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In a recent paper [E. Nungesser, “Future non-linear stability for reflection symmet-
ric solutions of the Einstein-Vlasov system of Bianchi types II and VI0,” Annales
Henri Poincare (2012)], we have treated the future nonlinear stability for reflection
symmetric solutions of the Einstein-Vlasov system of Bianchi types II and VI0. We
have been able now to remove the reflection symmetry assumption, thus treating the
non-diagonal case. Apart from the increasing complexity, the methods have been es-
sentially the same as in the diagonal case, showing that they are thus quite powerful.
Here, the challenge was to put the equations in a form that permits the use of the
previous results. We are able to conclude that after a possible basis change, the future
of the non-diagonal spacetimes in consideration is asymptotically diagonal. C© 2012
American Institute of Physics. [http://dx.doi.org/10.1063/1.4758930]

I. THE EINSTEIN-VLASOV SYSTEM

A cosmological model represents a universe at a certain averaging scale. It is described via
a Lorentzian metric gαβ (we will use signature – + + + ) on a manifold M and a family of
fundamental observers. The metric is assumed to be time-orientable, which means that at each
point of M the two halves of the light cone can be labelled past and future in a way, which varies
continuously from point to point. This enables to distinguish between future-pointing and past-
pointing timelike vectors. This is a physically reasonable assumption from both a macroscopic
point of view, e.g., the increase of entropy and also from a microscopic point of view, e.g., the
kaon decay. One has also to specify the matter model and this we will do in the following. The
interaction between the geometry and the matter is described by the Einstein field equations (we use
geometrized units, i.e., the gravitational constant G and the speed of light in vacuum c are set equal to
one):

Gαβ = 8πTαβ,

where Gαβ is the Einstein tensor and Tαβ is the energy-momentum tensor. For the matter model,
we will take the point of view of kinetic theory.12 The sign conventions of Ref. 10 and the Einstein
summation convention that repeated indices are to be summed over are used. Latin indices run from
one to three and Greek ones from zero to three.

We will consider from now on that all the particles have equal mass m. We will choose units
such that m = 1, which means that a distinction between velocities and momenta is not neces-
sary. The collection of particles (galaxies or clusters of galaxies) will be described (statistically)
by a non-negative real valued distribution function f(xα , pα) on the mass shell. This function rep-
resents the density of particles at a given spacetime point with given four-momentum. Using the
geodesic equations, the restriction of the Liouville operator to the mass shell has the following
form:

L = pα ∂

∂xα
− �a

βγ pβ pγ ∂

∂pa
,
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where �a
βγ are the components of the metric connection. We will consider the collisionless case,

which is described via the Vlasov equation

L( f ) = 0.

The unknowns of our system are a 4-manifold M, a Lorentz metric gαβ on this manifold and the
distribution function f on the mass shell defined by the metric. We have the Vlasov equation defined
by the metric for the distribution function and the Einstein equations. It remains to define the energy-
momentum tensor Tαβ in terms of the distribution and the metric. Before that, we need a Lorentz
invariant volume element on the mass shell. A point of a the tangent space has the volume element
|g(4)| 1

2 dp0dp1dp2dp3 (g(4) is the determinant of the spacetime metric), which is Lorentz invariant.
Now considering p0 as a dependent variable, the induced (Riemannian) volume of the mass shell
considered as a hypersurface in the tangent space at that point is

� = 2H (pα)δ(pα pα + m2)|g(4)| 1
2 dp0dp1dp2dp3,

where δ is the Dirac distribution function and H(pα) is defined to be one if pα is future directed and
zero otherwise. We can write this explicitly as

� = |p0|−1|g(4)| 1
2 dp1dp2dp3.

Now we define the energy momentum tensor as follows:

Tαβ =
∫

f (xα, pa)pα pβ�.

One can show that Tαβ is divergence-free and thus it is compatible with the Einstein equations. For
collisionless matter, all the energy conditions hold. The Vlasov equation in a fixed spacetime can be
solved by the method of characteristics

d Xa

ds
= Pa ;

d Pa

ds
= −�a

βγ Pβ Pγ .

Let Xa(s, xα , pa), Pa(s, xα , pa) be the unique solution of that equation with initial conditions Xa(t, xα ,
pa) = xa and Pa(t, xα , pa) = pa. Then the solution of the Vlasov equation can be written as

f (xα, pa) = f0(Xa(0, xα, pa), Pa(0, xα, pa)),

where f0 is the restriction of f to the hypersurface t = 0. It follows that if f0 is bounded the same
is true for f. We will assume that f has compact support in momentum space for each fixed t. This
property holds if the initial datum f0 has compact support and if each hypersurface t = t0 is a Cauchy
hypersurface. Before coming to our symmetry assumption, we want to briefly introduce the initial
value problem for the Einstein-Vlasov system. In general, the initial data for the Einstein-matter
equations consist of a metric gab on the initial hypersurface, the second fundamental form kab on that
hypersurface, and some matter data. Thus, we have a Riemannian metric gab, a symmetric tensor kab

and some matter fields defined on an abstract 3-dimensional manifold S.
Solving the initial value problem means embedding S into a 4-dimensional M on which are

defined a Lorentzian metric gαβ and matter fields such that gab and kab are the pullbacks to S of
the induced metric and second fundamental form of the image of the embedding of S while f is the
pullback of the matter fields. Finally, gαβ and f have to satisfy the Einstein-matter equations.

For the Einstein-Vlasov system, it has been shown that given an initial data set, there exists
a corresponding solution of the Einstein-Vlasov system and that this solution is locally unique up
to diffeomorphism. The extension to a global theorem has not been achieved yet. However, if one
assumes that the initial data have certain symmetry, this symmetry is inherited by the corresponding
solutions. In particular, for the case we will deal with, i.e., expanding Bianchi models (except
type IX) coupled to dust or to collisionless matter, the spacetime is future complete (Theorem 2.1 of
Ref. 9).
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II. BIANCHI SPACETIMES

The basis for the classification of homogeneous spacetimes is the work of Bianchi, which was
introduced to cosmology by Taub. Here, we will use the modern terminology and we define Bianchi
spacetimes as follows:

Definition 1: A Bianchi spacetime is defined to be a spatially homogeneous spacetime whose
isometry group possesses a three-dimensional subgroup G that acts simply transitively on the
spacelike orbits.

Our results concern only a special class of the Bianchi spacetimes, namely that of class A.

Definition 2: A Bianchi A spacetime is a Bianchi spacetime whose three-dimensional Lie algebra
has traceless structure constants, i.e., Ca

ba = 0.

We will study II and VI0. For Bianchi II, the only non-vanishing structure constants are

C1
23 = 1 = −C1

32 (1)

and in the case of Bianchi VI0, these are

C2
31 = 1 = −C2

13, C3
21 = 1 = −C3

12. (2)

We will use the metric approach. If Wa denote the 1-forms dual to the frame vectors Ea , the metric
of a Bianchi spacetime takes the form

4g = −dt2 + gab(t)WaWb, (3)

where gab (and all other tensors) on G will be described in terms of the frame components of a
left invariant frame. A dot above a letter will denote a derivative with respect to the cosmological
time t. We will use the 3+1 decomposition of the Einstein equations as made in Ref. 10. Comparing
our metric (3) with (2.28) of Ref. 10, we have that α = 1 and βa = 0, which means that the lapse
function is the identity and the shift vector vanishes. There, the abstract index notation is used. We
can interpret the quantities as being frame components. There are different projections of the energy
momentum tensor, which are important

ρ = T 00,

ja = T 0
a ,

Sab = Tab,

where ρ is the energy density and ja is the matter current.
The second fundamental form kab can be expressed as

ġab = −2kab. (4)

The Einstein equations

k̇ab = Rab + kkab − 2kackc
b − 8π (Sab − 1

2
gab S) − 4πρgab, (5)

where we have used the notations S = gabSab, k = gabkab, and Rab is the Ricci tensor of the three-
dimensional metric. The evolution equation for the mixed version of the second fundamental form
is (2.35) of Ref. 10

k̇a
b = Ra

b + kka
b − 8π Sa

b + 4πδa
b (S − ρ). (6)

From the constraint equations since k only depends on the time variable, we have that

R − kabkab + k2 = 16πρ, (7)

∇akab = 8π jb, (8)

where R is the Ricci scalar curvature.
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Another useful relation concerns the determinant g of the induced metric ((2.30) of Ref. 10)

d

dt
(log g) = −2k. (9)

Taking the trace of (6)

k̇ = R + k2 + 4π S − 12πρ. (10)

With (7), one can eliminate the energy density and (10) reads

k̇ = 1

4
(k2 + R + 3kabkab) + 4π S. (11)

Finally, if one substitutes for the Ricci scalar with (7)

k̇ = kabkab + 4π (S + ρ). (12)

Now with the 3+1 formulation, our initial data are (gij(t0), kij(t0), f(t0)), i.e., a Riemannian metric,
a second fundamental form, and the distribution function of the Vlasov equation, respectively, on a
three-dimensional manifold S(t0). This is the initial data set at t = t0 for the Einstein-Vlasov system.

We assume that k < 0 for all time following Ref. 8 (see comments below Lemma 2.2 of Ref. 8).
This enables us to set without the loss of generality t0 = − 2/k(t0). The reason for this choice will
become clear later and is of technical nature.

We will now introduce several new variables in order to use the ones, which are common in
Bianchi cosmologies and to be able to compare results. We can decompose the second fundamental
form introducing σ ab as the trace-free part

kab = σab − Hgab, (13)

kabkab = σabσ
ab + 3H 2. (14)

Using the Hubble parameter,

H = −1

3
k,

we define

�b
a = σ b

a

H
(15)

and

�+ = −1

2
(�2

2 + �3
3), (16)

�− = − 1

2
√

3
(�2

2 − �3
3). (17)

Thus,

�b
a =

⎛
⎜⎜⎝

2�+ �1
2 �1

3

�2
1 −�+ − √

3�− �2
3

�3
1 �3

2 −�+ + √
3�−

⎞
⎟⎟⎠ .

The reason for using the variables �+ and �− is that the diagonal case has been very important to
understand the non-diagonal case. Define also

 = 8πρ/3H 2, (18)

q = −1 − Ḣ

H 2
, (19)

Downloaded 17 Jan 2013 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



102503-5 Ernesto Nungesser J. Math. Phys. 53, 102503 (2012)

dτ

dt
= H. (20)

The time variable τ is dimensionless and sometimes very useful. From (7), we obtain the constraint
equation

1

6H 2
(R − σabσ

ab) =  − 1,

and from (11), the evolution equation for the Hubble variable

∂t (H−1) = 3

2
+ 1

12
(

R

H 2
+ 3

H 2
σabσ

ab) + 4π S

3H 2
. (21)

Combining the last two equations with (6), we obtain the evolution equations for �− and �+

�̇+ = H [
2R − 3(R2

2 + R3
3)

6H 2
− �+(3 + Ḣ

H 2
) + 4π

3H 2
(3S2

2 + 3S3
3 − 2S)], (22)

�̇− = H [
R3

3 − R2
2

2
√

3H 2
− (3 + Ḣ

H 2
)�− + 4π (S2

2 − S3
3 )√

3H 2
]. (23)

Since we use a left-invariant frame, f will not depend on xa and the Vlasov equation takes the form

p0 ∂ f

∂t
− �a

βγ pβ pγ ∂ f

∂pa
= 0.

It turns out that the equation simplifies if we express f in terms of pi instead of pi what we can do
due to the mass shell relation

p0 ∂ f

∂t
− �aβγ pβ pγ ∂ f

∂pa
= 0.

Because of our special choice of frame, the metric has the simple form (3). Due to the fact that we
are contracting and the antisymmetry of the structure constants, we finally arrive at

∂ f

∂t
+ (p0)−1Cd

ba pb pd
∂ f

∂pa
= 0. (24)

From (24), it is also possible to define the characteristic curve Va

dVa

dt
= (V 0)−1Cd

ba V bVd , (25)

for each Vi (t̄) = v̄i given t̄ . Note that if we define

V = gi j Vi Vj (26)

due to the antisymmetry of the structure constants, we have with (25)

dV

dt
= d

dt
(gi j )Vi Vj . (27)

Let us also write down the components of the energy momentum tensor in our frame

T00 =
∫

f (t, pa)p0√gdp1dp2dp3, (28)

T0 j = −
∫

f (t, pa)p j
√

gdp1dp2dp3, (29)

Ti j =
∫

f (t, pa)pi p j (p0)−1√gdp1dp2dp3. (30)
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III. THE ASYMPTOTICS OF BIANCHI II AND VI0

Before coming to the non-diagonal case, we have a look at the tilted fluid models, since they are
non-diagonal as well and they may help us to understand the non-diagonal case with collisionless
matter. For the tilted Bianchi II, we use the corresponding equations of Ref. 5 and for Bianchi VI0

the equations of Ref. 4, in both cases with γ = 1. We will not go into the details for this we refer to
the mentioned work. The point is that looking at the linearization we see that the variables, which did
not appear in the diagonal case have decay rates, which are between the ones considered previously.
This is a good sign. Also in Ref. 2, the stability of the Ellis-MacCallum solution, in fact the stability
of the Collins solution, was already considered within the Einstein-Euler system.

A. Equations of the non-diagonal case

Using (15), we arrive with (6) for a �= b to

�̇b
a = H [

Rb
a

H 2
− �b

a (3 + Ḣ

H 2
) − 8π Sb

a

H 2
]; a �= b,

which together with (22)–(23), i.e.,

�̇+ = H [
2R − 3(R2

2 + R3
3)

6H 2
− �+(3 + Ḣ

H 2
) + 4π

3H 2
(3S2

2 + 3S3
3 − 2S)],

�̇− = H [
R3

3 − R2
2

2
√

3H 2
− (3 + Ḣ

H 2
)�− + 4π (S2

2 − S3
3 )√

3H 2
]

describe the evolution of �a
b . The expression for the Ricci tensor is

Ri j = −1

2
Cl

ki (C
k
l j + glm gknCm

nj ) − 1

4
Cm

nkC p
ql g jm gipgkq gln, (31)

and

R j
i = Ribgbj = −1

2
Cl

ki g
bj (Ck

lb + glm gknCm
nb) − 1

4
C j

nkC p
ql gipgkq gln. (32)

We will now derive some expression concerning the derivative of (31)

Ṙi j = Cl
ki C

m
nj (klm gkn − glmkkn) +

1

2
Cm

nkC p
ql(k jm gipgkq gln + g jmkipgkq gln − g jm gipkkq gln − g jm gipgkqkln).

Thus,

g jr Ṙi j = g jr Cl
ki C

m
nj (klm gkn − glmkkn) +

1

2
C p

ql[C
m
nkkr

m gipgkq gln + Cr
nk(kipgkq gln − gip(kkq gln + gkqkln))].

For r = i and relabelling, the m with i for the terms with the prefactor 1
2 ,

g ji Ṙi j = g ji Cl
ki C

m
nj (klm gkn − glmkkn) + 1

2
C p

qlC
i
nk[2kipgkq gln − gip(kkq gln + gkqkln))].

Rearranging terms

g ji Ṙi j = Cl
ki C

m
nj (klm gkng ji − glmkkng ji ) + C p

qlC
i
nk[kipgkq gln − gipkkq gln].

We see that the first with the third and the second with the fourth term cancel each other, hence,

g ji Ṙi j = 0. (33)

The evolution equation for the Ricci scalar due to (33) is

Ṙ = 2Ri
j k

j
i = 2H (−R + Ri

j�
j
i ).
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Define

N j
i = R j

i

H 2
.

The derivative of this expression is

Ṅ j
i = g pj Ṙpi

H 2
+ 2H (N p

i � j
p − (1 + Ḣ

H 2
)N j

i ).

Consider the quantity N = R/H2. Its evolution equation is

Ṅ = 2H [q N + N i
j�

j
i ]. (34)

B. Curvature expressions

For bookkeeping reasons, we define the following quantities where we use from now on g for
the determinant of the metric:

A = g22g33 − (g23)2 = g11

g
; B = g13g23 − g12g33 = g12

g
,

C = g12g23 − g13g22 = g13

g
; D = g12g13 − g11g23 = g23

g
,

E = g11g33 − (g13)2 = g22

g
; F = g11g22 − (g12)2 = g33

g
.

Let us denote the quantities divided by H2 with small letters, i.e., a = A
H 2 .

1. Curvature expressions for Bianchi II

Using (32) for Bianchi II,

R j
i = 1

2
g11[C1

2i (g
23g2 j − g22g3 j ) + C1

i3(g23g3 j − g33g2 j )] + 1

2
gi1C j

23 A.

We obtain

R = −1

2
g11 A = −1

2

(g11)2

g

and as in the diagonal case,

R1
1 = −R = −R2

2 = −R3
3,

R2
1 = R3

1 = R3
2 = R2

3 = 0.

However, in the non-diagonal case, we have

R1
2 = −2

g12

g11
R,

R1
3 = −2

g13

g11
R.

Thus,

Ṅ = −2H [(1 + Ḣ

H 2
+ 4�+)N − WI I ],

where WI I = N 1
2 �2

1 + N 1
3 �3

1 . In order to calculate the derivative of N 1
2 , we need the following

expression:

R
d

dt
(−2

g12

g11
) = 2H [2�1

2 R + (3�+ +
√

3�−)R1
2 − 1

2R
((R1

2)2�2
1 + R1

3 R1
2�

3
1)].
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Hence,

Ṅ 1
2 = H [4N�1

2 − 2(�+ + 1 −
√

3�− + Ḣ

H 2
)N 1

2 + W 1
2 ],

Ṅ 1
3 = H [4N�1

3 − 2(�+ + 1 +
√

3�− + Ḣ

H 2
)N 1

3 + W 1
3 ],

where

W 1
2 = −2�3

2 N 1
3 + N 1

2 N−1(�2
1 N 1

2 + �3
1 N 1

3 ),

W 1
3 = −2�2

3 N 1
2 + N 1

3 N−1(�2
1 N 1

2 + �3
1 N 1

3 ).

2. Curvature expressions for Bianchi VI0

With (32), we obtain

−2R j
i = g1 j (C3

2i + C2
3i ) + gi2(C j

13 E − C j
12 D) + gi3(−C j

13 D + C j
12 F)

+g22[C2
1i (−g3 j g11 + g1 j g13) + C2

3i (−g3 j g31 + g1 j g33)]

+g33[C3
1i (−g2 j g11 + g1 j g12) + C3

2i (−g2 j g21 + g1 j g22)]

+g23[C2
1i (g

1 j g12 − g2 j g11) + C2
3i (g

1 j g23 − g2 j g13)

+C3
1i (g

1 j g13 − g3 j g11) + C3
2i (g

1 j g23 − g3 j g21)].

In particular,

R = −1

2
[(

√
g22 E +

√
g33 F)2 − 4g23 D] = − 1

2g
[(g22 + g33)2 − 4g2

23],

R2
2 = 1

2
(g22 E − g33 F) = 1

2g
[(g22)2 − (g33)2],

and like in the diagonal case,

R = R1
1,

R2
2 = −R3

3,

R1
2 = R1

3 = 0.

However, we have

N 3
2 = −N 2

3 = g23( f − e) = −N23(N3 + N2),

N 2
1 = −2

g12

H 2
+ g12(e − f ) = N12(N2 − N3) − 2N13 N23,

N 3
1 = −2

g13

H 2
+ g13( f − e) = N13(N2 − N3) − 2N12 N23,

where Nij is defined as

Ni j = gi j√
gH

,

and

N2 = N22,

N3 = −N33,
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which means that N 2
2 = R2

2/H 2

N 2
2 = 1

2
((N2)2 − (N3)2).

Recalling that

ġ

g
= 6H,

we can compute the derivatives of Nij using the following formula:

Ṅi j = H [q Ni j − 2�l
i Nl j ].

Hence,

Ṅ12 = H [(q − 4�+)N12 − 2�2
1 N2 − 2�3

1 N23], (35)

Ṅ13 = H [(q − 4�+)N13 − 2�2
1 N23 + 2�3

1 N3], (36)

Ṅ23 = H [(2�+ + 2
√

3�− + q)N23 + 2�3
2 N3 − 2�1

2 N13], (37)

Ṅ2 = H [(2�+ + 2
√

3�− + q)N2 − 2�1
2 N12 − 2�3

2 N23], (38)

Ṅ3 = H [(2�+ − 2
√

3�− + q)N3 + 2�1
3 N13 + 2�2

3 N23]. (39)

From (34), we obtain

Ṅ = 2H [(2�+ + q)N − 2
√

3�−N 2
2 + N 2

3 �3
2 + N 3

2 �2
3 + N 2

1 �1
2 + N 3

1 �1
3]. (40)

The evolution equation for N 2
2

Ṅ 2
2 = H [2(2�+ + q)N 2

2 + 2
√

3�−((N3)2 + (N2)2) − 2(�1
2 N12 N2

+�1
3 N13 N3 + �3

2 N23 N2 + �2
3 N23 N3)]. (41)

C. The non-diagonal asymptotics of Bianchi II and VI0

We will now discuss the asymptotics of the non-diagonal case. The structure of the analysis
is very similar to the diagonal case. We start with a bootstrap argument and end with applying
Arzela-Ascoli. Next we will collect the bootstrap assumptions. The prefactors denoted by A and
some index are small constants.
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1. Bootstrap assumptions for Bianchi II

|�+ − 1

8
| ≤ A+(1 + t)−

3
8 ,

|N + 9

32
| ≤ Ac(1 + t)−

3
8 ,

|�2
3 | ≤ A23(1 + t)−

3
8 ,

|�3
2 | ≤ A32(1 + t)−

3
8 ,

|�1
2 | ≤ A12,

|�1
3 | ≤ A13,

|N 1
2 | ≤ Ac12,

|N 1
3 | ≤ Ac13,

P ≤ Am(1 + t)−
1
3 ,

|�−| ≤ A−(1 + t)−
3
4 ,

|�2
1 | ≤ A21(1 + t)−

3
4 ,

|�3
1 | ≤ A31(1 + t)−

3
4 .

2. Bootstrap assumptions for Bianchi VI0

|�+ + 1

4
| ≤ A+(1 + t)−

3
8 ,

|�−| ≤ A−(1 + t)−
3
8 ,

|N + 9

8
| ≤ Ac1(1 + t)−

3
8 ,

|N 2
2 | ≤ Ac2(1 + t)−

3
8 ,

|N12| ≤ C1,

|N13| ≤ C2,

|N23| ≤ Ac23,

P ≤ Am(1 + t)−
1
3 ,

|�2
3 | ≤ A23(1 + t)−

3
4 ,

|�3
2 | ≤ A32(1 + t)−

3
4 ,

|�1
2 | ≤ A12(1 + t)−

3
4 ,

|�1
3 | ≤ A13(1 + t)−

3
4 ,

|�3
1 | ≤ C3,

|�2
1 | ≤ C4.
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3. Mean curvature

Concerning the estimate of H, there is no difference with respect to the diagonal case. The
reason is that the estimate of D

D = 1

12
(N + 3

H 2
σabσ

ab) + 4π S

3H 2

is the same. Thus, as in the diagonal case, it follows from (21) that

∂t (H−1) = 3

2
+ O(εt− 3

8 ),

and following the steps made for the diagonal case, we arrive at.

H = 2

3
t−1(1 + O(εt− 3

8 ))

will hold.

4. Estimate of the metric and P

For a matrix A, its norm can be defined as

‖A‖ = sup{|Ax |/|x | : x �= 0}.
Let B and C be n × n symmetric matrices with C positive definite. It is possible to define a

relative norm by

‖B‖C = sup{|Bx |/|Cx | : x �= 0}.
Clearly,

‖B‖ ≤ ‖B‖C‖C‖.
It also true that

‖B‖C ≤
√

tr(C−1 BC−1 B). (42)

This can be shown as follows. Consider the common eigenbasis bi of B and C. Then there exist
αi such that Bbi = αiCbi for each i. Then (42) is equivalent to the statement that the maximum
modulus of any αi is smaller than �iα

2
i . Using (42), we obtain in the sense of quadratic forms

σ ab ≤ (σcdσ
cd )

1
2 gab. (43)

Define

ḡab = t
p
q gab.

Then

d

dt
(t−γ ḡab) = t−γ−1ḡab(−γ + p

q
) + 2t−γ+ p

q (σ ab − Hgab),

where we have introduced for technical reasons a small positive parameter γ . Using now the
inequality (43)

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ + p

q
+ 2t H ((H−2σcdσ

cd )
1
2 − 1)]. (44)

Using the equation (44) and the estimate of H

d

dt
(t−γ ḡab) ≤ t−γ−1ḡab[−γ + p

q
+ 4

3
(1 + O(εt− 3

8 ))((H−2σcdσ
cd )

1
2 − 1)].
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We obtain decay for the metric (in the sense of quadratic forms) provided that (H−2σcdσ
cd )

1
2 ≤ 1.

This holds for Bianchi II and VI0 with for instance p
q = 0.4. Thus, we have

gab ≤ t− p
q t

p
q

0 gab(t0).

This implies that the components of the metric are also bounded by some constant C(t0), which
depends on the terms of gab(t0). Consider now

ġb f = 2H (�b
a − δb

a )ga f .

Since the metric components are bounded, the non-diagonal terms will contribute only with an ε.
Thus, we have for every component gij (no summation over the indices in the following equation):

ġi j = 2H (�i
i − 1 + ε)gi j ≤ 2H (max(�i

i ) − 1 + ε)gi j = 2H (−3

4
+ ε)gi j .

Using now the estimate of H

ġi j ≤ t−1(−1 + ε)gi j . (45)

One can conclude that

‖g−1‖ ≤ O(t−1+ε).

From (45),

V̇ = ġb f VbV f ≤ t−1(−1 + ε)V,

which means that

V = O(t−1+ε),

which gives us the same decay for P as in the diagonal case

P = O(t− 1
2 +ε).

5. Closing the bootstrap argument for Bianchi II

It follows immediately by the same arguments as in the diagonal case

�− = O(t−1+ε)

�2
1 = O(t−1+ε),

�3
1 = O(t−1+ε),

�3
2 = O(t−1+ε),

�2
3 = O(t−1+ε).

Defining (N1)2 = − 2N, we arrive at

�̇+ = H [
(N1)2

3
− �+(3 + Ḣ

H 2
) + 4π

3H 2
(3S2

2 + 3S3
3 − 2S)],

�̇− = H [−(3 + Ḣ

H 2
)�− + 4π (S2

2 − S3
3 )√

3H 2
],

Ṅ1 = H [(1 + Ḣ

H 2
+ 4�+)N1 + 2

WI I

N1
].
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Since 2 WI I
N1

decays like t− 1 + ε , we see that we can apply the same arguments as in the diagonal case
to obtain an improvement of the bootstrap assumptions

�+ − 1

8
= O(t− 1

2 +ε),

�− = O(t− 1
2 +ε),

N1 − 3

4
= O(t− 1

2 +ε).

The system which remains using the time variable τ is the following:

(�1
2)′ = �1

2(q − 2) + N 1
2 − 8π S1

2

H 2
,

(�1
3)′ = �1

3(q − 2) + N 1
3 − 8π S1

3

H 2
,

(N 1
2 )′ = −2(N1)2�1

2 − 2(�+ − q −
√

3�−)N 1
2 + W 1

2 ,

(N 1
3 )′ = −2(N1)2�1

3 − 2(�+ − q +
√

3�−)N 1
3 + W 1

3 .

Let us focus on the �1
2 − N 1

2 -system. Using the estimates obtained, we arrive at(
�1

2

N 1
2

)′
=

(− 3
2 1

− 9
8

3
4

) (
�1

2

N 1
2

)
+ O(εe(− 3

4 +ε)τ )

(
1

1

)
.

Let us go to the basis of eigenvectors of the linear system via the linear transformation(
�̌1

2

Ň 1
2

)
=

( 3
2 −1

− 3
2 2

) (
�1

2

N 1
2

)
.

Thus, we arrive at (
�̌1

2

Ň 1
2

)′
=

(− 3
4 0

0 0

) (
�̌1

2

Ň 1
2

)
+ O(εe(− 3

4 +ε)τ )

(
1

1

)
.

Using the bootstrap assumptions for �1
2 and N 1

2 , we have an assumption for �̌1
2 . By the usual

contradiction argument, we arrive at

�̌1
2 = �̌1

2(τ0)e(− 3
4 +ε)τ .

Integrating the equation for Ň 1
2 , we arrive at

Ň 1
2 = Ň 1

2 (τ0) + O(ε).

Going back to the variables �1
2 and N 1

2 via(
�1

2

N 1
2

)
= 1

3

(
4 2

3 3

) (
�̌1

2

Ň 1
2

)
,

�1
2(τ ) = [2�1

2(τ0) − 4

3
N 1

2 (τ0)]e(− 3
4 +ε)τ + 4

3
N 1

2 (τ0) − �1
2(τ0) + O(ε),

N 1
2 (τ ) = [

3

2
�1

2(τ0) − N 1
2 (τ0)]e(− 3

4 +ε)τ + 2N 1
2 (τ0) − 3

2
�1

2(τ0) + O(ε).

Changing back to the time variable t

�1
2(t) = C(t0)[2�1

2(t0) − 4

3
N 1

2 (t0)]t− 1
2 +ε + 4

3
N 1

2 (t0) − �1
2(t0) + O(ε),

N 1
2 (t) = C(t0)[

3

2
�1

2(t0) − N 1
2 (t0)]t− 1

2 +ε + 2N 1
2 (t0) − 3

2
�1

2(t0) + O(ε),
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where C is a constant, in particular C(t0) = t
1
2

0 e− 3
4 τ0 . The only term which could prevent us from

improving the estimates is the ε coming from the bootstrap assumptions of �1
2 , but note that it comes

in combination with �2
1 as a product of both, thus the last term O(ε) on the right hand side of the

last two equations does not prevent us from improving our estimates. Thus, if we wait long time
enough and choose N 1

2 (t0) and �1
2(t0) small enough, we will have an improvement for N 1

2 and �1
2

since we can choose them independently and smaller then A12 and Ac12. There is no difference in
the procedure for N 1

3 and �1
3 .

6. Arzela-Ascoli for Bianchi II

Since all estimates have been improved, we can apply Arzela-Ascoli and we arrive for �1
2 and

N 1
2 to

�1
2(t = ∞) = 4

3
N 1

2 (t0) − �1
2(t0),

N 1
2 (t = ∞) = 2N 1

2 (t0) − 3

2
�1

2(t0).

Consider now the following transformation of the basis vector

ẽ1 = e1,

ẽ2 = e2 + ae1,

ẽ3 = e3 + be1.

It preserves the Lie-algebra, i.e., the Bianchi type. The following relation holds between the variables
�1

2 and �1
3 in the different basis:

⎛
⎜⎜⎝

�̃1
1 �̃2

1 �̃3
1

�̃1
2 �̃2

2 �̃3
2

�̃1
3 �̃2

3 �̃3
3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0

a 1 0

b 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

�1
1 0 0

�1
2 �2

2 0

�1
3 0 �3

3

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

−a 1 0

−b 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

�1
1 0 0

�1
2 + a(�1

1 − �2
2) �2

2 0

�1
3 + b(�1

1 − �3
3) 0 �3

3

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

�1
1 0 0

�1
2 + a(3�+ + √

3�−) �2
2 0

�1
3 + b(3�+ − √

3�−) 0 �3
3

⎞
⎟⎟⎠ .

We see that choosing a = − 8
3�1

2(∞) and b = − 8
3�1

3(∞) the transformed variables �̃1
2 , �̃1

3 are zero
asymptotically. By direct calculation, one can see that the same is true for the transformed variables
Ñ 1

2 and Ñ 1
3 . Thus, we obtain the same asymptotics as in the diagonal case and we can conclude:

Theorem 1: Consider any C∞ solution of the Einstein-Vlasov system with Bianchi II symmetry
and with C∞ initial data. Assume that |�+(t0) − 1

8 |, |�− (t0)|, |�1
2(t0)|, |�1

3(t0)|, |�2
3(t0)|, |�3

2(t0)|,
|�2

1(t0)|, |�3
1(t0)|, |N1(t0) − 3

4 |, |N 1
2 (t0)|, |N 1

3 (t0)|, and P(t0) are sufficiently small. Then at late times,
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after possibly a basis change, the following estimates hold:

H (t) = 2

3
t−1(1 + O(t− 1

2 )),

�+ − 1

8
= O(t− 1

2 ),

�− = O(t−1),

�1
2 = O(t− 1

2 ),

�1
3 = O(t− 1

2 ),

�2
3 = O(t−1),

�3
2 = O(t−1),

�2
1 = O(t−1),

�3
1 = O(t−1),

N1 − 3

4
= O(t− 1

2 ),

N 1
2 = O(t− 1

2 ),

N 1
3 = O(t− 1

2 ),

P(t) = O(t− 1
2 ).

7. Closing the bootstrap argument of Bianchi VI0

It follows immediately by the same arguments as in the diagonal case:

|�1
2 | = O(t−1+ε), (46)

|�1
3 | = O(t−1+ε), (47)

|�3
2 + �2

3 | = O(t−1+ε). (48)

Now consider the �3
2 N23 system. Using the fact that N 3

2 = −N23(N3 + N2), we obtain

�̇3
2 = H [−N23(N3 + N2) − �3

2(3 + Ḣ

H 2
) − 8π S3

2

H 2
],

Ṅ23 = H [(2�+ + 2
√

3�− + q)N23 + 2�3
2 N3 − 2�1

2 N13].

Using the bootstrap assumptions, the estimates obtained and the variable τ(
�3

2

N23

)′
=

(− 3
2 + ε1 ε2

− 3
2 + ε3 ε1

)(
�3

2

N23

)
+ O(εe(− 3

2 +ε)τ )

(
1

1

)
,

where ε1, ε2, and ε3 have the following origin. The quantity ε1 is determined essentially by the error
in N and �+ and note that �3

2 comes in combination with �2
3 , thus this term can be chosen as small

as we want. The quantity ε2 comes from N2 + N3 and can be determined by the error of N 2
2 and

finally the quantity ε3 which comes from N3 depends on the error of N, N 2
2 , and N 2

23. Note in the last
term that the quantity is squared, thus it is negligible. Having a look at the linearization and going
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to the eigenbasis via

(
�̌3

2

Ň23

)
=

(
1 0

−1 1

) (
�3

2

N23

)
,

we come to the system

(
�̌3

2

Ň23

)′
=

(− 3
2 + ε1 + ε2 ε2

ε3 − ε2 ε1 − ε2

)(
�̌3

2

Ň23

)
+ O(εe(− 3

2 +ε)τ )

(
1

1

)
.

From which follows:

�̌3
2 = �̌3

2(τ0)e(− 3
2 +ε)τ ,

Ň23 = Ň23(τ0) + O(ε),

and going back

�3
2 = �3

2(τ0)e(− 3
2 +ε)τ ,

N23 = N23(τ0) − �3
2(τ0) + O(ε).

We see that we have improved N23, �3
2 and with that also �2

3 .
Using these estimates and the bootstrap assumptions, let us focus now on the following system:

�̇+ = H [
N

3
+ �+(q − 2) + O(t−1+ε)],

�̇− = H [− N 2
2√
3

+ (q − 2)�− + O(t−1+ε)],

Ṅ = H [2(2�+ + q)N − 4
√

3�−N 2
2 + +O(t−1+ε)],

Ṅ 2
2 = H [2(2�+ + q)N 2

2 + (
9

4

√
3 + O(ε))�− + O(t−1+ε)],

where in the last equation, (N2)2 + (N3)2 was estimated with N 2
2 , N, and N23. The O(ε)-term will

not play a role since it can be absorbed in the ε of the estimate. Let us look at the linearization using
the variables �̃+ = �+ + 1

4 , �̃− = �−, Ñ = N + 9
8 , Ñ 2

2 = N 2
2 and the variable τ

⎛
⎜⎜⎜⎜⎜⎝

�̃+

Ñ

�̃−

Ñ 2
2

⎞
⎟⎟⎟⎟⎟⎠

′

=

⎛
⎜⎜⎜⎜⎜⎝

− 21
16 + 5

16 0 0

− 45
16 − 3

16 0 0

0 0 − 3
2 −

√
3

3

0 0 9
4

√
3 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

�̃+

Ñ

�̃−

Ñ 2
2

⎞
⎟⎟⎟⎟⎟⎠ .

The eigenvalues are

λ1/2 = −3

4
± 3

4
i
√

3,

λ3/4 = −3

4
± 3

4
i.
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These eigenvalues are the same, which appeared in the reflection symmetric case. Using the same
arguments, we arrive at

|�+ + 1

4
| ≤ A+(1 + t)−

1
2 +ε,

|�−| ≤ A−(1 + t)−
1
2 +ε,

|N + 9

8
| ≤ Ac1(1 + t)−

1
2 +ε,

|N 2
2 | ≤ Ac2(1 + t)−

1
2 +ε .

Finally, only �2
1(τ0), �3

1(τ0), N12(τ 0), and N13(τ 0) have to be improved. Let us look at the �2
1 , N12

system. There is no difference between this system and the �3
1-N13 system.

(
�2

1

N12

)′
=

(− 3
2 + ε1

3
2 + ε2

− 3
2 + ε3

3
2 + ε1

)(
�2

1

N12

)
+ O(ε)

(
1

1

)
,

λ1 = 1

2
(2ε1 −

√
2
√

2ε2ε3 − 3ε2 + 3ε3),

λ2 = 1

2
(2ε1 +

√
2
√

2ε2ε3 − 3ε2 + 3ε3).

Now choosing the error of N bigger than �ab�ab ε1 will be negative. ε2 and ε3 can be chosen in
such a way that the square root of the term is positive but in total smaller than ε1, such that we have
two small and different eigenvalues.

8. Arzela-Ascoli for Bianchi VI0

For Bianchi VI0, we can apply Arzela-Ascoli as well. We see that N23 will be zero and �2
1(τ0),

�3
1(τ0), N12(τ 0), and N13(τ 0) will be come constants. This time we can make the following basis

change, which preserves the Lie-algebra to obtain that the mentioned variables tend to zero

ẽ1 = e1 + ae2 + be3,

ẽ2 = e2,

ẽ3 = e3.

We can conclude

Theorem 2: Consider any C∞ solution of the Einstein-Vlasov system with Bianchi VI0 symmetry
and with C∞ initial data. Assume that |�+(t0) + 1

4 |, |�− (t0)|, �1
2(t0), |�1

3(t0)|, |�2
3(t0)|, |�3

2(t0)|,
|�2

1(t0)|, |�3
1(t0)|, |N (t0) + 9

8 |, |N 2
2 (t0)|, |�2

1(t0)|, |N12(t0)|,|N13(t0)|, and P(t0) are sufficiently small.
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Then at late times, after possibly a basis change, the following estimates hold:

H (t) = 2

3
t−1(1 + O(t− 1

2 )),

�+ − 1

4
= O(t− 1

2 ),

�− = O(t− 1
2 ),

�1
2 = O(t−1),

�1
3 = O(t−1),

�2
3 = O(t−1),

�3
2 = O(t−1),

�3
1 = O(t− 1

2 ),

�2
1 = O(t− 1

2 ),

N12 = O(t− 1
2 ),

N13 = O(t− 1
2 ),

N23 = O(t− 1
2 ),

N 2
2 = O(t− 1

2 ),

N + 9

8
= O(t− 1

2 ),

P(t) = O(t− 1
2 ).

IV. CONCLUSIONS

As mentioned in the abstract, the challenge here was to put the equations in a form such that the
results of the diagonal case can be used. This can be seen especially in the curvature variables. For

Bianchi II, it was sufficient to use the new variables N i
j = Ri

j

H 2 . For Bianchi VI0, we had to introduce
in addition to that the new variables Ni j = gi j

g
√

H
. The notation might be a little bit confusing, but in

both cases these variables have a connection to the curvature variables N1, N2, and N3 of the diagonal
case and this is the reason for the notation. In contrast to the diagonal case where the treatment of
Bianchi II and VI0 was almost identical, here the latter case was more difficult. One reason could
be the obvious increase in complexity. In the Bianchi II case, it was sufficient to deal with N instead
of N1 and look at the differences. In the case of Bianchi VI0, N had to be used to start the bootstrap
argument. Then also N 2

2 and N23. This last variable made the correspondence to the diagonal case
more difficult. As can been seen in the chapter where the bootstrap argument was closed for Bianchi
VI0, we had to look more carefully on the dependence of the different ε. Note also that we did not
use exactly the linearization in our last improvement of the estimates. We would have obtained that
zero is an multiple eigenvalue and we would have not obtained decay, but logarithmic growth. This
would have been sufficient to close the bootstrap argument with corresponding suitable bootstrap
assumptions, but there would exist difficulties to apply the Arzela-Ascoli theorem and to obtain that
the non-diagonal components become constant. Another difference to the diagonal case is the use of
a basis change in the end. In general, the non-diagonal components will become constants and thus
not relevant. However, to obtain “diagonal” asymptotics, a basis change will in general be necessary.

It would be interesting to investigate whether the work on homogeneous Ricci solitons3 can help
to understand the similarities and differences between Bianchi II and VI0 (in Thurstons classification
Nil and Sol).
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We have discussed the future asymptotics of some Bianchi models; however, what about the
higher types? The case of Bianchi VII0 will probably be quite different. For instance in Ref. 13, it was
discovered that the Bianchi VII0 spacetimes with a non-tilted fluid are not asymptotically self-similar
in the future and that some oscillations take place. It is shown that dynamics are dominated by the
Weyl curvature. However for dust, a bifurcation of the Weyl curvature takes place (Theorem 2.4
of Ref. 13 and comments below). For this reason, it is likely to expect difficulties when applying
our techniques to this case. Something similar, but even more complicated happens in the case of
Bianchi VIII spacetimes with a non-tilted fluid.6

What about inhomogeneous models? Some direction to generalize our results could be to
analyze the Gowdy model, which is the simplest inhomogeneous case. In Ref. 11, different links
between Bianchi and (twisted) Gowdy spacetimes are considered, in particular for Bianchi I, II, VI0,
and VII0. The analysis of perturbations is another interesting approach towards the understanding
of inhomogeneous models (see Ref. 1 for recent developments).
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