves of the trajectories are similar to the inner
products of ED with NM eigenvectors. This sug-
gests there is significant overlap between the es-
sential spaces derived from normal modes and
essential dynamics. Longer simulations or simula-
tions started from a structure distinct from the
structure used for NM are likely to give smaller a
overlap between the eigenvectors obtained from
both techniques.

Discussion and Conclusions

We introduced a number of new techniques,
enhancing the possibilities of using ED to analyze
correlated motions in proteins. We showed that
even relatively short (about 200 ps) trajectories can
be used to derive a stable essential space. Recently
reports were made about the stability of correlated
fluctuations of atoms in MD simulations.” ' Tt
was shown that for a short simulation on myo-
globin, different covariance matrices were ob-
tained if the two halves of the simulation were
considered separately. We show here, however, in
two different ways, that a few hundred picosec-
onds of simulation on two proteins produce an
approximately converged definition of the essen-
tial subspace in which all relevant fluctuations are
confined.

COMPARISON OF ESSENTIAL SPACES

The observation of the significant amount of
overlap between eigenvectors derived from an NM
analysis and those from ED indicates that the two
methods essentially yield the same kind of infor-
mation. There are, however, a few crucial differ-
ences between NM and ED, even though some are
not directly apparent from the proteins we chose
for our comparison. First, we recently demon-
strated that water molecules and in particular
crystallographic water molecules are of great im-
portance in accurately determining protein essen-
tial dynamics.*® Water molecules are normally not
taken into account in NM analysis. However, both
proteins used here do not contain internal crystal-
lographic water molecules, which may cause a
higher degree of overlap than for proteins with
crystallographic water molecules. Second, the sim-
ulations used here are relatively short. During
longer simulations, multiple minima are sampled
by MD, resulting in anharmonic modes that cannot
be described by NM, because of the assumption
that all modes are harmonic. In our previous ED
analyses, we saw that the protein is able to sample
regions in the essential subspace distant from the
crystal structure. The NM results depend heavily
on the local structure, and the relatively short
simulations used here only sample the essential
space close to the crystal structure; this accounts
for the higher overlap between ED and NM eigen-
vectors than would be found for longer simula-
tions or simulations started from a different struc-
ture. Apart from these theoretical differences, there
is also the difference in freedom of choosing the
set of atoms used in the analysis. NM analyses are
restricted to all atoms; as shown above, there is no
such restriction for ED.

Usually, a description of the correlations be-
tween C-a or backbone atoms is sufficient to get
information about the relevant motions of the pro-
tein. Restriction of the analysis to C-a or backbone
atoms has the advantage that the analysis is less
influenced by statistical noise and hence yields a
more reliable description of the essential space
than an all atom analysis does. However, in certain
cases a detailed description of the correlation be-
tween all atoms in the protein might be desirable
to provide additional information. Up to now, this
was limited by the size of the protein because of
the computational costs involved in diagonalizing
the matrix. The same limit may restrict the analy-
sis of backbone atoms for very large proteins. We
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FIGURE 6. Comparison of the cumulative normalized eigenvalue curves of the Cartesian backbone ED analysis and
the dihedral angle space ED analysis for (A) HPr and (B) SH3.

TABLE 1.
Average Squared Inner Products for Projection of the First 10 (C-a) Eigenvectors of a Set onto First
10 of Another.

HPr (A) HPr (B) HPr (NM) SH3 (A) SH3 (B) SH3 (NM)
HPr (A) 1.0 SH3 (A) 1.0
HPr (B) 0.39 1.0 SH3 (B) 0.50 1.0
HPr (NM) 0.39 0.40 1.0 SH3 (NM) 0.47 0.44 1.0

An overlap of 0.4 -0.5 is considered to be significant because only a small amount of statistical / computational noise considerably
decreases the overlap between essentially identical eigenvectors.
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described a method for obtaining an approxima-
tion of high dimensional eigenvectors by splitting
the covariance matrix into submatrices, signifi-
cantly reducing the amount of memory and CPU
time needed. Application to all atom covariance
matrices constructed from the SH3 and HPr trajec-
tories showed that the error introduced by this
method is acceptable; only nonessential degrees of
freedom are affected, which are in most cases
irrelevant. Various methods are known for reduc-
ing the computational cost in diagonalizing large
matrices in the normal modes analysis (overview
in ref. 15). The method presented here is unique in
that no assumptions are made concerning blocks
of atoms in the matrix with correlations relatively
independent of the rest of the protein. The eigen-
vectors of the basis set are built using sets of
atoms spread out over the protein, implicitly tak-
ing into account correlations between domains in
the protein.

We investigated with which set of atoms the
most information is obtained at the least computa-
tional cost. Although the basic C-a analysis gives a
good picture of the large concerted motions in the
backbone, more information can be obtained by
including all backbone atoms, which facilitates
various standard structure analyses to be per-
formed. Approximate side chain—side chain and
side chain—backbone correlations can be obtained
by including one extra particle per residue, being
the geometrical center of the side chain or its
terminal atom. Extra information at no significant
extra cost is obtained, while there is no distortion
of the C-a essential space.

We showed that it is possible to perform ED in
¢/ space, as also recently demonstrated for NM
analysis.'" The ¢/ angles involved in the first
few essential eigenvectors are similar to those in-
volved in the Cartesian backbone analysis. The
eigenvectors are cleaner; ¢/¢ fluctuations are
more detailed; and the covariance matrix is smaller,
requiring less computational resources. However,
there are also some problems. The essential space
is of larger dimensionality than that of Cartesian
space analyses, and the reconstruction of 3-D atom
trajectories using the dihedral angle eigenvectors
is not straightforward. In addition, the essential
eigenvectors in ¢/ space do not necessarily cor-
respond to large fluctuations in 3-D space. Because

COMPARISON OF ESSENTIAL SPACES

we want to study correlated displacements of
atoms in three dimensions, it is simpler and possi-
bly also better to use atomic fluctuations in Carte-
sian space to construct the covariance matrix.
However, when it is necessary to investigate dihe-
dral angle fluctuations in detail, as in locating a
possible hinge point in a protein, it may be useful
to perform ED in ¢/ space in addition.
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