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1 INTRODUCTION

Protein dynamics

The study of protein dynamics by computer simulations

A large diversity of processes in living organisms critically depend on protein

activity. Though in many of these processes the mere structure of a protein

dominates its function (e.g. collagen in tissues or �-keratin in hair), protein

dynamics is crucial to many others. Virtually all biological processes that

involve motion �nd their origin in protein dynamics. Muscle contraction, for

instance, is based on the combined action of actin and myosin. Other exam-

ples are the molecular motors kinesin and F1-ATPase. Dynamics also plays

an important role in many proteins of which the primary function is not mo-

bility itself. For example, the ability to change conformation is also essential

for the function of many transport proteins, proteins involved in signal trans-

duction, proteins in the immune system, and numerous enzymes1. In many

enzymes, conformational changes serve to enclose the substrate, thereby pre-

venting its release from the protein and ideally positioning it for the protein

to perform its function, as in lysozyme. Immunoglobulins are highly 
exible

in order to be able to deal with a large range of ligands. Another role of

protein dynamics is found in G-proteins, binding of a hormone to its receptor

triggers the dissociation of the � domain from the rest of the protein after

a GTP-mediated conformational change. A special class of conformational

transitions are found in so-called allosteric proteins. Substrate binding to one

subunit of these multimeric proteins triggers a conformational change that

alters the substrate a�nity of the other subunits, thereby sharpening the

switching response of these proteins.

The conformational changes involved range from very subtle, local

changes, as in the case of e.g. myoglobin, to global conformational changes,

involving motions of signi�cant amplitude for large parts of a protein (e.g.

haemoglobin)1. Dynamics plays an important role not only in the functional,

native state of many proteins, but also the mechanism by which a protein

reaches that native conformation, the protein folding process, is a highly dy-

namic process.

Although a large part of the current knowledge of conformational 
exibil-

ity in proteins is derived from experimental data (especially X-ray crystallog-

raphy and Nuclear Magnetic Resonance (NMR)), there is currently no experi-

mental technique that allows monitoring of protein conformational changes at

atomic resolution as a function of time at time-scales of nanoseconds. There

are several examples of proteins structurally characterised when trapped in

di�erent functional states (for an overview, see ref. 2), and the time reso-

lution of structural studies improves steadily3. Nevertheless, details on the

pathways between di�erent known conformations often remain obscure. Until
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now, computer simulation techniques provide the only possibility to obtain

dynamic information on proteins at atomic resolution in the picosecond to

microsecond time range.

Molecular Dynamics

Out of all possible ways of simulating protein motions, Molecular Dynamics

(MD) techniques are among the most popular. In MD, an attempt is made to

describe the time evolution of molecular systems as realistically as possible. In

a typical simulation, a starting con�guration is generated from an experimen-

tally determined structure, and put in an environment that best mimics its

natural environment. Obviously, the quality of the obtained dynamic model

depends on the quality of the starting model. Once an appropriate starting

con�guration has been obtained, the actual simulation can be started. In

most cases, all particles are treated classically, leaving the problem of solving

Newton's equations of motion:

F i = miai (1.1)

with F i the force,mi the mass and ai the acceleration of particle i. Atomic

positions x are obtained from:

a =
d2x

dt2
(1.2)

by numerical integration. At every integration step F is evaluated using:

F = �
dV

dx
(1.3)

The potential energy V typically includes terms for covalent bond lengths,

angles, torsion angles (dihedrals), improper dihedrals (to maintain tetrahe-

dral or planar geometries), and a number of non-bonded terms4{6. The non-

bonded terms typically consist of a Lennard-Jones term and an electrostatic

(Coulomb) contribution, and in some cases an explicit hydrogen-bonding

term. Due to the lack of quantum-mechanical terms, speci�c parameters must

be speci�ed for each atom type in each chemical environment. This results

in a parameter-set (force-�eld) that contains many hundreds of parameters.

The absence of polarisability in classical force-�elds restricts the reliability of

MD simulations, especially in systems where polarisability e�ects are known

to play an important role, as for example in ion-binding proteins. Another

potential source of artifacts is the calculation of long-range non-bonded forces.

In relatively large molecular systems (tens of thousands of particles) the

combinatorial problem of calculating all pairwise interactions makes the force

calculations required for MD simulations extremely time-consuming. The

next section gives an overview of techniques proposed to alleviate this prob-

lem.
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Enhanced e�ciency methods

Overview

A clear gap exists between time scales that can currently be obtained by

computer simulation techniques applied to biological macromolecules and the

times required for most biological processes. With current state of the art

methods and computers, a typical protein of 1000 amino-acids (100 kD) can

be simulated for time-scales of at most nanoseconds7, whereas most biolog-

ical processes take place at times ranging between microseconds to seconds

(or even minutes). Even if the rate of increase in computer power (an or-

der of magnitude every 5-7 years7) continues, simulation of such processes at

the required time scales will be beyond those of standard Molecular Dynam-

ics simulation protocols in the next decade. Therefore, several groups have

worked on developing techniques to overcome this problem. Conceptually,

three categories of techniques can be distinguished 1: (i) those that aim to

mimic biological systems as realistically as possible and focus on sophisti-

cated (mathematical) methods to enhance computational e�ciency, a�ecting

the dynamics as little as possible, (ii) those that simplify the molecular models

involved, thus gaining computation time by neglecting details and (iii) those

that make use of special properties of the simulated system to describe the

system in more appropriate, internal coordinates. This division is not exclu-

sive; some methods cannot be assigned to either category whereas others are

hybrid methods based on principles from more than one category. A number

of examples from each of the categories will be discussed in this section, and

in the next section a technique from the third category, the so-called Essential

Dynamics technique, will be described in detail since it will play a key role

throughout the rest of this thesis.

Methods to speed up Molecular Dynamics with minimal perturbation

Since the �rst published application of MD to biomolecular systems9, a little

more than 20 years ago, people have devised methods to increase the time

scales of Molecular Dynamics simulations. When Newton's equations of mo-

tion are integrated, the limiting factor that determines the time step that

can be taken is the highest frequency that occurs in the system. In solvated

biological macromolecules, the vibrations of bonds involving hydrogen atoms

form the highest frequency vibrations. The bond stretching frequency of an

O-H bond is typically about 1014 Hz, so the average period would be in the

order of 10 fs (10 �10�15 s)10. This limits the time-step to be taken in MD

simulations to about 0.5 fs (a rule of thumb exists that states that for a

reasonable sampling of a periodic function, samples should be taken at least

twenty times per period). The introduction of a method to constrain these

bonds (or, in fact, all covalent bonds) allowed to increase the time step to a

1Previously, a subdivision has been suggested according to levels of approximation8
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typical value of 2 fs11. Since these bond vibrations are practically uncoupled

from all other vibrations in the system, constraining them does not notably

alter the rest of the dynamics of the system. This is not true, however, for

bond-angle 
uctuations, which form the second-highest frequency vibrations.

Constraining bond-angles has a severe e�ect on many other 
uctuations in

the system, including even global, collective 
uctuations, limiting the use of

methods that use bond-angle constraints to only a few speci�c cases10.

The notion that a number of discrete classes of frequencies of 
uctuations

in simulations of biomolecules can be distinguished, however, can be utilised

to design more e�cient algorithms. Forces that 
uctuate rapidly need to

be recalculated at a higher frequency than those that 
uctuate on a much

longer time scale. Although not trivial to implement, a number of successful

applications of so-called multiple time-step algorithms have been reported in

the literature (for a review, see ref. 10). Speedup factors of 4-5 have been

claimed for such methods with respect to unconstrained dynamics, making

them only slightly more e�cient than simulations with covalent bond-length

constraints.

As stated before, the most time-consuming part of Molecular Dynamics

simulations is the force evaluation at every time-step. Especially the evalua-

tion of electrostatic forces is notorious since Coulomb terms are inversely pro-

portional to the inter-atomic distances of charged particles. This makes their

contribution to the total force non-negligible even at fairly large distances

(above 10 �A). Several methods have been proposed to reduce the computa-

tional cost to calculate long-range electrostatic forces. The most straight-

forward of these methods are cut-o� methods where interactions beyond a

certain radius are simply neglected12. This reduces the original order of com-

plexity from N2 to N (with N the number of particles) but signi�cant artifacts

have been reported at the edge of the cut-o� radius13{15. Ewald methods form

the traditional way to calculate electrostatic interactions in a more elegant

fashion by calculating in�nite lattice sums, but the order of complexity N3=2

makes the method unsuitable for simulation of large biomolecular systems.

However, approximations like particle-particle particle-mesh (PPPM)16 and

particle-mesh Ewald (PME)17 that scale with N�log(N), have shown encour-

aging results18, 19. Fast Multipole methods (FMM) distribute atomic charges

over a hierarchy of clusters and approximate electrostatic interactions by

multipolar expansions of the potential generated by the clusters20. FMM

methods even scale with N but require extra overhead compared with other

methods, making them the method of choice only for systems of tens or hun-

dreds of thousands of particles. Combinations of e�cient ways to calculate

electrostatic interactions with multiple time-step methods have already been

described (e.g. FMM together with multiple time step algorithms21, 22).

Another approach to reach equilibrium conformational properties at an en-

hanced rate is by performing so called 'mass tensor Molecular Dynamics'23.

The masses of e.g. hydrogen atoms are increased to slow down the highest-

frequency vibrations, allowing for a larger integration step. The dynamics
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is perturbed in this way, but equilibrium properties are not a�ected24. An-

other way to get around the problem of high frequency vibrations of hydrogen

atoms is by excluding them from the actual integration and regenerating their

positions every time step from the positions of the heavy atoms to which they

are attached25. Although the features of this approach have yet to be ex-

plored, initial results have shown that a time-step of 6 to 8 fs is within reach.

Another approach has recently been proposed, called \self-guided Molecular

Dynamics"26, that introduces an additional systematic force that is based on

earlier parts of the simulation. Enhanced rates of conformational sampling

have been claimed for small peptides. Its applicability in the �eld of protein

dynamics still needs to be studied.

Simpli�ed protein models

Before the �rst all-atom Molecular Dynamics simulation on a protein was

performed, simulations of protein folding with a simpli�ed protein model had

been reported27. This illustrates the limitations of all-atom descriptions of

proteins in computer simulations, especially in the presence of explicit solvent.

Simpli�ed protein models have been utilised extensively in the �eld of

protein folding. Employed methodologies include lattice Monte Carlo (MC)

models and adapted MD or Langevin Dynamics (LD) models. The Monte

Carlo technique is a stochastic method: random displacements are taken at

each step, which are only accepted when an energy criterion is ful�lled28. Lat-

tice models form perhaps the most simpli�ed models with some resemblance

to real proteins29. Their advantage is that exhaustive searches of the con�g-

uration space can be reached for small proteins (up to about 100 residues)

by MC methods30{33. However, their applicability is limited due to the lack

of detail in the models and the restriction of the search space due to lattice

constraints. Continuum models of simpli�ed proteins (bead models) utilising

adapted MD or LD algorithms are more promising, in that sense, because of

the absence of lattice restrictions. In Langevin Dynamics, compared to eq.

1.1, forces contain an additional friction and noise term to mimic the e�ect

of solvent (which is not treated explicitly)34. Although exhaustive searches

can usually not be reached by these bead methods, promising results have

been reported8, 35{37. Another application of simpli�ed protein models for

use in protein folding are so called threading techniques38 (for recent reviews,

see refs. 39, 40). The idea is that a discrete number of folds exists to which

proteins are restricted. The sequence of a protein with unknown structure is

threaded through a set of known protein folds, after which suitable scoring

potential (e.g. ref. 41, for a review see ref. 42) reveals which structure is most

probable for that sequence.

Monte Carlo calculations using coarse grained protein models similar to

those used for threading have shown that native state dynamics of proteins

can successfully be simulated at a rate one order of magnitude faster than can

be obtained by all-atom models43, 44. Also, LD simulations with a multiple

time step algorithm showed vast improvements of computational e�ciency
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compared to traditional MD, even when using an all-atom representation45.

Apart from the advantage of a multiple time-step algorithm, part of the com-

putational e�ciency in this model is the result of the absence of explicit

solvent molecules. Several methods of solvent treatment by implicit models

have been suggested over the years46{50, but their range of applicability is

still a matter of debate51{54

Simpli�cation in its most extreme form reduces a protein's conformational

space to that of two or more rigid bodies. Domain motions are known to form

the basis of the function of several proteins (see e.g. ref. 2) and therefore many

properties of the functional mechanism of such proteins may be studied by

focusing on the rigid-body motions of the domains involved55, 56. Even in

single-domain proteins, quasi-rigid parts have been identi�ed (for example

secondary structure elements57{59). This observation could in principle be

used in a simpli�ed protein model, but has so far only been applied in the

�eld of theoretical protein folding60, 61.

Protein dynamics in internal coordinates

E�ciency of computer simulations can be enhanced by describing the simu-

lated systems in their internal degrees of freedom, as opposed to the usual

Cartesian coordinates. The goal, as in the previous section, is to reduce

the number of degrees of freedom in the simulated system. The methods

described in this section, however, retain the atomic detail of the modeled

system. Perhaps the �rst example of this method was proposed by Ryckaert

& Bellemans62 in their simulation of n-butane, with only one internal degree

of freedom (the central torsion angle). For proteins, the use of torsion angles

also seems an appropriate choice since dihedral angles are the main degrees

of freedom, of which the � and  backbone dihedrals play the largest role

in large-scale protein motions. Application of torsion angles in the study of

protein dynamics has been proposed for MC63 and MD64 simulations. The

advantage of such techniques is that larger simulation steps (either time-steps

in MD or space-steps in MC) can be taken in the simulation. Stable MD sim-

ulations with time steps of 13 fs have been described for an Ala9 peptide64,

whereas time-steps of at most 2 fs can be taken when only bond lengths are

constrained. However, a number of problems is encountered when protein dy-

namics is described in torsion angle space. First, when the equations of motion

are solved for these internal coordinates, the inverse of the moments of inertia

tensor is required every time step. Since matrix inversion scales with the third

power of the number of matrix elements in terms of computation time, appli-

cation of such methods is limited to small systems. However, a method to get

around this problem has been proposed65, reducing the computational cost

to order N instead of N3. The second problem connected with torsion-angle

dynamics is the absence of bond-angle 
uctuations. Bond-length 
uctuations

can safely be neglected, but constraining bond-angles severely restricts dy-

namics of proteins (see e.g. ref. 10). Due to the altered potential employed in

torsion-angle approaches, conformational barriers are overestimated, making
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the method most useful for simulations at elevated temperatures, used for

example in the �eld of re�nement of NMR structures66.

Torsion angle approaches have also been applied in combination with

knowledge-based force-�elds. Monte Carlo simulations have been reported

claiming enhanced convergence for NMR structure determination67. Also in

o�-lattice simulations MC calculations in torsion-angle space have begun to

gain popularity (for a review, see e.g. ref. 68).

Another way to de�ne internal coordinates in proteins is based on the

notion that most positional 
uctuation occurs along collective degrees of free-

dom. This was �rst realised from Normal Mode analyses of a small pro-

tein69{71. In Normal Mode analyses, the potential energy surface is assumed

to be harmonic. Collective variables are obtained by diagonalisation of the

Hessian matrix (second derivative of the potential energy) in a local energy

minimum. Quasi harmonic analysis72{75, principal component analysis76{78

and singular value decomposition44, 79 of Molecular Dynamics trajectories of

proteins have shown that even beyond the harmonic approximation, protein

dynamics is dominated by a limited number of collective coordinates. These

methods seek those collective degrees of freedom that best approximate the

total amount of 
uctuation. The subset of largest-amplitude variables form a

set of generalised internal coordinates that can be used to e�ectively describe

the dynamics of a protein. As opposed to torsion angles as internal coordi-

nates, these collective internal coordinates are not known beforehand. Unless

many experimental structures are available, a simulation is required to obtain

a de�nition of these coordinates. Once an approximation of the collective de-

grees of freedom has been obtained, simulations in the space spanned by only

these coordinates can in principle be initiated. Such a technique has success-

fully been applied to small molecules80. However, coupling of the main modes

of collective 
uctuation to more constrained coordinates is likely to be respon-

sible for a limited applicability in dynamic simulation of proteins (e.g. ref. 10

and A. Amadei and T. Linssen, personal communication). Methods to bypass

the problems of this coupling include biased MD simulations with constraints

along collective internal coordinates derived from earlier simulations81 and

form the subject of chapters 3 and 4 of this thesis. The dynamics can also

be biased by modifying the potential energy function along such a collective

degree of freedom. This is thought to be especially useful for enhancing the

rate of conformational transitions in proteins82.

Essential Dynamics

The Essential Dynamics (ED) technique is a method from the third category

of the last section. A brief description will be given here, discussing some

important features of the method. For a more rigorous description, see ref.

78. As an analysis technique, ED is based on a principal component analysis

of (MD generated) structures. A principal component analysis is a multi-

dimensional linear least squares �t procedure. To understand how this is
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applicable to protein dynamics, the usual three-dimensional (3D) Cartesian

space to represent protein coordinates (which is e.g. used to represent pro-

tein conformations in the Brookhaven Protein Data Bank or PDB) needs to

be replaced by another, multidimensional space. A molecule of N particles

can be represented by N points in 3D space. With 3 coordinates per point,

this adds up to 3N coordinates. In a 3N-dimensional space, however, such

a structure can be represented by a single point. In this space, this point

is characterised by 3N coordinates. This representation is convenient since

a collection or trajectory of structures can now be regarded as a cloud of

points. Like in the case of a two-dimensional cloud of points, also in more

dimensions, always one line exists that best �ts all points. As illustrated for

a two-dimensional example (Fig. 1.1), if such a line �ts the data well, the

data can be approximated by only the position along that line, neglecting the

position in the other direction. If this line is chosen as coordinate axis, then

the position of a point can be represented by a single coordinate. In more

dimensions the procedure works similarly, with the only di�erence that one is

not just interested in the line that �ts the data best, but also in the line that

�ts the data second-best, third best, and so on (the principal components).

These directions together span a plane, or space, and the subspace responsi-

ble for the majority of the 
uctuations has been referred to as the 'essential

subspace'. Applications of such a multidimensional �t procedure on protein

con�gurations from MD simulations of several proteins has proven that typi-

cally the ten to twenty principal components are responsible for 90 % of the


uctuations of a protein76{78. These principal components correspond to col-

lective coordinates, containing contributions from every atom of the (protein)

molecule. Summarised, a limited number of collective motions is responsible

for a large percentage of a protein's conformational 
uctuations.

If all atoms in a protein were able to move uncorrelated from each other,

an approximation of the total 
uctuation by only a few collective coordinates

would not be possible. The fact that such an approximation is successful is

the result of the presence of a large number of internal constraints and restric-

tions ('near-constraints') de�ned by the interactions present in a given protein

structure. Atomic interactions, ranging from covalent bonds (the tightest in-

teractions) to weak non-bonded interactions, together with the dense packing

of atoms in native-state protein structures form the basis of these restrictions.

In the study of protein dynamics, only internal 
uctuations are usually

of interest. Therefore, the �rst step in an Essential Dynamics analysis is

to remove overall rotation and translation. This is done by translation of

the center of mass of every con�guration to the origin after which a least

squares rotational �t of the atoms is performed onto to a reference structure.

Recently it was suggested that this procedure might lead to a bias in the

de�nition of the internal 
uctuations, and that a way to circumvent this

bias would be to work in distance space83. The actual principal component

analysis is based on construction and diagonalisation of the covariance matrix

of positional 
uctuations. The covariance matrix is constructed from the
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atomic coordinates according to:

Cij = h(xi � hxii)(xj � hxji)i (1.4)

where x represents the atomic coordinates and the angle brackets a time

or ensemble average. Particles moving in a correlated fashion correspond to

positive matrix elements (positive correlation) or negative elements (negative

correlation), and those that move independently to small matrix elements.

The orthogonal transformation T that diagonalises this (symmetric) matrix

contains the eigenvectors or principal components of C as columns and the

resulting diagonal matrix � contains the corresponding eigenvalues:
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Figure 1.1 Illustration of Essential Dynamics in two dimensions. With a distri-

bution of points as depicted here, two coordinates (x,y) are required to identify

a point in the cluster in panel A, whereas one coordinate (x') approximately

identi�es a point in panel B.



10 Chapter 1

� = T
>
CT (1.5)

The eigenvalues are a measure of the mean square positional 
uctuation

along the corresponding eigenvector. When the eigenvectors are sorted to

decreasing eigenvalue, the �rst eigenvectors are those collective motions that

best approximate the sum of 
uctuations and the last eigenvectors correspond

to the most constrained degrees of freedom. The characteristics of these

collective 
uctuations can be studied by projecting the ensemble of structures

onto single eigenvectors and by translation of these projections to 3D space

to visualise the atomic displacements connected with that eigenvector. As

stated above, analyses of MD trajectories of several proteins have shown that

few collective coordinates dominate the dynamics of native proteins (together

often referred to as the 'essential subspace'). In a number of cases these main

modes of collective 
uctuation were shown to be involved in the functional

dynamics of the studied proteins78, 84{86.

ED analyses can be applied to any subset of atoms of the ensemble of

structures78 and are not restricted to ensembles generated by MD simula-

tion. Applications to collections of X-ray structures86, 87, NMR structures88

and structures derived from distance constraints89 have been reported. Since

collective (backbone) 
uctuations dominate the dynamics of proteins, usually

only backbone or C-� coordinates are used to save computation time and to

prevent problems with apparent correlation of side chain motions with back-

bone motions which are merely the result of poor statistics. However, even

when the method is applied to only C-� atoms, the diagonalisation of the

covariance matrix can still be an enormous computational task. An approx-

imation has been developed to alleviate this problem, allowing analyses of

systems with thousands of amino-acids90.

Although �rst designed for proteins, the ED method can in principle be

applied to any constrained (biomolecular) system. Successful applications to

DNA have already been reported91, 92.

Identi�cation of the dominant modes of collective 
uctuation is the �rst

step in the Essential Dynamics technique. As sketched in the previous section,

knowledge of the essential subspace can be used in a sampling technique that

exploits the limited dimensionality of that space to achieve a more e�cient

sampling than can be obtained by more conventional techniques.

Outline of this thesis

The second chapter of this thesis is concerned with the convergence of Essen-

tial Dynamics results from relatively short MD simulations. In the literature,

it had been reported that principal component analysis (Essential Dynamics

is a principal components analysis of the atomic 
uctuations) of MD simula-

tions of such short time lengths is not suitable for describing long-time scale
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protein dynamics because this subspace keeps changing throughout the sim-

ulations. Apart from the issue of convergence of the essential subspace, the

sensitivity of the essential dynamics results to MD parameters is also exam-

ined in this chapter. A set of reference simulations is compared to a set in

which parameters were modi�ed that were believed to have a potential e�ect

on (protein) dynamical or con�gurational properties.

The third chapter presents an extension of the Essential Dynamics sam-

pling technique. This ED sampling technique is based on the idea that, since

most 
uctuations in proteins take place in a hyperspace of limited dimension,

a systematic or otherwise enhanced sampling in this subspace will result in an

e�cient way to explore the con�gurational space of proteins. A prerequisite

for success of this method, of course, is a su�ciently accurate approximation of

the subspace. In a �rst implementation, the method had yielded encouraging

results on a small protein which showed that indeed acceptable protein struc-

tures were generated which were more widely spread in con�guration space

than would be obtained by usual MD simulation81. This chapter presents

the application of a modi�ed sampling algorithm to a peptide hormone. An

extensive sampling is performed and the stability of resulting structures is

measured by subjecting them to MD simulation without essential dynamics

constraints. Based on these results, a model is presented for the free en-

ergy surface of this peptide and proteins in general in the space of the major

collective conformational coordinates.

Encouraged by the results on the peptide, the ED sampling procedure was

applied to a small protein: the Histidine containing Phosphocarrier protein

HPr. It was found that some modi�cations to the algorithm were required

because denaturation of the protein was observed when the same criteria were

used as with the peptide. In chapter 4, the resulting ensemble of structures is

compared to a set of structures collected from unconstrained MD simulations

and from simulations with NMR-NOE restraints. Structures extracted from

the latter simulations represent the high-resolution NMR structure of HPr93.

NOE violations from each of the three runs are compared to each other, as

well as several geometrical and energetical properties.

Chapter 5 presents a comparison of domain motions in T4 lysozyme calcu-

lated from several crystal structures and those obtained from MD simulation.

T4 lysozyme is among the best experimentally characterised proteins in terms

of conformational properties and therefore is an ideal candidate for a rigorous

test how well MD/ED results from simulations in the order of nanoseconds

correspond to known, large-scale collective 
uctuations in proteins. A newly

developed method to characterise domain motions in proteins was employed to

compare the experimental and theoretical results in detail. Not only method-

ological implications, but also functional aspects of the domain 
uctuations

are described.

The observation that most of a protein's positional 
uctuation can be ap-

proximated by only a few collective degrees of freedom led to an attempt to

derive those degrees of freedom by another, computationally less demanding
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method. The restriction of a protein's 
uctuations to a hyperspace of lim-

ited dimension is caused by the presence of a large number of explicit and

implicit constraints and restrictions to the con�gurational freedom of each

atom. The idea arose that if the network of interactions responsible for these

restrictions could be represented in a simpler way than in e.g. MD simula-

tions, an approximation of the constraint surface, and therefore also of the

complementary essential subspace could be obtained. Chapter 6 introduces

a technique, named CONCOORD, that generates protein structures within

prede�ned distance bounds. CONCOORD structures of di�erent proteins are

compared to structures generated by MD, in terms of Essential Dynamics

properties and more conventional techniques.

Chapter 7 presents an application of the CONCOORD method to the

molecular chaperonin GroEL. The elucidation of the X-ray structures of

GroEL in di�erent conformations together with electron microscopy data

had shown that GroEL is a remarkably 
exible protein and that allosteric

properties play an important role in its function: to assist other proteins to

fold to their native conformation. The size of the protein (M�800kD) makes

it unsuitable for other computational techniques that yield protein confor-

mational properties, such as MD, but because of its algorithmic simplicity

and e�ciency, it proved possible to apply CONCOORD. Essential dynamics

analyses were applied to the collection of experimental structures and con-

formations generated by CONCOORD. Previously unnoticed features of the

crystallographic structures are presented, in combination with conformational

properties derived from the CONCOORD simulations. Implications for the

allosteric mechanism of GroEL are described.

Finally, chapter 8 �nishes this thesis with some concluding remarks on

theoretical approaches in the �eld of protein dynamics and an outlook to the

future.



2 THE CONSISTENCY OF LARGE

CONCERTED MOTIONS IN PROTEINS IN

MOLECULAR DYNAMICS SIMULATIONS

B.L. de Groot, D.M.F van Aalten, A. Amadei and H.J.C. Berend-
sen

Biophys. J. 71: 1554-1566 (1996)

Summary

A detailed investigation is presented into the e�ect of limited sampling time

and small changes in the force �eld on molecular dynamics simulations of a

protein. Thirteen independent simulations of the B1 IgG-binding domain of

streptococcal protein G were performed with small changes in the simula-

tion parameters in each simulation. Parameters studied included tempera-

ture, bond constraints, cut-o� radius for electrostatic interactions and initial

placement of hydrogen atoms. The essential dynamics technique was used

to reveal dynamic di�erences between the simulations. Similar essential dy-

namics properties were found for all simulations, indicating that the large

concerted motions found in the simulations are not particularly sensitive to

small changes in the force�eld.

A thorough investigation into the stability of the essential dynamics prop-

erties as derived from a molecular dynamics simulation of a few hundred

picoseconds is provided. Although the de�nition of the essential modes of

motion has not fully converged in these short simulations, the subspace in

which these modes are con�ned is found to be reproducible.
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Introduction

Recent studies have provided methods for revealing large concerted motions in

proteins from Molecular Dynamics (MD) computer simulations53, 76, 78, 85, 94.

These methods divide the con�gurational subspace of proteins in a high di-

mensional subspace in which merely constraint-like motions of high frequency

occur (which will from now on be referred to as the near-constraints subspace),

and a low dimensional subspace in which all biologically relevant motions oc-

cur (the essential subspace). In this paper, we investigate how reproducible

these two distinct spaces are in multiple simulations of one protein. The

essential dynamics (ED) method, introduced by Amadei et al. 78, is used to

extract the de�nition of both subspaces from MD simulations. The sensitivity

of the de�nition of these spaces towards di�erent force �eld parameters used

in MD simulations, as well as the speed of convergence of the description of

these subspaces is examined. With this aim, four simulations of a test pro-

tein, the B1 IgG-binding domain of streptococcal protein G, were set up, each

with one parameter di�erent from seven reference simulations. Apart from

these simulations that were performed using explicit solvent, two simulations

were run in vacuo. This protein was chosen because it is a small and fairly

globular protein, containing both �-helix and �- strand secondary structure

elements. Both X-ray95 and NMR96 structures are available, as well as NMR

relaxation data97.

Previous work53, 78, 84 has suggested that a few hundred picoseconds is

usually enough to obtain a rough approximation of the essential subspace of

a small protein, although there is still an appreciable amount of noise present

in the description of both subspaces after such limited sampling time. Here

we use a set of 300 ps simulations as well as a 1 ns simulation to investigate

the accuracy of the de�nition of both subspaces. The in
uence of a number

of simulation parameters is also investigated. All simulations are compared

to a set of six solvent simulations of 300 ps. These reference simulations were

also compared to each other and to a 1 ns simulation of the same protein to

gain insight in the convergence of the ED properties in such short simulations.

Apart from comparison of properties derived from ED, conventional structural

and geometrical properties were evaluated from the trajectories, to examine

the stability and overall structural and dynamic behaviour of the simulations.

Methods and theory

Simulation parameters

Simulations were performed with the GROMOS4 simulation package. The

simulations were started from the crystal structure (Protein Data Bank en-

try 1PGB95). The protein was placed in a truncated octahedral box �lled
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with SPC water98, except for two simulations that were run in vacuo. The

protein consists of 535 (united) atoms. Together with 4 sodium ions which

were used to compensate for the net charge of -4 (the ions were placed in the

box by replacing water molecules at the lowest electrostatic potential) and

approximately 1900 water molecules (the number of water molecules varied

from simulation to simulation) the total number of atoms approximated 6500.

After energy minimisation, a HEATUP procedure53 of 25 ps was performed

to equilibrate the structure. In short, this involves a slow increase of the

temperature, cut-o� radius and time step, combined with positional restrain-

ing. The simulations were then continued for 275 ps, of which the last 250

ps were used for ED analyses (all other analyses were performed on the full

275 ps trajectories, to include di�erences in the equilibration period). One

simulation was extended to 1 ns. In total, thirteen simulations have been

performed, identi�ed below.

1. 275K: This simulation was performed at a constant temperature of 275

K instead of 300 K. All simulations were kept at a constant tempera-

ture by coupling to an external temperature bath99, using a coupling

constant of 0.1 ps.;

2. NO SHAKE: This simulation was performed without SHAKE11, cova-

lent bond interactions were described by harmonic potentials. In this

simulation, a time step of 1 fs was applied. In other simulations SHAKE

was used to constrain bond lengths, allowing a time step of 2 fs.;

3. CUT OFF: This simulation was performed with a twin range cut-o�

method with radii of 10 and 14 �A instead of 8 and 10 �A for the other

simulations. For the short range, the pairlist was updated every time

step, for the long range, this list was updated every ten steps.;

4. HPLACE: This simulation was started from a structure in which the

positions of the hydrogens were generated using an algorithm which

optimises hydrogen bond networks throughout the structure100. Other

simulations were started with standard GROMOS hydrogen placement,

which uses standard hydrogen positioning.;

5. REF 1 till REF 6: 6 reference simulations were performed. These sim-

ulations di�ered in the initial velocities used;

6. REF 7: Identical to the other reference simulations, but this simulation

was extended to 1 ns;

7. VAC 1 and VAC 2: Additionally, two simulations in vacuo were per-

formed for comparison. VAC 1 was carried out with reduced charges to

mimick the screening e�ect of the solvent, VAC 2 was performed with

full charges.
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Comparison techniques

Two types of techniques were used to identify di�erences between the simu-

lations. First, a number of standard structural analyses were performed to

check overall stability. Subsequently, ED analysis was used to compare the

dynamic behaviour of the protein in the di�erent simulations. ED analyses

were performed on each individual trajectory and compared to the reference

simulations. Programs used were those available in the molecular modeling

program WHAT IF101. Accessible surface calculations and secondary struc-

ture evaluations were performed by DSSP102.

Overlap between eigenvector sets

Overlap between multiple sets of eigenvectors is calculated with two methods.

First, the overlap between two essential subspaces is calculated as the sum

of all the squared inner products between all pairs of eigenvectors from both

essential subspaces, divided by the dimension of that space (see also the next

subsection). This de�nition of the overlap has the disadvantage that it con-

centrates on similarities between two compared sets, and not on di�erences.

Therefore, we have de�ned another measure of the overlap between two sets

of eigenvectors. It is de�ned as the product of the square inner product and

the di�erence in eigenvector index (i.e. a di�erence in relative contribution to

the overall 
uctuation, eigenvalues and corresponding eigenvectors are sorted

to decreasing value), averaged over all pairs of eigenvectors from both sets.

This will result in a positive number, being close to zero if the sets are similar.

This quantity can be regarded as a penalty function: a high inner product

between an eigenvector with a high eigenvector index from one set and an

eigenvector with a low eigenvector index from the other set gives a high con-

tribution to this penalty. Signi�cant di�erences in the dynamic behaviour

of two simulations (a motion that is accessible in one simulation but not in

another) are therefore immediately evident.

Convergence of trajectories

ED analyses can be used to gain insight in the convergence of MD trajecto-

ries, since only a few coordinates are usually required to describe the relevant

dynamics of a protein in MD simulations. Here, the overlap between essen-

tial subspaces (as de�ned by the ten eigenvectors with largest eigenvalues)

obtained from pairs of simulations is taken as a measure for the similarity

of two trajectories in terms of collective motions. This overlap is de�ned as

the cumulative mean square inner product between ten eigenvectors obtained

from one set of eigenvectors and ten from another. This results in a num-

ber between zero, when there is no overlap, and one, when the two sets are

identical. In practice, the lower limit for this value is not zero, even if the

actual overlap between the two essential subspaces is negligible, since there

will always be some projection of the eigenvectors of one set into the essential

subspace of the other.
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The overlap of real interest is not the overlap between two sets of eigen-

vectors obtained from MD, each containing noise, but the overlap of one of

such sets with the fully converged set of eigenvectors, as would be obtained

after in�nite simulation time. This overlap is underestimated by the method

described above, since in the comparison of two MD eigenvector sets, both

sets contain an appreciable amount of noise, making the overlap smaller than

in the case where only one of the sets contains this noise.

Results

Results from structural analyses are summarised in Table 2.1. Apart from the

two simulations in vacuo, the observed average properties in the simulations

that were performed with di�erent parameters do not di�er signi�cantly from

those observed in the 300 ps reference simulations. When these properties are

plotted as a function of time (data not shown), no signi�cant drift is observed

in any of the simulations (apart from those performed in vacuum). Hence, all

solvent simulations are stable in terms of these properties in a time window

of 300 ps. The simulation performed at lower temperature (275 K) does

show a lower total mean square 
uctuation than most other simulations, as

expected, but one of the reference simulations (REF 1) shows an even lower

total 
uctuation. This suggests that the spread in the observed 
uctuation

for the reference simulations of 300 ps covers the di�erence that might have

been caused by the lower temperature.

Compared to other proteins53, 78, 85, 103, the total sum of 
uctuations and

the largest eigenvalues are relatively small, indicating a rather rigid molecule.

This is in agreement with recent observations96, 104, where this domain was

reported as highly stable.

ED analyses were performed on each individual trajectory. Only � carbon

coordinates were used in the covariance analysis. It has been shown that

this approach identi�es all large scale concerted motions in proteins78. It

has the advantage over an all-atom analysis (besides saving CPU time in all

analyses) that backbone dynamics equilibrates faster than the dynamics in the

full coordinate space (apparent correlations between backbone and sidechain

motions introduce noise in an ED analysis on all atoms of a simulation of a

few hundred picoseconds).

As an illustration of the typical overlap between two eigenvector sets ob-

tained from 300 ps simulations in solvent, an inner products matrix is shown

in Fig. 2.1A for two eigenvector sets obtained from REF 1 and REF 2. All

high inner products are found close to the diagonal, meaning that directions

in con�gurational space have a similar amount of freedom in both simulations.

The same qualitative picture is found for all combinations of the solvent simu-

lations. Fig. 2.1A shows that the eigenvectors spanning the essential subspace

(e.g. de�ned as the �rst ten eigenvectors) of one set of eigenvectors show the
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type �2 RMSD NRC HBO ACC GYR

275K 0.244 1.19 8.04 44.6 3773 1.018

NO SHAKE 0.337 1.02 8.95 42.9 3879 1.025

CUT OFF 0.406 1.15 9.63 44.9 3856 1.015

HPLACE 0.366 1.23 10.61 43.3 3884 1.025

REF 1 0.242 0.93 10.80 41.1 3761 1.016

REF 2 0.351 1.12 8.42 45.8 3840 1.016

REF 3 0.366 1.27 8.40 45.6 3883 1.021

REF 4 0.394 1.11 9.10 43.9 3777 1.018

REF 5 0.365 1.28 8.29 46.0 3849 1.023

REF 6 0.331 1.24 10.70 42.4 3904 1.025

REF 7 0.532 1.45 10.03 44.0 3850 1.024

VAC 1 0.399 1.79 10.47 50.5 3607 0.997

VAC 2 1.261 3.83 18.22 35.3 3600 1.031

Table 2.1 Structural properties. �2: total mean square 
uctuations (nm2);

RMSD: root mean square deviation from crystal structure (�A); NRC: number of

residues adopting random coil conformation; HBO : number of main chain hydro-

gen bonds; ACC: total solvent accessible surface (�A2); GYR: radius of gyration

(nm). NRC, HBO and ACC were calculated with DSSP102

largest inner products with the essential eigenvectors extracted from another

simulation, and that the projections outside the essential subspace are mainly

concentrated in those eigenvectors which still have a signi�cantly high eigen-

value. The simulations in vacuo show also high inner products further from

the diagonal (Fig. 2.1B), indicating that the simulations in vacuo are more

di�erent from the solvent simulations than the solvent simulations are from

each other.

For all reference simulations, the noise as discussed in the theory sec-

tion, which causes overlap between eigenvectors from the essential subspace

obtained from one simulation and near-constraint eigenvectors from another

set, is not homogeneously spread over all near-constraints eigenvectors (Fig.

2.2A). Instead, it is concentrated in the near-constraints which still have an

appreciable eigenvalue (eigenvectors 11-50), leaving a negligible overlap with

all other eigenvectors. This indicates that the de�nitions of the essential sub-

spaces from all reference simulations are similar. The overlap of all 300 ps

reference simulations (REF 1 through REF 6) with the reference simulation

of 1 ns (REF 7) is not signi�cantly higher than the overlap between the 300

ps simulations mutually, although a more converged (i.e. containing less sta-

tistical noise) description of the essential subspace was to be expected from

this longer simulation. This indicates that the convergence of the de�nition

of the essential subspace is initially fast and does not increase signi�cantly

in the time window from 300 ps to 1 ns. This validates the use of relatively

short simulations to gain insight in the dynamic properties of such systems.
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Figure 2.1 Squared inner products matrices. Panel A: Inner products between

eigenvectors extracted from REF 1 (y-axis) and REF 2 (x-axis). Panel B: Inner

products between REF 1 (y-axis) and VAC 2 (x-axis).

Fig. 2.2B shows the average cumulative square inner products of all eigen-

vectors of all sets with the �rst ten eigenvectors from the reference simulations.

All curves add up to one because all eigenvectors of one set are always able to

rebuild a (subset of) eigenvector(s) of another set (both sets of vectors span

the same space). The curves are steep, indicating a high degree of overlap

of the �rst ten eigenvectors of each of the reference simulations in the es-

sential subspaces obtained from the other simulations. The simulations that

were run with parameters di�erent from the reference simulations all show

an equal amount of overlap with the reference simulations as do the reference

simulations among each other. For the simulations that were run in vacuo,

the measured overlap is signi�cantly smaller, especially VAC 2. The summed

average square inner products (here taken as the overlap of the ten eigen-

vectors with highest eigenvalues from one set compared to the reference sets)

and values for the penalty function as described in the Methods section are

summarised in table 2.2. All values are averages over the comparison with the

reference simulations. For the reference simulations, values were obtained by

comparison of one reference simulation compared to all others, and subsequent

averaging over all. The values in the second column of this table are obtained

by summation of the square inner products between the �rst ten eigenvectors

of one set with all �rst ten eigenvectors of another set, and subsequent divi-

sion by ten. A value of one is obtained when two sets are identical. It should

be noted that the �rst ten eigenvectors span only 10=(56 � 3) = 5:95% of the

total space. The fact that the essential subspaces from the di�erent simu-

lations overlap for approximately 50% means that similarities between the

essential subspaces of the individual trajectories are signi�cant. The amounts

of overlap of the essential subspaces of any combination of (except for the

second simulation in vacuo) simulations are similar. The penalty function

(Table 2.2), which is more sensitive towards di�erences between eigenvector
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sets than the measure of overlap in terms of a cumulative inner product (see

theory section), also gives similar values for all solvent simulations. The two

simulations in vacuo, however, give signi�cantly higher values for this penalty

function, demonstrating dynamic di�erences caused by the presence of sol-

vent. Based on these data, there are no detectable systematic di�erences
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Figure 2.2 Average cumulative square inner products. Panel A: The solid line

represents the average summed square inner product of the �rst ten eigenvectors

of one 300 ps reference simulation with all eigenvectors from another 300 ps ref-

erence simulation, averaged over all pairs. The dashed line represents the results

obtained from the 1 ns reference simulation, compared with the 300 ps simula-

tions. Panel B: For all except the reference simulations, curves were obtained by

calculation of the summed squared inner product between all eigenvectors from

a single simulation with the �rst ten eigenvectors of each reference simulation,

divided by ten, averaged over all reference simulations. For the reference simula-

tions, the average cumulative squared inner products of the �rst ten eigenvectors

of each set with all eigenvectors from all other reference sets were calculated.

The average over all pairs is plotted.
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type MSI PENAL

mean � mean �

275K 0.483 0.040 1.172 0.087

NO SHAKE 0.524 0.037 1.051 0.084

CUT OFF 0.498 0.017 1.158 0.070

HPLACE 0.472 0.024 1.203 0.103

REFS 1 6 0.494 0.040 1.155 0.087

REF 7 0.530 0.065 1.169 0.132

VAC 1 0.478 0.033 1.517 0.068

VAC 2 0.372 0.038 1.967 0.039

Table 2.2 MSI: Average and root mean square 
uctuation of summed square

inner product between the �rst ten C-� eigenvectors from ED analyses of each

individual trajectory with each of the �rst ten eigenvectors from all reference sim-

ulations. PENAL: Average and root mean square 
uctuation of penalty function

(see methods section) between eigenvectors from all simulations and reference

simulations.

between the various methods of simulation, apart from the second simulation

in vacuo.

Fig. 2.3 shows the kinds of motion that correspond to the most prominent

eigenvectors extracted from the reference simulations. For each of the �rst

six eigenvectors, the motion is concentrated in a few speci�c places that move

concertedly.

Conclusions and discussion

The results presented in this paper show, both considering overall structural

and dynamic properties, that all solvent simulations that were studied behave

essentially similar. Only the simulations that were performed in vacuo showed

signi�cantly di�erent behaviour from the reference simulations, although even

there the overlap of the essential subspace is still substantial. This is in agree-

ment with previous �ndings53, 84. Of course, all analyses were concentrated

on one protein; other proteins may behave di�erently.

Of the overall quantities, largest di�erences were found in the total mean

square 
uctuation and the RMSD from the crystal structure (Table 2.1).

As has been noted before105, the RMSD from a single structure (e.g. the

crystal structure) is not necessarily a useful quantity to judge the stability

of a simulation when large structural rearrangements are occurring, provided

that these rearrangements are reversible. Moreover, backbone RMSD values

of the structures in the NMR cluster with respect to the crystal structure are

in the same range as the observed values for MD.

From the 300 ps solvent simulations, 275K and CUT OFF deviate most
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e.v.3 e.v.4

e.v.5 e.v.6

Figure 2.3 Snapshots of single-eigenvector motions. Structures corresponding

to the minimum and maximum sampled position along the �rst six eigenvectors

of an ED analysis of solvent trajectories combined are shown, together with three

intermediate positions, equally spaced between the minimum and maximum.

from all other simulations. The lower total mean square 
uctuation of all pro-

tein atoms in the simulation at lower temperature compared to most other

simulations can partially be explained by the fact that less thermal motion is

present in this simulation. Fast thermal 
uctuations can be expected to have

a connection to slower, larger 
uctuations, which might be re
ected in the

fact that in the ED analysis, the mean square 
uctuations along all essential

eigenvectors for this simulation are among the lowest. The CUT OFF simu-

lation shows highest overall 
uctuation (Table 2.1). No obvious explanation

can be provided for this observation. Since also REF 1 is quite di�erent with

respect to the other reference simulations (it exhibits the lowest total mean

square 
uctuation of all simulations, Table 2.1) these di�erences are believed

to be based on statistical rather than systematic reasons. In a recent pa-

per106, where the e�ects of di�erent protein models on normal modes results

were studied, the only signi�cant sensitivity was reported on the description

of electrostatic interactions.

For all geometrical properties, the di�erences between di�erent reference

simulations are as high as the di�erences between the reference simulations

and the solvent simulations that were run with adapted parameters. On the
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basis of these data, therefore, the simulations with di�erent parameters do

not di�er in a signi�cant way from the reference simulations.

The di�erences in dynamic behaviour of the ten solvent simulations as

revealed by ED do also not appear to be signi�cant. Since there is no system-

atic connection between the observed dynamic di�erences and the di�erent

simulation parameters (the reference simulations di�er as much from each

other as from the other solvent simulations), we have the impression that

limited sampling time is the most important reason for the presence of these

di�erences. This leads us to the conclusion that the dynamic properties of the

simulated protein are not detectably sensitive towards small di�erences in the

force �eld or in the choice of starting structure in the time span considered

here. Only the simulations that were performed in vacuo are signi�cantly

di�erent from the reference simulations in solvent. To support these �ndings,

further simulations of other proteins are necessary to be able to draw general

conclusions.

As already observed recently78, 81, 85, single simulations of a few hundred

picoseconds of a protein in water seem to yield an acceptable approximation

of the essential subspace, although for a fully converged description of this

subspace, longer simulations are required. This is supported by the obser-

vation that similarities between ED analyses on individual trajectories that

were studied here are relatively high (Fig 2.1, table 2.2), considering the fact

that in the comparison as presented in table 2.2, always two sets are compared

that each contain noise. As explained in the theory section, the overlap (de-

�ned as the summed square inner products between vectors from two essential

subspaces) between eigenvectors obtained from each of the reference simula-

tions with the fully converged set of eigenvectors can be expected to be larger

than the overlap between eigenvectors obtained from two short simulations.

The measured overlap of approximately 0.5 between eigenvector sets obtained

from multiple simulations (table 2.2) therefore means that for each set, the

overlap with the fully converged set of eigenvectors is even higher. This means

that in a relatively short simulation, a good approximation of the true essen-

tial subspace is reached, within the limitations of the force�eld. The fact that

within the essential subspace the individual eigenvectors are not identical in

all simulations (although the subspace itself has approximately converged),

indicates that in this subspace, the region that has been visited during a single

short simulation is only a small fraction of the complete available subspace.

This is in agreement with previous �ndings81, 107, 108.

Further studies have shown that convergence increases only slowly with

simulation time (Fig. 2.2A, table2.2), making predictions about the mini-

mum time required to obtain a fully converged description of the dynamics

impossible.

In a recent study109, two halves of a short MD simulation of myoglobin

were compared. It was concluded that a few hundred picoseconds is not suf-

�cient to obtain equilibrated dynamics. In another study110, two halves of a

simulation of 470 ps of G-actin (375 residues) showed signi�cant di�erences
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in terms of principal components analysis, analogous to essential dynamics

analysis. We have shown here, and before78, 81, 85 that within a few hundred

picoseconds, the de�nition of both the essential and the near-constraints sub-

spaces are approximately stable, while motions within the essential subspace

are still equilibrating. In the present study (as also noted before by us85 and

others111, the overlap found between the essential subspaces as derived from

short simulations is substantial.

The initial description of the essential subspace as derived from a relatively

short MD simulation can be used to obtain a more re�ned de�nition of this

space in an extrapolation method81. In such a method, an adapted form of

MD is performed, with constraints in the approximated essential subspace.

These constraints are chosen such that the system itself determines the regions

of the space that it samples. Dynamic coupling between the accessible modes

of motion will automatically result in motion in the true essential subspace of

that system. Analysis of the cloud of structures thus produced will then yield

a more accurate description of that space. The procedure may be repeated

until no changes are detectable to obtain a completely converged de�nition

of the modes spanning the essential subspace. We are currently investigating

such methods107, 108.
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Summary

The recently introduced Essential Dynamics sampling method is extended

such that an exhaustive sampling of the available (backbone) con�gurational

space can be achieved. From an initial Molecular Dynamics simulation an

approximated de�nition of the essential subspace is obtained. This subspace

is used to direct subsequent simulations by means of constraint forces. The

method is applied to the peptide hormone guanylin, solvated in water, of

which the structure was determined recently. The peptide exists in two forms

and for both forms, an extensive sampling was produced. The sampling algo-

rithm �lls the available space (of the essential coordinates used in the proce-

dure) at a rate that is approximately six to seven times larger than that for

traditional Molecular Dynamics. The procedure does not cause any signi�-

cant perturbation, which is indicated by the fact that free Molecular Dynam-

ics simulations started at several places in the space de�ned by the Essential

Dynamics sampling, sample that complete space. Moreover, analyses of the

average free Molecular Dynamics step have shown that nowhere except close

to the edge of the available space, there are regions where the system shows a

drift in a particular direction. This result also shows that in principle, the es-

sential subspace is a constant free energy surface, with well-de�ned and steep

borders, in which the system moves di�usively. In addition, a comparison be-

tween two independent essential dynamics sampling runs, of one form of the

peptide, shows that the obtained essential subspaces are virtually identical.
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Introduction

Recently, the structure of the peptide hormone guanylin was elucidated by

NMR112. Two distinct conformations were found, denoted A and B, present

in equal amounts, which di�er in the way two internal disulphide bridges are

arranged with respect to the main chain of the peptide. The hormone as it was

studied consists of 13 residues and the two conformations can be classi�ed as a

right handed spiral (A form) and a left handed spiral (B form)112. Interchange

between the two forms was not observed experimentally, a �nding which was

supported by computational methods112.

Guanylin is an endogenous ligand to the heat stable enterotoxin receptor

(STaR), an intestinal guanylyl cyclase113, causing the production of cyclic

GMP when activated. For a review, we refer to114. Cyclic GMP plays an

important role in 
uid regulation in the intestines and overproduction leads

to severe diarrhea115. Guanylin competes with heat stable enterotoxins (STa)

in binding to STaR and is homologous to it113, 116.

Recently the Essential Dynamics (ED) technique78 was extended by in-

troduction of a sampling technique that makes use of constraint forces in the

essential subspace, where most relevant motions occur81. Here, an improved

algorithm of this ED sampling technique is presented, which causes less per-

turbation and performs a rapid �lling of the essential subspace. The method

is applied to both forms of guanylin, where borders of the allowed region are

found in almost every direction, indicating an almost complete sampling. The

allowed space found by this method coincides with the space that would be

found when a MD simulation would be extended to in�nite time. This is

shown by starting (free) MD simulations at several places at the border of

the essential subspace.

The allowed spaces of the two forms are compared to each other, to the

spaces sampled by the initial MD and to the spaces sampled by free MD

simulations started at a number of positions in the sampled region. Moreover,

we investigated the possible in
uence of the initial de�nition of the essential

eigenvectors on the results obtained from an extended ED sampling. Careful

investigation of the dynamical behaviour of the essential coordinates both

during the ED sampling procedure and during MD simulations started at

several distinct places in the essential subspace indicate a di�usive behaviour

in a constant free energy basin, with well de�ned borders.

Methods

MD simulations

MD simulations of both the A and the B state were initiated from a corre-

sponding NMR structure (the �rst structures of the PDB entries 1gna and
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1gnb respectively). In both cases, the peptides were surrounded by SPC water

molecules98 (571 and 511 solvent molecules respectively) �lling up a truncated

octahedron box. The net negative charge was compensated for by a sodium

ion which was placed by substitution of the water molecule at lowest poten-

tial. Both systems were energy-minimised after which a heatup procedure was

used to equilibrate the systems. Subsequently, both systems were simulated

for 1 ns, of which the last 750 ps were used for analyses. The temperature

was kept constant at 300 K by weak coupling to an external bath99 (pep-

tide and solvent were coupled separately with a coupling constant of 0.1 ps).

The pressure was also kept constant by coupling to a bath with a coupling

constant of 0.5 ps. SHAKE11 was used to constrain bond lengths, allowing a

time step of 2 fs. All calculations were performed with the simulation package

Gromos4. All structure evaluations and visualizations were performed with

the program WHAT IF101.

Initial de�nition of essential subspace

From the structures of the last 750 ps of both simulations covariance matrices

of positional 
uctuations (C-� only) were built and diagonalised. Eigenvec-

tors are directions in con�gurational space and the corresponding eigenvalues

indicate the mean square 
uctuations along these axes78. The procedure cor-

responds to a linear multidimensional least squares �tting of a trajectory in

con�gurational space76, 117. Sorting the eigenvectors by the size of the eigen-

values shows that the con�gurational space can be divided in a low dimen-

sional (essential) subspace in which most of the positional 
uctuations are

con�ned, and a high dimensional (near-constraints) space in which merely

small uninteresting vibrations occur.

ED sampling protocol

With ED, all relevant motions, i.e. those with an appreciable amplitude, can

be (approximately) described by only a few collective coordinates representing

a small fraction of the total number of degrees of freedom. As was shown

before81, this can be used to sample the con�gurational space more e�ciently

than by traditional MD. In a previous paper81 we introduced the concept

of constraint dynamics, applying constraints in the essential subspace in the

form of an expanding radius (spanned by e.g. three essential coordinates).

Here, a modi�cation of that protocol is introduced. Instead of performing

an expansion of a radius with a �xed increment in the radius per step, a

choice is now made every step between expanding the radius or keeping the

radius �xed at the current value, depending on the direction a normal MD

step would have taken.

So, at every (usual MD) step an evaluation is made. If the new position

in the chosen essential subspace is further from the starting position than the

position in the previous step, no correction is applied. If, however, the new

position is closer to the starting position, it is moved back, by means of a
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constraint force on the alpha-carbon eigenvectors, to a position which has the

same distance to the starting position. From the new position the velocities

are recalculated. Using the principle of least perturbation, the correction is

performed in the direction of the radius vector as described in81. In this way,

the distance from the origin is not forced to increase if it will not spontaneously

do so. Instead, it will move on a sphere with �xed radius, until a direction

is found in which the system can expand. If the radius does not increase for

a certain time (in this case a criterion of 500 subsequent steps was used),

indicating that the system approaches a border, a new expansion cycle is

started. The last con�guration is used as a center of the new expansion

sphere.

To avoid oscillation in a particular direction in subsequent expansion cy-

cles, in every cycle an initial linear expansion (of 1000 steps) along one of

the eigenvectors used for the radius expansion is performed. The eigenvector

used for this linear expansion and the direction are chosen randomly. The

principle for such a linear expansion is the same as for the radius expansion:

a step is accepted if the distance from the origin increases in an unperturbed

MD step. When the distance decreases, it is put back to the original value.

Thus, there are three major di�erences with respect to the original ED

sampling protocol81. First, during expansion cycles, a constraint is only ap-

plied to prevent the system from going back, not to push it further from the

original position. In this way, the system is not forced to move in unfavourable

regions, and expansions will stop automatically if a border is reached. Sec-

ond, the size of the expansion step is not �xed but is determined by the usual

MD step, causing least perturbation at the most e�cient expansion speed.

Third, the initial linear expansion in an arbitrary direction forces the system

to move in a direction other than the reverse of the previous cycle, causing a

more rapid �lling of the allowed space. The software used is an adaptation of

the simulation package Gromos4.

During the ED sampling of the two states, all MD parameters were kept

at the same values as during the free simulations. For both states, a three-

dimensional ED sampling (using the �rst three alpha-carbon eigenvectors

from each state respectively) of 100 cycles was performed. Because this

calculation showed similar behaviour for the two states, it was decided to

concentrate further studies on the A state. An additional 100 cycles of the

three-dimensional ED sampling were performed for the A state to investigate

the completeness of the ED sampling. Also for the A state, several free MD

simulations of 100 ps each were started at the borders to investigate if the

allowed space as de�ned by the ED sampling algorithm is consistent with the

behaviour of free MD simulation, i.e. to check the stability of the essential

subspace.

Finding borders in the essential subspace

As stated above, in the expansion cycles, the expansion stops when there

is no spontaneous increase of the distance from the origin anymore. This
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will cause the procedure to stop when a border of the allowed region in the

essential subspace is reached. The constraint used to prevent the system from

moving back towards the origin of the expansion makes the system move along

a sphere with �xed radius, causing additional sampling of the border region.

To de�ne the location of the borders quantitatively, the average free step of

the essential coordinates during the free MD steps (so excluding corrections in

the essential positions) was evaluated in every position of the essential space,

using a grid. In a position not near a border for a speci�c coordinate, the

average free step vector is expected to be zero (indicating an equal probability

to move in each direction). So a non-zero average free step indicates the

proximity of a border.

An ED sampling of the A state using only the �rst two eigenvectors instead

of the �rst three was performed to investigate the average free step in detail

on the grid de�ned by the �rst two eigenvectors.

Calculation of the con�gurational volume

To obtain a quantitative measure of the sampled con�gurational volume, a cu-

bic grid was put over the space spanned by the �rst three eigenvectors, which

were used in the ED sampling protocol. During the ED sampling procedure

the number of non-empty grid elements was multiplied by the volume per grid

element to give an estimate of the evolution of the sampled con�gurational

volume in these three dimensions. The grid size must be carefully chosen

to represent the sampled volume correctly. A �ne grid underestimates the

volume and makes it proportional to the number of sampled points, while a

coarse grid may introduce incorrect connectivity. A suitable compromise was

found when for each of the �rst three eigenvectors 10 intervals were chosen

between -2 nm and 2 nm, dividing the 3D space in 1000 grid elements. For

this grid size the volume is practically independent of the density of sampled

points.

Results

To estimate the e�ciency of the ED sampling protocol, three evaluations were

done. First, projections of the trajectories produced by the expansion cycles

onto the three planes de�ned by the �rst three eigenvectors were compared to

the projections of the free MD simulations onto these planes (Fig. 3.1). For

both conformations, the ED sampling run has not only been able to reproduce

the complete region that had been sampled by MD, but has signi�cantly

enlarged that region in every direction.

Second, to obtain a more quantitative measure of the e�ciency of the

ED sampling protocol, the volume of the space sampled in three dimensions

as a function of the number of integration steps was compared for the ED

sampling runs and the MD simulations (Fig. 3.2). The slope of the curves is a
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measure of the e�ciency of the sampling protocol, and for both conformations,

the ED sampling method produces a signi�cantly steeper plot than the MD,

indicating a high e�ciency of the ED sampling protocol. The ratio of the

slopes of the straight lines �tted to the volume curves of the ED sampling

technique and MD was approximately 6 to 7 for both states.

The curves of the volume (Fig. 3.2) corresponding to the two ED sampling

runs both start to level o� after approximately 1 million integration steps

(corresponding to 2 ns of simulation with a time step of 2 fs), indicating that

the allowed space de�ned by the �rst three eigenvectors has been completely

sampled.

Third, in Figure 3.3, we compare the eigenvalues of the ED sampling

with the eigenvalues of the initial MD runs. This �gure shows that the �rst
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Figure 3.1 A comparison between the region sampled by the initial free MD

simulation of 750 ps and by the ED sampling procedure projected in the plane

de�ned by eigenvectors 1 and 2 from the free MD simulation. A state.
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Figure 3.2 The sampled volume calculated over a grid in the space de�ned by

the �rst three eigenvectors of each state as a function of the number of integration

steps, which corresponds to time in a free MD simulation.

ten eigenvalues from the ED sampling are much larger than those from the

MD simulations. This again indicates that a much larger essential subspace

volume has been covered.

The (2D) ED sampling of the A state in the plane de�ned by the �rst

two eigenvectors samples the same region in the 1-2 plane as does the 3D

ED sampling. The third dimension is somewhat less well sampled because

it was not forced to sample the borders, but the sampled 3D volume was

very close to that of the three-dimensional ED sampling. Fig. 3.4 shows the

average free step in the plane de�ned by eigenvectors 1 and 2, calculated

from the two-dimensional ED sampling of the A state. The arrows indicate

the size and direction of the average free step in every point, spread over a

square grid. Almost anywhere close to the border of the sampled essential

subspace, the average free step is non-zero and points towards the center

of the allowed region. This indicates that the sampled space coincides with

almost the complete available space of the A state, in this subspace.

To investigate the e�ect of the ED sampling algorithm on the de�nition

of the borders of the essential subspace, free MD runs were started at several

places at the edges of the sampled space of the A state. If the borders are really
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Figure 3.3 The eigenvalues obtained from an initial MD simulation of 1 ns (of

which the last 750 ps were used for analyses) for both the A and B state, as well

as those calculated from the set of structures built by an extensive ED sampling.

located as indicated by the non-zero average free steps, the region where the

average free step is almost zero should also be available in a free simulation.

Fig. 3.5 shows the projections of the structures generated by these free runs

as well as those from the 2D ED sampling. All free runs move away from the

edges for a short time in the direction of the center of the allowed region to �ll

in the complete allowed region, leaving only the edges unsampled indicating

that the whole space produced by the ED sampling is accessible to dynamics.

Energies produced by free runs in regions distinct from the region sam-

pled by the initial free MD simulation of the A state showed no signi�cant

di�erences from the energies produced by the initial free run. The average

potential energy of the initial free MD simulation is -25.62 MJ/mol with a

standard deviation of 0.17 MJ/mole. For three free simulations in di�erent

parts of the essential subspace the averages were -25.66 MJ/mol (with a stan-

dard deviation of 0.16 MJ/mole), -25.64 MJ/mol (0.18 MJ/mol) and -25.69

MJ/mol (0.15 MJ/mole) respectively. Also, energies produced during the ED

sampling are similar to energies from free MD simulations, in regions not

near the borders (average energy: -25.75 MJ/mol, standard deviation: 0.32

MJ/mole). Thus, the 
uctuation of the energy is signi�cantly larger during
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the ED sampling procedure, whereas the average energy is close to the average

obtained in a completely free simulation.

To investigate the accuracy of the de�nition of the essential subspace, i.e.

to check if the essential coordinates and near-constraints are consistent in

di�erent MD simulations of about 1 ns, a covariance matrix was built and

diagonalised for two (uncorrelated) trajectories of the A state of 1 ns each,

started in distinct regions of the initial essential subspace. These analyses are

compared to an analysis of the structures produced by the 3D ED sampling

of the A state.

A way to compare two sets of eigenvectors is to monitor the cumulative

square inner product of one eigenvector from one set with all eigenvectors

from the other set. This sum will converge to 1.0 because all eigenvectors

of one set will always be able to rebuild the other set. Figs. 3.6A and 3.6B

show this cumulative square inner product between single eigenvectors of the
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Figure 3.4 The average free steps calculated over a grid projected in the plane

de�ned by the �rst two eigenvectors. The arrows indicate the direction and size

that a free MD step would take on average in each position. A state.
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two 1 ns MD runs and those of the whole ED sampling set. Although the

analyses of the simulations contain an appreciable amount of noise, they show

a considerable similarity of essential subspaces approximately de�ned by, e.g.

, the �rst �ve degrees of freedom. It is also important to note that typical

near-constraint eigenvectors of the MD runs (like 20 and 30) do not mix at

all with the essential eigenvectors of the ED sampling run. Therefore, 1 ns of

free simulation is enough to obtain a basic description of the fully converged

essential subspace (as was also found previously81) and the de�nition of the

essential subspace is consistent in di�erent parts of the con�gurational space.

Figure 3.6C shows the cumulative square inner product between the eigen-

vectors from the ED sampling of the A state, and those from another, inde-
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Figure 3.5 A comparison between the region sampled by the ED sampling pro-

cedure and by multiple free simulations of 100 ps started at random places in

that space. The structures are projected in the plane de�ned by eigenvectors 1

and 2 from the initial free MD simulation. A state.
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pendent, ED sampling of the A state. The latter sampling was produced

by constraining the position along eigenvectors constructed from a di�erent

initial MD simulation. Compared to Figs. 3.6A and 3.6B, the similarities be-

tween the two sets are much higher. This shows that both sets have converged

to the same de�nition of the space. Compared to Figs 3.6A and 3.6B, a much

better de�nition of the essential subspace is obtained because the statistics of

the covariance matrix is better when it is based on a complete ED sampling

rather than a 1 ns MD run.

Fig. 3.7 shows di�erent structures of the A state produced by the initial

MD compared to structures produced by the ED sampling algorithm. The
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Figure 3.6 Panels A and B: Cumulative square inner products between eigenvec-

tors obtained from two 1 ns free MD simulations and eigenvectors built from the

complete collection of structures obtained from ED sampling. Along the X axis

are the eigenvector indices of the free MD simulation which are used to rebuild

single eigenvectors obtained from sampling. A state. Panel A shows the results

from one MD simulation and panel B of another simulation started in a di�erent

region of the essential subspace. Panels C shows the cumulative inner products

between two sets of eigenvectors, obtained from two independent ED sampling

runs. A state.
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structures produced by the ED sampling deviate much more from the starting

structure than the ones produced by the initial MD, illustrating the fact that

a much larger part of the con�gurational volume has been sampled.

Comparison of the structures produced by the ED sampling procedures of

the A with those of the B state showed that there is no overlap between the

con�gurational spaces available to the two forms. Also, direct attempts to

drive the system from one state to the other (also using the method of least

perturbation81), constraining the position along eigenvectors that de�ne the

di�erences between the A and B state, failed to accomplish a transition from

one state to the other. This suggests that the free energy barrier to move
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Figure 3.7 Comparison between structures obtained from free MD simulation

and ED sampling. A state. panel A: MD, panel B: ED sampling. In both �gures,

a stereo picture of the structures corresponding to the minimum and maximum

sampled position along eigenvector 1 are shown.
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from one state to the other is too high to be passed, and that under usual

circumstances the two forms each have their own distinct essential subspaces,

with no overlap. This is consistent with experimental data112, which shows

distinct species on a time scale of at least seconds.

Conclusions and discussion

The results shown before prove that with the ED sampling technique, im-

proved in this paper, it is possible to approach an almost complete sampling

of the essential subspace of a small peptide in water, within a number of in-

tegration steps comparable to a simulation time of about 3 ns. The initial

slope of the curve of the sampled volume in the subspace de�ned by the �rst

three eigenvectors which is a measure of the e�ciency of a sampling protocol,

indicates that the ED sampling algorithm is six to seven times more e�cient

than usual MD. Therefore, the cluster obtained by ED sampling is much

larger than that produced by usual MD of comparable length. This means

that for the macroscopical properties that are evaluated by averaging over the

ensemble of collected structures, results can be expected to di�er between the

two clusters. This is especially true for properties that are sensitive to the

extreme structures in the ensemble, i.e. properties that depend on the spread

in the cluster, rather than on the average.

The fact that the 2D ED sampling reproduces almost all of the 3D space

that was obtained by the 3D ED sampling procedure suggests that the use of

three essential dimensions is su�cient to obtain a complete sampling of the

essential subspace.

The analysis of the average free steps suggests that, apart from the bor-

ders, no real free energy gradients are present in the essential subspace. This

implies that unconstrained dynamics can be considered as a random walk

in the essential subspace, resulting in di�usion like behaviour, as previously

observed in the protein HPr81. Only those regions where an appreciable av-

erage free step is measured (0.0004 nm), remain unsampled by the free MD

simulations (Figs. 3.4 and 3.5). This suggests that a non zero average free

step is a good indication of a border (or a less favourable region) in the essen-

tial subspace and that no signi�cant perturbation is induced in the sampling

algorithm.

The ED sampling algorithm searches for possible expansion directions un-

til no progress is found anymore, in every single cycle. Numerous of such

cycles have been completed for both forms of the peptide. The results of the

average free step calculation (Fig. 3.4) show that, for the A state, in virtually

every direction of the essential subspace, a border has been found, indicating

that the search in these directions is complete. This suggests that it is im-

probable that there are paths accessible for the system towards other stable

regions in the same essential subspace.
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Due to the soft nature of the applied constraints, no unallowed regions

have been sampled. This is illustrated by the fact that, for the A state, free

MD simulations have �lled in the complete allowed space as de�ned by the

ED sampling. Moreover, the free runs span one closed region which indicates

that no physical barriers have been passed by the sampling algorithm.

Essential subspaces de�ned locally from MD simulations in two di�erent

parts of the con�gurational space are similar to the essential subspace de�ned

from the complete ED sampling (Fig. 3.6), which validates the use of a rough

initial de�nition of the essential subspace.

The fact that the two eigenvector sets obtained from two independent

sampling runs are so similar (Fig. 3.6) proves that the de�nition of the space

by this ED sampling protocol is consistent in itself, and not dependent on

the initial MD simulation from which eigenvectors are extracted that are

used to explore the space. Therefore, the approximated essential subspace

de�ned from an initial MD simulation can indeed be used in an extrapolation

protocol to sample the complete allowed space and to re�ne the description

of the essential subspace.

Structures in the NMR cluster are much closer to each other for the A

state (mean backbone RMSD with respect to the average structure of 0.47 �A)

than for the B state (mean RMSD of 1.07 �A), suggesting more con�gurational

freedom for the B state than for the A state112. This is partially re
ected

by the available con�gurational volume as obtained from the ED sampling

runs of both the A and B states (Fig. 3.2),which shows a larger accessible

volume for the B state than for the A state. These volumes, however, are

much larger than those calculated from the NMR clusters. We think that the

re�nement protocol used to produce the NMR structures might give a too

rigid representation of the molecule, because those structures are selected

that simultaneously ful�ll most NOE restraints. Thus the cloud of structures

produced is close to the average structure, and the di�erences between the

structures are not necessarily a good indication of the main modes of motion

for the molecule. This is supported by a recent study103.

The results presented in this paper show that it is possible to obtain a

complete sampling of the essential subspace of a small peptide in water,

together with an accurate de�nition of the location of boundaries. This

suggests, together with previous results81, that similar methods can be used

to study the con�gurational space for larger peptides and proteins. We have

evidence that this is indeed the case although the computational e�ort is

considerably larger. The borders of the essential space now contain regions

that may involve unfolding pathways.
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Summary

Recently, we developed a method to obtain an extended sampling of the con-

�gurational space of proteins, using an adapted form of Molecular Dynamics

simulations, based on the Essential Dynamics method. In the present study,

this sampling technique is applied to the Histidine containing Phosphocarrier

protein HPr from Escherichia coli. We �nd a cluster of conformations that is

an order of magnitude larger than that found for a usual MD simulation of

comparable length. The structures in this cluster are geometrically and en-

ergetically comparable to NMR structures. Moreover, on average, this large

cluster satis�es nearly all NMR derived distance restraints.
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Introduction

HPr is a component of the phosphoenolpyruvate (PEP)-dependent phospho-

transferase system (PTS). The PTS is responsible for the phosphorylation

and translocation of sugars from outside the cell to the inside, and the subse-

quent phosphorylation of these molecules. For a review, see for instance118.

The role of HPr in the PTS is the transportation of a phosphoryl group from

Enzyme I to Enzyme II, the enzyme which performs the actual transport and

phosphorylation of the carbohydrates.

The high resolution structure of HPr from Escherichia coli was elucidated

both from NMR data93 and X-ray data119. E. coli HPr consists of 85 residues

and shows an open-faced � sandwich fold, with three �-helices on top of a

four-stranded �-sheet.

Protein dynamics as derived from MD simulations can be split into two

classes of motion76, 78. A low-dimensional 'essential' subspace, in which most

of the 
uctuations are concentrated, is distinguished from a high-dimensional

'near-constraints' subspace in which merely small amplitude, fast equilibrat-

ing motions occur. Essential subspaces have been shown53, 78, 84, 85 to con-

tain functionally relevant information for the simulated proteins. Discussion

has been going on about how robust the de�nition of the essential subspace

is109{111 in view of limited sampling time currently available in MD. We have

shown81, 85, 107 that the description of the two subspaces approximately con-

verges after only a few hundred picoseconds of simulation (although motions

within the essential subspace are not adequately equilibrated in such short

time, and therefore the de�nition of the single essential eigenvectors is far

from being converged). We have developed a technique81, 107 that performs

an adapted form of MD with constraint forces in the approximated essential

subspace. This method yields an enhanced sampling of the con�gurational

space as compared to usual MD, and the extrapolation of the essential sub-

space, as approximated from a relatively short MD simulation, yields a re�ned

picture of this subspace. When the method was introduced, we presented an

application to HPr, where we showed that a cluster of structures generated

in this way samples a signi�cantly larger part of the essential subspace, while

all structural properties remain intact81. Subsequently, we applied a modi�-

cation of the method to a peptide hormone, for which we obtained an almost

complete sampling of the available space107.

In this chapter, an extended application to HPr is presented in which the

quality of the obtained structures, the e�ciency of the used protocol com-

pared to usual MD, and the reproducibility of the results is discussed. Phys-

ical correctness of the obtained structures is not only measured in terms of

geometrical checks, but also in terms of ensemble-averaged atomic distances,

which are compared to experimental NMR data. The ED sampling technique

was started from two di�erent starting positions, using di�erent initial ap-

proximations of the essential subspace, obtained from two MD simulations.

A comparison is presented between the two clusters thus obtained, providing
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insight into the convergence of the essential subspaces.

Methods

An MD simulation in solvent was started from one of the structures in the de-

posited NMR cluster (pdb entry 1hdn). This simulation of 350 ps is described

elsewhere120. Over the last 300 ps of this simulation, a covariance matrix was

built and diagonalised. Obtained eigenvectors are directions in con�gurational

space and corresponding eigenvalues give the mean square positional 
uctu-

ation for each direction78. The three eigenvectors with highest eigenvalues

(the �rst three, eigenvectors are ordered to decreasing eigenvalue) were used

in a constraint dynamics procedure, where constraint forces are only applied

in this essential subspace, as described in81. The practical implementation

is identical to that described in detail in107, except for two modi�cations.

Brie
y, the algorithm consists of the following steps: a starting position is de-

�ned as the set of essential coordinates of the starting conformation; a number

of regular MD steps is performed; for each step, a new position is accepted

only if it is not closer to the starting position than the previous position, in

the subspace de�ned by the �rst three eigenvectors (i.e. if the distance from

the starting position in this subspace does not decrease). If the new position is

closer to the starting position, a correction is applied only in the subspace de-

�ned by the �rst three eigenvectors with least perturbation81. The correction

is applied along the radius direction such that the position after correction

is at the same distance (in the essential subspace) from the starting posi-

tion as the previous position. In this manner, the system is encouraged to

sample new regions in the essential subspace, and prevented from going back

to places that have been visited before. When the distance from the initial

position does not increase spontaneously anymore, the cycle is �nished, and a

new cycle is started with the current position being the new starting position.

Because of the applied correction the dynamics of the system is altered and

therefore, time information is lost, except for local, fast equilibrating motions.

Integration steps are therefore merely dynamical sampling steps that cannot

directly be interpreted as time steps.

Here, we use the same algorithm, with two modi�cations. First, backbone

N, C-� and carbonyl C atoms were used in the analysis instead of C-� atoms

only, to make sure that all backbone motions are included in the analysis. We

have shown previously78, 84 that C-� only analyses usually yield all necessary

information, but in the case of HPr, unusual �= combinations have been ob-

served93, 120{122 and inclusion of the other backbone atoms in the ED analyses

is necessary for description of these angles. Second, the criterion for �nishing

a cycle to start another one was altered. The rate at which the distance from

the starting position increases in time is taken as a criterion. This rate was

allowed to decrease to zero in the case of the peptide hormone we studied
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previously107, but since such a low value resulted in denaturation of HPr, we

chose for an average value of 2:5 �10�4 nm per step (for comparison, this value

is typically 7:0 � 10�4 nm per step in the initial phase of each cycle). 125 of

such cycles were produced, in which an equivalent of approximately 1.8 ns of

simulation time was reached. At a position distinct from the starting position

of the �rst MD simulation, a second MD simulation of 350 ps was started.

The eigenvectors derived from the covariance matrix built over the last 300

ps of this trajectory were used to direct a second sampling of 75 cycles (con-

sisting of 650.000 steps, equivalent to 1.3 ns). A free MD simulation of 1.0 ns

was performed for comparison.

All generated structures were subjected to energy minimization with extra

restraining forces (force constants of 4000 kJ � mole �1 � nm�2) on distances

for which experimental NOE data were available93, until no signi�cant energy

change was obtained.

Comparison with time-averaged distance restrained MD is presented. In

total, three pieces of 200 ps (which originated from three distinct distance

geometry structures) were used in these analyses. The distance restrained

simulations are described elsewhere93.

The software used is an adaptation of the simulation package Gromos4.

Essential Dynamics analyses, structural checks and visualizations were per-

formed with the molecular modeling programWHAT IF101. Secondary struc-

ture assignment and solvent accessible surface calculations were calculated by

DSSP102 and dihedral angle evaluations were carried out by PROCHECK123.

Visualization of secondary structure maps was performed with a gromacs5

analysis tool.

Results

From the set of structures produced by ED sampling, a covariance matrix

was built and diagonalised. The two independent pieces of sampling were

combined in this analysis to yield a good de�nition of both the essential and

near-constraints subspaces. Fig. 4.1A shows the structures produced by ED

sampling and free simulation, projected onto the plane de�ned by the �rst

two eigenvectors. The region sampled during free MD is more compact than

that obtained from ED sampling. The region obtained from ED sampling

includes the area sampled by free MD, and extends it in every direction. The

set of NMR structures93 and the X-ray structure119 lie close to the center of

the region spanned by ED sampling (Fig. 4.1B). The sampled con�gurational

volume107, expressed in the space spanned by the three most prominent di-

rections in the cloud of structures, is depicted in Fig. 4.2. The slope of the

curve obtained from ED sampling is approximately seven times larger than

that from free MD and time-averaged distance restrained MD, in the �rst ns,

demonstrating the enhanced e�ciency of sampling using the ED approach.
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The structures produced by both ED sampling and free MD were vali-

dated in several ways. Fig. 4.3 shows the secondary structure as a function

of time. Both during free MD (Fig. 4.3A) and ED sampling (Fig. 4.3B), the

fold of HPr remains essentially stable. The amount of 
uctuation around the

mean structure is larger for the ED sampling than for the free MD simula-

tion. All other geometrical properties are summarised in table 4.1. For all the
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Figure 4.1 Panel A: Projection (in nm) of the collection of structures produced

both by free MD (simulation time of 1.0 ns, �lled squares) and ED sampling

(sampling 'time' corresponding to 3.1 ns, open circles) onto the plane spanned

by the two eigenvectors with largest eigenvalues from ED sampling. Panel B:

Projection (in nm) of NMR (pdb entry 1hdn, �lled squares) and X-ray (1poh,

�lled circle) structures compared to structures obtained from ED sampling (open

circles) onto the plane spanned by the two eigenvectors with largest eigenvalues

from ED sampling.
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Figure 4.2 Sampled con�gurational volume (in nm3) in the space spanned by

the �rst three eigenvectors from ED sampling.

checked properties, averages for the free MD simulation, time-averaged dis-

tance restrained MD, and the ED sampling procedure are very similar. Only

the RMSD from the mean structure is on average signi�cantly larger in the

ED sampling procedure. As observed for the secondary structure (Fig. 4.3),


uctuations of all geometrical properties in table 4.1 are larger during the

ED sampling than during free MD. Together with the higher average RMSD,

this again demonstrates larger conformational freedom during ED sampling.

Energies (Table 4.1) are indistinguishable for the two forms of simulation.

Time-averaged distance restrained MD shows even smaller 
uctuations, in

agreement with previous �ndings103.

As a further validation of the produced structures, we monitored corre-

spondence to distances derived from experimentally observed NOE data. Re-

sults are summarised in table 4.2. For both the ED sampling and the free MD

simulations, violations with respect to the experimentally derived distances

were evaluated after averaging over the whole set of structures, that were

energy minimised with extra potentials on NOE derived distances. Only a

very small fraction of distances (out of 1108 experimentally observed NOE's)

is on average larger than the experimental upper limit, both during free MD

and ED sampling. The sum of violations is in both cases of the same order
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of magnitude as calculated from the cluster of structures produced by time-

averaged distance restrained MD simulations93, the last step in the re�nement

of the NMR structures. It is interesting to note that the running average of

the total sum of violations decreases in time (Fig. 4.4). This suggests that a

more complete sampling will yield even fewer and smaller violations.

Eigenvectors obtained from two independent ED sampling runs and two

independent MD simulations (from which the eigenvectors used to direct the

two sampling runs were extracted) were compared to assess whether the de�-

nition of the re�ned essential subspace depends on their initial approximation.

Fig. 4.5 shows a comparison between the essential subspaces from MD and

ED sampling. For the �rst MD simulation (Fig. 4.5A), the overlap between

the essential subspaces from the ED sampling runs and from MD is approx-

imately equal. This indicates that during sampling, the eigenvectors which

are used to direct the sampling do not dominate the produced cloud of struc-

tures. For the second MD simulation (Fig. 4.5B), the overlap between the

mean � mean � mean �

ED ED MD MD ta-dr-MD ta-dr-MD

NRC 14.36 2.44 14.88 1.88 12.14 1.93

ACC 5551 184 5490 134 5635 134

DIH 5.08 1.21 4.70 1.11 4.60 0.92

HBO 69.4 4.2 67.6 3.7 71.0 4.0

GYR 1.143 0.011 1.140 0.008 1.165 0.007

RMS 1.715 0.469 1.053 0.150 0.762 0.124

EPOT -130.48 0.42 -130.56 0.43 N.A. N.A

EPW -17404 370 -17391 375 N.A. N.A.

Table 4.1 Comparison of geometrical and energetical properties between ED

sampling, free MD and time-averaged distance restrained MD (ta-dr-MD). The

�rst column contains abbreviations of the studied properties: NRC: number of

residues (out of 85) adopting random coil conformation; ACC: solvent accessible

surface (�A2); DIH: number of residues in unfavorable regions of a Ramachan-

dran plot124; HBO: number of backbone-backbone hydrogen bonds; GYR: radius

of gyration (nm); RMS: root mean square deviation (�A) with respect to mean

structure; EPOT: total potential energy (all interactions, including solvent) in

GJ/mole; EPW: All energy terms involving the protein in kJ/mole. The other

columns show the averages and root mean square 
uctuations of these properties

for ED sampling, free MD, and ta-dr MD respectively. Energies are not shown

for the time-averaged distance restrained MD simulations because in these calcu-

lations, an extra term is present in the potential energy function, making direct

comparison impossible. It should be noted that the values for the time-averaged

distance restrained MD simulations were averaged over three simulations that

started from distinct initial NMR structures, making 
uctuations larger than what

would have been found for a single simulation.
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essential subspace of the second sampling is somewhat larger than that for

the �rst sampling. Fig. 4.5C shows that the eigenvectors obtained from the

two sampling runs are as similar to one another as are the eigenvectors from

two free MD simulations. It should be noted that in all graphs of Fig. 4.5,

the overlap between the �rst 10 eigenvectors of each set is always higher than

40 % and that within the �rst 50 eigenvectors (out of 765), more than 80 %

of the essential subspace of the other set can be rebuilt.

All trajectories were projected onto the eigenvector with highest eigen-

value from the whole cluster of ED sampling structures. Fig. 4.6 shows the

structures corresponding to the minimum and maximum position in this di-

rection that were visited both during free MD and ED sampling.

As observed earlier81, motion inside the essential subspace is of di�usive

nature. Fig. 4.7A shows that, for eigenvector 1,2 and 3, during pieces of
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Figure 4.3 Secondary structure as a function of time. panel A: Free MD (1.0 ns).

Panel B: ED sampling (3.1 'ns'). Data shown are for the reference simulation of

1 ns, and for the ED sampling, after combination of the two independent pieces.
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ED MD ta-dr-MD

Sum of violations (nm) 1.093 1.300 0.739

Largest violation (nm) 0.161 0.165 0.140

Violations larger than 0.1 nm (ED)

number residue 1 residue 2 upper limit average violation

1 10 85 0.580 0.705 0.125

2 14 57 0.650 0.764 0.114

3 14 80 0.770 0.918 0.148

4 22 55 0.670 0.819 0.149

5 23 55 0.870 1.031 0.161

Violations larger than 0.1 nm (MD)

1 14 80 0.770 0.929 0.159

2 22 55 0.670 0.809 0.139

3 23 55 0.870 1.035 0.165

4 29 33 0.540 0.643 0.103

5 29 77 0.450 0.592 0.142

6 76 77 0.450 0.556 0.105

7 76 80 0.450 0.592 0.142

Violations larger than 0.1 nm (ta-dr-MD)

1 26 76 0.650 0.756 0.106

2 73 76 0.450 0.590 0.140

Table 4.2 Violations with respect to NOE derived distance restraints. For com-

parison, averaged distances were calculated as < r�6 >�1=6 over clusters gener-

ated by ED sampling, free MD, and time-averaged distance restrained MD.

free simulation, the average square displacement increases linearly with time,

indicative of di�usive behavior. For comparison, the same evaluation was

done for a combination of near-constraints eigenvectors (Fig. 4.7B). In this

case, a linear dependence was observed for a few picoseconds, after which the

curve levels o�, indicating the presence of a signi�cant free energy gradient

for these coordinates, as has been postulated78.

Conclusions and discussion

As we found in an initial study of HPr81 and for a small peptide (13

residues)107, with the ED sampling technique it is possible to extend the

amount of sampling in the essential subspace of proteins. For the peptide it

was even possible to approach a complete sampling within a simulation time

corresponding to a few nanoseconds. We showed in the present study that

also for HPr, a signi�cant gain in the rate in which the essential subspace is

�lled during simulation is attained with respect to usual MD.

From a structural and energetical point of view, the clusters produced by
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ED sampling show similar properties as those from MD and time-averaged

distance restrained MD. This makes the set of structures obtained by ED

sampling equally acceptable as the smaller cluster from free MD or an even

smaller cluster (e.g. from distance restrained simulations, for which we showed

that motions inside the essential subspace may be damped103). So far, HPr

is the only protein on which the ED sampling technique has been applied,

but there is no reason to assume that other proteins will show signi�cantly

di�erent dynamic behavior.

During distance restrained energy minimization, positions in the (back-

bone) essential subspace change only marginally (data not shown). This,

together with the observation that violations of the experimental data are

small, means that the averages of most of the experimentally derived dis-

tances are hardly a�ected by motions in the essential subspace. In a previous

study103, we showed that distance restraining during MD reduces 
uctua-

tions in the essential subspace, due to a few restrained proton pairs, whose
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Figure 4.4 Sum of violations of < r�6 >�1=6 averaged distances with respect

to upper limits derived from NOE data as a function of the number of integra-

tion steps in the calculation. Data shown are for ED sampling, free MD and

time-averaged distance restrained MD. For free MD and time-averaged distance

restrained MD, the number of integration steps is proportional to time.
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distances were a�ected by 
uctuations in this subspace. Here, we demonstrate

that 
uctuations within the essential subspace are possible without violating

the large majority of experimental restraints. In the graph of the con�gura-

tional volume (Fig. 4.2), the curve corresponding to free MD is hardly any

steeper than that obtained for time-averaged distance restrained MD. This

is mainly because the graph consists of a combination of three pieces of sim-

ulation, started from di�erent distance geometry structures. In general, a

time-averaged distance restrained MD simulation can be expected to sample

a smaller fraction of the con�gurational volume than a free MD simulation

of comparable length would. This suggests that the reduced 
uctuation in

the essential subspace during distance restrained MD is mainly due to the at-

tempt to ful�ll all distances simultaneously (or averaged over too short time

scales in time-averaged distance-restrained MD). The small number of dis-

tances which on average exceed their upper limits by more than 1.0 �A, are
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Figure 4.5 Cumulative average square inner product between di�erent sets of

eigenvectors. The �rst 100 eigenvectors (out of 765) of one set (the set which is

named �rst in the legend) are compared to the �rst 10 eigenvectors of the other

set. Panel A compares one MD simulation of 300 ps to two ED sampling runs.

Panel B shows the same, now for another simulation of 300 ps. Panel C compares

the two MD simulations and the two ED sampling runs.
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among the largest distances derived from the set of observed NOE's. These

NOE's are the weakest observable peaks in the NOE spectra and are therefore

most susceptible to misinterpretation. Therefore we conclude that there is no

good reason, based on NMR data, to favor the set of structures obtained from
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Figure 4.6 Stereo representation of the backbone structures corresponding to

minimum (thin line), maximum (dashed line), and average (fat line) position

along the �rst eigenvector from ED sampling. Panel A corresponds to free MD,

panel B to ED sampling.
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Figure 4.7 Mean square displacement along eigenvectors (in nm2) averaged over

80 pieces of 20 ps of free simulation. Panel A corresponds to the displacements

along the �rst three eigenvectors, panel B to the displacements along three near-

constraints.

time-averaged restrained MD re�nement over the present set of structures, as

obtained from our ED sampling algorithm. Moreover, the few remaining vi-

olations decrease as the ED sampling proceeds (Fig. 4.4), suggesting that

averaging over an even larger set of structures could enhance correspondence

with the experimental data further.

Other analyses, like the calculation of the con�gurational volume sampled

(Fig. 4.2) and comparison of di�erent sets of eigenvectors (Fig. 4.5) suggest

that the sampling is not complete yet. In a peptide of 13 residues, we observed

that the curves in the plot of the con�gurational volume leveled o� after a

sampling time corresponding to 2 ns of free MD107, indicating an almost

exhaustive sampling. Although the slope of the curve of the volume for ED

sampling does decrease with time for HPr, it is not approaching an asymptotic

value yet. This suggests that the sampling is still not complete in this subspace

and that only a small fraction of all possible con�gurations has been visited.

The fact that eigenvectors extracted from two independent MD simula-

tions are as similar to each other as are eigenvectors from two independent

ED sampling runs (Fig. 4.5), is another indication for this conclusion. The

description of the essential subspace has approximately converged, even in a
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simulation time of a few hundred ps, although individual directions (eigenvec-

tors) spanning this subspace are not fully converged yet. Even in a relatively

extensive sampling, complete convergence is not yet reached. The overlap be-

tween two sets of eigenvectors, measured as the cumulative mean square inner

product between a subset of (ten) eigenvectors of one set with all eigenvectors

out of the other set (Fig. 4.5), shows that the largest contribution is always

obtained from the �rst part of the second set. In all graphs, more than 90 %

of the overlap is found between the subspace spanned by the �rst ten eigen-

vectors of one set and less than 10 % of the (largest eigenvalue) eigenvectors

of the other set. It is important to note that in all compared sets, an amount

of noise is present. In a pair comparison as presented in Fig. 4.5, this will

have a more serious e�ect than in other forms of comparison.

The dynamic behavior (in the essential subspace) during the ED sampling

procedure is a�ected by the presence of constraint forces. Therefore, the den-

sity of sampled con�gurations cannot be used directly for exact thermody-

namic evaluations. However, the dynamic behavior of essential coordinates

(Fig. 4.7) appears to be a form of di�usion, indicating that no signi�cant free

energy gradients exist in the essential subspace. Hence, a homogeneous equi-

librium density distribution in the available essential subspace (as obtained

by ED sampling) is to be expected. The sampling of the essential subspace

of HPr as presented in this paper is not complete enough to provide insight

into the details of the free energy surface in the complete essential subspace.

The results suggest however, that the sampled fraction is a rather 
at sur-

face with at most many small (< kT) local minima. In a previous paper we

showed107 that for a small peptide the borders of this space are well de�ned

and steep. For HPr, the borders seem less well localised and rather soft in

some directions, leaving routes for denaturation.
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Summary

A comparison of a series of extended Molecular Dynamics simulations of bac-

teriophage T4 lysozyme in solvent with X-ray data is presented. Essential

Dynamics analyses were used to derive collective 
uctuations from both the

simulated trajectories and a distribution of crystallographic conformations.

In both cases the main collective 
uctuations describe domain motions. The

protein consists of an N- and C-terminal domain connected by a long he-

lix. The analysis of the distribution of crystallographic conformations reveals

that the N-terminal helix rotates together with either of these two domains:

the main domain 
uctuation describes a closure mode of the two domains in

which the N-terminal helix rotates concertedly with the C-terminal domain,

while the domain 
uctuation with second largest amplitude corresponds to a

twisting mode of the two domains, with the N-terminal helix rotating con-

certedly with the N-terminal domain. For the closure mode, the di�erence in

hinge-bending angle between the most open and most closed X-ray structure

along this mode is 49 degrees. In the MD simulation that shows the largest


uctuation along this mode, a rotation of 45 degrees was observed. Although

the twisting mode has much less freedom than the closure mode in the distri-

bution of crystallographic conformations, experimental results suggest that it

might be functionally important. Interestingly, the twisting mode is sampled

more extensively in all MD simulations than it is in the distribution of X-ray

conformations.
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Introduction

The notion of domain motions in hen lysozyme, inferred from its X-ray struc-

ture125, 126, is more than twenty years old127. Although bacteriophage T4

lysozyme (T4L) has a very di�erent structure, the domain character of the

protein is even more pronounced128. From the di�erences between crystal-

lographic structures of various mutants of T4L it has been suggested that a

hinge-bending mode of T4L is an intrinsic property of the molecule129{131.

This hypothesis was recently qualitatively supported by studies of T4L in so-

lution132. Also from computer simulations domain motions of the wild-type

protein have been observed52, 133. The domain 
uctuations are predicted to

be essential for the function of the enzyme, allowing the substrate to enter

and the products to leave the active site. Crystallographic studies of a mu-

tant T4L134 in which a substrate is covalently bound to the enzyme, suggest

that the substrate-bound enzyme is locked in a state in which the two do-

mains have closed around the substrate with respect to the unbound state.

The unbound enzyme is expected to display a larger hinge-bending angle on

average.

More than 200 T4L structures crystallised in more than 25 di�erent crys-

tal forms are present in the Protein Data Bank131. Assuming that each crys-

tal structure represents a possible conformation in solution, this provides a

unique experimental view on the conformational 
exibility of the protein at

atomic resolution. Information on conformational freedom of proteins is usu-

ally obtained from only a few experimental structures135{137 but dynamics of

proteins is so complex that these few structures give only an extremely limited

view of the dynamics involved. For T4L, the comparatively large number of

di�erent experimental conformations should provide us with a more detailed

picture of its dynamical behaviour which can then be sensibly compared to

an MD simulation87. This provides the opportunity to assess the reliability

of MD simulations.

T4L is a good system to study, not only for its large number of X-ray

conformers but also because it is a rather small domain protein suitable for

MD simulation. As domain proteins are usually relatively large, only few

MD studies have been published in which domain motions were extensively

studied52, 55, 84, 138{141.

In this study, a detailed comparison is made between the collective (do-

main) 
uctuations in T4L derived from the distribution of X-ray structures

and from extensive MD simulations in solvent. Three simulations were con-

ducted, each of one nanosecond, starting from di�erent experimental struc-

tures. The Essential Dynamics (ED) analysis78 was applied both to the dis-

tribution of X-ray and MD structures to separate small-amplitude 
uctua-

tions from large-amplitude global 
uctuations. The largest-amplitude collec-

tive 
uctuations from the X-ray distribution and from MD were subjected

to domain and hinge-bending analyses55, 56 to monitor domain 
uctuations.

Collective 
uctuations derived from MD can be expected to be a�ected by
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limited sampling109, 110, 142 or imperfections in the inter-atomic interactions

or force �eld. On the other hand, the crystallographic structures may not be

representative of solvent-accessible conformations for the wild-type as they

may be a�ected by the di�erent mutations or by crystallisation conditions

and/or crystal contacts131. Despite these reservations a good correspondence

between the MD results and X-ray analysis is obtained. Additionally, the de-

tailed analyses of the domain 
uctuations in T4L reveal interesting dynamical

aspects that may be important for the function of the protein.

Methods

MD simulations

Three simulations were performed, each of one nanosecond. The �rst simu-

lation, of the wild-type protein, started from a high-resolution X-ray struc-

ture143 (PDB entry 2LZM). This simulation will from now on be referenced

to as WT. The second simulation (M6I) was of the mutant M6I (methionine

6 replaced by isoleucine) and started from the X-ray structure with largest

hinge-bending angle of this mutant129 (PDB entry 150L, hinge-bending angle

31 degrees more open than the WT X-ray structure). The coordinates of

the three C-terminal residues not present in this crystal structure were taken

from the most closed conformation from the same PDB entry. The third sim-

ulation started from the same structure, now mutated back to the wild type

(WT*). All simulations were performed in a periodic box �lled with SPC98

water molecules (also crystallographic water molecules were included). Polar

and aromatic hydrogens were added to the protein. In each of the simulated

systems, 8 Cl� ions were added to compensate the net positive charge on the

protein. These ions were introduced by replacing water molecules with the

highest electrostatic potential. This added up to a total of 19195 atoms for

the WT simulation and 17101 for the M6I and the WT* simulation. Prior to

the simulations, the structures were energy-minimised for 100 steps using a

steepest-descents algorithm. Subsequently the structures were simulated for

10 ps with a harmonic positional restraint on all protein atoms (force constant

of 1000 kJ mol�1 nm�2) for an initial equilibration of the water molecules.

Production runs of 1 ns started from the resulting structures. All simulations

were run at constant volume. The temperature was kept constant at 300 K

by weak coupling to a temperature bath99 (� = 0.1 ps). A modi�cation144 of

the GROMOS874 force �eld was used with additional terms for aromatic hy-

drogens6 and improved carbon-oxygen interaction parameters144. SHAKE11

was used to constrain bond lengths, allowing a time step of 2 fs. A twin-

range cut-o� method was used for non-bonded interactions. Lennard-Jones

and Coulomb interactions within 1.0 nm were calculated every step, whereas

Coulomb interactions between 1.0 and 1.8 nm were calculated every ten steps.
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All simulations were performed with the GROMACS simulation package5.

Analysis techniques

Apart from conventional structural and geometrical analyses to assess the sta-

bility of the structures during the simulation, ED78 analyses were utilised to

study large concerted motions. The method yields the directions in con�gu-

rational space that best describe concerted atomic 
uctuations and is related

to principal component analysis and quasi-harmonic analyses73, 76, 77, 94, 145.

It consists of diagonalisation of the covariance matrix of atomic 
uctuations,

after removal of overall translation and rotation. Resulting eigenvectors are

directions in con�gurational space that represent collective motions. Corre-

sponding eigenvalues de�ne the mean square 
uctuation of the motion along

these vectors. The method can be applied to any (sub)set of atoms using any

set of structures78.

An ED analysis was performed on a cluster of X-ray crystallographic

structures. Only structures from di�erent crystal forms were included in the

analysis. Zhang et al. 131 described 25 di�erent crystal forms. From their

list, a set of 21 pdb entries was constructed, including 38 structures. These

entries include 149L146, 152L146{148, 169L131, 172L147, 176L131, 179L147,

2LZM143, 137L149, 150, 150L129, 167L131, 147, 170L131, 173L131, 177L131,

1L97130, 151L131, 146, 168L131, 171L131, 174L131, 178L131, 147, 216L149 and

148L134.ED analyses were performed on the cartesian coordinates of the main

chain N, C-� and C coordinates. Residues 163 and 164 were excluded from

the analysis because their coordinates were absent in many of the pdb entries.

The same atoms were used in the ED analyses of the MD simulations.

Analyses were performed on each individual MD trajectory (as the potential

energies appeared to stabilise in less than 100 ps, the �rst 100 ps of each

trajectory were disregarded) and on a combination of the three simulations.

In this combination, the three simulations were not simply concatenated, be-

cause the eigenvectors would then be in
uenced by the di�erences between the

average (starting) structures of each simulation. To remove the bias caused

by these static di�erences, only the 
uctuations from the average structure

in each simulation were taken into account. This analysis implies the ap-

proximation that there are no systematic di�erences between the individual

simulations. This combined analysis will be referenced to as MD ALL.

ED analyses were carried out using the WHAT IF program101. Domains

and hinge axes were identi�ed and characterised using the DYNDOM pro-

gram55, 56. The method analyses conformational changes in terms of rota-

tional properties. Dynamic domains are identi�ed by clustering each residue's

rotation vector in a particular collective mode of motion.
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Results

Figure 5.1 shows the root mean square deviation (RMSD) during the three

free simulations with respect to the WT X-ray structure and to the most

open M6I X-ray structure. Deviations from the respective starting structures

are relatively large, suggesting large structural 
uctuations. The di�erence

between the two starting structures (0.26 nm) is approximately as large as

the drifts from the starting structures in each simulation.

Atomic 
uctuations in the set of of X-ray structures were compared to

the crystallographic B-factors averaged over the 38 experimental structures

and to the atomic 
uctuations calculated from the MD simulations (Fig. 5.2).

There is poor correspondence between the average B-factors and the atomic


uctuations in the distribution of X-ray structures (correlation coe�cient of

0.55) but there is good correspondence between the atomic 
uctuations in the

X-ray and MD distribution (correlation coe�cient of 0.85).
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Figure 5.1 Root mean square deviatation of C-� atoms from the WT X-ray

structure (upper panel) and from the most open M6I ('D') X-ray structure (lower

panel).
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Fig. 5.3. shows the eigenvalues of the ED analyses of the set of X-ray struc-

tures and of the combination of the three MD simulations (MD ALL). The

eigenvalue curve is very steep in the X-ray analysis with the �rst eigenvector

contributing 86 % to the total mean square 
uctuation. For MD ALL, the

eigenvalue curve is less steep and therefore more eigenvectors are required to

achieve the same level of approximation of the total mean square 
uctuation.

The domain analysis55, 56 was performed on the motions along single eigen-

vectors to ascertain whether these main modes of correlated 
uctuation cor-

respond to domain motions. Table 5.1 and Fig. 5.4 show that the two most

dominant of these modes extracted from the distribution of X-ray structures

clearly correspond to the motion of two quasi-rigid bodies with respect to

each other56. For both modes there are two distinguishable domains. The

C-terminal domain is largest and ranges from approximately residue 75 to

the C-terminus. The smaller N-terminal domain ranges from approximately
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Figure 5.2 Atomic 
uctuations (expressed in isotropic B-factors; B = (�r)2 �

8�2=3, with (�r)2 being the calculated atomic mean square 
uctuation) of main

chain atoms in the X-ray cluster compared to the B-factors averaged over the

38 crystal structures and to the atomic 
uctuations averaged over the three MD

simulations.
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residue 13 to 65. The �rst ten N-terminal residues are not statically part

of the N- or C-terminal domain, but 
uctuate correlated with either of the

two domains: with the C-terminal domain in the �rst eigenvector and with

the N-terminal domain in the second. The transition between the N- and

C-terminal domains is located between residues 65 and 75, in the middle of

the inter-domain helix. The 
exible link between the �rst ten residues and

the N-terminal domain consists of residues 11 and 12.

The assignment of residues to the domains given above was used to extract

the axes around which the domains rotate with respect to each other. The

calculated inter-domain screw-axes are shown as arrows in Fig. 5.4 for the

�rst and second eigenvectors from the ED analysis of the X-ray cluster. Both

axes are \e�ective hinge axes"56 as they pass near the residues shown to be

involved in the inter-domain motion (see table 5.1). The �rst eigenvector

corresponds (mainly) to a closure motion55 (de�ned by an e�ective hinge axis

perpendicular to the line connecting the centers of mass of the two domains)
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Figure 5.3 Eigenvalues obtained from the Essential Dynamics analyses of the

cluster of X-ray structures and of the combination of MD simulations. The inset

shows the cumulative contribution of the eigenvectors to the total mean square


uctuation.
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X-ray, e.v. 1 X-ray, e.v. 2 MD ALL, e.v. 1 MD ALL, e.v. 2

domain A 14-66 1-65 15-63 12-66

domain B 1-10, 81-162 74- 162 1-12, 75-162 70-162

connecting regions 11-13, 67-80 66-73 13-14, 64-74 1-11, 67-69

angle of rotation 47.1 16.0 39.4 34.5

residues near axis 12,13,29,71-76 6,7,49,50,66,67 13,29,59,102 12,67,69,70

angle k 66.5 37.1 29.2 75.3

% closure motion 84.1 36.5 23.9 93.5

Table 5.1 Domain analyses of the two modes with largest amplitudes from X-ray

and MD ALL. Residues were marked near to the e�ective hinge axis if their C�

atoms were found within 3 �A of the axis. Angle k denotes the angle between the

e�ective hinge axis and the line connecting the two centers of mass of the two

domains.

(table 5.1, Fig. 5.4A). The angular di�erence between the most open (PDB

entry 178L147) and the most closed con�guration (PDB entry 152L) is as

much as 47 degrees (table 5.1). From the clustering of the endpoints of the

rotation vectors in Fig. 5.4A it is visible that the ten N-terminal residues

rotate together with the C-terminal domain. The second eigenvector consists

(mainly) of a twisting of the two domains, with the e�ective hinge axis being

more parallel to the line connecting the two centers of mass. (table 5.1, Fig.

5.4B). From the clustering of the atoms in Fig. 5.4B it can be seen that the

�rst ten residues now rotate more concertedly with the N-terminal domain.

Domains were identi�ed also from the �rst two modes of the MD ALL

analysis (table 5.1, Fig. 5.5) and there is good correspondence with the do-

main demarcation obtained from the X-ray analysis. Again, residues 11-14

and 65-80 form the dynamical links between the two domains. The dynamic

behaviour of the N-terminal helix is less pronounced than in the analysis of

X-ray structures. It is assigned to the C-terminal domain along the �rst mode

(twist) and is identi�ed as intermediate region along the second mode, which

describes a closure mode.

All X-ray and MD structures were projected onto the plane spanned by

the two eigenvectors with largest eigenvalue from the distribution of X-ray

conformations to compare the kind and extent of 
uctuation in the X-ray

structures and MD (Fig. 5.6). All MD simulations 
uctuate signi�cantly in

this plane, indicating that the main modes of collective 
uctuation in the

X-ray cluster are accessible during MD. This is in agreement with with pre-

vious �ndings87. There are di�erences between the regions sampled in this

plane by X-ray and MD, however. The WT simulation shows a 25 degrees

opening of the structure along the �rst X-ray eigenvector with respect to its

starting con�guration but does not reach any of the most open con�gurations

observed in the X-ray cluster. The M6I simulation starts from a more open

con�guration and closes 29 degrees, reaching a hinge-bending angle almost
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Figure 5.4 Backbone structure (left) and rotation vectors (right) of T4L. End

points, depicted as beads, of rotation vectors per residue (the beads are con-

nected as in the amino-acid sequence) were used to identify the domains. The

grayscales indicate the di�erent clusters (domains) that were assigned (light and

dark residues) and the inter-domain regions (intermediate grayscale) based on

the rotation vectors. The arrow indicates the direction of rotation of the light

domain relative to the dark domain by the thumb rule of the right hand. Panel

A: Eigenvector 1 from the X-ray cluster. Displayed is the most open conforma-

tion with the arrow indicating the closure motion. Panel B: Eigenvector 2 from

the distribution of X-ray conformations. Domain analyses were performed by

DYNDOM56. Plots were made with MOLSCRIPT151 and Raster3D152,153.
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Figure 5.5 Domain identi�cation from the �rst (left) and second (right) mode

from MD ALL. As in Fig. 5.4, grayscales indicate the di�erent clusters (domains)

that were assigned (light,dark) and the inter-domain regions (intermediate gray)

from the rotation vectors. Domain analyses were performed by DYNDOM56.

This plot was made with MOLSCRIPT151 and Raster3D152,153.

equal to that of the WT X-ray structure. Both the M6I simulation and the

WT simulation spend most of the time at a hinge-bending angle between 7

and 19 degrees more open than the WT X-ray structure. The WT* simu-

lation initially closes and also reaches a conformation similar to that of the

WT X-ray structure. After that it opens up again and reaches a conforma-

tion with a hinge-bending angle 45 degrees more open than that of the WT

X-ray structure, slightly more open than the X-ray structure with largest

hinge-bending angle. Along this �rst eigenvector there seem to be two dis-

tinct clouds in the cluster of X-ray structures with only two con�gurations

in between. This is consistent with a two-state mechanism postulated on the

basis of these structures131. The simulations do not support this hypothesis,

however, and indicate that intermediate structures are equally accessible.

The position along the second X-ray eigenvector, which mainly describes

a twisting mode, 
uctuates uncoupled from the position along the �rst eigen-

vector, both in the X-ray cluster as well as in the three MD simulations. The

amplitude of the 
uctuation in this direction is larger in each of the three
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simulations than in the cluster of crystal structures.

Table 5.2 lists inner products between eigenvectors obtained from the clus-

ter of X-ray structures and those obtained from MD. This provides a quanti-

tative measure of the overlap in modes of motion derived from the two tech-

niques. Table 5.2a shows that the two eigenvectors with largest eigenvalue

from the X-ray analysis are to a large extent present in the space spanned

by the �rst �ve eigenvectors obtained from each simulation. This means that

the modes of domain motion extracted from the di�erences between the X-ray

conformations are also among the most dominant ones in the simulations. It

is interesting to note that the overlap between eigenvectors extracted from the
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Figure 5.6 Projections (in nm) onto the plane spanned by the two eigenvectors

with largest eigenvalues extracted from the cluster of X-ray structures. Upper left

panel : X-ray structures; upper right panel : structures from the WT simulation;

lower left panel : structures from the M6I simulation; lower right panel : structures

from the WT* simulation. The arrows indicate the starting structures of each

simulation. In the horizontal direction, structures di�er from each other along

the closure mode (structures to the left are more open than those on the right);

the vertical direction depicts the twisting mode.
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combination of the three MD simulations (MD ALL) and the X-ray eigenvec-

tors is larger than the average of the overlaps between the X-ray eigenvectors

and those extracted from each of three simulations individually. When the

MD simulations are compared to each other in the same fashion (table 5.2b),

the overlap is on average lower than with the X-ray structures (table 5.2a).

Therefore, the main modes of motion derived from each of the MD simula-

tions are more similar to the main collective 
uctuations derived from the

X-ray cluster than to those from the other MD simulations.

In order to compare with the qualitative results of Mchaourab et al. 132,


uctuations of the distances between selected pairs of �-carbon atoms were

monitored along the two most prominent modes of collective 
uctuation

derived from the cluster of X-ray structures (Table 5.3). The pairs were

selected to study the di�erence in conformation between the protein free

in solution and covalently bound to a substrate. The 
uctuations of the

distances between pairs 35-137, 22-137, 4-71 and 4-60 are mainly ruled by

a.

X-ray eigenvector

e.v. 1-5 1 2

WT 0.72 0.69

M6I 0.80 0.81

WT* 0.91 0.76

MD ALL 0.92 0.77

b.

WT eigenvector

e.v. 1-5 1 2

M6I 0.34 0.40

WT* 0.61 0.45

M6I eigenvector

e.v. 1-5 1 2

WT 0.65 0.60

WT* 0.58 0.66

WT* eigenvector

e.v. 1-5 1 2

WT 0.64 0.54

M6I 0.85 0.76

Table 5.2 a. & b. Summed squared inner products between one eigenvector

of one set and the �rst �ve of another. a. MD eigenvectors compared to X-ray

eigenvectors. b. MD eigenvectors from di�erent simulations compared to each

other.
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Spin labeling X-ray

Pair upon substrate 
uctuation

binding distance a�ected by

35-137 decreases closure

22-109 increases twist (closure)

22-137 decreases closure

4-71 decreases closure

4-60 increases closure

35-109 - closure (twist)

Table 5.3 Fluctuation of distances between pairs of �-carbon atoms along the

�rst (closure) and second (twist) collective mode of 
uctuation derived from the

cluster of X-ray structures (selection of the pairs after Mchaourab et al.
132).

the 
uctuation along the eigenvector with largest eigenvalue, describing a

closure motion. The observed spin-spin interactions132 are consistent with

a shift along the closure mode (towards closing) upon substrate binding.

The distance between residues 35 and 109, however, hardly changes upon

'substrate release' although a 
uctuation along the closure mode signi�cantly

in
uences the distance between this pair. The distance between residues

22 and 109 does change upon 'substrate release' but the 
uctuation of the

distance is much more connected with the twisting mode than with the

closure mode, suggesting that substrate binding may also a�ect the twisting

mode.

A web page has been dedicated to the visualisation of the dynamical in-

formation presented here:

http://rugmd0.chem.rug.nl/�degroot/t4l.html

Discussion and Conclusions

The collective 
uctuations in T4L comprise, for the largest part, domain

motions. The most dominant modes of 
uctuation in the X-ray analysis

as well as in all MD analyses correspond to external motions of the domains

with respect to each other. Moreover, the main modes of 
uctuation obtained

from the cluster of X-ray structures are very similar to those obtained from

simulation. The amount of overlap between X-ray and MD modes is larger

than between modes of two similar MD runs. This is remarkable because it has

been observed previously108{110, 142 that the de�nition of single eigenvectors

in an ED analysis has not converged in simulations over time periods in the

order of nanoseconds. A possible explanation for this phenomenon lies in the

domain character of the protein, which causes two modes of domain motion

to dominate over all other 
uctuations: the domain 
uctuations observed
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in the X-ray cluster are among the most extensively sampled directions in

all MD simulations. The incomplete mutual overlap between MD modes

is mainly due to insu�cient sampling statistics, suggesting that longer MD

simulations will show an even larger amount of overlap with the cluster of

X-ray structures. The most important conclusion from the comparison of

structural variability in X-ray andMD-generated structures is that MD indeed

samples the important, physically relevant space, thus validating the MD

method for application to protein dynamics.

The domain 
uctuations in the MD simulations indicate that both the

wild-type protein and the M6I mutant 
uctuate signi�cantly along the do-

main modes derived from the X-ray cluster. This is consistent with the hy-

pothesis by Zhang et al. 131 that domain motions are an intrinsic property

of the T4L molecule. The results by Mchaourab et al. 132 further support

this �nding. From the simulated data there is no evidence for the proposed

two-state mechanism131 for the main hinge-bending mode. The WT and M6I

simulation do show a preference for intermediate hinge-bending angles for this

mode (angles between 7 and 19 degrees more open than the WT X-ray struc-

ture) but the WT* simulation indicates that also more open con�gurations

are easily accessible. Since there is no topological di�erence between the WT

and the WT* simulation, a lack of su�cient sampling seems the most prob-

able cause for the apparent di�erence between these simulations. Since also

the di�erences between the M6I simulation and the WT and WT* simulations

are not larger than the di�erence between the WT and WT* simulation, the

conclusion that the hinge bending properties of the M6I mutant are close to

those of the WT protein seems justi�ed. This supports our assumption that

the combination of the three MD trajectories for ED analysis (MD ALL) is

valid.

In a recent study, Arnold and Ornstein also presented results from MD

simulations on native T4L and the M6I mutant133. They found that in all

their simulations the protein went to a more compact conformation and con-

cluded that a conformation more closed than the WT crystal structure would

be the most stable con�guration in solution. These �ndings are not supported

by our results. We observe that in all simulations, the large majority of sam-

pled conformations displays a more open conformation than the WT X-ray

structure. A possible explanation of this apparent discrepancy is the di�erence

between simulation protocols used. We have used a periodic box �lled with

a large number of solvent molecules (approximately 5000), whereas Arnold

and Ornstein used a shell of solvent containing approximately 2200 water

molecules. Protein dynamics in simulations using a shell of solvent molecules

might be a�ected by surface tension e�ects in such small droplets, resulting

in unrealistically compact structures. Since in both cases three simulations

have been performed, with consistent results, limited statistics can proba-

bly be ruled out as a possible explanation for this observation. Interestingly,

Arnold and Ornstein reported that the conformational change towards more

compact structures did reveal the domain character of the protein, suggesting
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once again that domain motions are among the most prominent collective


uctuations of T4L.

The domain modes obtained from MD and the cluster of X-ray structures

are essentially similar (Fig. 5.4, Fig. 5.5., Tables 5.1 & 5.2). The protein

consists of two domains; an N-terminal domain comprising residues 15 to

65 and a C-terminal domain that ranges from residue 80 to the C-terminus.

Residues 70-75, residing in the C-terminal half of the inter-domain helix, form

the dynamical bridge between the two domains. The behaviour of the ten N-

terminal residues is complex. In the main domain 
uctuation derived from

the X-ray cluster, mainly a hinge-bending mode describing a closure motion

between the two domains, this N-terminal helix rotates concertedly with the

C-terminal domain. Along the collective 
uctuation with second largest am-

plitude however, which mainly consists of a twisting of the two domains, this

helix appears to be part of the N-terminal domain. The two main modes of

collective 
uctuation obtained from MD basically form a linear combination

of the �rst two modes from the X-ray cluster. Therefore, the dynamical be-

haviour of the N-terminal helix is in
uenced by both the N- and C-terminal

domains in these modes and the assignment to either domain is less evident

(Fig. 5.4, Table 5.1). Concluding, the N-terminal helix is not a static part

of either of the two domains but rather adapts its dynamical behaviour to

the kind of domain motion. Upon opening, contacts with residues 93-97 and

the C-terminal residues push the N-terminal helix away from its original po-

sition. The 
exible loop connecting it to the N-terminal domain (the rotation

is concentrated around GLU11 and GLY12) allows it to move concertedly

with the C-terminal domain along the closure mode. The absence of such a

steric e�ect in the twisting mode causes the helix to move concertedly with

the N-terminal domain in this mode.

The large amount of overlap between the domain 
uctuations in the clus-

ter of X-ray structures and the MD simulations is the main reason for the

close agreement of the atomic 
uctuations in both clusters (Fig. 5.2). The

much smaller correlation between the 
uctuations in the cluster of X-ray

structures and the averaged B-factors, together with the signi�cantly lower

average level of the B-factors suggests that the main domain motions are

signi�cantly suppressed in most of the crystal environments included in this

analysis. Although the pattern of thermal factors in some cases (especially

those in 176L A, 176L B, and to a lesser extent also 2LZM (WT)) does sug-

gest some degree of domain 
uctuation143, we can conclude that, at least

for 
exible proteins, B-factors may be a less reliable indication of motional

freedom in solution than 
uctuations derived from MD.

Apart from the similarities between the 
uctuations in MD and the X-ray

cluster, there are also a few discrepancies. One of the most striking di�erences

is in the shapes of the eigenvalue curves (Fig. 5.3). For the X-ray cluster there

is one dominating collective 
uctuation (the closure mode) which accounts for

86 % of the total 
uctuation, and the �rst ten eigenvectors together represent

98 % of the 
uctuation. In MD, the �rst mode only contributes 29 % to
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the total 
uctuation and the �rst ten together represent 79 %. This is not

the result of the fact that there far fewer structures present in the X-ray

cluster (38) than in the MD cluster (27.000) (when a subset of 38 structures,

equally spaced in time, is taken from the MD ALL cluster, the �rst eigenvector

contributes 32 % and the �rst ten eigenvectors 85 % to the total 
uctuation).

This indicates that in the MD, a larger number of collective 
uctuations

than in X-ray make a signi�cant contribution to the total 
uctuation. The

di�erence in sampled regions in the two main directions from the X-ray cluster

is illustrated by Fig. 5.6. Both the WT and M6I simulations do not sample the

complete range of hinge-bending angles along the main closure mode derived

from the X-ray cluster. The WT* simulation, however, indicates that this is

the result of limited sampling, since in this simulation almost the complete

range that is present in the X-ray cluster is sampled in one nanosecond. For

the eigenvector with the second largest eigenvalue derived from the cluster of

X-ray structures, the twisting mode, the 
uctuation in all three simulations

is larger than in the X-ray cluster (Fig. 5.6). Limited sampling in MD cannot

be the explanation for this observation since this direction is oversampled

with respect to the X-ray cluster. Also, the e�ect of mutations in the cluster

of X-ray structures is not likely to be the reason for this discrepancy since

one could expect the mutations to result in a larger 
uctuation rather than

smaller, with respect to the WT protein. If one assumes that in 25 di�erent

crystal forms all conformational freedom has been sampled, then only the

e�ect of crystallisation conditions and/or crystal contacts or the used force

�eld in MD remain as possible explanations for this di�erence. Further studies

(e.g. NMR) will be necessary to distinguish which is the main e�ect.

The investigation of the 
uctuation of distances between selected pairs of

�-carbon atoms (Table 5.3) shows that for four out of the six investigated

pairs, the experimentally observed changes in distances in solution are in

accordance with an opening along the closure mode upon transition from

the substrate-bound state to the substrate free state. The 
uctuation of

the distance between residues 22 and 109, which is found to change upon

'substrate release' is more connected with the twisting mode than with the

closure mode, however. This suggests that also the twisting mode is a�ected

by the presence of the substrate. Another distance, between residues 35 and

109, does not seem to change much upon 'substrate release' but is a�ected

substantially by the closure mode. A possible explanation for this observation

is a partial compensation by a change along the twisting mode, which also

makes a signi�cant contribution to the 
uctuation of this distance. This is

a further indication that not only the closure motion but also the twisting

mode is relevant for the function of this protein and that the two modes are

concertedly involved in the dynamics of substrate binding. Interestingly, all

MD simulations display a larger extent of 
uctuation along the twisting mode

than is observed in the cluster of X-ray structures (Fig. 5.6).

In summary, we conclude that T4 lysozyme exhibits a mixture of two

hinge-bending modes (a closure and a twist) which are both involved in the
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dynamic response to substrate binding. Furthermore, we have shown that

MD simulations of this protein provide reliable predictions of its functional

dynamics.
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Summary

A method is presented that generates random protein structures that ful�ll a

set of upper and lower inter-atomic distance limits. These limits depend on

distances measured in experimental structures and the strength of the inter-

atomic interaction. Structural di�erences between generated structures are

similar to those obtained from experiment and fromMD simulation. Although

detailed aspects of dynamical mechanisms are not covered and the extent

of variations are only estimated in a relative sense, applications to an IgG-

binding domain, an SH3 binding domain, HPr, calmodulin and lysozyme are

presented which illustrate the use of the method as a fast and simple way to

predict structural variability in proteins. The method may be used to support

the design of mutants, when structural 
uctuations for a large number of

mutants are to be screened. The results suggest that motional freedom in

proteins is ruled largely by a set of simple geometric constraints.
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Introduction

Structural studies like X-ray crystallography and NMR spectroscopy often

provide insight into the function of a protein. However, detailed questions

on many dynamic aspects of enzymatic mechanisms such as regulation or

substrate entry, remain unanswered when only static structures are available.

Dynamic processes are crucial steps in the functioning of enzymes. Therefore,

detailed information on the dynamics of a protein is necessary for a complete

understanding of its function.

Simulation techniques can help to obtain dynamic information that can-

not be provided by experimental techniques in a straightforward manner. A

number of computational techniques have been developed to gain information

on protein dynamics and structural 
uctuations. Molecular Dynamics (MD)

and Monte Carlo (MC) techniques are the most popular ones. The accuracy

of these techniques depends on the protocols used (force-�eld, molecular rep-

resentation etc.) and on the simulation length. Using the most realistic force

�elds, at most a few nanoseconds for a small protein in an aqueous environ-

ment can be simulated within acceptable computer time154, 155. This time

scale is a few orders of magnitude smaller than that on which most biological

processes take place, leaving the MD technique with a signi�cant sampling

problem109, 110. The e�ciency of MC calculations is comparable to that of

MD due to the presence of internal barriers156.

Essential Dynamics

Essential Dynamics (ED),53, 78, 84, 85 equivalent to Principal Component76, 94

analyses of MD trajectories have shown that most (more than 90 %) of the

simulated atomic 
uctuations usually can be described by a few large-scale

concerted motions. ED analyses of MD trajectories determine the eigen-

vectors of the covariance matrix of atomic 
uctuations. Diagonalisation of

this matrix yields a set of eigenvectors and eigenvalues and the eigenvectors

with largest eigenvalues (usually a typical number of ten su�ces) describe

all large-scale concerted 
uctuations. If the eigenvectors are seen as vectors

that span a complex space then the few 'essential' eigenvectors with largest

eigenvalues span a subspace, the essential subspace, and all large concerted

motions take place in this subspace. It is assumed that also the true con�gu-

rational space of most proteins contains a low-dimensional subspace in which

most positional 
uctuations take place. The essential subspace obtained from

simulation is an approximation of that subspace. ED analyses of MD tra-

jectories have been helpful in a number of cases to study functional motions

and predict mutants84, 85, 157. As the trajectory of each simulation can be

considered as a di�usional path through a part of the available space spanned

by the �rst few eigenvectors81, 108, the de�nition of individual eigenvectors

spanning this subspace from a simulation has not converged in the simulated

time109, 110, but the de�nition of the subspace itself approximately has90, 142.
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This means that the high eigenvalue-eigenvectors constructed from indepen-

dent (pieces of) simulation(s) are rotated with respect to each other but only

in a subspace with limited dimension. The fact that the dynamic behavior

of simulated proteins can be captured by only a few directions in con�gura-

tional space can be used to improve sampling e�ciency in MD simulations

by driving a second MD run along eigenvectors extracted from an initial MD

run81, 107, 108.

Currently the eigenvectors that approximate the essential subspace can

only be determined from covariance analyses of long MD runs, requiring con-

siderable computational e�ort. In the present study, however, an attempt is

made to obtain these most prominent collective structure variations in a very

simpli�ed way.

Analogy with structure determination from NMR data

Structure solution by NMR is mainly based on the conversion of force-�eld

derived and experimentally determined distances (from NOE data) into a set

of three-dimensional coordinates. The available data is often insu�cient to

reach a unique solution, a problem that is usually circumvented by providing

an ensemble of structures. Large local conformational di�erences between

generated structures can represent structural 
exibility but are often the re-

sult of a lack of experimental data158, 159.

Here we carry this idea a bit further. If all distances are known, and

their upper and lower bounds are set to physically realistic values, then the

resulting structures are close to realistic con�gurations that should, in prin-

ciple, be reachable (during an MD simulation). An ED analysis of such a

set of structures will, if the ensemble of generated structures is large enough,

yield directions describing 
uctuations that are possible within the selected

distance limits. If the distance limits are chosen in a sensible manner, then

the observed 
uctuations correspond to realistic con�gurational freedom and

the ED results could be used to improve the sampling during MD simula-

tion81, 107, 108.

A technique has been developed to generate random structures, limited by

distance criteria. The method has been applied to a number of proteins (the

B1 IgG-binding domain of streptococcal protein G, the chicken alpha spectrin

SH3 domain, HPr from E. coli, bacteriophage T4 lysozyme and rat testis

calmodulin). These applications indicate that the applied distance restrictions

are compatible with acceptable protein structures and that the di�erences

between these structures can be used to extract information on the structural

variability of the proteins studied.



76 Chapter 6

Methods

Distance bounds

The method in its current implementation is based on a covariance analysis of

randomly generated structures that ful�ll a set of distance constraints. The

�rst step is to measure all pairwise inter-atomic distances in the (known)

experimental structure of the protein to be studied. The distance limits are

now set at this distance plus or minus D nanometers, where D is small for

tightly interacting atom pairs and larger for weaker interactions. The di�erent

types of interactions that were considered are listed in table 6.1 and distance

limits D are given in table 6.2. For all covalent 1-4 pairs, the upper and lower

bounds are corrected such that their distance is always between the distances

calculated in the 'cis' resp. 'trans' conformation. There is a special group for

atom pairs that are part of the same secondary structure element to make sure

secondary structure (helix, strand) is preserved in the generated structures.

This way, a total of 4697 distance restrictions (3.3 % of the total number of

distances) could be de�ned for the B1 IgG-binding domain. This number was

4197 (2.5 %) for SH3, 7333 (2.4 %) for HPr, 14388 (1.5 %) for calmodulin and

17818 (0.6 %) for lysozyme, respectively (see table 6.2 for the distribution of

distances over the di�erent classes).

To speed up the search for structures that ful�ll all distance criteria, up-

per and lower bounds are de�ned for all atom pairs that are not explicitly

mentioned in table 6.1. The range of freedom D given to these pairs (0.5 nm)

is much larger than for all other pairs (table 6.2) (the lower distance limits

for these pairs are corrected such that they are not lower than the sum of the

Van der Waals radii of the atoms involved). If this upper limit is relaxed,

the speed of convergence is strongly reduced but the resulting structures are

virtually unchanged.

For all studied proteins except HPr, distances were calculated from the

experimental (X-ray) structures (pdb entries 1pgb95, 1shg160, 3cln161 and

2lzm143 respectively). For HPr, a snapshot from an equilibrated MD sim-

ulation120 (initiated from the NMR structure with pdb entry 1hdn93) was

used to extract the distances. All structures were energy minimised using

the GROMOS4 force �eld before distances were calculated. All non-polar

hydrogen atoms were included within united carbon atoms (except for aro-

matic hydrogens in the case of lysozyme). Polar hydrogens were placed using

standard GROMOS/GROMACS hydrogen placement. This resulted in 535

atoms for the IgG-binding domain (56 residues), 583 for SH3 (57 residues),

785 for HPr (85 residues), 1364 for calmodulin (143 residues; residues 1-4

and 148 were excluded since they were not observable in the crystallographic

data) and 1703 for lysozyme (164 residues).

The values given in table 6.2 were obtained from an analysis of the distance


uctuations in MD simulations of the B1 IgG-binding domain of streptococcal

protein G. The limits were chosen such that the majority of the MD-generated
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1-2pairs that are covalently bonded.

1-3 if atom 1 and 2 and atom 2 and 3 are covalently bonded.

Rings

all atom pairs that are part of ring systems.

Side chain

double bonds

ASN, GLN and ARG have one or more (partially delocalised) double

bond(s) in the side chain. Torsion angles around these bonds are re-

stricted, making 1-4 pairs (atom 1-2, 2-3 and 3-4 are covalently bonded)

around these bonds more restricted than others.

Omega distances between C� atoms from neighbouring residues depend on the

the ! dihedral angle, which is more rigid than the � and  torsion angles

due to conjugation of the carbonyl bond along the peptide bond, which

causes the peptide unit to be rigid and planar (other 1-4 pairs de�ned

by this torsion angle also fall in this category).

Phi/Psi

distances between backbone N atoms depend on  dihedral angles,

whereas distances between backbone carbonyl C atoms depend on �

dihedral angles (other 1-4 pairs de�ned by � and  also fall in this

category). �/ restricted pairs are subdivided in three groups:

-tight �= : pairs of neighbouring residues of which one is a proline and

pairs that are part of the same secondary structure element (helix or

strand). Backbone dihedrals are relatively more rigid in proline residues

because the N and C� are part of a ring system. Residues in helix and

strand conformation have well de�ned positions in the Ramachandran

plot, from which little deviation is usually observed.

-loose �= : pairs of neighbouring residues of which one is a glycine and

pairs of residues in loop regions. Glycine residues have relatively much

rotational freedom around their � and  torsion angles because there

is no side-chain that induces speci�c preference for certain � and  

combinations over others. Loop regions are known to have a relatively

poor de�ned structure, indicative of conformational 
exibility.

-other �= : all other �= restricted pairs.

1-4 other 1-4 dihedral angle restricted pairs, involving side chain atoms.

Secondary

structure

pairs of backbone atoms that are part of the same secondary structure

element (helix or strand) and are not more than four residues apart.

Salt bridge oppositely charged groups (all atoms from such a group are restricted)

in close proximity (< 4 �A).

Hydrogen

bond

donor-acceptor distance should not exceed 3.5 �A, the hydrogen-acceptor

should not exceed 2.5 �A and the donor-hydrogen-acceptor angle should

be minimally 900.

Tight hy-

drophobic

pairs of atoms between which the inter-atomic distance is smaller than

the sum of the Van der Waals radii of the involved atoms plus 0.5 �A that

do not fall in one of the above categories.

Loose hy-

drophobic

Identical to tight hydrophobic, but now pairs are included of which the

inter-atomic distance is smaller than the sum of the Van der Waals

radii of the involved atoms plus 1.0 �A.

Table 6.1 Di�erent classes of interacting pairs.
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pgb SH3 HPr cal lys

nr of atoms 535 583 785 1364 1703

nr. type D (nm) nr of pairs

1 1-2 0.002 541 592 792 1376 1723

2 1-3 0.005 780 855 1137 1962 2510

3 Ring 0.01 68 88 34 73 629

4 double bond 1-4 0.01 16 36 40 96 172

5 Omega 1-4 0.01 220 224 336 568 652

6 Tight phi/psi 1-4 0.02 272 190 422 762 893

7 Loose phi/psi 1-4 0.04 120 192 180 265 288

8 Other phi/psi 1-4 0.03 32 56 44 72 76

9 Other 1-4 0.04 254 276 355 624 745

10 Sec. str. 0.05 1556 596 2776 6622 7471

11 Salt bridges 0.075 8 11 1 2 39

12 Hydrogen bonds 0.05 47 60 54 102 86

13 Tight hydrophobic 0.05 278 353 448 741 963

14 Loose hydrophobic 0.1 505 665 714 1132 1571

total 4697 4194 7333 14388 17818

15 All other pairs 0.5

Table 6.2 Parameters used in the CONCOORD method. Values indicate the

degree of freedom in interatomic distances relative to the experimental structures.

The number of distances for all proteins studied in each category are listed.

distances are contained within the limits.

Generation of structures

Having de�ned distance bounds for all pairs of atoms, the next step is to �nd

structures, other than the reference structure, that ful�ll all constraints. We

have developed a new, iterative procedure that generates structures ful�lling

the requirement that all distances fall between their lower and upper bound.

Starting from random coordinates, corrections are applied iteratively to the

positions of those atoms that are involved in inter-atomic distances that vi-

olate the upper or lower distance bound. Corrections are applied such that

for each violating pair, the distance is put randomly between the upper and

lower bound (both atoms involved are displaced by an equal amount). The

sum of violations decreases with the number of iterations. The procedure is

stopped when the sum of violations is zero. Convergence is usually reached

after 100-300 iterations of N steps (N is the number of violations). Occa-

sionally, the algorithm does not converge to a structure satisfying all distance

constraints. When the number of iterations exceeds a criterion (typically

500), the algorithm is stopped and restarted with a di�erent set of random
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starting coordinates. Since no information on chirality is included in the dis-

tance bounds, both mirror images are generated. The generated D-amino

acid enantiomers are converted into the L-form by simply taking the mirror

image. The method, called CONCOORD (from CONstraints to COORDi-

nates) resembles a method proposed by Crippen162 but di�ers from it in the

way the distance corrections are applied.

Since initial coordinates are chosen randomly (from a cube with edges of

2 nm) and distance corrections are applied by choosing distances randomly

between their upper and lower bounds, bias in the results is minimal. There is

no correlation between any two structures that are generated, and therefore,

the accessible space de�ned by the distance bounds is more e�ciently sampled

than by procedures in which such correlation is present (like MD).

For all proteins studied, 500 structures were generated with the

CONCOORD method. For the IgG binding domain (56 residues), approx-

imately 1 hour of CPU time on a Pentium 100 processor was required (for

comparison: a number of weeks would be required for an MD simulation of

1 ns). The speed could be improved by introduction of a cut-o� radius for

inter-atomic distances or other methods that reduce the number of pairs that

need to be corrected every iteration step. However, the method in its present

implementation is fast enough for all practical purposes. Starting from co-

ordinates other than randomly chosen ones may also enhance convergence

speed, but since the correction algorithm is particularly e�cient in the initial

stage and because we want to minimise the amount of bias in the results, we

preferred random starting coordinates.

All information on structural variability is stored in the upper and lower

distance bounds. Therefore, it should in principle be possible to extract

this information directly from the distance bounds, without �rst generat-

ing structures. We have not been able to derive an analytical solution, but

an approximation is possible. Given an interaction function, a way to gain

insight in the most prominent modes of motion is by diagonalisation of the

(mass-weighted) Hessian matrix, as in Normal Modes (NM) analyses70, 71, 163.

The matrix elements correspond to second derivatives of the potential energy

with respect to the coordinates. The simplest way to implement distance

restrictions in such an interaction function is to model all pair interactions

by harmonic potentials, with the minimum de�ned at the distance measured

in the experimental structure and the force constant inversely proportional

to the di�erence between upper and lower distance bound (all masses are put

to 1.0). Eigenvectors of the Hessian matrix that have the smallest eigenval-

ues (apart from those that correspond to overall rotation and translation)

are directions in con�gurational space that represent the slowest vibrations

of a molecular system. In a detailed force �eld, these directions have been

shown to be similar to the eigenvectors with largest eigenvalues from Prin-

cipal Component analyses of MD trajectories90, 164, although normal modes

have the restriction of harmonicity.

Starting from the same distance bounds, diagonalisation of the Hessian
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matrix will yield results that are somewhat di�erent from those obtained

from diagonalisation of the covariance matrix of positional 
uctuations from

generated structures for a number of reasons. First, during generation of

structures, some distance bounds will never be reached because they are ex-

cluded by the presence of other distance limits. Therefore, bound smoothing

on the triangulation level165 had to be performed before calculation of the

Hessian matrix. Second, distributions of distances are assumed to be Gaus-

sian in the harmonic approximation, whereas no such assumption is made

during the generation of structures in CONCOORD, where the distance dis-

tribution may even be asymmetric.

Analysis techniques

Essential Dynamics78 analyses were used for comparison of structural freedom

in proteins. The method consists of diagonalisation of the covariance matrix

C of atomic 
uctuations, after removal of overall translation and rotation:

Cij = h(xi � hxii)(xj � hxji)i (6.1)

where x are cartesian atomic coordinates. Resulting eigenvectors are direc-

tions in con�gurational space of which the corresponding eigenvalues give the

mean square 
uctuation of the displacement in each direction. ED analyses

can be applied to any (sub)set of coordinates of the studied molecular system.

Only C� atoms were included in ED analyses presented here because it has

been shown78, 85, 90 that this approach best detects the large-scale concerted

motions in proteins.

The software for the generation of structures will be available on the

WWW (http://rugmd0.chem.rug.nl) and is implemented in the WHAT

IF101 package. ED and all other structural analyses were performed using

an interface in the molecular modeling package WHAT IF101. Secondary

structure analyses and accessible surface calculations were performed with

DSSP102. Dihedral angle criteria were taken from PROCHECK123.

Results

All CONCOORD structures were subjected to a number of structural analy-

ses to assess how physically realistic the generated structures are (table 6.3).

The same analyses were performed on structures sampled by MD (for simu-

lation details: the IgG-binding domain142 (1 ns), SH353 (1 ns), HPr120 (300

ps), calmodulin141 (500 ps) and lysozyme (to be published, 1 ns)). All MD

simulations were performed in explicit solvent at room temperature. Com-

parison with crystal structures and MD shows that in CONCOORD, with

the present set of parameters, structures generally are more similar to their

respective experimental structure than in MD. There is good correspondence
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between the values obtained from MD and CONCOORD for all properties

taken into account. Mean square atomic 
uctuations of C� atoms are plotted

in Fig. 6.1 for both CONCOORD and MD. There is reasonable qualitative

correlation between curves obtained from CONCOORD and MD (correlation

coe�cients between 0.501 and 0.871).

For all molecules studied the ensembles of conformations generated by

MD and CONCOORD were subjected to essential dynamics analyses. In all

cases only a few eigenvectors were found with signi�cant eigenvalues. These

eigenvalues are shown in Fig. 6.2 (eigenvalues have been sorted by decreasing

value). Eigenvalue curves from both techniques are equally steep for all pro-

teins, indicating that also from the CONCOORD results only a few collective


uctuations emerge with appreciable freedom.

Inner products between eigenvectors from MD and CONCOORD were cal-

culated to evaluate whether eigenvectors obtained from both techniques rep-

resent similar 
uctuations. Squared inner products are shown for every pair

of eigenvectors from MD and CONCOORD for the B1 IgG-binding domain

RMSD NRC HBO ACC GYR DIH QUAL ENE

pgb PDB 0.00 8.0 39.0 3391 1.021 1.0 -0.083 -2241

pgb MD 1.43 9.6 44.2 3840 1.023 2.68 -0.662 -2005

pgb CONCOORD 1.04 7.3 42.3 3673 1.023 1.86 -0.337 -2140

SH3 PDB 0.00 14.0 38.0 3665 1.012 3.0 -0.668 -2975

SH3 MD 1.29 14.8 40.0 4051 1.026 2.03 -1.231 -2816

SH3 CONCOORD 0.81 13.3 44.5 3858 1.001 2.94 -0.639 -2811

HPr PDB 0.00 12.0 74.0 4840 1.146 5.0 -0.553 -4237

HPr MD 1.39 14.1 67.9 5031 1.147 5.09 -0.741 -4252

HPr CONCOORD 0.90 12.1 73.2 4892 1.126 4.52 -0.540 -4223

cal PDB 0.00 20.0 110.0 9355 2.095 5.0 -0.160 -7428

cal MD 2.65 21.3 99.4 9851 2.113 10.42 -0.728 -7505

cal CONCOORD 1.93 17.9 108.9 9788 2.091 5.46 -0.509 -7484

lys PDB 0.00 16.0 122.0 8675 1.590 5.0 -0.228 -10869

lys MD 1.81 20.4 122.3 8863 1.562 7.21 -0.953 -10740

lys CONCOORD 1.57 19.7 124.8 8585 1.581 7.91 -0.891 -10493

Table 6.3 Average geometrical properties for structures generated by MD and

CONCOORD, compared with the values obtained from experimental structures,

for the �ve proteins studied. Abbreviations used: pgb (the B1 IgG-binding do-

main), cal (calmodulin), lys (lysozyme), RMSD (root mean square deviation,

expressed in �A), NRC (number of residues in random coil conformation, accord-

ing to DSSP102), HBO (number of main chain hydrogen bonds (DSSP)), ACC

(total solvent accessible surface in �A2 (DSSP)), GYR (radius of gyration in nm),

DIH (number of residues in unfavourable regions in Ramachandran plot123,124),

QUAL (WHAT IF index indicating the normality of packing166). ENE (potential

energy after energy minimisation in the GROMOS force �eld).
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Figure 6.1 Mean square positional 
uctuation of C� atoms. The correlation

coe�cient between the curves obtained from MD and CONCOORD is shown

next to the �gures.

in Fig. 6.3A. All high inner products are found close to the diagonal, meaning

that for both techniques, directions in con�gurational space are ordered simi-

larly with respect to the amount of 
uctuation, i.e. directions that show large


uctuations in MD also show relatively large 
uctuations in CONCOORD,

and vice versa. Fig. 6.3B shows the squared inner products between eigen-

vectors obtained from two halves of an MD simulation of 1 ns. The overlap

between the two eigenvector sets from MD is similar to that between MD

and CONCOORD. In Fig. 6.3C the same comparison is made for two sets of

structures obtained by CONCOORD. Two independent sets of 250 structures

were used in the ED analyses.

Fig. 6.3 shows that the overlap between MD and CONCOORD is es-

pecially high in the essential subspace (de�ned arbitrarily as the subspace

spanned by the ten eigenvectors with largest eigenvalues). The overlap of

the essential subspaces from MD and CONCOORD has been evaluated in

a more quantitative way because the essential subspace is of particular in-

terest (about 80 % of the observed structural 
uctuation usually occurs in

this subspace). Fig. 6.4 shows the mean cumulative squared inner products
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between eigenvectors (from MD and CONCOORD) spanning this subspace

and the �rst 50 eigenvectors from independent MD/CONCOORD runs, for

the IgG binding domain. Overlap is concentrated in the initial part. For

example, 80 % of overlap with the �rst ten CONCOORD eigenvectors is

reached within the �rst 20 MD eigenvectors, indicating that all essential direc-

tions found by CONCOORD are also accessible in MD. The overlap between

eigenvectors from two independent MD runs is very similar to the overlap be-

tween CONCOORD and MD, whereas the overlap between two independent

CONCOORD runs is very close to the maximum possible overlap, indicating

an almost complete convergence.

The mean squared inner products between the ten eigenvectors with

largest eigenvalues from MD and CONCOORD are given in table 6.4, for

all proteins studied. The overlap between the essential subspaces obtained by

MD and CONCOORD is comparable to the overlap obtained from two halves

of each MD trajectory. A typical overlap of approximately 0.5 is obtained for
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Figure 6.2 Eigenvalues obtained from MD trajectories and ensembles of struc-

tures generated by CONCOORD. Only the �fty largest eigenvalues are shown out

of 168 (pgb, B1 IgG-binding domain), 171 (SH3), 255 (HPr), 429 (cal) and 492

(lys) respectively.
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all proteins (a value of 1.0 would be obtained if the two sets are identical).

Overlap between eigenvectors obtained from two parts of the clusters pro-

duced by CONCOORD is signi�cantly larger for all proteins.

Overlap of the ten CONCOORD eigenvectors with largest eigenvalues with

the ten lowest frequency-eigenvectors obtained from diagonalisation of the

Hessian matrix was calculated to be 0.678 for the B1 IgG-binding domain

(C� components were extracted from the eigenvectors of the Hessian matrix

and the obtained vectors were renormalised before the analysis). This value

is somewhat smaller than the overlap between eigenvectors obtained from two

clusters of CONCOORD structures (0.866), indicating that small deviations
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Figure 6.3 Squared inner product matrices for the B1 IgG-binding domain.

In panel A eigenvectors from MD (1 ns, y-axis) are compared to those from

CONCOORD (500 independent structures, x-axis). In panel B eigenvectors from

two halves of the MD run (500 ps each) are compared to each other and the

same is done for CONCOORD in Panel C (250 independent structures were used

in each analysis).
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Figure 6.4 Cumulative mean square inner products between the 10 eigenvectors

with largest eigenvalues obtained from MD/CONCOORD and all eigenvectors

obtained from di�erent MD/CONCOORD runs. After division by ten, all curves

converge to 1.0 since every eigenvector from one set is contained in the complete

set of vectors from another set. The solid line corresponds to the maximum

obtainable overlap. pgb denotes the B1 IgG-binding domain.

protein mean cumulative square inner product

MD-CONCOORD MD-MD CONCOORD-CONCOORD

pgb 0.532 0.560 0.866

SH3 0.446 0.494 0.809

HPr 0.416 0.387 0.904

cal 0.440 0.532 0.802

lys 0.454 0.487 0.910

Table 6.4 Mean squared inner products between subsets containing the ten

eigenvectors with largest eigenvalues. The �rst column contains a comparison

between MD and CONCOORD, the second column compares two halves of each

MD trajectory, which is done in the third column for CONCOORD. pgb denotes

the B1 IgG-binding domain.
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from the converged CONCOORD results emerge in this approximation. The

overlap of the Hessian eigenvectors with MD eigenvectors was calculated to

be 0.486. This is slightly lower than the overlap of the eigenvectors obtained

from CONCOORD structures with MD eigenvectors (0.532).

The di�erence in the way the conformational space is sampled in

CONCOORD and MD is illustrated in Fig. 6.5. In MD (Fig. 6.5A), a

single path is followed that resembles a random walk81, 107, 108 whereas in

CONCOORD (Fig. 6.5B), a random sampling takes place, with each posi-

tion independent from the previous one. To investigate in more detail to

which extent the modes of motion predicted by CONCOORD are accessible

in MD, an extended MD simulation with constraints on the two CONCOORD

eigenvectors with largest eigenvalues was performed. The way in which these

constraints are applied makes it possible to e�ciently assess the portion of

the conformational space that is accessible to MD81, 107, 108. As can be seen

from Fig. 6.5C, the region sampled by this technique is similar to the region

sampled by CONCOORD.

Structures collected along the most important directions de�ned by

CONCOORD are shown in Fig. 6.6 for calmodulin and lysozyme. The

CONCOORD eigenvector with largest eigenvalue for calmodulin corresponds

to a combination of a bend and a twist of the inter-domain helix, result-

ing in a rotation of one domain with respect to the other (Fig. 6.6A). From

experiments (hydrogen exchange measurements167, NMR relaxation data168

and NMR NOE data169 from which disorder in the set of NMR structures170

emerged), the helix is known to break in the middle, which was also observed

in MD and Normal Modes analyses141.

For lysozyme, the CONCOORD eigenvector with second largest eigenvalue

corresponds to a 
uctuation that is similar to structural di�erences that have

been observed by crystallography of a number of mutants131 (Fig. 6.6B). The

main domain 
uctuation consists of a rotation of the two domains with respect

to each other, initiated by a combined twisting and bending of the inter-

domain helix. The di�erence between the most open131 and the most closed147

X-ray structure along this rotation axis is as much as 49 degrees. The angular

di�erence between the most open and most closed CONCOORD structure was

33 degrees; for MD this value was 28 degrees. Both CONCOORD and MD

do not reach the most open experimental con�guration.

Discussion

The results show that there are many similarities between MD and

CONCOORD. However, there is also a number of apparent discrepancies.

In Fig. 6.1, a number of peaks are only observed in the curves obtained from

CONCOORD and not from MD, or vice versa. The broad peak near residue

48 (located in the turn connecting � strands 3 and 4) for the B1 IgG-binding
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domain in CONCOORD that is not present in the curve from MD represents


uctuations that are dominating the CONCOORD eigenvector with largest

eigenvalue. This direction is not present within the �rst two eigenvectors from

MD, but is represented 75 % by the �rst six MD eigenvectors, indicating that

this motion is also accessible in MD. Likewise, the peak near residue 39 for

calmodulin (a surface loop connecting helix 2 and 3) in MD is mostly the

result from the motion along the �rst MD eigenvector. This mode of motion

shows little overlap with the �rst �ve eigenvectors of CONCOORD but is

contained for 75 % in the �rst �fteen CONCOORD eigenvectors, indicative

of signi�cant 
uctuation in the cloud of CONCOORD structures.

The similarity of the MD and CONCOORD results is remarkable, since

both techniques di�er on several fundamental points. First, the inter-

action function between particles is much more complex in MD than in

CONCOORD, in terms of the number of parameters that determine the

amount and kind of 
uctuations that are accessible. In the current implemen-

tation, a total of only 15 parameters is su�cient. Second, in CONCOORD

only short-range interactions (roughly smaller than 6 �A) within the protein

make a serious contribution, whereas in MD long-range interactions and in-

teractions with solvent are also included. Additionally, all interactions are

implemented in the form of distance constraints in CONCOORD. In MD,

usually only bond lengths are described this way. Another important dif-

ference between MD and CONCOORD is the way in which structures are

generated. In MD, the equations of motions are integrated numerically to

yield a unique path in con�gurational space, where each structure is a deter-

ministic result of the previous one. In CONCOORD, structures are generated

by a random search method that searches for solutions in a prede�ned coor-

dinate space. Incomplete sampling is one of the dominating reasons for errors

in the de�nition of an essential subspace from MD simulation109, 110, 142. The

fact that the overlap between CONCOORD and MD is similar to the overlap

between di�erent parts of MD simulations suggests that these errors are of

the same order of magnitude as the errors made in CONCOORD due to a

too simple model.

The di�erences between MD and CONCOORD imply that not all the

data that can be obtained by MD can also be obtained by CONCOORD.

Dynamic (time dependent) information, for example, cannot be derived from

CONCOORD data. Also, the amplitude of predicted 
uctuations can only

be derived in a relative sense, i.e. the method only predicts certain modes

to be more accessible than others. For example, the hinge bending mode in

lysozyme was not sampled in the same range as in experiment. However, this

also holds for an MD simulation of one nanosecond. The local cause of a

large overall structure variation cannot be deduced reliably from an analysis

of CONCOORD results. The main motion in calmodulin, for example, is

known to be the result of the breaking of the inter-domain helix. Such a

rigorous event is not allowed within the distance bounds as they are de�ned

now. However, it is interesting to note that even in the case of such large
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conformational changes, the �rst stage of such changes is already sampled and,

in the case of calmodulin, emerges as the 
uctuation with largest amplitude.

The comparison of eigenvectors obtained from diagonalisation of the Hes-

sian matrix with those from CONCOORD and MD indicates that even with-

out the generation of structures, a rough approximation can be obtained of

the subspace in which all signi�cant backbone motions take place. Diagonal-

isation of the Hessian matrix is faster than the generation of a large enough

set of structures by CONCOORD for a covariance analysis. In most cases the

generation of structures is to be preferred, however, since the produced struc-

tures can also be used for other analyses, and the CONCOORD eigenvectors

show better overlap with MD.

The parameters used for CONCOORD (table 6.2) were generated for the

B1 IgG-binding domain but they were applicable without modi�cations for

the other proteins and gave meaningful results. The values in table 6.3

indicate that a set of physically realistic structures has been generated by

CONCOORD for all proteins studied.

Structural variation in clusters of NMR structures

A signi�cant level of correlation between essential directions de�ned from MD

and from clusters of NMR structures has been found for a number of proteins

(unpublished). For the B1 IgG-binding domain of streptococcal protein G for

instance, the summed square inner products of the 10 eigenvectors with largest

eigenvalues from MD and NMR was found to be 0.35, comparable to the val-

ues in table 6.4. In a recent study, a similar observation was reported171

for BPTI. The amount of dynamic information that can be derived from

NMR/NOE data has been subject of discussion. It has been argued158, 159

that the amount of information usually used for structure generation from

NMR data is generally too limited to yield information on the conformational


exibility of macromolecules. In line with the results presented in this pa-

per, however, methods that provide a set of protein structures in which all

structural constraints are ful�lled can be expected to give insight into the con-

formational 
exibility of these molecular systems. The information derived

from a cluster of NMR structures is only partially the result of the experi-

mental data used in the analysis. In NMR structure re�nement, not only the

experimentally derived (distance) restrictions are used for the analyses, also

knowledge of, for instance, bond lengths and angles is usually included to

generate structures. The collection of these restraints restricts the generated

con�gurations to such an extent that meaningful information about (the few)

important collective degrees of freedom may be derived from such analyses.
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Conclusions

We have shown that the major 
uctuations in protein structures that are

predicted by CONCOORD are concentrated in a few directions in con�gu-

rational space. Apparently, the bounds on inter-atomic distances, which are

on one hand de�ned by the connectivities in the structure (covalent bonds)

and on the other hand by the way the protein is folded (hydrogen bonds, salt

bridges, hydrophobic contacts), restrict the conformational freedom of these

systems such that only a few collective degrees of freedom 
uctuate signi�-

cantly. Apart from the disadvantages that no time dependent information is

obtained and that the extent and structural cause of the 
uctuations cannot

be determined, an almost converged description of the most important collec-

tive degrees of freedom is obtained when only a limited number of structures

has been generated. It has been shown that it is not necessary to use so-

phisticated atomic interaction functions to obtain basic knowledge about the

structural 
uctuations of proteins in solution. The sum of all interactions in

proteins makes 
uctuations to be concentrated in a few collective degrees of

freedom which can be obtained by a straightforward method. The minimal

computational e�ort involved allows for the screening of 
uctuations in many

con�gurations, which could, for example, facilitate the design of mutants, or

enhance the capabilities of homology prediction.
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Figure 6.5 Projection of the MD trajectory of the IgG binding domain (panel A)

and of the collection of CONCOORD structures (panel B) onto the planes de�ned

by the two eigenvectors with largest eigenvalues from both techniques. The lower

panel (panel C) shows a projection of CONCOORD (small circles) and extended

MD (continuous line) structures onto the plane de�ned by the two CONCOORD

eigenvectors with largest eigenvalues.
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Figure 6.6 Stereo representation of extreme structures (thin line and thin dashed

line) along CONCOORD eigenvectors, together with average structures (bold

line). Panel A: calmodulin, eigenvector 1. Panel B: lysozyme, eigenvector 2.
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Summary

Conformational changes are known to play a crucial role in the function of

the bacterial GroE chaperonin system. In this study, results are presented

from an Essential Dynamics analysis of known experimental structures and

from computer simulations of GroEL using the CONCOORD method. The

results indicate a possible direct form of inter-ring communication, associated

with internal 
uctuations in the nucleotide-binding domains upon nucleotide

and GroES binding, involved in the allosteric mechanism of GroEL. At the

level of conformational transitions in entire GroEL rings, nucleotide-induced

structural changes were found to be distinct, and in principle uncoupled from

changes occurring upon GroES binding. Nucleotide-induced conformational

changes are coupled to GroES-mediated transitions in simulations of GroEL

double rings, but not in single rings. This provides another explanation for

the fact that GroEL functions as a double ring system.
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Introduction

The bacterial chaperonin GroEL and its cofactor GroES are among the best

characterised molecular chaperones172{174. X-ray studies175{178 combined

with electron microscopy (EM) studies179{183 have provided insight in the

functional cycle of this chaperonin. GroEL is active as a double heptameric

ring184, 185 with each ring containing a large central cavity in which substrate

protein can be bound179, 186. The cochaperonin GroES also exists as a hep-

tamer and adopts a dome-like structure187 that can bind to either GroEL ring

to form a cap on the central cavity179, 188, 189. Fig. 7.1 shows the asymmetric

crystal structure of GroEL with GroES bound to one GroEL ring178, showing

the packing of the subunits in the assembly, and the topology of each subunit.
            

Figure 7.1 Left: the structure of the GroEL/GroES complex178. Right: the

topology of a single GroEL subunit. Figure generated with Molscript151,190 and

Raster3d191.

Each subunit of GroEL can be subdivided in three domains175 (see Fig.

7.1). The equatorial domains form the backbone of the protein and contain

an ATP binding site; they are involved in most intra-ring and all inter-ring

subunit contacts. The apical domains are involved in interactions with sub-

strate protein and GroES. The third domain, termed intermediate domain,

forms the link between the apical and equatorial domains.

The role of GroEL in the substrate folding process is twofold. First, GroEL

prevents substrate proteins from aggregating by binding unproductive fold-

ing intermediates and forces those to unfold to states more committed to-

wards correct folding192{196. Second, it has been proposed that the central
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cavity works as an An�nsen cage in which the substrate protein is actively

folded197, 198. The dramatic conformational changes that are involved in the

functional cycle of GroEL are indicative of a highly mobile system and stress

the relevance of this 
exibility for its biological activity.

GroEL is an allosteric protein. ATP binds cooperatively to the subunits

of one ring199{201, triggering a conformational change that reduces substrate

a�nity202, 203 in the ATP bound ring. GroES binding to the ATP bound ring

has been reported to complete this conformational change182. GroES binding

switches the interior surface of the cavity from hydrophobic to hydrophilic,

triggering a conformational change in the bound substrate molecule178. Nega-

tive cooperativity between rings203{205 also results in a reduced GroES a�nity

in the ring opposite to the GroES bound ring. ADP binding to one of the rings

does not impair ATP or GroES binding to the other ring206, but ATP binding

and hydrolysis in one ring has been proposed to play a role in GroES and sub-

strate release from the other ring207. Communication between the two rings

must be responsible for this e�ect, as is supported by the observation that a

mutant that impairs dimer formation is defective in GroES release197, 208, 209,

thereby blocking bound substrates to leave the GroEL cavities. On the other

hand, under di�erent conditions (higher KCl concentration), productive fold-

ing has been observed in this single-ring mutant210.

Despite the wealth of available experimental information, some aspects

of the conformational changes and allosteric mechanism of GroEL remain

unresolved. Knowledge of the mechanism underlying these conformational

changes would greatly facilitate interpretation of a number of experimental

results. Therefore, we have studied the conformational 
uctuations in GroEL,

with the hope to learn more about the mechanism(s) that govern these 
uc-

tuations. The most common method to study conformational 
uctuations in

proteins is Molecular Dynamics (MD), but with a molecular weight of 800 kDa

it would be an impossible task to reach biologically relevant time scales when

realistic force-�elds are being used. A number of methods exists to speed up

the e�ciency of conformational sampling in MD10, 211, and other computa-

tional techniques are also avialable. Ma & Karplus recently performed Normal

Mode calculations on a minimal subsystem (three subunits) of GroEL that

could provide insight into its allosteric mechanism212. We have chosen to use

CONCOORD89, a method to generate di�erent protein conformations based

on distance restrictions. This method has been shown to yield low frequency

collective 
uctuations for proteins that are very similar to those that can be

extracted from MD simulations, but at a dramatically reduced computational

expense89. To study the allosteric mechanism of GroEL, CONCOORD sim-

ulations have been performed of complete GroEL and GroEL/GroES assem-

blies based on the di�erent experimentally determined GroEL conformations.
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Methods

CONCOORD simulations

Principal component analyses of Molecular Dynamics simulations of proteins

have indicated that collective degrees of freedom dominate protein conforma-

tional 
uctuations76, 78. These large-scale collective motions have been shown

essential to protein function in a number of cases84{86. The notion that inter-

nal constraints and other con�gurational barriers restrict protein dynamics

to a limited number of collective degrees of freedom has led to the design

of the CONCOORD method to predict these modes without doing explicit

MD simulations. The CONCOORD method has been described in detail ear-

lier89 and will here only be summarised brie
y, together with some recent

modi�cations.

The CONCOORD method of prediction of protein conformational free-

dom generates protein structures within a set of prede�ned distance bounds.

Distance bounds are de�ned on the basis of interatomic interactions within

the starting con�guration of the protein and the di�erence between upper and

lower distance bounds depend on the strength of the interaction. A discrete

number of categories of interactions has been de�ned, among which covalent

bonds are the least 
exible and weakly interacting non-bonded pairs have

the largest freedom in distance. Starting from random coordinates, distance

and chirality corrections are applied until all distances ful�ll their distance

bounds. Resulting structures are uncorrelated and hence the technique does

not su�er from sampling problems as do techniques like MD in which such

correlation is present.

Since the �rst implementation of CONCOORD, a number of improvements

has been made 1. First, the original algorithm which required all distances

to be restricted has been modi�ed to make the method suitable for large sys-

tems. Only the distances between atoms involved in pair interactions are now

de�ned. In addition, in order to reach convergence, it appeared necessary to

include a �xed number (typically 20N, with N the number of particles) of

random pairs with signi�cantly more distance freedom. This way, only up to

a few percent of the whole distance matrix needs to be evaluated. Second,

categories of distance limits and the di�erence between upper and lower dis-

tance bound for each category were re-evaluated based on crystallographic

conformers of T4 lysozyme as well as on distance 
uctuations of a number of

proteins in MD simulations. The parameters obtained in this way resulted

in structures of slightly better quality than those obtained with the previous

set. Finally, non-bonded pairs are de�ned in a di�erent way depending on the

number of contacts within a group of residues. Isolated non-bonded interact-

ing atom pairs will have more distance freedom (maximally 4 �A) than pairs

which are part of an intensive network of interactions (e.g. pairs contained

1The latest version of the CONCOORD program is freely available from the internet:

http://rugmd0.chem.rug.nl/�degroot/concoord.html
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in clusters of more than 50 interactions maximally obtain 1.5 �A of distance

freedom.

CONCOORD simulations were performed on each of the three currently

available crystallographic double ring structures: the symmetrical (both rings

are identical) nucleotide-free structure (pdb entry 1oel175, 176), the pseudo-

symmetric ATP-
S-bound structure (the inter-ring contact plane is a plane

of pseudo-symmetry; pdb entry 1der177, and the asymmetric ADP/GroES

bound structure (one ring has ADP and GroES bound, the other is empty;

pdb entry 1aon178). Additionally, isolated single rings extracted from each of

these structures were simulated individually.

Essential Dynamics analysis

Essential Dynamics (ED) analysis is equivalent to a principal component anal-

ysis of atomic displacements in an ensemble of structures76 and is related to

the so called 'quasi-harmonic' analysis of protein motions73. In practice, ED

involves diagonalization of the covariance matrix of positional 
uctuations

(after removal of the overall rotation and translation). Resulting eigenvectors

describe modes of collective 
uctuation of which the corresponding eigenvalue

is a measure of the mean square 
uctuation along that mode78.

ED analyses were applied to the ensemble of crystallographic structures

to assess the main modes of collective 
uctuation in GroEL. Ring conforma-

tional changes were analysed (inter-subunit 
uctuations) by applying ED to

the 5 unique ring conformations from the three double ring conformers deter-

mined by X-ray crystallography (the two rings of the unliganded GroEL struc-

ture 1oel are symmetry related). The 35 subunit conformations extracted

from these structures were subjected to ED analysis to study conformational

changes within subunits (intra-subunit 
uctuations). CONCOORD struc-

tures were projected onto the modes determined from the crystallographic

structures to compare the 
uctuations predicted by CONCOORD to the

di�erences between crystallographic structures. The way the CONCOORD

structures are situated along the collective coordinates derived from the X-ray

structures indicate potential dynamic pathways between the experimentally

determined conformers.

DYNDOM

Modes of collective 
uctuation were analysed for the presence of clear do-

main motions by the method of Hayward et al. 55, 56. This method analyses

structural di�erences in terms of rigid body rotations. The rigid bodies are

identi�ed by clustering each residue's rotation vector during a conformational

transition.
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Results and discussion

Conformational changes in the equatorial domain

An ED analysis of conformations of single subunits extracted from the di�er-

ent experimentally determined structures con�rmed the observations of Xu

et al. 178 that domain motions occur upon GroES binding. Two modes of

collective 
uctuation were found to dominate the conformational transitions

of isolated subunits. The �rst, most prominent, mode describes di�erences

between subunits extracted from the cis and trans rings from the asymmetric

GroEL/ADP/GroES complex. Apical domains make a rotation of about 90

degrees with respect to the intermediate domains while the equatorial do-

mains are involved in a closure motion of about 30 degrees with respect to

the intermediate domains (see Figure 2c of Xu et al. 178). The second mode

displays the largest di�erence between the rings from the ATP
S bound struc-

ture and the other structures. Internal 
uctuations within the equatorial and

apical domains dominate along this second mode.

In contrast to the structural changes of the domains with respect to each

other, the internal 
uctuations of the equatorial domain are for a large part

similar along the �rst and second mode. Residues involved in nucleotide

binding show large displacements along this common mode, suggesting that

structural changes necessary to accomodate ATP (or to a lesser extent ADP,

or analogues) dominate the internal dynamics of the equatorial domains (Fig.

7.2). Along this common mode, the DYNDOM method55, 56 identi�es two

subdomains. The �rst subdomain consists of residues 12-30, 37-83, 510-521

and the second subdomain of 32-34, 90-137, 411-506. Several residues directly

involved in binding nucleotide (Val31-Pro33, Asp87, Thr91)177, 213 are situ-

ated at the interface between the two subdomains (Fig. 7.2). Both groups

have two glycine residues in their proximity (32, 35 and 85, 88) that allow for

the conformational 
exibility needed to adapt to the structural constraints

imposed by the bound nucleotide.

Both subdomains of the equatorial domain also exhibit internal 
uctua-

tions. The lightest subdomain in Fig. 7.2 contains the two regions forming

the most extensive contacts with the other ring (around Ala108 and Ser463).

Upon nucleotide and GroES binding, the distance between these inter-ring

contact-forming residues changes signi�cantly. In each subunit, the distance

between the C-� atoms of residues Ala108 and Ser463 is more than 2 �A smaller

in the subunits of the cis ring than in those of the trans ring in the asymmetric

GroEL-GroES complex178. These internal 
uctuations have a direct e�ect at

the interface and could play a role in the communication between the rings.

These observed changes are consistent with the known negative cooperativ-

ity between the two GroEL rings, as depicted in Fig. 7.3. A motion of the

residues around 108 and 463 towards each other in the equatorial domains

of one ring must result in an opposite displacement in the other ring, if the

integrity of the interface is to be maintained. The largest displacements of the
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Figure 7.2 Illustration of the main structural changes within the equatorial do-

mains. The results are obtained from DYNDOM56 based on an ED analysis

of X-ray structures of the equatorial domain. The equatorial domain can be

considered to consist of two subdomains (in dark and intermedate gray). The

residues that form the transition regions between the domains are coloured white

to lightgray. The arrow indicates direction of rotation of the lighter domain rel-

ative to the darker domain by the thumb rule of the right hand. The loops

containing residues 33 and 87, which are known to interact directly with the

nucleotide, are situated at the 
exible interface between the domains. Figure

generated with Molscript151,190 and Raster3d191.

residues forming the inter-ring contacts are found to take place in the plane

of the rings, but as Ma et al. pointed out, 
uctuations perpendicular to this

plane may also play a role in inter-ring communication212.

The residues directly involved in inter-ring contacts show displacements

both upon GroES binding and upon nucleotide binding (although with a

smaller amplitude). The X-ray structures show a conformational change of

the stem loop (Lys 34 to Asp 52) only between GroES bound subunits and

subunits from GroES-free rings. This stem loop displacement is correlated

with the reorientation of the intermediate domain with respect to the equa-

torial domain. This stem loop displacement also induces a motion of the

subunits with respect to each other, resulting in the en bloc tilt of the equa-

torial domains in the cis ring with respect to the trans ring that has been

reported by Xu et al. 178. It has also been suggested that the stem loop

was involved in the cooperative binding of ATP (and accompanied tertiary

structural changes) in one ring from Normal Mode analysis212. Our results

suggest that, additionally, these residues may be indirectly involved in inter-
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Figure 7.3 Illustration of how the internal 
uctuations of the equatorial domains

may be involved in the negative cooperativity between the two GroEL rings. A

displacement of the two main sites of inter-ring contacts (around residues 108

and 463) in the subunits in one ring has to be compensated by a displacement

in the opposite direction in the subunits of the other ring to preserve inter-ring

contacts.

ring communication, in which the equatorial domains from one ring directly

transmit stuctural changes associated with GroES binding (and to a lesser

extent nucleotide binding) to the other ring.

Overall structural changes

Analysis of crystallographic structures reveals dramatic conformational di�er-

ences between GroES-free rings and GroEL rings bound to the cochaperonin

GroES178. Previous comparisons between X-ray structures of free GroEL and

GroEL bound to ATP
S showed much more modest conformational di�er-

ences177. Figure 7.4 schematically shows the main conformational di�erences

between the di�erent experimentally characterised GroEL rings. The largest

di�erence is observed between the GroES bound cis ring and the di�erent

GroES-free rings (horizontal direction, �rst mode; from now on referred to as

conformational transition 1 or CT1). The GroES-free rings di�er most from

each other along the mode with second-largest amplitude (CT2). The largest

di�erence along CT2 is observed between the GroEL rings bound to ATP
S

(pdb entry 1der177) and the other ring from the asymmetric GroEL-GroES
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complex (the trans ring of the complex, pdb entry 1aon). CT2 is likely to be

connected with nucleotide binding and/or a�nity since it describes the main

di�erence between the rings from the 1oel and 1der X-ray structures which

only di�er from each other by the presence of ATP-
S.

X-ray structures of GroES-free rings have similar positions along CT1,

indicating that conformational changes upon nucleotide binding are distinct

from those upon GroES binding. The ring trans to the GroES bound ring

in the asymmetric GroES-bound structure is shifted with respect to the

nucleotide-free symmetric GroEL structure along CT2 and not along CT1.

GroES binding, therefore, causes a shift along the mode presumably con-

nected with nucleotide binding (in the direction of nucleotide release) in the

ring trans to GroES.

CONCOORD simulations based on the di�erent experimental structures

sample both CT1 and CT2 with a signi�cant amplitude (Fig. 7.4) and are

among the largest-amplitude 
uctuations in the simulations. Interestingly,

there is a clear correlation between the 
uctuation along CT1 and CT2 in the

di�erent double ring simulations (Fig. 7.4). For GroES-free rings, this correla-

tion links conformational changes in the direction of the change taking place

upon GroES binding with changes presumably happening upon nucleotide

binding. Therefore, this connection between the two modes of conformational

change displays a mechanism by which nucleotide binding in one ring would

result in a conformational shift corresponding to a larger GroES a�nity in

the same ring.

No signi�cant correlation is detected between CT1 and CT2 in the single

ring simulations (Fig. 7.4). Apparently, interactions between the rings induce

a conformational restriction on both rings which accomplishes the coupling

between the two modes. Indeed, when the e�ect of the CT1 and CT2 on

the packing of the equatorial domains is examined in detail, a mechanism

emerges which explains the coupling. In the equatorial domains, the major

site of contacts with the other ring are formed by residues 461-467. Signi�cant

displacements of these residues are observed in both CT1 and CT2 (Fig. 7.5).

Looking along the cylindrical axis, the e�ect of a displacement along CT1 is an

inward motion of these residues, whereas displacement along CT2 corresponds

to an outward motion. Any steric restrictions that inhibit an overall inward or

outward motion would therefore generate a coupling between CT1 and CT2.

To check if the observed coupling is a direct result of extra restrictions of

the residues involved in inter-ring contacts in the double rings with respect to

the single rings, a CONCOORD simulation was started on a single ring with

these residues constrained. As can be seen in Fig. 7.4, CT1 and CT2 are even

more strongly coupled than in the case of the double ring simulations. This

indicates indeed the existence of a mechanism that correlates CT1 to CT2

(GroES binding to nucleotide binding) in one half of a double ring, induced

by restrictions formed by the other ring.
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Figure 7.4 Essential dynamics analysis of conformational di�erences between

ring conformations obtained from di�erent experimental (X-ray) structures. Pro-

jection of individual rings onto the CT1-CT2 plane. Upper panel: ring conforma-

tions from crystallographic structures. Next four panels: CONCOORD-generated

double-ring structures. Next four panels: CONCOORD-generated single-ring

structures. Lower panel: CONCOORD generated single ring structures with the

residues involved in inter-ring contacts (residues 108 and 463 were taken as repre-

sentative) constrained. The values of C denote the correlation coe�cient between

the displacements along the two modes. SR: single ring; DR: double ring.
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Figure 7.5 Schematic representation of the displacements of the inter-ring con-

tact forming residues (C-� displacements of residues 463 from each subunit were

chosen as representative) along the two dominating modes of ring 
uctuation.

The point of view is along the cylindrical axis formed by the double ring. The ar-

rows indicate the (exaggerated) displacements of residues 463 from each subunit

upon GroES release (left: CT1) and nucleotide release (right: CT2).

Conclusions

The results presented here provide new insight into the mechanism underlying

the conformational changes of GroEL upon nucleotide and GroES binding.

First, an ED analysis of GroEL subunits extracted from X-ray structures

shows that within equatorial domains, a direct e�ect on the inter-ring inter-

face is observable upon both GroES and nucleotide binding which may play

a role in the observed negative cooperativity between GroEL rings. This

mechanism may enhance (or cooperate with) an earlier observation that nu-

cleotide binding a�ects the Glu434-Lys105 inter-ring contact182. Second, an

ED analysis of the crystallographic ring conformers has shown that structural

changes that take place upon GroES binding are not an extension (comple-

tion) of the changes induced by ATP
S. Rather, these changes are described

by two perpendicular modes. Such a completion mechanism has been sug-

gested based on EM data, where larger conformational shifts were observed

upon nucleotide binding182. The results presented here indicate that struc-

tural di�erences upon GroES and nucleotide binding are described by two

perpendicular modes which are not necessarily coupled. However, a coupling

between the modes is observed in CONCOORD simulations of the double

ring, correlating shifts towards GroES binding to shifts that happen upon

nucleotide binding. Since such a coupling is not or hardly present in the sim-

ulations of single rings, this leads to the conclusion that the source of this

coupling must be provided by the interface between the two rings. This �nd-

ing is con�rmed by the observation that this coupling is present in single ring
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simulations in which the inter-ring contact-forming residues are constrained.

This coupling mechanism may provide an additional explanation for the fact

that GroEL acts as a double ring. The double ring has previously been

proposed to play a role in substrate release214, 215, and to provide enhanced

e�ciency under stress conditions216{218. Furthermore, the results show that

CONCOORD, despite a few obvious restrictions, is a powerful tool for study-

ing protein conformational freedom for molecular weights and timescales that

are currently beyond the scope of explicit dynamic simulation techniques.
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Current state of the art

As summarised in the introduction of this thesis, recent developments in com-

puter simulations of biological macromolecules have enhanced the range of

applicability of these techniques for the study of conformational properties

of proteins. The methods described in this thesis form another contribution

to this �eld, and applications to several proteins have yielded interesting re-

sults. The Essential Dynamics technique has proven a powerful analysis tool

not only for the interpretation of MD simulations of proteins, but also of

experimental and CONCOORD generated protein conformations. Enhanced

sampling protocols based on the Essential Dynamics technique have shown to

reach rates of conformational sampling that are 5-10 times higher than those

reached by conventional MD. However, success of the ED sampling technique

depends on the accuracy of the initial de�nition of the collective coordinates

along which the positions are constrained in the sampling technique. Com-

parisons of subspaces spanned by these coordinates from di�erent simulations

have shown that the subspace overlap is usually not larger than 60 % (see

chapters 2,5,6). Thus, although an approximate convergence of the de�nition

of the principal collective coordinates can be obtained from MD simulations in

the nanosecond time range, there is still a signi�cant level of noise in this de�-

nition. It has recently been shown that several shorter simulations sample the

conformational space of proteins more e�ciently than one single, longer sim-

ulation219. It would be interesting to investigate whether the use of multiple

short simulations also yields a faster convergence of the essential subspace.

The CONCOORD method has been described and applied in chapters

6 and 7. It has proven a simple yet powerful technique to study protein

conformational freedom. Because it is based on very di�erent principles than

for instance Molecular Dynamics, the speci�c strengths and weaknesses of

the CONCOORD method di�er from those of the MD technique. Therefore,

the two methods partially complement each other, enabling a deeper insight

in conformational properties of proteins than can be obtained from either

technique individually. Moreover, the ability of the CONCOORD method to

yield modes of collective protein 
uctuation that are similar to those obtained

from MD and experiment proves that protein dynamics is largely governed

by restrictions imposed by interactions in the native structure.

Normal Mode analyses form another computational tool to study 
uctu-

ations in proteins. Although limited to the 
uctuations in a single harmonic

well, the method has been shown to sample biologically relevant motions (e.g.

ref. 220), and can be applied to relatively large proteins212, 221. In a recent

study, we have shown that combined Normal Modes from multiple (local)

minima are more similar to collective modes of 
uctuation derived from MD

simulations, than are Normal Modes extracted from a single minimum222.
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An e�cient, automated procedure to combine Normal Mode results from

multiple local minima could form an alternative method to study protein

dynamics. Further progress may be obtained by combinations of Molecu-

lar Dynamics, CONCOORD and Normal Modes. A method that exploits the

speci�c strengths of each of the three techniques may prove a valuable tool for

the study of conformational 
uctuations in proteins. It should be noted, how-

ever, that both NM and CONCOORD critically depend on the presence of a

high-resolution starting structure, whereas in MD, structures can be allowed

to equilibrate from a low resolution model or from a structure determined

under di�erent conditions (e.g. di�erent solvent).

Limitations

A good illustration of the limitations of the methods described in this thesis is

formed by a project in which we studied the coupled tertiary and quarternary

structural changes in haemoglobin. After the concept of Essential Dynamics

was �rst conceived, the idea arose that the study of allosteric proteins would

be an ideal application of the technique. Allosteric proteins are multi-subunit

proteins that are characterised by a cooperative substrate binding. Commu-

nication between subunits is responsible for the dependence of the substrate

a�nity of one subunit on the binding state of the others. The binding a�nity

can often be further regulated by binding of other molecules at sites distinct

from the substrate binding site. Most allosteric proteins exist in two or more

conformations that di�er in the packing of their subunits (quarternary confor-

mation). One of these states is the preferred conformation in the absence of

substrate, and another quarternary conformation is associated with the fully

liganded state. In the traditional view223, the binding of substrate to one of

the subunits (slightly) changes the conformation of that subunit, triggering a

quarternary conformational change that changes the substrate a�nity of the

other subunits. Molecules that regulate the activity of such proteins speci�-

cally stabilise one of the quarternary conformations. The correlation between

the (usually small) tertiary structural changes and the larger global changes,

if sampled realistically, would be detected by a covariance analysis like Es-

sential Dynamics, and therefore such an analysis technique could improve our

understanding of the mechanisms involved in such conformational changes.

Haemoglobin, probably the best studied allosteric protein, was studied

with Molecular Dynamics techniques with the hope to learn about the cou-

pling between the changes that take place in the subunits upon oxygen bind-

ing, and overall structural changes. Simulations of 1 nanosecond did not

signi�cantly sample the experimentally known quarternary conformational

change. This structural change is known to take place in a time scale of

microseconds after binding (or removal) of oxygen224. The three orders of

magnitude time di�erence between the simulations and the experiment are
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probably the explanation for the absence of the conformational change in

the simulations. However, applications to T4 lysozyme had shown that do-

main motions were sampled to an appreciable amplitude in simulations of the

same length86. The critical di�erence between the two proteins is the pres-

ence of a (free) energy barrier between the di�erent conformational states of

haemoglobin. In T4 lysozyme the domain motion(s) are not restricted by such

an internal barrier and 
uctuate di�usively during simulation. CONCOORD

simulations of haemoglobin did sample the conformational changes between

the di�erent quarternary structures. The CONCOORD method is less sensi-

tive to internal barriers since there is no path dependence between successively

generated structures. The conformational changes sampled by CONCOORD,

however, did not show a unique mechanism of coupling between tertiary and

quarternary structural changes. The speci�c interaction of oxygen with the

haem prosthetic group and the local structural changes are not modeled ac-

curate enough to allow identi�cation of such a coupling mechanism. The

CONCOORD results, however, did indicate a direct role of the C-terminal

residues of each subunit in the allosteric mechanism.

Outlook

Computational techniques are widely used for the study of conformational

properties of biological macromolecules, and their range of application will

only grow in the future. From the re�nement of experimental structures to

the ab initio folding of proteins, computer simulation techniques have proven

to be valuable tools that can complement insights obtained from experiment.

The predictive power of computer simulation techniques applied to proteins

is still limited because of the large number of degrees of freedom that need

to be treated explicitly. In the introduction of this thesis an overview was

given of methods that are currently used to enhance the e�ciency of computer

simulation techniques to study protein dynamics. Only time can tell which

(combination of) techniques will prove most useful in the future.

Based on the resuls presented in this thesis, it follows that a large por-

tion of the con�gurational freedom is de�ned by restrictions that are imposed

directly by the structure (chapters 6 and 7), Methods that do not use a molec-

ular description on the atomic level will lack features that are directly related

to the speci�c atomic interactions or packing. Another source of artifacts

in computer simulation techniques is the representation of atomic interac-

tions. Whereas many aspects of collective protein 
uctuations may be cor-

rectly described by methods that lack a sophisticated treatment of interactions

(e.g. quarternary structural changes in haemoglobin by CONCOORD), other,

more subtle, mechanisms may not be correctly represented by such techniques

(e.g. the coupling between tertiary and quarternary structural changes in

haemoglobin). Therefore, the kind of application de�nes the method of choice.
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Some applications do not require sophisticated all-atom treatment (e.g. de-

termining the hinge-bending mode in lysozyme). Other processes however,

depend on subtle interactions and/or take place at time scales that can cur-

rently not be simulated realistically (e.g. substrate entry or exit in enzymes

or the protein folding process).

In chapters 6 and 7 it was shown that many conformational properties of

proteins can be obtained by a much more simple technique (CONCOORD)

than Molecular Dynamics. Although the applicability of the CONCOORD

method is limited because of the absence of a realistic atomic description, it

has the advantage that it does not su�er from sampling problems, at least

within prede�ned limits. Progress with respect to the current implementation

can be obtained by releasing some of the constraints imposed by a single con-

formation. This would allow the generation of conformations more distinct

from the starting structure, and a sampling of the paths between those con-

formations. The di�culty in the design of a method to accomplish this is the

prediction of which interactions are to be maintained for each generated con-

former, and for which there are alternatives available. One straightforward

approach would be to use the method as it is, in a recursive manner. The �rst

step would be the generation of structures based on a single conformation. In

next steps, structures generated in the previous steps could be used to de�ne

new sets of distance limitations, on the basis of which new structures could be

generated. Preferable would be to have multiple experimental structures or

reliable MD structures that could be used in the same fashion. Future studies

will have to resolve whether meaningful results can be obtained in this way.

Summarising, although biomolecular computer simulations have come of

age225, many interesting processes involving dynamics of biological macro-

molecules are still beyond the scope of current computational techniques.

Simulations employing sophisticated atomic models are limited to short time

scales, and more coarse-grained methods lack the atomic detail that is often

essential for a full understanding of a dynamical process. However, constant

improvement of methodologies, together with a steady increase of (a�ord-

able) computer power will allow the study of more complex systems on longer

timescales. Backed up by constant thorough experimental validation, meth-

ods will be developed in the next decade(s) that will allow detailed simulation

of functional dynamics of proteins, the interactions of proteins with other

molecules (docking) and the protein folding process226.
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SUMMARY

Protein dynamics plays an important role in the majority of biological pro-

cesses. The ability of proteins to change conformation is essential for processes

as diverse as oxygen transport and immune response. Therefore, a thorough

knowledge of the principles governing the dynamics of proteins would greatly

facilitate the understanding of these processes. Moreover, it would enhance

the possibilities to modify dynamical properties of proteins by mutation for

industrial or medical purposes. Much of what is known today about pro-

tein structure and dynamics is derived from experimental data. However,

no experimental technique is currently available to follow individual protein

structures at the nanosecond time scale, the times at which typical relevant

protein motions occur. Computer simulation techniques provide the only way

to obtain information on conformational properties of proteins at an atomic

level at the picosecond to microsecond time scale. The reliability of such

computer simulation depends on the accuracy of the starting model of the

protein and the sophistication of the simulation procedure. Molecular Dy-

namics (MD) techniques are among the most popular methods to simulate

protein dynamics.

Analyses of Molecular Dynamics simulations of several proteins by the Es-

sential Dynamics (ED) technique have shown that protein dynamics is dom-

inated by a limited number of backbone motions. The ED method is based

on a covariance (principal component) analysis of the atomic coordinates and

yields collective degrees of freedom that best approximate the full dynam-

ics. The notion that only a few collective coordinates (which together span

a hyper-surface, the essential subspace) su�ce to approximate the backbone

dynamics of a given protein simpli�es protein dynamics dramatically. This

simpli�cation is not only useful for the interpretation of simulation results

but can also be utilised in the design of novel simulation techniques.

Chapter 2 of this thesis is concerned with the convergence of ED results

from relatively short MD simulations. A number of groups had reported that

principal component analysis of MD simulations of such short time lengths

is not suitable for describing long-time scale protein dynamics because the

subspace keeps changing throughout the simulations. It is shown in this

chapter that even in simulations in the range of hundreds of picoseconds, an

approximately converged de�nition of the essential subspace can be reached

for a small protein in an aqueous environment. The individual (eigen)vectors

that span this space, however, are not sampled enough in such a short period

to allow a fully converged de�nition. Apart from the issue of convergence

of the essential subspace, the sensitivity of the essential dynamics results to

MD parameters is also described in this chapter. It was found that essential

dynamics results from MD simulations with di�erent parameters deviate as

much from those extracted from a set of reference simulations, as do the

reference simulations among each other. Only for a simulation in vacuo a

signi�cant deviation was observed.
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The third chapter describes a technique to perform MD simulations with

an enhanced conformational sampling rate, based on ED. An approximation

of the essential subspace is obtained from an initial simulation. In subsequent

simulations, knowledge of the (approximate) essential subspace is used to

impose constraints that encourage sampling of previously unsampled regions

of con�gurational space. An application to the peptide hormone guanylin

shows that this ED sampling technique samples con�gurational space at a rate

that is approximately seven times larger than that obtained by conventional

MD. Structures generated by the ED sampling technique are not signi�cantly

perturbed or strained as is indicated by the fact that when subjected to usual

MD, they do not show any drift in a particular direction. Analysis of the

sampled con�gurational space indicates that for both forms of the peptide,

an almost exhaustive sampling has been reached. Additionally, except close

to the borders of the sampled regions, free energy gradients in the essential

subspace are found to be small, indicating a rather 
at free energy surface

surrounded by steep borders.

Chapter 4 presents an application of the ED sampling technique to a small

protein: HPr. A comparable increase in the rate of conformational sampling

compared to conventional MD was obtained as with the peptide described

in chapter 3. Geometrical properties, like secondary structure and solvent

accessibility, as well as energies of structures from the ED sampling ensemble

are comparable to those obtained from the much more compact ensembles

of MD simulation or NMR re�nement. Strikingly, violations of the NMR

data are comparable for the ED sampling, usual MD and NMR ensembles,

indicating that a much larger cluster equally well satis�es nearly all NMR

data.

In chapter 5 a comparison is presented between ED results obtained from

MD simulations and those derived from a set of crystallographic structures

of bacteriophage T4 lysozyme. T4 lysozyme is probably the best experimen-

tally characterised protein from a structural point of view, with hundreds of

experimental structures in the Protein Data Bank. T4 lysozyme consists of

two-domains and the domain motions dominate the global 
uctuations of this

protein. The modes obtained by ED. analysis were characterised in terms of

domain motions by the DYNDOM program and results showed that there is

signi�cant overlap between the modes derived from the di�erent experimental

structures and those obtained from MD simulation. Two modes of domain

motion were found in both clusters: the well known hinge-bending mode of

lysozyme and a twisting mode. Together with spin-labeling experiments in so-

lution, the results indicate that both the hinge-bending and the twist motion

are involved in the catalytic mechanism of T4 lysozyme.

ED analysis of MD simulations of proteins had revealed that protein dy-

namics is for a large part limited to a small number of collective degrees of

freedom. All other degrees of freedom are (virtually) constrained due to in-

ternal barriers caused by interactions in compactly folded protein structures.

Since both groups of coordinates are complementary, a correct modeling of
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all interactions in the structure of a given protein should yield the accessi-

ble degrees of 
uctuations. Chapter 6 describes a method that is based on

this idea. The CONCOORD method generates protein structures based on

lower and upper distance bounds that are derived from inter-atomic inter-

actions that are present in a starting con�guration. Starting from random

coordinates, corrections are iteratively applied until all distance bounds are

ful�lled. Clusters of protein structures that are obtained in this way were

compared to those obtained by MD simulations for several proteins. It was

found that for all properties considered, the CONCOORD and MD results

were comparable. This suggests that for many purposes, CONCOORD sim-

ulations may be used instead of much more CPU-intensive MD simulations.

Chapter 7 presents an application of the CONCOORD method to the

molecular chaperonin complex GroEL/GroES. Consisting of 8000 amino-

acids, it would be an infeasible task to simulate GroEL by MD even for only

one nanosecond. GroEL exists as a double back-to-back ring, and communi-

cation between the rings is known to play a role in the allosteric mechanism

of the chaperonin. Experimentally it is known that GroEL changes confor-

mation upon both cochaperonin (GroES) and nucleotide (ATP) binding. ED

analysis of the di�erent experimental structures showed that conformational

changes in single rings upon nucleotide binding are distinct, and in principle

uncoupled, from changes upon GroES binding. CONCOORD simulations do

show a coupling between the two conformational transitions, but only in sim-

ulations of double rings, not in simulations of single rings. This may provide

another reason for GroEL to act as a double ring. Internal motions of the

nucleotide-binding subunits, which also provide the contact regions between

the two rings, were shown to be involved in a possible direct form of inter-ring

communication.

The last chapter discusses the current state of the art in computer simu-

lation methods to study protein dynamics. Despite serious limitations, com-

puter simulation methods are essential for a better understanding of protein

dynamics and future improvements will allow reliable simulations of systems

that are currently beyond the scope of any simulation technique even on the

most modern computers.
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Eiwitdynamica speelt een belangrijke rol in de meeste biologische processen.

De mogelijkheid van eiwitten om hun conformatie te veranderen is essenti�eel

voor processen zo divers als zuurstoftransport en immuunreacties. Het ken-

nen van de principes die aan eiwitdynamica ten grondslag liggen zou daarom

het begrijpen van dit soort processen enorm vergemakkelijken. Bovendien

zou het de mogelijkheden vergroten om dynamische eigenschappen van ei-

witten door mutaties te veranderen voor industri�ele of medische doeleinden.

Veel van wat er op dit moment bekend is over eiwitstructuren en -dynamica

is afgeleid van experimentele data. Echter, tot op heden is er geen experi-

mentele techniek beschikbaar om eiwitstructuren te volgen op de tijdschaal

van nanoseconden, de typische tijdschaal waarop relevante eiwitbewegingen

plaatsvinden. Computersimulatietechnieken vormen de enige manier om in-

formatie over conformationele eigenschappen van eiwitten te verkrijgen op

atomair niveau en tijdschalen van picoseconden tot microseconden. De be-

trouwbaarheid van zulke computersimulaties hangt af van de nauwkeurigheid

van het startmodel van het eiwit en de kwaliteit van de simulatieprocedure.

Moleculaire Dynamica (MD) simulaties vormen �e�en van de populairste klassen

van methodes om eiwitdynamica te simuleren.

Analyses van MD simulaties van verschillende eiwitten met de Es-

senti�ele Dynamica (ED) techniek hebben aangetoond dat eiwitdynamica

wordt gedomineerd door een klein aantal bewegingen van de hoofdketen. De

ED methode is gebaseerd op een covariantie (principale componenten) analyse

van de atomaire verplaatsingen en produceert collectieve vrijheidsgraden die

het best de totale 
uctuaties benaderen. Het feit dat slechts een paar collec-

tieve co�ordinaten (die samen een oppervlak in de multidimensionale ruimte

spannen, de zogenaamde essenti�ele subruimte) voldoen om de hoofdketen-

bewegingen te benaderen, vereenvoudigt eiwitdynamica dramatisch. Deze

vereenvoudiging is niet alleen handig voor de interpretatie van simulatieresul-

taten maar kan ook gebruikt worden bij het ontwerpen van nieuwe simulatie-

technieken.

Hoofdstuk 2 van dit proefschrift behandelt de convergentie van ED resul-

taten verkregen uit relatief korte MD simulaties. Een aantal groepen had ge-

rapporteerd dat principale componenten analyses niet geschikt zijn om lange-

tijdschaal eiwit dynamica mee te beschrijven omdat de essenti�ele subruimte

constant zou veranderen tijdens de simulatie. Het wordt in dit hoofdstuk

aangetoond dat zelfs uit simulaties van enkele honderden picoseconden een

bij benadering geconvergeerde de�nitie van de essenti�ele subruimte kan wor-

den verkregen voor een klein eiwit in een waterige oplossing. De con�gu-

ratieruimte die in zo'n korte tijd wordt bezocht is echter te klein om een

geconvergeerde de�nitie te verkrijgen van de individuele (eigen)vectoren die

deze ruimte opspannen. Naast de kwestie van convergentie van de essenti�ele

subruimte wordt de gevoeligheid van de ED resultaten voor MD parameters

beschreven in dit hoofdstuk. Het bleek dat de ED resultaten uit MD simu-
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laties met verschillende parameters even veel verschilden van een set referen-

tiesimulaties als de referentiesimulaties onderling. Alleen voor een simulatie

in vacuum werd een signi�cant verschil waargenomen.

Het derde hoofdstuk beschrijft een techniek om MD simulaties uit te voe-

ren die de conformatieruimte sneller afzoekt, gebaseerd op ED. Een benade-

ring van de essenti�ele subruimte wordt verkregen uit een initi�ele simulatie. In

daaropvolgende simulaties wordt deze benadering gebruikt om het systeem te

dwingen gebieden in de con�guratieruimte te bezoeken waar het voorheen niet

geweest was. Een toepassing op het peptide hormoon guanyline laat zien dat

de zoeksnelheid waarmee de con�guratieruimte wordt gescand ongeveer een

factor zeven groter is dan wordt verkregen met conventionele MD. De struc-

turen die met deze techniek gegenereerd worden zijn niet signi�cant verstoord

of gespannen, wat wordt aangetoond door het feit dat wanneer ze worden on-

derworpen aan normale MD, er geen drift plaatsvindt vanaf de startpositie.

Analyse van de bezochte conformatieruimtes laat zien dat voor beide vormen

van het peptide bijna de complete ruimte is bezocht. Bovendien bleek dat

vrije energie-gradienten in de essenti�ele subruimte relatief klein zijn, behalve

dichtbij de grenzen van de bezochte gebieden. Dit duidt op een vlak vrije

energie oppervlak omringd door steile grenzen.

In hoofdstuk 4 wordt de ED zoekmethode toegepast op een klein eiwit:

HPr. Een vergelijkbare winst in zoeksnelheid vergeleken met conventionele

MD werd verkregen als bij het peptide van hoofdstuk 3. Geometrische eigen-

schappen als secundaire structuur en water toegankelijkheid als ook energie�en

van structuren die met de ED zoekmethode zijn gegenereerd zijn vergelijk-

baar met die verkregen uit de veel meer compacte clusters die uit MD of NMR

ver�jning komen. Opvallend is dat overschrijdingen van grenzen die uit NMR

data berekend zijn even groot zijn in clusters verkregen met de ED zoekme-

thode, MD en NMR ver�jning, wat aangeeft dat een veel groter cluster even

goed aan bijna alle NMR data kan voldoen als een veel kleiner cluster.

Hoofdstuk 5 beschrijft een vergelijking tussen ED resultaten uit MD simu-

laties en uit een set kristallogra�sche structuren van bacteriofaag T4 lysozym.

Vanuit een structureel oogpunt is T4 Lysozym waarschijnlijk het best gekarak-

teriseerde eiwit, met honderden structuren in de Protein Data Bank. T4

lysozym bestaat uit twee domeinen en de domeinbewegingen domineren de

globale 
uctuaties van dit eiwit. ED resultaten werden onderzocht op do-

meinbewegingen met het DYNDOM programma en de resultaten laten zien

dat de MD resultaten goed overeenkomen met de data verkregen uit de ex-

perimentele structuren. Twee domeinbewegingen werden gevonden in beide

clusters van structuren: de welbekende sluitbeweging van lysozym en een

twist beweging. Samen met spin-label experimenten in oplossing suggereren

deze resultaten dat niet alleen de sluitbeweging, maar ook de twistbeweging

een rol speelt in het catalytische mechanisme van T4 lysozym.

ED analyses van MD simulaties hebben keer op keer bevestigd dat eiwitdy-

namica voor een groot deel beperkt is tot een klein aantal collectieve vrijheids-

graden. Alle andere vrijheidsgraden hebben veel minder bewegingsvrijheid
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vanwege interne barri�eres veroorzaakt door interacties in compact opgevouwen

eiwitstructuren. Omdat beide groepen vrijheidsgraden complementair zijn

zou een correcte modellering van al deze interacties voor een bepaald eiwit

de toegankelijke vrijheidsgraden automatisch moeten opleveren. Hoofdstuk 6

beschrijft een methode die uitgaat van dit idee. De CONCOORD methode

genereert eiwitstructuren die gebaseerd zijn op een set onder- en bovengrenzen

van afstanden die zijn afgeleid van interatomaire interacties die aangetro�en

zijn in een startstructuur. Er wordt begonnen met willekeurige co�ordinaten,

waarna iteratief correcties worden toegepast totdat aan alle afstandscriteria

voldaan wordt. Clusters van eiwitstructuren die op deze manier zijn verkregen

zijn vergeleken met die uit MD simulaties voor een aantal eiwitten. Het bleek

dat voor alle eigenschappen die onderzocht zijn, er vergelijkbare resultaten

uit MD en CONCOORD kwamen. Dit suggereert dat voor veel doeleinden

CONCOORD even goed gebruikt kan worden als MD simulaties, die veel meer

computertijd kosten.

In hoofdstuk 7 wordt een toepassing van de CONCOORD methode

beschreven op het moleculaire chaperone complex GroEL/GroES. Met zijn

8000 aminozuren zou het onpraktisch zijn dit systeem met MD simulaties te

bestuderen, zelfs voor �e�en nanoseconde. GroEL komt voor als twee ringen die

met de ruggen tegen elkaar liggen en het is bekend dat communicatie tussen

de ringen een rol speelt in het allostere mechanisme van dit eiwit. Experi-

menteel is vastgesteld dat GroEL conformatieveranderingen ondergaat als het

cochaperone (GroES) of nucleotide (ATP) bindt. ED analyse van verschil-

lende experimentele structuren heeft uitgewezen dat structuurveranderingen

die optreden in individuele ringen bij het binden van nucleotide verschillen,

en in principe ongekoppeld plaatsvinden, van veranderingen die het molecuul

ondergaat wanneer het GroES bindt. CONCOORD simulaties laten echter

wel een koppeling zien tussen de twee conformatieovergangen, maar alleen in

simulaties van dubbele ringen, en niet in enkelring simulaties. Dit is een mo-

gelijke verklaring voor het voorkomen van GroEL als een dubbelring. Interne

bewegingen van de nucleotide-bindende subeenheden, die ook de contactre-

gio's tussen de twee ringen vormen, bleken betrokken te zijn bij een mogelijke

directe vorm van inter-ring communicatie.

Het laatste hoofdstuk beschrijft de laatste ontwikkelingen in computer-

simulatiemethoden om eiwitdynamica te bestuderen. Ondanks belangrijke

beperkingen zijn computersimulaties essenti�eel voor het beter begrijpen van

eiwitdynamica en toekomstige ontwikkelingen zullen betrouwbare simulaties

mogelijk maken van systemen die nu nog buiten het bereik van elke simula-

tietechniek vallen, zelfs op de meest moderne computers.
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