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Abstract
We construct a flavor symmetry model based on the tetrahedral group A4 in which the right-handed

neutrinos from the seesaw mechanism can be both keV warm dark matter particles and eV-scale

sterile neutrinos. This is achieved by giving the right-handed neutrinos appropriate charges under

the same Froggatt-Nielsen symmetry responsible for the hierarchy of the charged lepton masses.

We discuss the effect of next-to-leading order corrections to deviate the zeroth order tri-bimaximal

mixing. Those corrections have two sources: (i) higher order seesaw terms, which are important

when the seesaw particles are eV-scale, and (ii) higher-dimensional effective operators suppressed

by additional powers of the cut-off scale of the theory. Whereas the mixing angles of the active

neutrinos typically receive corrections of the same order, the mixing of the sterile neutrinos with

the active ones is rather stable as it is connected with a hierarchy of mass scales. We also modify

an effective A4 model to incorporate keV-scale sterile neutrinos.
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I. INTRODUCTION

Apart from the direct proof of physics beyond the Standard Model (SM) in the form

of neutrino masses [1], a somewhat more indirect proof is the presence of Dark Matter

(DM) [2]. One can take the point of view that these two aspects of physics beyond the SM

are connected with each other, i.e. that neutrino mass and Dark Matter are linked. We will

assume this connection in the present paper.

The most direct such relationship would be realized if the light massive neutrinos whose

oscillations we observe in the lab are the DM particles. However, they would be Hot Dark

Matter, and cosmological data is compatible only with a very small component of this

form of DM, which in fact allows one to set limits on neutrino mass [3]. Typically the

DM is assumed to be of the Cold Dark Matter (CDM) type, for which a WIMP (weakly

interacting massive particle), as predicted in many supersymmetric theories, is the most

popular candidate. However, Warm Dark Matter (WDM) is another possibility compatible

with observations, and in fact could solve some of the problems of the CDM paradigm, in

particular by reducing the number of Dwarf satellite galaxies or smoothing the cusps in the

DM halos. At this point one should note that a sterile neutrino with mass at the keV scale

and with small mixing to the active neutrinos is a WDM candidate if a mechanism [4, 5]

to generate the correct amount of relic population is present1. See the reviews [8–10] for

summaries of mechanisms and the status of keV sterile neutrinos as DM.

Sterile neutrinos heavier than the active ones are an ingredient of the seesaw mecha-

nism [11–15], whose existence is strongly hinted at from the fact that active neutrino masses

are extremely small. Here, however, the right-handed neutrinos are “naturally” of order 1010

to 1015 GeV, and if one wishes to make one of them a WDM candidate one has to arrange

for this mass to come down to the keV level. The following possibilities exist:

• theories with extra dimensions can exponentially suppress fermion masses, by localiz-

ing them on a distant brane, for instance. This has been proposed to generate seesaw

neutrinos of keV scale in [16], see also [17];

• flavor symmetries [18, 19] can predict that one of the heavy neutrino masses is zero.

Slightly breaking this symmetry generates a neutrino with much smaller mass than

the other two, whose masses are allowed by the symmetry. This has been proposed to

generate seesaw neutrinos of keV scale in [20, 21], see also [22];

• while the commonly studied flavor models with non-abelian discrete symmetries cannot

produce a non-trivial hierarchy between fermion masses, the Froggatt-Nielsen mecha-

nism is capable of this [23]. This has been proposed to generate seesaw neutrinos of

1 keV sterile neutrinos could also provide an explanation for pulsar kicks [6, 7].
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keV scale in [24], see also [25];

• extensions or variants of the canonical type I seesaw often contain additional mass

scales, which can be arranged to generate keV-scale particles. This has been proposed

to generate seesaw particles of low scale in [26], see also [25].

Note that both the Froggatt-Nielsen and extra-dimensional approaches require that the

three right-handed neutrinos cannot be identified as a triplet of a flavor symmetry, which

is very often the case in flavor symmetry models (see for instance the classification table

for A4 models in Ref. [27]). Furthermore, in that case there is no overall effect on the

leading order seesaw formula M2
D/Mi, with Mi being the right-handed neutrino mass and

MD the Dirac mass. Both mechanisms will suppress Mi quadratically, while MD is linearly

suppressed, and hence their combination M2
D/Mi is left constant.

In this paper we will apply the Froggatt-Nielsen mechanism to bring one of the heavy

neutrinos from its “natural” scale down to the keV level. We will construct an explicit

flavor symmetry model based on the group A4. As in many such models, there is also a

Froggatt-Nielsen symmetry U(1)FN to generate the observed hierarchy of the charged lepton

masses; we will use this very same U(1)FN for creating a WDM candidate from the heavy

neutrinos.

In addition, it should be noted that when one goes from, say, 1015 GeV = 1024 eV

down to keV = 103 eV, it is not a big problem to reduce the mass by another 3 orders of

magnitude. In this way one has generated one (or more) sterile neutrino(s) of order eV. This

would be very welcome to explain long-standing issues in particle physics, astrophysics and

cosmology. Those are the apparent neutrino flavor transitions at LSND and MiniBooNE,

which together with the “reactor anomaly” [28, 29] point towards oscillations of eV-scale

sterile neutrinos mixing with strength of order 0.1 with the active ones (see Refs. [30, 31] for

recent global fits2). In addition, several hints mildly favoring extra radiation in the Universe

have recently emerged from precision cosmology and Big Bang Nucleosynthesis [34–37].

This could be any relativistic degree of freedom or some other New Physics effect, but has a

straightforward interpretation in terms of additional sterile neutrino species. Although some

tension between the neutrino mass scales required by laboratory experiments and the Hot

Dark Matter limits exists within the standard ΛCDM framework, moderate modifications

could arrange for compatibility [38]. Finally, active to sterile oscillations have been proposed

to increase the element yield in r-process nucleosynthesis in core collapse supernovae (which

seems to be too low in standard calculations, see e.g. [39, 40]). It is rather intriguing that

indications of the presence of eV sterile neutrinos come from such fundamentally different

probes.

2 Sometimes the result of the calibration of Gallium solar neutrino experiments [32] is interpreted as the

“Gallium anomaly” and is considered to be an effect of sterile neutrinos [33].
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We note that a particular phenomenological model, the νMSM (ν Minimal Standard

Model), has been proposed [41], in which one of the seesaw neutrinos is keV and the other

two can generate the baryon asymmetry of the Universe either via leptogenesis (if they are

heavy) or via oscillations when they have masses below the weak scale and are degenerate

enough [8, 41]. The idea to exploit the neutrinos of the canonical seesaw mechanism to

account for the required eV and keV particles has been discussed in Ref. [42], for instance.

Here we provide a reasoning for the low-lying scales and add to the framework a flavor

symmetry that yields at leading order tri-bimaximal mixing (TBM). In addition we modify

an existing effective A4 model, which does not contain the seesaw mechanism, by adding

a sterile neutrino. Again, applying appropriate Froggatt-Nielsen charges gives the correct

charged fermion mass hierarchy and a WDM particle.

As a starting point in our seesaw models, we will leave the Froggatt-Nielsen charges of the

seesaw neutrinos free, except for the one which is doomed to be the keV WDM particle. By

properly choosing the charges of the other two, we can make one or two to be of eV scale, or

keep both heavy (below or above the weak scale). Different and testable phenomenology in

terms of short-baseline oscillations or neutrinoless double beta decay (0νββ) is then present

and characteristic for each scenario. For instance, if all neutrinos are below the momentum

scale 100 MeV of double beta decay, the effective mass on which the amplitude depends

cancels exactly. This is in contrast to the usually considered analysis of sterile neutrinos in

double beta decay [25] (or our effective A4 model), in which sterile neutrinos are simply added

to the three active ones and treated as independent entities. Interestingly, this cancellation

happens pairwise in our particular model, because the columns of the Dirac mass matrix

are proportional to the columns of the lepton mixing matrix and each of the right-handed

neutrinos is responsible for generating one light active mass. If this right-handed neutrino is

lighter than 100 MeV, then its contribution to double beta decay cancels exactly with that

of the associated light active neutrino.

We take particular care in evaluating next-to-leading order (NLO) corrections to

the model, which lead to deviations from TBM. Two sources for those corrections are

considered. If the right-handed neutrino mass is ∼ eV instead of the natural value 1010

to 1015 GeV, then NLO seesaw terms [43–45] can be important. This is because the

seesaw formula goes like M2
D/Mi (1 + M2

D/M
2
i ). It is easy to see that if Mi ≃ eV and if

M2
D/Mi ≃ 0.1 eV, MD should be around 0.3 eV, and hence the NLO seesaw term M2

D/M
2
i

can generate effects in the percent regime. Another, more commonly studied source of

NLO corrections stems from higher-dimensional operators suppressed by additional powers

of the cut-off scale of the theory. The relative magnitude of those terms also depends on

details of the model and of the scales chosen for the neutrinos and other particles. We

show in particular that values of Ue3 compatible with recent fits [46, 47] can be obtained in

our models. An important aspect is that the three mixing angles of the active neutrinos

typically receive corrections of the same order, as is generically the case in flavor models.

However, the mixing of the sterile neutrinos with the active ones is rather stable as it is
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defined as a hierarchy of mass scales, thus stabilizing, for instance, the small mixing of the

WDM neutrino with the active ones.

The remaining parts of this work are organized as follows: in Section II we present some

model-independent features of the seesaw mechanism and its resulting phenomenology in

the case that one or more of the right-handed neutrinos is light. Section III introduces

a seesaw model based on the A4 flavor symmetry, in which one of the three right-handed

neutrinos acts as the WDM candidate. Various cases for the mass scales of the other two

neutrinos are discussed, phenomenological consequences are figured out in detail, and the

role of higher-order corrections is studied. Details of the NLO terms are delegated to the

Appendix. Section IV details an effective theory with a single keV sterile neutrino added

to an existing A4 model. Higher-order corrections and possible deviations from the exact

TBM pattern are also discussed. We summarize and conclude in Section V.

II. LIGHT STERILE NEUTRINOS IN TYPE I SEESAW

Before describing a specific model, we address the role of light sterile neutrinos in the

type I seesaw, in particular the effect of NLO seesaw corrections to neutrino mixing param-

eters as well as phenomenological consequences of light sterile states.

A. NLO seesaw corrections

In the canonical type I seesaw mechanism, one extends the SM particle content with

three right-handed neutrinos (νc
1, ν

c
2, ν

c
3) together with a Majorana mass MR. The full 6× 6

neutrino mass matrix in the basis (νe, νµ, ντ , ν
c
1, ν

c
2, ν

c
3) reads

M6×6
ν =

(

0 MD

MT
D MR

)

, (1)

where MD denotes the Dirac mass term, and we use the LR convention for the Lagrangian.

Assuming MR ≫ MD, this mass matrix can be approximately diagonalized using a 6 × 6

unitary matrix as

Uν ≃
(

1− 1
2
BB† B

−B† 1− 1
2
B†B

)(

Vν 0

0 VR

)

, (2)

where B = MDM
−1
R + O

(

M3
D(M

−1
R )3

)

governs the effect of higher-order seesaw correc-

tions [43–45]. The matrix Vν is given by

Mν = −MDM
−1
R MT

D = Vν diag(m1, m2, m3)V
T
ν (3)
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with mi being the light neutrino masses, and VR diagonalizes the right-handed neutrino

mass matrix, i.e. MR = VR diag(M1,M2,M3)V
T
R .

In the ordinary type I seesaw framework, MR is commonly chosen to be close to the

Grand Unification scale (e.g. MR ≃ 1014 GeV), while MD ≃ 100 GeV, so that the light

neutrino masses are suppressed at the sub-eV scale, i.e. O(M2
D/MR) ≃ 0.1 eV. Therefore,

the NLO seesaw corrections governed by B can be safely neglected. In models with keV-scale

sterile neutrinos these corrections are also negligible. However, for models with right-handed

neutrinos located at very low-energy scales, i.e. at the eV scale, MD ≃ 0.1 eV is required in

order to generate light neutrino masses. In that limit the NLO seesaw terms are significant,

and B ≃ 0.1 may lead to sizable corrections to neutrino mixing parameters. In the remaining

parts of this work we will keep the NLO seesaw corrections up to O(B2). Note that the

block-diagonalization of Eq. (1) by Eq. (2) is still approximately valid, as the remaining

off-diagonal terms BM2
D/MR ≃ M3

D/M
2
R ≃ 0.001 eV are much smaller than the O(1) eV

mass difference between the active and sterile neutrinos3.

B. Active-active and active-sterile mixing

In the basis where the charged lepton mass matrix is diagonal, the light active neutrinos

mix via the 3× 3 matrix (1− 1
2
BB†)Vν , whereas the mixing between the active neutrino να

(α = e, µ, τ) and the sterile neutrino νc
i (i = 1, 2, 3) is given by

θαi ≡ [Uν ]α,3+i = [BVR]αi ≃
[

MD(V
∗
RM̃

−1
R V †

R)VR

]

αi
=

[MDV
∗
R]αi

Mi

, (4)

where M̃−1
R = diag(M−1

1 ,M−1
2 ,M−1

3 ). This illustrates that active-sterile mixing is defined as

the ratio of two scales, MD and MR. The interaction between each sterile neutrino νc
i and

the entire active sector is

θ2i ≡
∑

α=e,µ,τ

|θαi|2 . (5)

In the setup described above with eV-scale right-handed neutrinos and MD ≃ 0.1 eV,

θi = O(MD/Mi) ≃ 0.1 is obtained, which could provide an explanation for the short-baseline

anomalies. In the same way, for a keV-scale particle and the same Dirac scale MD ≃ 0.1 eV,

one gets θi ≃ 10−4 (see the discussion in the following subsection).

With the above notation, it is not difficult to check that the standard seesaw formula in

3 In our numerical calculations we did not use any approximations, but rather numerically diagonalized the

full neutrino mass matrix, obtaining results consistent with the analytical calculations.
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Eq. (3) can be re-expressed as

[Mν ]αβ =
[

−MDM
−1
R MT

D

]

αβ
= −

∑

i=1,2,3

θαiθβiMi , (6)

indicating that each sterile neutrino makes a contribution to the active neutrino masses

of order θ2iMi [48]. For example, for an eV-scale sterile neutrino Mi ≃ eV together with

θi ≃ 0.3, the contribution to the active neutrino masses is of order 0.1 eV; for a GeV-scale

sterile neutrino Mi ≃ GeV to give a contribution of the same order its corresponding mixing

angle should be θi ≃ 10−5. As a general rule, the heavier the right-handed neutrino mass,

the smaller the active-sterile mixing.

In general the charged lepton mass matrix may not be diagonal: in that case the total

3× 6 lepton mixing matrix connecting the three left-handed lepton doublets Lα = (να, α)
T

(α = e, µ, τ) to the six neutrino mass eigenstates is

U ≃
[

V †
ℓ

(

1− 1

2
BB†

)

Vν , V
†
ℓ BVR

]

, (7)

where Vℓ is defined by MℓM
†
ℓ = Vℓ diag (|me|2, |mµ|2, |mτ |2) V †

ℓ . Note that for B = 0 the

standard result V †
ℓ Vν for the 3× 3 lepton mixing matrix is obtained.

C. keV sterile neutrino WDM

If one of the above-mentioned sterile neutrinos is located at the keV scale and does not

decay on cosmic time scales, it could be viewed as a WDM candidate. In realistic sterile

neutrino WDM models, a specific mechanism for the relic production of sterile neutrinos

is required. For instance, in the Dodelson-Widrow scenario, i.e. production by neutrino

oscillations, if one assumes that sterile neutrino WDM with mass Ms and mixing θs makes

up all the DM in the Universe, its abundance is given by [4, 49–53]

ΩDM ≃ 0.2

(

θ2s
3× 10−9

)(

Ms

3 keV

)1.8

. (8)

In this work we do not focus on a specific production mechanism of sterile neutrino WDM,

but will take Eq. (8) as a guideline and demand that the WDM neutrino has a mass of a few

keV and mixing of order 10−4 with the active sector. Our main focus lies on the feasibility

of accommodating sterile neutrinos in flavor models.

It should be noticed that such a light sterile neutrino (νs) results in a contribution θ2sMs ≃
10−5 eV to the active neutrino masses, which is much smaller than the lower bound from

oscillations of O(10−2) eV, and hence can be safely ignored when discussing active neutrino

masses and mixings. Effectively, one can decouple νs in the seesaw formula, leaving only a
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5 × 5 mixing matrix together with 2 massive right-handed neutrinos, and a 3 × 5 mixing

matrix in Eq. (7). We present an explicit model in Sect. III in order to realize such an

effective picture.

D. Neutrinoless double beta decay

As already mentioned in the introduction, neutrinos with mass below |q| ≃ 100 MeV

contribute to the 0νββ process via an effective mass defined by 〈mee〉 = |∑n

i=1 U
2
eimi|,

where i runs over all the light neutrino mass eigenstates. On the contrary, for right-handed

neutrinos with masses much larger than |q|, their effect in 0νββ is strongly suppressed by

the inverse of their mass. Therefore, if all the right-handed neutrinos are light, i.e. M2
i ≪ q2,

one obtains

〈mee〉 =
∣

∣

∣

∣

∣

3
∑

i=1

U2
eimi +

3
∑

i=1

U2
e,3+iMi

∣

∣

∣

∣

∣

=
[

M6×6
ν

]

ee
= 0 , (9)

showing that the effective mass cancels exactly, since the the (1, 1) entry of the full 6 × 6

neutrino mass matrix in Eq. (1) is vanishing. However, this cancellation is not realized if one

of the right-handed neutrinos is very heavy, since one should decouple this heavy neutrino

in computing the amplitude for 0νββ.

The result in Eq. (9) holds in the general framework of type I seesaw models. However,

in certain flavor symmetric seesaw models in which neutrino mixing is entirely determined

by the Dirac mass term, MD can be expressed as [54, 55]

MD = Vν diag
(

√

−m1M1,
√

−m2M2,
√

−m3M3

)

V T
R . (10)

The active-sterile mixing in Eq. (4) is now given by θαi = Uα,3+i = (Vν)αi
√

−mi/Mi, which

is merely a rescaling of each column of Vν , indicating a direct connection between active and

sterile sectors. Interestingly, this implies that the above-mentioned cancellation for light

right-handed neutrinos in 〈mee〉 occurs pairwise, since

U2
e,3+iMi =

[

−(V 2
ν )ei

mi

Mi

]

Mi = −U2
eimi , (i = 1, 2, 3) , (11)

neglecting terms of order B2 in Eq. (7). Here we have assumed Mℓ to be diagonal, but the

result still holds with non-trivial Vℓ, which can be factored out from both Uei and Ue,3+i. Put

into words, this result means that the contribution to 〈mee〉 from the i-th active neutrino is

exactly cancelled by the contribution from the i-th sterile neutrino. This actually simplifies

the computation of 〈mee〉 since in Eq. (9) one only needs to count the effects of those active

neutrinos whose corresponding sterile neutrinos are heavier than |q|.
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III. A4 SEESAW MODEL WITH ONE keV STERILE NEUTRINO

In this section we describe an A4 seesaw model with three right-handed neutrinos: one

at the keV scale and the other two at either the eV scale, the heavy scale (>∼ GeV), or both.

The FN mechanism is used to control the mass spectrum of right-handed neutrinos and

to set the charged lepton mass hierarchy; since most A4 seesaw models place right-handed

neutrinos in the triplet representation (see the classification table in Ref. [27]) one has to

make non-trivial modifications to those models in order to assign different FN charges to

each sterile neutrino4. Indeed, in order to get TBM [57],

UTBM =











√

2
3

√

1
3

0

−
√

1
6

√

1
3
−
√

1
2

−
√

1
6

√

1
3

√

1
2











, (12)

at leading order with diagonal right-handed neutrinos as A4 singlets, one must choose the

vacuum expectation value (VEV) alignments of the flavon fields along the directions of

the columns of the TBM matrix, similar to the method outlined in Refs. [58–60]. The

crucial point is that each light neutrino mass eigenvalue mi is then suppressed by only one

of the heavy right-handed neutrinos Mi, so that one can decouple any one of the right-

handed neutrinos and still achieve TBM with the remaining two columns, at the price of

one massless active neutrino. Since m2 6= 0, it is only viable to decouple the neutrinos

that correspond to the first or third columns, giving normal (m1 = 0) or inverted (m3 = 0)

ordering, respectively. The decoupled right-handed neutrino becomes the WDM candidate.

In what follows, we will show a concrete model example in the type I seesaw framework,

and outline various possible scenarios that differ by the mass spectra of both active and

sterile neutrinos. In each case we demand one right-handed neutrino to be at the keV scale,

whereas the other two could be at very different scales, depending on the chosen FN charges.

Each scheme exhibits distinct phenomenological signatures.

A. Outline of the leading order model

Here we outline the model and give general analytical results, focussing on the decoupling

of the WDM sterile neutrino. Table I shows the particle assignments of the A4 seesaw model,

with right-handed neutrinos νc
i (i = 1, 2, 3) transforming as singlets under A4. Three triplet

flavons ϕ, ϕ′ and ϕ′′ are needed to construct the columns of MD as well as the charged lepton

mass matrix, and the singlet flavons ξ, ξ′ and ξ′′ are introduced in order to give masses to

4 The model in Ref. [56] also has right-handed neutrinos as singlets, but instead of the FN mechanism a

hierarchy amongst the flavons is assumed.
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TABLE I: Particle assignments of the A4 type I seesaw model, with three right-handed sterile

neutrinos. The additional Z3 symmetry decouples the charged lepton and neutrino sectors; the

U(1)FN charge generates the hierarchy of charged lepton masses and regulates the mass scales of

the sterile states.

Field L ec µc τ c hu,d ϕ ϕ′ ϕ′′ ξ ξ′ ξ′′ Θ νc
1 νc

2 νc
3

SU(2)L 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1

A4 3 1 1′′ 1′ 1 3 3 3 1 1′ 1 1 1 1′ 1

Z3 ω ω2 ω2 ω2 1 1 ω ω2 ω2 ω 1 1 ω2 ω 1

U(1)FN - 3 1 0 - - - - - - - −1 F1 F2 F3

the right-handed neutrinos and keep MR diagonal at leading order. The NLO terms implied

by the presence of the flavons will be discussed later. The Lagrangian invariant under the

SM gauge group and the additional A4 ⊗ Z3 ⊗ U(1)FN symmetry is

−LY =
ye
Λ
λ3 (ϕLhd) e

c +
yµ
Λ
λ (ϕLhd)

′ µc +
yµ
Λ

(ϕLhd)
′′ τ c

+
y1
Λ
λF1(ϕLhu)ν

c
1 +

y2
Λ
λF2(ϕ′Lhu)

′′νc
2 +

y3
Λ
λF3(ϕ′′Lhu)ν

c
3 (13)

+
1

2

[

w1λ
2F1ξνc

1ν
c
1 + w2λ

2F2ξ′νc
2ν

c
2 + w3λ

2F3ξ′′νc
3ν

c
3

]

+ h.c.,

at leading order, where the notation (ab)′ refers to the product of A4 triplets transforming

as 1′, etc., and yα, yi and wi are coupling constants. λ ≡ 〈Θ〉/Λ < 1 is the FN suppression

parameter, and for simplicity we assume Λ to be the cutoff scale of both the A4 symmetry

and the FN mechanism.

If one chooses the vacuum alignment5 〈ϕ〉 = (v, 0, 0), the charged lepton mass matrix is

diagonal6:

Mℓ =
vd v

Λ







yeλ
3 0 0

0 yµλ 0

0 0 yτ






, (14)

where vd = 〈hd〉 and the charged lepton mass hierarchy is generated by the FN mechanism.

The right-handed charged leptons ec, µc and τ c carry different charges under the U(1)FN

symmetry (cf. Table I), which leads to their observed hierarchy. We will employ the same

5 Note that our model contains two Higgs doublets for the up- and down-sector, respectively, and therefore

can be accomodated within supersymmetry. The VEV alignment could in this case be arranged by

“driving fields” [61].
6 NLO operators will modify the structure of Mℓ, introducing non-trivial mixing in the charged lepton

sector (see the Appendix).
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mechanism in the right-handed neutrino sector; for the moment the FN charges of the right-

handed sterile neutrinos are left as free parameters, allowing us to discuss different mass

spectra.

As discussed in Sect. II, a sterile neutrino νc
i with mass Mi = O(keV) and mixing of order

θ2i ≃ 10−8 will give a negligible contribution to neutrino mass, and can thus be decoupled

from the seesaw mechanism. It is then expedient to work in a 5 × 5 basis, with the Dirac

mass matrix MD a 3 × 2 matrix and MR a 2 × 2 symmetric matrix. This is analogous to

the minimal seesaw model [62, 63] and the νMSM, in which the lightest active neutrino is

massless. The mass spectrum of active neutrinos can either have normal ordering (NO), with

m3 ≫ m2 ≫ m1 ≃ 0, or inverted ordering (IO), with m2
>∼ m1 ≫ m3 ≃ 0. However, there

exist different scenarios depending on the FN charges assigned to the remaining right-handed

neutrinos. In order to keep the presentation concise we give general analytical formulae in

this subsection and discuss details specific to the mass spectrum later on.

In our model, νc
1 is assumed to be the WDM candidate, with a mass given by

M1 = w1uλ
2F1, (15)

where u = 〈ξ〉. Note here that Majorana mass terms are doubly suppressed by the FN

charge. The vacuum alignment 〈ϕ〉 = (v, 0, 0) means that at leading order the first column

of the Dirac mass matrix in Eq. (1) is (y1vvuλ
F1/Λ, 0, 0)T , so that the sterile neutrino νc

1

only mixes with the electron neutrino7. From Eqs. (4) and (5), the active-sterile mixing is

θe1 ≃
[MD]e1
M1

=
y1vvu
w1uΛ

λ−F1 , (16)

so that the FN charge F1 actually enhances the active-sterile mixing, and the contribution

of the sterile neutrino νc
1 to the lightest neutrino mass is

m1,3 =
y21v

2v2u
w1uΛ2

. (17)

Once we fix the scale of the various flavon VEVs, F1 is fixed by the WDM constraints [which

we assume to be the ones in Eq. (8)], and the various scenarios to be discussed will differ

only by the choice of the FN charges F2 and F3, i.e. the scale of the remaining two sterile

neutrinos.

With the keV sterile neutrino νc
1 decoupled, the seesaw proceeds with the remaining two

right-handed neutrinos, νc
2 and νc

3. For the NO case, we assume the triplet VEV alignments8

〈ϕ′〉 = (v′, v′, v′), 〈ϕ′′〉 = (0, v′′,−v′′) , (18)

7 NLO terms will induce mixing between νc1 and νµ,τ (cf. Sect. III B).
8 Ref. [56] employs a radiative symmetry breaking mechanism in order to achieve this VEV alignment.
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which result in the following 5× 5 neutrino mass matrix in the basis (νe, νµ, ντ , ν
c
2, ν

c
3):

M5×5
ν =

(

0 MD

MT
D MR

)

, (19)

with the Dirac mass matrix

M
(NO)
D =

vu
Λ







y2v
′λF2 0

y2v
′λF2 −y3v

′′λF3

y2v
′λF2 y3v

′′λF3






(20)

and the right-handed neutrino mass matrix

MR =

(

w2u
′λ2F2 0

0 w3u
′′λ2F3

)

, (21)

where u′ = 〈ξ′〉 and u′′ = 〈ξ′′〉.
The neutrino masses and flavor mixing can be obtained by the full diagonalization of

M5×5
ν , i.e. U †

νM
5×5
ν U∗

ν = diag(m1, m2, m3, m4, m5), where m4 and m5 denote the masses of

right-handed neutrinos. Since eV-scale sterile neutrinos may be present, one should include

the NLO seesaw terms, as motivated above. Using the formalism outlined in Eq. (2) and

Refs. [43–45], and assuming real matrices for simplicity, one arrives up to order ǫ2i at

U (NO)
ν ≃



















2√
6

1√
3

0 0 0

− 1√
6

1√
3

− 1√
2

0 0

− 1√
6

1√
3

1√
2

0 0

0 0 0 1 0

0 0 0 0 1



















+



















0 0 0 ǫ1 0

0 0 0 ǫ1 −ǫ2

0 0 0 ǫ1 ǫ2

0 −
√
3ǫ1 0 0 0

0 0 −
√
2ǫ2 0 0



















+



















0 −
√
3
2 ǫ21 0 0 0

0 −
√
3
2 ǫ21

1√
2
ǫ22 0 0

0 −
√
3
2 ǫ21 − 1√

2
ǫ22 0 0

0 0 0 −3
2ǫ

2
1 0

0 0 0 0 −ǫ22



















,

(22)

where the expansion parameters are given by

ǫ1 =
y2v

′vu
w2u′Λ

λ−F2 and ǫ2 =
y3v

′′vu
w3u′′Λ

λ−F3, (23)

in analogy to Eq. (4). These parameters control the size of active-sterile mixing and NLO

corrections to neutrino masses and mixing, and will be important in the discussions of various

12



scenarios in the following subsections. The neutrino mass eigenvalues are

m1 = 0 ,

m2 = m
(0)
2

(

1− 3ǫ21
)

,

m3 = m
(0)
3

(

1− 2ǫ22
)

, (24)

m4 = w2u
′λ2F2 −m

(0)
2

(

1− 3ǫ21
)

,

m5 = w3u
′λ2F3 −m

(0)
3

(

1− 2ǫ22
)

,

plus higher-order terms, where

m
(0)
2 ≡ −3y22v

′2v2u
w2u′Λ2

, m
(0)
3 ≡ −2y23v

′′2v2u
w3u′′Λ2

, (25)

are the leading order seesaw terms in the NO.

For the IO case the following VEV alignments are assumed:

〈ϕ′〉 = (v′, v′, v′), 〈ϕ′′〉 = (2v′′,−v′′,−v′′) . (26)

The Dirac mass matrix is modified to

M
(IO)
D =

vu
Λ







y2v
′λF2 2y3v

′′λF3

y2v
′λF2 −y3v

′′λF3

y2v
′λF2 −y3v

′′λF3






, (27)

while the right-handed neutrino mass matrix MR remains unchanged. In this case, the

diagonalization matrix approximates (up to order ǫ2i ) to

U (IO)
ν ≃



















2√
6

1√
3

0 0 0

− 1√
6

1√
3

− 1√
2

0 0

− 1√
6

1√
3

1√
2

0 0

0 0 0 1 0

0 0 0 0 1



















+



















0 0 0 ǫ1 2ǫ2

0 0 0 ǫ1 −ǫ2

0 0 0 ǫ1 −ǫ2

0 −
√
3ǫ1 0 0 0

−
√
6ǫ2 0 0 0 0



















+





















−
√
6ǫ22 −

√
3
2 ǫ21 0 0 0

√

3
2ǫ

2
2 −

√
3
2 ǫ21 0 0 0

√

3
2ǫ

2
2 −

√
3
2 ǫ21 0 0 0

0 0 0 −3
2ǫ

2
1 0

0 0 0 0 −3ǫ22





















(28)
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and the neutrino masses are given by

m1 = m
(0)
1

(

1− 6ǫ22
)

,

m2 = m
(0)
2

(

1− 3ǫ21
)

,

m3 = 0 , (29)

m4 = w2u
′λ2F2 −m

(0)
2

(

1− 3ǫ21
)

,

m5 = w3u
′′λ2F3 −m

(0)
1

(

1− 6ǫ22
)

,

where

m
(0)
1 ≡ −6y23v

′′2v2u
w3u′′Λ2

(30)

is the leading order expression for the lightest mass in the IO and m
(0)
2 is defined in Eq. (25).

Note from Eqs. (22) and (28) that the mixing pattern |Ue3| = 0 and |Uµ3| = |Uτ3| is stable
with respect to higher order seesaw terms, which is actually true to all orders in ǫi [45].

One salient feature of the above seesaw model can be seen from Eqs. (25) and (30): the

leading order contributions to the active neutrino masses do not depend on the FN charges

assigned to the right-handed neutrinos. The leading seesaw mass term is M2
D/Mi, so that the

one unit of FN charge λFi from MD cancels with the two units λ2Fi from Mi. On the other

hand, the NLO term M4
D/M

3
i ∝ ǫ2i does depend on the FN charge, which therefore controls

the magnitudes of NLO corrections. The larger the charge Fi (equivalent to a smaller sterile

neutrino mass), the larger the correction parameters ǫi become, and thus the larger the

corrections to the leading order seesaw masses.

In addition to NLO seesaw terms, one would expect higher-dimensional operators to

modify the leading order predictions of the model, which has so far been constructed from

the leading order Lagrangian in Eq. (13). The magnitude of those corrections depends

largely on the actual numerical values chosen in the model, since they are suppressed by

additional powers of the cutoff scale Λ. Our choice of mass scales is guided by the leading

order predictions: we need (i) the sterile neutrino mass and mixing to satisfy Eq. (8), (ii) the

correct scale of active neutrino masses and (iii) Yukawa couplings to be ≤ O(1). In what

regards the keV sterile neutrino [see Eqs. (15) and (16)], a rough numerical estimate shows

that with the mass scales

v ≃ 1011 GeV, u ≃ 1012 GeV, Λ ≃ 1013 GeV , (31)

the Higgs VEV vu = 〈hu〉 ≃ 174 GeV and λ ≃ 0.1, one needs the FN charge

F1 = 9 (32)

to obtain a sterile neutrino of mass M1 ≃ 1 keV with the desired mixing angle θ21 ≃ 10−8,
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with y1, w1 ≤ O(1). In order to stabilize the active neutrino masses around the sub-eV scale,

one can choose [together with the numbers in Eq. (31)] the scales

v′ ≃ v′′ ≃ u′ ≃ u′′ ≃ 1011 GeV (33)

for the flavon VEVs, and the mass splitting among active neutrinos can be achieved by prop-

erly choosing the corresponding Yukawa couplings, i.e. yi and wi (i = 2, 3). For definiteness

we fix the scales of the VEVs from here on, and obtain all numerical results using those

values.

B. Mixing corrections from higher-order terms

As we have already mentioned, the presence of gauge singlet flavons in the model will

inevitably induce NLO corrections, which may modify the leading order picture and affect

both active and active-sterile neutrino mixing. Indeed, modifications to TBM are required

in order to explain the T2K result that suggests non-zero θ13 [64]. We concentrate on

the effects of adding higher-order operators to the Lagrangian in Eq. (13); one could also

introduce corrections by perturbing the A4 triplet VEV alignments [27, 65]. Note that

getting non-zero θ13 in models designed to predict TBM is a more general problem, and

other solutions have been proposed, e.g. in Refs. [66–68].

Since the charged lepton and right-handed neutrino mass matrices are diagonal at leading

order, TBM comes solely from the structure of the Dirac mass matrix. Without performing

a detailed numerical analysis, one can show that the higher-order corrections affect all three

mass matrices: Mℓ, MD and MR. The impact of those corrections is controlled by the ratios

of flavon VEVs to the cut-off scale, in our case

r1 ≡
u

Λ
≃ 0.1 and r2 ≡

u′

Λ
≃ u′′

Λ
≃ v

Λ
≃ v′′

Λ
≃ 0.01 . (34)

The terms containing the VEV 〈ξ〉 = u = r1Λ have the largest effect, and will be included

in our analysis (see the Appendix); terms containing the VEVs u′, u′′, v, v′ and v′′ are all

of relative order r2 ≃ 0.01 and can be safely neglected. Importantly for our model, the

correction terms turn out to have a negligible effect on the keV sterile neutrino mass, as well

as its mixing with the active sector. Explicitly, from Eqs. (A-12) and (A-14), the corrected

active-sterile mixing is

θ′e1
(NO) ≃ θe1

(

1 +
y′1v

′

y1v
r1

)

and θ′e1
(IO) ≃ θe1

[

1 +

(

y′1v
′

y1v
+ 2

y3v
′′

y1v

w′
1

w1

)

r1

]

, (35)

where the dimensionless couplings y′1 and w′
1 are defined in Eqs. (A-5) and (A-8), respectively,

and the leading order expression for θe1 is given in Eq. (16). In addition, the mixing angles
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θµ1 and θτ1 become non-zero, but of the same magnitude as θe1, i.e.

θ′µ,τ1
(NO) ≃ θe1

(

y′1v
′

y1v
∓ y3v

′′

y1v

w′
1

w1

)

r1 and θ′µ,τ1
(IO) ≃ θe1

(

y′1v
′

y1v
− y3v

′′

y1v

w′
1

w1

)

r1 . (36)

This shows that the active-sterile mixing is stable, illustrating the point that unlike active

neutrino mixing it is defined as the ratio of two large scales, so that small changes in MD

and MR will have little effect on θαi (we assume that |w′
1| <∼ |w1|). The WDM particle

remains decoupled from the seesaw and one can still work in the 5 × 5 basis. We show the

resulting mixing matrix elements here and provide details of the diagonalization procedure

and modified neutrino mass eigenvalues in the Appendix.

The final lepton mixing matrix is a 3 × 5 matrix connecting the three flavors of lepton

doublets to the five neutrino mass eigenstates, and corrections from the charged lepton sector

[Eq. (A-3)] and the neutrino sector [Eq. (A-15)] can be combined via Eq. (7) to give the

approximate mixing matrix elements

|Ue3|2 ≃
r21
2

[

(

y′µ
yµ

− y′τ
yτ

)2
]

+
1

2
(χ− ρ3)

2 − (χ− ρ3)r1

(

y′µ
yµ

− y′τ
yτ

)

,

|Ue2|2 ≃
1

3

[

1− 3ǫ21 − 2ρ2 − 2r1

(

y′µ
yµ

+
y′τ
yτ

)]

,

|Uµ3|2 ≃
1

2

[

1− 2ǫ22 + 2
y′τ
yτ

r1 +
2

3
σN
+R

]

, (37)

|Ue,µ4|2 ≃ ǫ21

[

1∓ 2ρ2 ∓ 2r1

(

y′µ
yµ

± y′τ
yτ

)]

,

|Ue5|2 ≃ ǫ22

[

r21

(

y′µ
yµ

− y′τ
yτ

)2

− 2r1

(

y′µ
yµ

− y′τ
yτ

)

(χ− ρ3) + (χ− ρ3)
2

]

,

|Uµ5|2 ≃ ǫ22

(

1 + 2r1
y′τ
yτ

)

,

in the NO. Here the ǫi are generated by NLO seesaw terms, y′µ,τ stem from corrections to

the charged lepton mass matrix, while the other parameters come from corrections to MD
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and MR. For the inverted ordering we find

|Ue3|2 ≃
r21
2

(

y′µ
yµ

− y′τ
yτ

)2

− ρ2r1

(

y′µ
yµ

− y′τ
yτ

)

+
ρ22
2
,

|Ue2|2 ≃
1

3

[

1− 3ǫ21 − 2ρ2 − 2r1

(

y′µ
yµ

+
y′τ
yτ

)

− 2

3
σI
+G

]

,

|Uµ3|2 ≃
1

2

[

1 + 2ρ2 + 2
y′τ
yτ

r1

]

, (38)

|Ue,µ4|2 ≃ ǫ21

[

1− 2ρ2 ∓ 2r1

(

y′µ
yµ

± y′τ
yτ

)]

,

|Ue5|2 ≃ 4ǫ22

[

1 + r1

(

y′µ
yµ

+
y′τ
yτ

)

− (χ− ρ3)

]

,

|Uµ5|2 ≃ ǫ22

[

1− 2r1

(

2
y′µ
yµ

+
y′τ
yτ

)]

,

with the parameters

σN
± ≡ χ± ρ2 − ρ3 , σI

± ≡ χ± 3ρ2 − ρ3 ,

χ ≡ y1v

y3v′′
w′

1

w1
r1 , ρ2 ≡

y′2v
′′

y2v′
r1 , ρ3 ≡

y′3v

y3v′′
r1 ,

R ≡ m
(0)
2

m
(0)
3

≃
√

∆m2
S

∆m2
A

= O(10−1) , (39)

G ≡ m
(0)
1

m
(0)
2 −m

(0)
1

≃ 2∆m2
A

∆m2
S

≃ 2

R2
= O(102) ,

controlling the size of the mixing terms, where ∆m2
S and ∆m2

A are the solar and atmo-

spheric mass squared differences, respectively. The dimensionless couplings y′2,3 are defined

in Eq. (A-5). R and G contain the leading order neutrino masses from Eqs. (25) and (30):

while R is quite small, G is large, which is a consequence of the two relatively large but

nearly degenerate neutrino masses in the IO, m
(0)
1 ≃ m

(0)
2 ≃ 0.05 eV. We have expanded to

first order in R, but G remains an exact expression in the mixing matrix. Thus in the IO

we need σI
+ = χ + 3ρ2 − ρ3 to be O(10−3) in order to keep the corrections to |Ue2|2 under

control, which in turn puts a constraint on the Yukawa couplings y′2,3 and w′
1 in Eqs. (A-5)

and (A-8). With r1 ≃ 0.1 and v ≃ v′ ≃ v′′, we have ρ2,3 ≃ 0.1
y′
2,3

y2,3
and χ ≃ 0.1y1

y3

w′

1

w1
, so that

we need to assume that y′2,3 ≃ 0.01y2,3 and y1w
′
1 ≃ 0.01y3w1 in the inverted ordering. The

full neutrino mass eigenvalues are given in Eqs. (A-17) and (A-19): despite the appearance

of G2 terms in the IO mass eigenvalues they will always be suppressed by (σI
+)

2, which is

constrained to be small from the mixing matrix element Ue2.

As expected, by setting y′2, y
′
3, w

′
1, y

′
µ and y′τ to zero in Eqs. (37) and (38) one recovers

the matrix elements in Eqs. (22) and (28). Note that without the higher-order correction
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terms Ue3 remains exactly zero, to all orders in ǫi. The active-sterile mixing (Uα4,5) is always

proportional to ǫi, or in other words to a ratio of scales [cf. Eqs. (4) and (23)]. In the different

scenarios discussed in the following subsections, the ǫi terms will have different magnitudes,

depending on the right-handed neutrino spectrum. In those cases with significant values of

ǫi (i.e. eV-scale sterile neutrinos) one must take into account both NLO seesaw corrections

and higher-order corrections, whereas in cases with negligible ǫi (heavy sterile neutrinos)

one need only worry about the higher-order correction terms, i.e. those controlled by y′2, y
′
3,

w′
1, y

′
µ and y′τ .

Even if y′2, y′3 and w′
1 are small and mixing corrections from the neutrino sector are

negligible, there are still effects from the charged lepton sector. Indeed, in order to keep

the solar mixing angle within its allowed range [47], one has the constraint (assuming for

definiteness y′2 = y′3 = w′
1 = 0 and ǫ1,2 ≃ 0)

− 0.4 ≤
(

y′µ
yµ

+
y′τ
yτ

)

≤ 0.95 , (40)

on the charged lepton Yukawa couplings; the extreme choice y′µ/yµ = −y′τ/yτ gives the

reactor mixing angle

sin2θ13 ≃ 2r21

(

y′τ
yτ

)2

≃ 0.02, (41)

in both mass orderings, assuming that y′τ ≈ yτ . In this case sin2θ23 ≃ 0.6, and sin2θ12 retains

its TBM value.

C. Explicit seesaw model scenarios

In order to illustrate the versatility of the model discussed, we present three scenarios

with different mass spectra in the right-handed neutrino sector. Each case differs by the

choice of FN charges F2 and F3, what one could call the “theoretical input”; the consequent

neutrino phenomenology is described in detail. Table II summarizes the key differences in

each case.

In all cases we have checked that Yukawa couplings of order 1 or 0.1 can fit the model

to the active neutrino mass-squared differences [47], and, where appropriate, to sterile mass

parameters [30]. The effects of the higher-order corrections discussed in Sect. III B are

described for each scenario. Due to the large number of parameters we will always have

enough freedom to fit the masses to the data, so that we only need to take care that mixing

corrections are under control, particularly in the IO, as discussed above.
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TABLE II: Summary of the different scenarios discussed in the A4 seesaw model. In each case

the WDM sterile neutrino has a mass M1 = O(keV), and the corresponding active neutrino is

approximately massless.

F1, F2, F3 Mass spectrum |Uα4| |Uα5| 〈mee〉 Phenomenology
NO IO

I 9, 10, 10 M2,3 = O(eV), O(0.1) O(0.1) 0 0 3 + 2 mixing

IIA 9, 10, 0
M2 = O(eV) O(0.1) O(10−11) 0 2

√

∆m2
A

3
3 + 1 mixing

M3 = O(1011GeV)

IIB 9, 0, 10
M2 = O(1011GeV) O(10−11) O(0.1)

√

∆m2
S

3

√

∆m2
A

3M3 = O(eV)

III 9, 5, 5 M2,3 = O(10GeV) O(10−6) O(10−6)

√

∆m2
S

3

√

∆m2
A Leptogenesis

1. Scenario I: two eV-scale right-handed neutrinos

In this case we assign the FN charges F1 = 9, F2,3 = 10, so that the right-handed

neutrino masses are lowered down to the eV scale. It is now notable that ǫ1,2 = O(0.1)

can be expected, indicating that NLO seesaw terms should be considered. The effects are

more pronounced in the IO case, since two of the active neutrinos are nearly degenerate and

are more sensitive to corrections. The five neutrino mass eigenvalues are given by the full

expressions in Eqs. (A-17) and (A-19).

In this scenario, there are no heavy right-handed neutrinos that could be used to ex-

plain the matter-antimatter asymmetry via leptogenesis. Neutrinoless double beta decay is

also vanishing since the contributions from active and sterile neutrinos exactly cancel each

other9, unless there are other new physics contributions. However, the eV-scale right-handed

neutrinos offer an explanation for the short-baseline oscillation anomalies often attributed

to them.

In the NO case, one of the two sterile neutrinos could mix with νe via Ue4 ≃ ǫ1. The

reactor flux loss is therefore explained since part of the total flux of νe oscillates into sterile

neutrinos. However, one finds that the active-sterile mixing turns out to be too tiny to

account for the reactor anomaly. This can be deduced from Eqs. (24) and (29): at leading

order, ǫ21 ∝ m2/m4. In the NO, m2 ≃ 0.009 eV is fixed by the neutrino mass-squared

differences, and hence, ǫ1 can hardly be sizable for an eV-scale m4. The situation is different

for the IO case, since m1 ≃ m2 ≃ 0.05 eV is fixed from neutrino oscillation experiments.

9 This is different to the usual analysis, e.g. in Ref. [25] (see also [69]), in which sterile singlet states are

simply added to an existing model.
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FIG. 1: The allowed ranges of |Ue4|2−∆m2
41 (blue) and |Ue5|2−∆m2

51 (red) in the inverted ordering,

requiring that the oscillation parameters lie in their currently allowed 2σ ranges. The blue and

red vertical and horizontal error bars indicate the allowed 2σ range for the 3 + 2 mass and mixing

parameters from Ref. [30], their intersection is the best-fit point. The black errors bars are for the

3 + 1 case from Ref. [30], to be discussed in scenario II in Sect. IIIC 2.

Furthermore, both Ue4 and Ue5 are non-vanishing (see Fig. 1).

The effect of higher-order operators on the active-sterile mixing is very small. Switching

on w′
1 gives |Ue5|2 ≃ O(r21) ǫ

2
2 in the NO [cf. Eq. (37)], which will still not give sufficient

mixing to explain the data. In the IO case, |Ue5|2 ≃ 4[1 +O(r1)]ǫ
2
2, so the small correction

term makes little difference. Indeed, the allowed ranges illustrated in Fig. 1 already include

the effects of higher-order operators. One observes that the desired active-sterile mixing can

indeed be achieved in the IO case.

In what regards active neutrino mixing, deviations from TBM come from both NLO

seesaw terms (∝ ǫi) and higher-order operators (∝ y′2, y
′
3, w

′
1, y

′
µ, y

′
τ). If we only consider

higher-order corrections in the neutrino sector for simplicity, i.e. the y′2,3 and w′
1 terms in

Eqs. (A-5) and (A-8) respectively, then from Eqs. (37) and (38) only Uµ3 ∝ ǫ2 receives

visible corrections in the NO, since ǫ1 and the product σN
+R are both small. However, the

higher-order terms related to the product σI
+G lead to sizable corrections to |Ue2|2 in the

IO case; |Ue2| could be enhanced or reduced depending on the signs and magnitudes of y′2,3
and w′

1. In addition, non-zero θ13 can be obtained from the charged lepton corrections, as

discussed in Sect. III B above.
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2. Scenario II: split seesaw with both eV-scale and heavy right-handed neutrinos

We have shown that it is possible to get either normal or inverted ordering by choosing

the alignment of the flavon VEV 〈ϕ′′〉 correctly [cf. Eqs. (18) and (26)]. In this case we now

assign different FN charges to the two seesaw right-handed neutrinos, so that there are four

distinct possibilities, depending on the mass ordering of active neutrinos and which sterile

neutrino (νc
2 or νc

3) is chosen as the heavy one. One can then use a two-stage seesaw, by

integrating out the heavy sterile neutrino first and then applying the seesaw formula again.

With the assignments F1 = 9, F2 = 10 (0) and F3 = 0 (10) the sterile neutrino νc
3 (νc

2)

has a mass in the 1011 GeV range, and is integrated out first, whereas νc
2 (νc

3) is at the eV

scale. The third (second) column of MD is then used in the seesaw formula, leading to a

3× 3 effective neutrino mass matrix of rank 1 that gives one of the active neutrinos masses.

The full 4 × 4 mass matrix in the basis (νe, νµ, ντ , ν
c
2(3)) leads to mixing between the active

sector and the remaining eV-scale sterile neutrino νc
2 (νc

3). Here one can apply the method

and formulae outlined in Sect. IIIA, except that one has a 4× 4 mixing matrix, which can

simply be obtained from the formulae in Eqs. (22) and (28) by removing the relevant row

and column.

• Case IIA: νc
3 heavy, (F3 = 0), νc

2 light (F2 = 10)

In this case one removes the fifth row and fifth column of Uν in Eqs. (22) and (28),

giving the same 4× 4 mixing matrix in both mass orderings, and the matrix elements

|Ue5|2 and |Uµ5|2 are zero. The light neutrino mass eigenvalues mi (i = 1, 2, 3, 4) are

given by the expressions in Eqs. (A-17) and (A-19) with ǫ2 set to zero; the heavy

neutrino has the mass M3 = w3u
′′. It is the small value of F3 that leads to ǫ2 ≃ 0

[Eq. (23)], so that m3 (or m1) does not receive any higher-order corrections, as this

mass originates from the high-scale of M3, whose FN charge “cancelled” in the leading

order seesaw formula. Although in our example we have F3 = 0, so that M3 ≃ 1011

GeV, even with F3 = 5 and M3 ≃ 10 GeV, one has ǫ2 ≃ 10−6 (see scenario III), so

that NLO corrections would still be under control.

The FN charge F2 = 10 of the eV-scale neutrino gives corrections to m2 and m4, via

ǫ1 ≃ 0.1. With order one Yukawas and values for the VEVs as before, M3 lies around

1011 GeV. The effective mass in 0νββ is given by the (1, 1) element of the 4× 4 mass

matrix, which, at leading order, is

〈mee〉(NO) = 0 , 〈mee〉(IO) =

∣

∣

∣

∣

∣

2m
(0)
1

3

∣

∣

∣

∣

∣

=
2
√

∆m2
A

3
≃ 0.032 eV . (42)

Here one can see that the contribution of the light neutrino of mass m
(0)
2 has cancelled

with that of the light sterile neutrino νc
2, in both mass orderings. Note again that

this is different from the usually discussed effects of sterile neutrinos in 0νββ. The
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effective mass is zero in the NO since at leading order, Ue3 = 0. A non-zero value

of Ue3 would give a very small contribution to the effective mass in the NO, and a

completely negligible one in the IO.

• Case IIB: νc
2 heavy (F2 = 0), νc

3 light (F3 = 10)

Here the mixing matrix is found by removing the fourth row and column of Eqs. (22)

and (28), so that the matrix elements in Eqs. (37) and (38) can be relabelled |Ue5|2 →
|Ue4|2 and |Uµ5|2 → |Uµ4|2. The light neutrino mass eigenvalues mi (i = 1, 2, 3, 4)

are now found by setting ǫ1 to zero in Eqs. (A-17) and (A-19), with the relabelling

m5 → m4; the heavy neutrino has the mass M2 = w2u
′. The roles of the sterile

neutrinos are now swapped, and M2 is situated at the 1011 GeV scale. The effective

mass at leading order is

〈mee〉(NO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

=

√

∆m2
S

3
≃ 0.0029 eV ,

〈mee〉(IO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

≃
√

∆m2
A

3
≃ 0.016 eV ; (43)

in this case the contribution of m
(0)
3 has cancelled. Again, corrections to the mixing

angles give very small corrections to the effective mass.

In both cases IIA and IIB one could potentially explain the reactor anomaly in the

framework of 3 + 1 neutrino mixing [30, 70], with |Ue4|2 ≃ [1 + O(r1)] ǫ
2
1 in case IIA and

|Ue4|2 ≃ 4[1+O(r1)]ǫ
2
2 in the IO in case B. Once again only the IO fits the data: the allowed

ranges in the mass-mixing plane for the IO in case IIA (IIB) are shown by the blue (red)

points in Fig. 1. One can see that the best-fit point (the black cross) from Ref. [30] is

compatible with case IIB. Finally, the effects of higher-order operators on both active-sterile

mixing and active mixing are the same as in scenario I, except that one should switch off

the effect of ǫ2 (ǫ1) in case IIA (IIB).

3. Scenario III: two heavy right-handed neutrinos

In this case we take F1 = 9, F2,3 = 5, so that one can estimate that the ǫi ≃ 10−6

(i = 1, 2) are dramatically suppressed, and the NLO seesaw terms in Eqs. (22) and (28) can

be safely neglected. The 3× 3 effective neutrino mass matrix is given by Eq. (3), with MD

defined in Eqs. (20) or (27) and MR from Eq. (21); the active neutrino masses are simply

given by the leading order masses m
(0)
i . The heavy neutrinos have masses M2 = w2u

′λ10

and M3 = w3u
′′λ10. Without the effect of the ǫi terms, the only modifications to the TBM

pattern come from the higher-order operators in Sect. III B.
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The two heavy right-handed neutrinos that participate in the seesaw formula have masses

around 5 GeV, assuming order one Yukawas and the usual values of the VEVs. Note that

one could set w2 = w3 to obtain degenerate right-handed neutrinos M2 = M3. The choice of

degenerate sterile neutrinos in the few GeV regime would correspond to the νMSM paradigm,

in which no new scales between the SM and the Planck scale are assumed. Baryogenesis

then proceeds via oscillations between νc
2 and νc

3, which need to be sufficiently degenerate

(|M2 −M3|/M2 ≃ 10−6) to give the correct baryon asymmetry [71].

If we choose F2,3 = 0 instead, then M2,3 ≃ 1011 GeV, so that the CP-violating decay

of right-handed neutrinos could explain the matter dominated Universe via thermal lep-

togenesis. The required CP violation may originate from complex Yukawa couplings. We

further note that, similar to the ordinary type I seesaw, neutrinoless double beta decay is

allowed, and the right-handed neutrinos play no role in this process since their contribution
∑

i=2,3 θ
2
i /Mi is strongly suppressed by the inverse of their mass. Explicitly, at leading order

the effective mass from the (1, 1) entry of Eq. (3) is

〈mee〉(NO) =

∣

∣

∣

∣

∣

m
(0)
2

3

∣

∣

∣

∣

∣

=

√

∆m2
S

3
≃ 0.0029 eV , (44)

〈mee〉(IO) =

∣

∣

∣

∣

∣

2m
(0)
1

3
+

m
(0)
2

3

∣

∣

∣

∣

∣

≃
√

∆m2
A ≃ 0.049 eV , (45)

where the mass eigenvalues are real. If m
(0)
1 and m

(0)
2 are complex, the IO case becomes

〈mee〉(IO) <∼
√

∆m2
A. Corrections from higher order terms are again small.

IV. AN EFFECTIVE THEORY APPROACH

In this section we recast the idea presented in Ref. [25], this time in the context of keV

sterile neutrino WDM rather than eV-scale sterile neutrinos. A popular flavor symmetry

model, which predicts TBM and is based on the group A4, is modified in order to accom-

modate a keV sterile neutrino. Unlike the seesaw model, neutrinos get mass from effective

operators and only one sterile state is introduced. We also extend the discussion to include

the effects of higher-order operators.

A. A4 symmetry with one keV sterile neutrino

The Altarelli-Feruglio (AF) A4 neutrino mass model [72] is well known, and at leading

order gives exact TBM for the lepton flavor mixing matrix. The original AF model includes

three sets of flavon fields ϕ, ϕ′ and ξ in addition to the SM particle content. We add an

additional sterile neutrino transforming as a singlet under A4 and Z3, with the U(1)FN charge
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TABLE III: Particle assignments of the A4 model, modified from Ref. [72] to include a sterile

neutrino νs. The additional Z3 symmetry decouples the charged lepton and neutrino sectors; the

U(1)FN charge generates the hierarchy of charged lepton masses and regulates the scale of the

sterile state.

Field L ec µc τ c hu,d ϕ ϕ′ ξ Θ νs

SU(2)L 2 1 1 1 2 1 1 1 1 1

A4 3 1 1′′ 1′ 1 3 3 1 1 1

Z3 ω ω2 ω2 ω2 1 1 ω ω 1 1

U(1)FN - 4 2 0 - - - - −1 8

of Fs = 8. The relevant particle assignments are summarized in Table III.

As discussed in Ref. [25], at leading order the Yukawa couplings for the lepton sector read

− LY =
ye
Λ
λ4 (ϕLhd) e

c +
yµ
Λ
λ2 (ϕLhd)

′ µc +
yµ
Λ

(ϕLhd)
′′ τ c +

xa

Λ2
ξ(LhuLhu) +

xd

Λ2
(ϕ′LhuLhu)

+
xe

Λ2
λ8ξ(ϕ′Lhu)νs +

xf

Λ2
λ8(ϕ′ϕ′Lhu)νs +msλ

16νc
sν

c
s + h.c., (46)

where ms is a bare Majorana mass. Note that the A4 invariant dimension-5 operator
1
Λ
λ8(ϕ′Lhu)νs is not invariant under the Z3 symmetry. With the following vacuum align-

ments (as in the AF model)

〈ϕ〉 = (v, 0, 0) , 〈ϕ′〉 = (v′, v′, v′) , 〈ξ〉 = u , 〈hu,d〉 = vu,d , (47)

the charged lepton mass matrix is diagonal [cf. Eq. (14)], and the full 4 × 4 neutrino mass

matrix is

M4×4
ν =











a+ 2d
3

−d
3

−d
3

e

· 2d
3

a− d
3

e

· · 2d
3

e

· · · ms











, (48)

where a = 2xa
uv2u
Λ2 , d = 2xd

v′v2u
Λ2 and e =

√
2xeλ

8 uv′vu
Λ2 have dimensions of mass. The first

three elements of the fourth row of M4×4
ν are identical because of the VEV alignment 〈ϕ′〉 =

(v′, v′, v′), which was necessary to generate TBM in the three-neutrino case; this alignment

combined with the A4 multiplication rules causes the term proportional to xf in Eq. (46) to

vanish.

If one assumes that a < ms and expands to second order in the small ratio e/ms, the
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mixing matrix diagonalizing M4×4
ν in Eq. (48) is [25]

U ≃













2√
6

1√
3

0 0

− 1√
6

1√
3
− 1√

2
0

− 1√
6

1√
3

1√
2

0

0 0 0 1













+











0 0 0 e
ms

0 0 0 e
ms

0 0 0 e
ms

0 −
√
3e

ms
0 0











+O
(

e2

m2
s

)

, (49)

with the eigenvalues

m1 = a+ d , m2 = a− 3e2

ms

, m3 = −a + d , m4 = ms +
3e2

ms

. (50)

As we will see, the chosen FN charge forces ms to be at the desired keV scale and sets

the magnitude of active-sterile mixing, e/ms = O(10−4). This means that the “seesaw

contribution” (∝ e2/ms) to m2 in Eq. (50) is negligible.

B. Estimation of the mass scales and active-sterile mixing

In order to examine the viability of the model we provide a rough numerical example. As

discussed in the original AF model [72], we assume that (i) the Yukawa couplings y and x

remain in a perturbative regime; (ii) the flavon VEVs are smaller than the cut-off scale and

(iii) all flavon VEVs fall in approximately the same range, and obtain the following relation

constraining the flavon VEVs:

0.004 <
u

Λ
≈ v′

Λ
≈ v

Λ
< 1 , (51)

with the cut-off scale Λ ranging between 1012 and 1015 GeV. We would like to suppress the

mass of the keV neutrino, while at the same time keep its mixing small enough and satisfy

the conditions in Eq. (51). By choosing the FN charge of νs (i.e. Fs = 8) and the mass scales

u ≃ v′ ≃ 1010 GeV , v ≃ 1011 GeV , Λ ≃ 1012 GeV ,

vu,d ≃ 102 GeV , 〈Θ〉 ≃ 1011 GeV , (52)

which means that λ = 〈Θ〉/Λ ≃ 0.1, one obtains

a ≃ d ≃ 0.1
( u

1010 GeV

)( vu
102 GeV

)2
(

1012 GeV

Λ

)2

eV ,

e ≃ 0.1

(

λ

10−1

)8
( u

1010 GeV

)

(

v′

1010 GeV

)

( vu
102 GeV

)

(

1012 GeV

Λ

)2

eV ,

(53)

with the assumption that the Yukawa couplings xa,d,e are of order 1.
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The Majorana mass term msν
c
sν

c
s is doubly suppressed by the U(1)FN charge. There are

additional terms that can give a contribution to this mass in addition to the bare term.

From the particle assignments in Table III, the leading order contribution to ms reads

(xs

Λ
ϕϕ
)

λ16νc
sν

c
s =⇒

(

xs

v2

Λ

)

λ16 , (54)

so that these terms are suppressed by λ16, and the resulting Majorana mass can be of order

keV:

ms ≃
(

λ

10−1

)16
( v

1011 GeV

)2
(

1012 GeV

Λ

)

keV . (55)

The active-sterile mixing is given by

θs =
e

ms

≃ 10−4 , (56)

corresponding to sin2θs ≃ 10−8, in accordance with the astrophysical constraints discussed

in Sect. II. It should also be noticed that in this model the charged lepton masses are

mα = yαvd
v

Λ
λFα ≃ 10

( vd
102 GeV

)( v

1011 GeV

)

(

1012 GeV

Λ

)(

λ

10−1

)Fα

GeV , (57)

so that we get the correct mass spectrum with the FN charges (Fα) of 4, 2 and 0 for ec, µc

and τ c, respectively [assuming yα <∼ O(1)].

C. Higher-order corrections and non-zero θ13

One may also wonder if higher-order terms could lead to significant corrections to the

lepton flavor mixing and neutrino masses so as to generate a non-zero θ13, as suggested

by the T2K experiment. In general, both the neutrino and charged lepton mass matrices

receive higher-order corrections, suppressed by additional powers of the cutoff scale Λ; those

are the only type of corrections that we consider here.

In the charged lepton sector, the NLO corrections to Mℓ come from terms like

1

Λ2

[

y′eλ
4 (ϕϕLhd) e

c + y′µλ
2 (ϕϕLhd)

′ µc + y′τ (ϕϕLhd)
′′ τ c
]

, (58)

which however replicate the leading order patterns, as in the seesaw model (see Ap-

pendix A1). The NLO corrections to Mℓ can thus be simply absorbed into the coefficients

yα.
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As for the sterile neutrino, the NLO corrections to ms are given by

(xs′

Λ2
ξξξ +

xs′′

Λ2
(ϕ′ϕ′)ξ

)

λ16νc
sν

c
s =⇒

(

xs′
u3

Λ2
+ xs′′

3v′2u

Λ2

)

λ16 ; (59)

in this case the contributions in Eq. (59) are of order 10−4 keV, and do not affect the scale

of ms significantly. Note that the term
xs′′

Λ2 λ
16(ϕ′ϕ′ϕ′)νc

sν
c
s is in principle also allowed, but

vanishes after A4 symmetry breaking, just like the xf term in Eq. (46). NLO corrections to

the e parameter come from terms like

x′
e

Λ3
λ8ξ(ϕ′ϕLhu)νs , (60)

which lead to

e′ ≃ 0.01

(

λ

10−1

)8(
u v′

(1010 GeV)2

)

( v

1011 GeV

)( vu
102 GeV

)

(

1012 GeV

Λ

)3

eV , (61)

indicating again that the active-sterile mixing is hardly affected.

The higher-order operators contributing to light neutrino masses are of order 1/Λ3. There

exist only three such terms that cannot be absorbed by a redefinition of the parameters a

and b [61], i.e.

x1

Λ3
(ϕϕ′)′(LhuLhu)

′′ ,
x2

Λ3
(ϕϕ′)′′(LhuLhu)

′ , and
x3

Λ3
ξ(ϕLhuLhu) , (62)

so that the light neutrino mass matrix is modified to

Mν = M (0)
ν +M (1)

ν =







a+ 2d
3

−d
3

−d
3

· 2d
3

a− d
3

· · 2d
3






+







2
3
η3 η2 η1
· η1 −1

3
η3

· · η2






, (63)

where η1 = 2x1
vv′v2u
Λ3 , η2 = 2x2

vv′v2u
Λ3 and η3 = 2x3

uvv2u
Λ3 . For O(1) Yukawa couplings, one can

estimate that

ηi ≃ 0.01
( v

1011 GeV

)

(

v′

1010 GeV

)

( vu
102 GeV

)2
(

1012 GeV

Λ

)3

eV . (64)

As a result, the NLO terms may lead to visible modifications to the TBM pattern, in

particular to θ13, but on the other hand do not entirely spoil the leading order picture, since

one always has enough parameters to fit the data. Keeping only first order terms in ηi, one
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obtains

m1 ≃ a+ b− 1

2
(η1 + η2) +

1

3
η3 ,

m2 ≃ a+ η1 + η2 , (65)

m3 ≃ −a+ b+
1

2
(η1 + η2) +

1

3
η3 ,

together with the mixing angles

sin2θ13 ≃ (η1 − η2)
2

8a2
,

sin2θ12 ≃ 1

3

(

1− 2η3
3b

)

, (66)

sin2θ23 ≃ 1

2

(

1− η1 − η2
4a

)

.

As one numerical example, we take η2 = −η1 = 0.1a and η3 = 0.1b, and obtain sin2 θ13 ≃
0.005, which is compatible with the current global-fit data at 2σ C.L. In addition, sin2 θ23 ≃
0.53 and sin2 θ12 ≃ 0.31 are predicted, in good agreement with their best-fit values [47, 73].

V. CONCLUSION

The addition of sterile right-handed neutrinos to the SM is a natural way to explain

light active neutrino masses via the seesaw mechanism. This works even if the scale of

the sterile neutrinos is not equal to its “natural value” of 1010 to 1015 GeV, as long as the

Dirac mass matrix can also be suppressed such that M2
D/MR is small. At the same time,

several observations point to sterile neutrinos at the keV and eV scales. Therefore we have

attempted, as a proof of principle, to construct a seesaw model for neutrino mass and lepton

mixing that can provide a common framework for all these issues.

Starting from a flavor symmetry model based on the tetrahedral group A4, we described

different ways to introduce sterile neutrinos, using the seesaw mechanism (and also an ef-

fective theory approach). In both cases the Froggatt-Nielsen (FN) mechanism is used to

suppress the masses of the right-handed neutrinos. We stress that its presence in flavor

symmetry models can be considered necessary in order to generate the observed strong hier-

archy in the charged lepton sector. In fact, we utilize the very same FN for both the charged

lepton masses and the right-handed neutrinos.

In the seesaw model we studied different possible spectra in the sterile sector: once the

keV WDM neutrino is decoupled one can have the remaining two neutrinos at the eV scale

or at a high scale (in our example at either 10 GeV or close to the flavor symmetry breaking

scale of ≃ 1011 GeV). In each case there are distinct phenomenological consequences, both

for neutrino mass and neutrinoless double beta decay. In particular, NLO corrections to the
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seesaw formula need to be taken into account when the sterile neutrinos are at the eV scale.

Motivated by the recent indications for nonzero θ13 in the T2K experiment, we examined

the effect of higher-order terms in both the seesaw model and the effective theory. In general

active neutrino mixing angles will receive corrections of the same order. We highlighted the

fact that active-sterile mixing is stable in any seesaw model, being defined as the ratio of

two large scales.

Although one can explain both eV-scale and keV-scale sterile neutrinos in a single frame-

work, it is not possible to have viable WDM, eV-scale neutrinos and heavy neutrinos for

leptogenesis in a model containing three right-handed neutrinos. However, we emphasize the

point that if one departs from the common theoretical prejudice of right-handed neutrinos

residing at around the Grand Unification scale, various interesting model building options

can arise. Further experimental data in the years to come will put the presence of sterile

neutrinos at the eV and/or keV scale/s to the test, thus determining whether it is indeed a

useful enterprise to further pursue this avenue of research.
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Appendix A: Corrections from higher-order operators in the seesaw model

Here we give details of the procedure followed to calculate corrections to the lepton mixing

matrix in the presence of higher-order operators, which affect Mℓ, MD and MR. We only

take into account corrections of relative order r1 ≃ 0.1 [cf. Eq. (34)]. Explicit expressions

for the corrected neutrino mass eigenvalues are also reported.

1. Charged lepton sector

The corrections to Mℓ from dimension-six operators come from coupling a second A4

triplet or an A4 singlet to each mass term. The addition of the flavon ϕ replicates the

leading order pattern, since the triplet from the product (ϕϕ)3 has a VEV in the same

direction as ϕ [61]. Terms with the additional singlet ξ′′ also leave the structure of the mass

matrix unchanged, but the additional terms

y′e
Λ2

λ3ξ(ϕ′Lhd)e
c ,

y′′e
Λ2

λ3ξ′(ϕ′′Lhd)
′′ec and

y′′′e
Λ2

λ3(ϕ′ϕ′′Lhd)e
c (A-1)
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are also present, for all three flavors. The first term gives the largest NLO contribution, i.e.

δM
(1)
ℓ =

vduv
′

Λ2







y′eλ
3 y′µλ y′τ

y′eλ
3 y′µλ y′τ

y′eλ
3 y′µλ y′τ






, (A-2)

of relative order r1 ≃ 0.1. The matrix diagonalizing (Mℓ + δM
(1)
ℓ )(Mℓ + δM

(1)
ℓ )† can be

approximated by

Vℓ ≃









1
y′µ
yµ
r1

y′τ
yτ
r1

−y′µ
yµ
r1 1 y′τ

yτ
r1

−y′τ
yτ
r1 −y′τ

yτ
r1 1









+O(r21, λ
2) , (A-3)

and the charged lepton masses become

m′
α = (yα + y′αr1)

vdv

Λ
λFα, (α = e, µ, τ), (A-4)

which amounts to a rescaling of Yukawa couplings.

2. Neutrino sector

Similarly to Mℓ, corrections to MD from adding the singlet ξ′′ retain the leading order

form, but there are also several terms with two triplet flavons. The latter are all suppressed

by r2 ≃ 0.01 and can be safely neglected. Of the nine different invariant dimension-six

operators with one triplet and one singlet flavon, there are three of relative order r1 ≃ 0.1,

namely
y′1
Λ2

λF1ξ(ϕ′Lhu)ν
c
1 +

y′2
Λ2

λF2ξ(ϕ′′Lhu)
′′νc

2 +
y′3
Λ2

λF3ξ(ϕLhu)ν
c
3 , (A-5)

leading to the corrections

δM
(1N)
D =

vuu

Λ2







y′1v
′ −y′2v

′′ y′3v

y′1v
′ y′2v

′′ 0

y′1v
′ 0 0






F and δM

(1I)
D =

vuu

Λ2







y′1v
′ −y′2v

′′ y′3v

y′1v
′ −y′2v

′′ 0

y′1v
′ 2y′2v

′′ 0






F , (A-6)

in the normal and inverted ordering, respectively. Here the matrix of FN charges is

F = diag(λF1, λF2, λF3) . (A-7)

The corrections to MR come from terms with two singlets and those with two triplets,

e.g.
w′

1

Λ
λF1+F3ξξνc

1ν
c
3 + . . . and

w′′
1

Λ
λF1+F3(ϕϕ′)νc

1ν
c
3 + . . . ; (A-8)
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the singlet terms give the contribution

δM
(1)
R ∝ 1

Λ







uu′′λ2F1 0 uuλF1+F3

· u′u′′λ2F2 u′u′λF2+F3

· · u′′u′′λ2F3






, (A-9)

whereas the triplet terms are all suppressed by r2 ≃ 0.01. Comparison of the LO and NLO

terms shows that the large ratio r1 ≃ 0.1 only occurs in the (1, 3) element of δM
(1)
R , whereas

the diagonal and (2, 3) elements receive small corrections of order r2 ≃ 0.01. Ignoring the

latter, the new mass matrix is

M ′
R = MR + δM

(1)
R = F







w1u 0 w′
1ur1

· w2u
′ 0

· · w3u
′′






F . (A-10)

It is convenient to factor out the FN charges here, since they do not appear in the leading

order seesaw formula. However, as emphasized before, they will play a role when considering

NLO seesaw terms. Expanding in the small ratios r1 ≃ w3u
′′

w1u
≃ 0.1, the matrix diagonalizing

M ′
R can be approximated as

VR ≃ F−1







1 0 −w′

1

w1
r1

0 1 0
w′

1

w1
r1 0 1






F +O

(

w3u
′′

w1u
r1, r

2
1

)

, (A-11)

with the mass eigenvalues

M ′
1 = w1uλ

2F1

(

1 +
w′

1
2

w2
1

r21

)

,

M ′
2 = w2u

′λ2F2 , (A-12)

M ′
3 = w3u

′′λ2F3

(

1− w′
1
2

w2
1

r21

)

.

This shows that corrections to the massesM1,3 are suppressed by r21, and the WDM candidate

νc
1 remains in the keV range.

The diagonalization matrix in Eq. (A-11) can be absorbed into MD, so that the leading

order neutrino mass matrix is

M ′
ν = −M ′

Ddiag(M
′
1
−1
,M ′

2
−1
,M ′

3
−1
)M ′

D
T
, (A-13)

whereM ′
D =

(

MD + δM
(1)
D

)

V ∗
R and the FN charges have cancelled. The Dirac mass matrices
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in Eqs. (20) and (27) plus the corrections terms in Eq. (A-6) lead to

M ′
D
(NO)

=
vu
Λ













y1v + y′1v
′r1 y2v

′ − y′2v
′′r1

(

y′3v − y1v
w′

1

w1

)

r1
(

y′1v
′ − y3v

′′w′

1

w1

)

r1 y2v
′ + y′2v

′′r1 −y3v
′′

(

y′1v
′ + y3v

′′w′

1

w1

)

r1 y2v
′ y3v

′′













F,

M ′
D
(IO)

=
vu
Λ













y1v +
(

y′1v
′ + 2y3v

′′w′

1

w1

)

r1 y2v
′ − y′2v

′′r1 2y3v
′′ +

(

y′3v − y1v
w′

1

w1

)

r1
(

y′1v
′ − y3v

′′w′

1

w1

)

r1 y2v
′ − y′2v

′′r1 −y3v
′′

(

y′1v
′ − y3v

′′w′

1

w1

)

r1 y2v
′ + 2y′2v

′′r1 −y3v
′′













F ,

(A-14)

to first order in r1, in the NO and IO, respectively. As shown explicitly in the main text,

the dynamics of the right-handed sector are relatively unaffected: the new entries in the

first column of the Dirac mass matrices in Eq. (A-14) will induce mixing between the sterile

neutrino νc
1 and the µ and τ flavors, but of the same magnitude as the original θe1, so that

θ21 will not increase by that much [cf. Eqs. (35) and (36)]. Thus the entire first column of

M ′
D, suppressed by the mass M ′

1 = O(keV), can be decoupled from the seesaw (assuming

that |w′
1| <∼ |w1|). In addition, corrections to Ue5 in Eqs. (22) and (28) will also be small

(see Sects. III C 1 and IIIC 2 for a discussion of those effects).

The full 5×5 NLO neutrino mass matrix M ′
ν
5×5 can now be constructed from the second

and third columns of M ′
D and diag(M ′

2,M
′
3), as in Eq. (19). Since we consider scenarios

where NLO seesaw terms are important, we once again perform the full 5×5 diagonalization

[cf. Eqs. (22) and (28)], including the new terms from higher-order operators in Eq. (A-14).

The matrix diagonalizing M ′
ν
5×5 is explicitly given by

Uν =

(

UTBM 03×2

02×3 12×2

)

+ δU (A-15)
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where, to first order in r1 and second order in ǫi,

δU (NO) ≃

































ρ2√
6

− ρ2√
3

− 1√
2

(

χ− ρ3 + σN
+

R
3

)

(1− ρ2)ǫ1 (ρ3 − χ)ǫ2

−σN
−√
6

− 1
2
√
3

(

σN
− + σN

+R
)

− σN
+

3
√
2
R (1 + ρ2)ǫ1 −ǫ2

σN
+√
6

σN
+

2
√
3
(1 +R) − σN

+

3
√
2
R ǫ1 ǫ2

0 −
√
3ǫ1

σN
+√
2
(1 +R)ǫ1 0 0

0 −σN
+√
3
Rǫ2 −

√
2ǫ2 0 0

































+































0 −
√
3
2 (1− ρ2)ǫ

2
1

1
2
√
2

[

2(χ− ρ3)ǫ
2
2 + σN

+ (1 +R) ǫ21
]

0 0

0 − 1
2
√
3

[

3(1 + ρ2)ǫ
2
1 − σN

+Rǫ22
]

1
2
√
2

[

2ǫ22 + σN
+ (1 +R) ǫ21

]

0 0

0 − 1
2
√
3

[

3ǫ21 + σN
+Rǫ22

]

− 1
2
√
2

[

2ǫ22 − σN
+ (1 +R) ǫ21

]

0 0

0 0 0 −3
2ǫ

2
1

1
2σ

N
+ ǫ1ǫ2

0 0 0 1
2σ

N
+ ǫ1ǫ2 −ǫ22































,

(A-16)

in the normal ordering, where only first order terms in R ≃ O(10−1) are kept [see Eq. (39)],

and σN
± = χ± ρ2 − ρ3. The new mass eigenvalues are

m′
1 = 0 ,

m′
2 ≃ m

(0)
2

{

1− 3ǫ21 −
ρ2

3
σI
− − 1

2

[

9ρ22 − 4ρ2(χ− ρ3)− (χ− ρ3)
2
]

ǫ21

− σN
+

3
R
[

ρ2(1− 3ǫ21)− σN
+ ǫ22

]

}

,

m′
3 ≃ m

(0)
3

{

1− 2ǫ22 + (χ− ρ3)
2(1− 3ǫ22)−

(σN
+ )2

2
(1 + 2R)ǫ21 (A-17)

+
1

6

[

ρ22 + 4ρ2(χ− ρ3) + 3(χ− ρ3)
2
]

R(1− 2ǫ22)

}

m′
4 ≃ w2u

′λ2F2 −m
(0)
2

{

1− 3ǫ21 +
2ρ22
3

(1− 6ǫ21)−
3(σN

+ )2

8

m
(0)
3

m
(0)
2

ǫ21

}

,

m′
5 ≃ w3u

′′λ2F3 −m
(0)
3

{

1− 2ǫ22 +
1

2
(χ− ρ3)

2 − 1

4

[

8(χ− ρ3)
2 + (σN

+ )2R
]

ǫ22

}

,

which corresponds to Eq. (24) in the limit (χ, ρ2, ρ3) → 0. Here one can explicitly see that

NLO seesaw corrections are controlled by ǫi, whereas corrections from higher-order operators

are controlled by χ, ρ2 and ρ3. In those scenarios where the ǫi are negligible, i.e. scenario III,

one could still have corrections from the latter. Those turn out to be small in the normal
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ordering.

In the inverted ordering, we have

δU (IO) ≃

































1
3
√
6

(

3ρ2 + σI
+G
)

− 1
3
√
3

(

3ρ2 + σI
+G
)

− ρ2√
2

(1− ρ2)ǫ1 (2− χ+ ρ3)ǫ2

1
3
√
6

(

3ρ2 + σI
+G
)

− 1
6
√
3

(

6ρ2 − σI
+G
)

− ρ2√
2

(1− ρ2)ǫ1 −ǫ2

1
3
√
6

(

3ρ2 + σI
+G
)

1
6
√
3

(

12ρ2 + σI
+G
)

− ρ2√
2

(1 + 2ρ2)ǫ1 −ǫ2

−σI
+√
6
Gǫ1 −

√
3 ǫ1 0 0 0

−
√

2
3 (3− χ+ ρ3) ǫ2

σI
+√
3
(1 +G) ǫ2 0 0 0

































(A-18)

+































− 1
2
√
6

[

2 (6− 5 (χ− ρ3)) ǫ
2
2 + σI

+Gǫ21
]

− 1
2
√
3

[

3(1− ρ2)ǫ
2
1 − 2σI

+(1 +G)ǫ22
]

0 0 0

1
2
√
6

[

2(3− χ+ ρ3)ǫ
2
2 − σI

+Gǫ21
]

− 1
2
√
3

[

3(1− ρ2)ǫ
2
1 + σI

+(1 +G)ǫ22
]

0 0 0

1
2
√
6

[

2(3− χ+ ρ3)ǫ
2
2 − σI

+Gǫ21
]

− 1
2
√
3

[

3(1 + 2ρ2)ǫ
2
1 + σI

+(1 +G)ǫ22
]

0 0 0

0 0 0 −3
2ǫ

2
1

σI
+ǫ1ǫ2

2

0 0 0
σI
+ǫ1ǫ2

2 − (3− 2χ+ 2ρ3) ǫ
2
2































,

to first order in χ and second order in ǫi, where σ
I
+ and G = O(102) are defined in Eq. (39).

In this case we cannot expand in G, in contrast to the NO case, where we expanded to first

order in R. The new mass eigenvalues are

m′
1 ≃ m

(0)
1

{

1− 6ǫ22 −
1

9
(χ− ρ3)

(

6− σI
−
)

+
[

8(χ− ρ3) + 3ρ22 + 4ρ2(χ− ρ3)− 4(χ− ρ3)
2
]

ǫ22

+
1

18

[

9ρ22 − (χ− ρ3)
2
]

G +
[

3ρ22 + 4ρ2(χ− ρ3) + (χ− ρ3)
2
]

Gǫ22 +
(σI

+)
2

18
G2
(

1− 3ǫ21
)

}

,

m′
2 ≃ m

(0)
2

{

1− 3(1 + 6ρ22)ǫ
2
1 + 4ρ22 +

1

18

[

27ρ22 + 12ρ2(χ− ρ3) + (χ− ρ3)
2
]

G(1− 3ǫ21)

−(σI
+)

2

18

[

6(1 + 2G)ǫ22 −G2(1− 6ǫ22)
]

}

,

m′
3 = 0 , (A-19)

m′
4 ≃ w2u

′λ2F2 −m
(0)
2

{

1 + 2ρ22 − 3(1 + 4ρ22)ǫ
2
1 −

(σI
+)

2

8

m
(0)
1

m
(0)
2

ǫ21

}

,

m′
5 ≃ w3u

′′λ2F3 −m
(0)
1

{

1− 6ǫ22 −
1

6

[

4(χ− ρ3)− (χ− ρ3)
2
]

+

[

8(χ− ρ3)−
14

3
(χ− ρ3)

2

]

ǫ22 −
(σI

+)
2

4

3m
(0)
2

2m
(0)
1

ǫ22

}

.
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In this case the corrections very much depend on the scenario concerned, since the value

of the ǫi terms can give cancellations. However, the correction to |Ue2|2 constrains the

parameters χ, ρ2 and ρ3 to be small (see discussion in the main text), and since G always

occurs together with one of the three parameters the effect of G = O(102) will always be

suppressed. In the end we always have enough parameters to fit the mass eigenvalues to the

data.
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