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Abstract

In nonabelian gauge theory the three-gluon vertex function contains important structural information, in
particular on infrared divergences, and is also an essential ingredient in the Schwinger–Dyson equations.
Much effort has gone into analyzing its general structure, and at the one-loop level also a number of explicit
computations have been done, using various approaches. Here we use the string-inspired formalism to
unify the calculations of the scalar, spinor and gluon loop contributions to the one-loop vertex, leading to an
extremely compact representation in all cases. The vertex is computed fully off-shell and in dimensionally
continued form, so that it can be used as a building block for higher-loop calculations. We find that the
Bern–Kosower loop replacement rules, originally derived for the on-shell case, hold off-shell as well. We
explain the relation of the structure of this representation to the low-energy effective action, and establish
the precise connection with the standard Ball–Chiu decomposition of the vertex. This allows us also to
predict that the vanishing of the completely antisymmetric coefficient function S of this decomposition is
not a one-loop accident, but persists at higher-loop orders. The sum rule found by Binger and Brodsky,
which leads to the vanishing of the one-loop vertex in N = 4 SYM theory, in the present approach relates
to worldline supersymmetry.
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Fig. 1. Three-gluon vertex.

1. Introduction

The one-particle-irreducible (‘1PI’) off-shell three-gluon Green’s function (in the following
simply called “three-vertex” or “vertex”) is a basic object of interest in nonabelian gauge the-
ory and quantum chromodynamics. It contains important structural information, in particular
on infrared divergences (see, e.g., [1] and references therein) and is a main ingredient of the
Schwinger–Dyson equations. In perturbation theory it can, computed explicitly to a certain loop
order, in principle be used as a convenient building block for higher-loop calculations.

However, explicit calculations of the three-vertex have so far been essentially restricted to the
one-loop level [2–7] (at two loops, the three-gluon vertex has been obtained so far only for some
very special momentum configurations [8–10]). In this paper we will recalculate, in a simple and
unifying way, the scalar, spinor and gluon loop contributions to the one-loop three-vertex (with
“gluon” we mean any nonabelian gauge boson). In Fig. 1 for definiteness we show the fermion
loop contribution.

Following the notation of [5,6], we write

Γ a1a2a3
μ1μ2μ3

(p1,p2,p3) = −igf a1a2a3Γμ1μ2μ3(p1,p2,p3). (1.1)

The gluon momenta are ingoing and p1 +p2 +p3 = 0. There are actually two diagrams differing
by the two inequivalent orderings of the three gluons along the loops (or equivalently by a change
of the fermion line orientation). Those diagrams add to produce a factor of two.

By an analysis of the nonabelian gauge Ward identities, Ball and Chiu [4] in 1980 found a
form factor decomposition of this vertex which is valid at any order in perturbation theory, and
also independent of whether the particle in the loop is a scalar, fermion or gluon, with the only
restriction that a covariant gauge be used. It can be written as

Γμ1μ2μ3(p1,p2,p3)

= A
(
p2

1,p
2
2;p2

3

)
gμ1μ2(p1 − p2)μ3 + B

(
p2
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2
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)
gμ1μ2(p1 + p2)μ3

+ C
(
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2;p2

3

)[p1μ2p2μ1 − p1 · p2 gμ1μ2](p1 − p2)μ3

+ 1

3
S
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2
2,p

2
3

)[p1μ3p2μ1p3μ2 + p1μ2p2μ3p3μ1]
+ F

(
p2,p2;p2)[p1μ p2μ − p1 · p2 gμ μ ][p1 · p3 p2μ − p2 · p3 p1μ ]
1 2 3 2 1 1 2 3 3
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+ H
(
p2

1,p
2
2,p

2
3

){−gμ1μ2[p1μ3p2 · p3 − p2μ3p1 · p3]

+ 1

3
[p1μ3p2μ1p3μ2 − p1μ2p2μ3p3μ1]

}
+ {

cyclic permutations of (p1,μ1), (p2,μ2), (p3,μ3)
}
. (1.2)

Here the functions A, C and F are symmetric in the first two arguments, the function B is
antisymmetric in the first two arguments, H is totally symmetric and S totally antisymmetric
with respect to interchange of any pair of arguments. A different decomposition of the three-
gluon vertex was proposed in [11].

Although we wish to study the off-shell vertex, with our calculation method it will be con-
venient to contract it with polarization vectors ε1,2,3. Those vectors are arbitrary and serve
book-keeping purposes only. Thus we will use (1.2) in the form

ε
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1 ε
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μ3
3 Γμ1μ2μ3(p1,p2,p3)
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TF

}
+ {2 cyclic permutations} + H

(
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2,p

2
3

)
TH + S

(
p2

1,p
2
2,p

2
3

)
TS. (1.3)

Note that the tensors TF and TH are totally transversal, i.e., they give zero when any εi is replaced
by pi .

For the gluon loop in Feynman gauge and at the one-loop level, Ball and Chiu also calculated
the coefficient functions A to H , up to their constant terms in the ε-expansion; here it turned out
that S actually vanishes. Later Davydychev, Osland and Tarasov [5] computed this gluon loop
contribution vertex more generally for an arbitrary covariant gauge, and in arbitrary spacetime
dimension.

The quark loop contribution to the vertex was first calculated for massless quarks and in the
symmetric limit p2

1 = p2
2 = p2

3 by Celmaster and Gonsalves [2] and Pascual and Tarrach [3].
For general off-shell momenta the massless quark loop contribution was obtained in [5], and the
massive quark loop one in [6] (again in arbitrary spacetime dimension).

However, this is not yet the whole story, since for the gluon loop contribution to the vertex
there are subtle issues with gauge dependence. When calculated in the standard formalism using
any covariant gauge, it satisfies rather complicated Slavnov–Taylor identities involving not only
the gluon propagator, but also the ghost propagator and the gluon–ghost–ghost vertex (see, e.g.,
[12,4,7]). The scalar and fermion loop contributions, on the other hand, satisfy the simple QED-
like Ward identity

Γ (ε3 → p3) = −(
p2

1ε1 · ε2 − p1 · ε1p1 · ε2
)(

1 + Π
(
p2

1

))
+ (

p2
2ε1 · ε2 − p2 · ε1p2 · ε2

)(
1 + Π

(
p2

2

))
(1.4)

where Π(p2) is the corresponding vacuum polarization function. Having the same simple Ward
identity also for the gluon loop case is possible, but requires more sophisticated techniques.
It can be achieved using either the background field method (‘BFM’) [13–15] with Feynman
gauge for the quantum field, or the pinch technique [16,17]. Although very different, those two
methods turn out to lead to precisely the same Green’s functions [18,19]. The corresponding
three-gluon vertex, also called the “gauge-invariant vertex”, was studied by Freedman et al. [20]
with an emphasis on its conformal properties. Binger and Brodsky [7] explicitly calculated it
in the transversality-based Ball–Chiu decomposition (1.2), as well as in a different basis related
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to current conservation. They also calculated the scalar loop contribution, which enabled them
to find certain sum rules between the massless scalar, spinor and gluon loop contributions. In
particular, with all particles massless and in the adjoint representation they obtain the identity

3Γ0 + 2Γ 1
2
+ Γ1 = 0 (1.5)

(here we introduce the convention that a subscript s = 0 refers to a scalar loop, s = 1
2 to a spinor

loop, and s = 1 to a gluon loop including the ghost loop contribution). This identity is related to
supersymmetry, and implies that the off-shell three-gluon amplitude in N = 4 super-Yang–Mills
theory vanishes. It generalizes the well-known vanishing of the gluon self-energy in that theory,
but contrary to that fact does not obviously relate to the finiteness of the theory.

In the present work, we will recalculate the scalar, spinor and gluon loop contributions to
this “gauge-invariant” three-gluon vertex using the “string-inspired” formalism along the lines
of [21–27] (for a review, see [28]). Our starting point is the “Bern–Kosower master formula”
[21–23]:

Γ
a1...aN

0 [p1, ε1; . . . ;pN, εN ]

= (−ig)N tr
(
T a1 . . . T aN

)
(2π)Diδ

(∑
pi

) ∞∫
0

dT (4πT )−D/2e−m2T

×
T∫

0

dτ1

τ1∫
0

dτ2 . . .

τN−2∫
0

dτN−1

× exp

{
N∑

i,j=1

[
1

2
GBijpi · pj − iĠBij εi · pj + 1

2
G̈Bij εi · εj

]}∣∣∣∣∣
lin(ε1...εN )

. (1.6)

As it stands, this formula represents the color-ordered contribution to the 1PI N -gluon amplitude
due to a (complex) scalar loop of mass m, calculated in D spacetime dimensions. The ith gluon
carries the momentum pi , polarization εi and a gauge group generator T ai in some represen-
tation. T is the total proper-time length of the loop, and τi is the position in proper-time along
the loop of gluon i. One integration is redundant and has been eliminated by setting τN = 0.
The derivation of this formula involved a formal exponentiation, which needs to be undone by
expanding out the exponential factor and keeping only the terms linear in each of the N polar-
ization vectors. The color-ordering means that one still has to sum over all (N − 1)! inequivalent
orderings of the gluons along the loop to get the full amplitude. GBij ≡ GB(τi, τj ) denotes the
“bosonic” worldline Green’s function, defined by

GB(τ1, τ2) = |τ1 − τ2| − (τ1 − τ2)
2

T
, (1.7)

and dots generally denote a derivative acting on the first variable. Explicitly,

ĠB(τ1, τ2) = sign(τ1 − τ2) − 2
(τ1 − τ2)

T
,

G̈B(τ1, τ2) = 2δ(τ1 − τ2) − 2

T
. (1.8)

The master formula (1.6) was originally derived from string theory [21–23], starting from a
representation of the N -gluon amplitude for the heterotic string and analyzing its field theory
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limit. Here the object of interest was, however, the full N -gluon amplitude on-shell, rather than
the 1PI amplitude off-shell. Thus on one hand on-shell conditions were used from the beginning,
already at the string level; on the other hand the fact that the distinction between reducible and
irreducible diagrams emerges only in the field theory limit made it possible to establish certain
formal rules that allow one to reconstruct, from the formula for the 1PI amplitude (1.6), also all
the missing reducible contributions to the full on-shell matrix element. Bern and Kosower were
moreover able to derive simple “loop replacement rules”, based on worldsheet supersymmetry,
that allow one to obtain from (1.6) also integral representations for the spinor and gluon loop
contributions to the full on-shell N -gluon amplitudes [21–23]. We need not discuss these “Bern–
Kosower rules” here in full, but it is important to note that they all involve integration-by-parts
(‘IBP’) in an essential way. Namely, performing the expansion of the exponential factor in (1.6)
will yield an integrand ∼ PN e(·), where we abbreviated

e(·) := exp

{
1

2

N∑
i,j=1

GBijpi · pj

}
, (1.9)

and PN is a polynomial in ĠBij , G̈Bij and the kinematic invariants. It is possible to remove
all second derivatives G̈Bij appearing in PN by suitable integrations-by-parts, leading to a new
integrand ∼ QN e(·) which is the real starting point for the application of the Bern–Kosower
rules. Relevant for the following will be only the “loop replacement rules”. The rule for passing
from the scalar to the spinor loop is easy to state in general: look in QN for “τ -cycles”, that
is, products of ĠBij ’s whose indices form a closed chain. A τ -cycle can thus be written as
ĠBi1i2ĠBi2i3 · · · ĠBini1 (to put it into this form may require the use of the antisymmetry of ĠB ,
e.g. ĠB12ĠB12 = −ĠB12ĠB21). Then, apart from a global factor of −2 correcting for degrees
of freedom and statistics, the integrand for the spinor loop case can be obtained from the one for
the scalar loop simply by simultaneously replacing every τ -cycle appearing in QN by

ĠBi1i2ĠBi2i3 · · · ĠBini1 → ĠBi1i2ĠBi2i3 · · · ĠBini1 − GFi1i2GFi2i3 · · ·GFini1, (1.10)

where GF12 ≡ sign(τ1 − τ2) denotes the ‘fermionic’ worldline Green’s function. The rule for
passing from the scalar to the gluon loop is similar but somewhat more complicated, and will be
dealt with in Section 4 below.

This formalism was used for the first calculation of the one-loop on-shell QCD five-gluon
amplitudes [29], but not further employed for such on-shell multi-gluon amplitude calculations
due to the emergence of other extremely powerful methods for the computation of one-loop
on-shell amplitudes such as generalized unitarity; see, e.g., [30].

In the present paper, we will instead start an effort to exploit the Bern–Kosower formalism
as a tool for the calculation of the one-loop N -gluon vertex. In the original string-based for-
malism going off-shell is highly nontrivial, although not impossible. In [31,32] a formalism was
developed that, in principle, allows one to obtain the one-loop off-shell gluon amplitudes in pure
Yang–Mills theory from the open string, and it was shown to correctly reproduce the renormal-
ization constants for the two-, three- and four-point vertices. Here, however, we will use the
simpler approach to the Bern–Kosower formalism due to Strassler [24,25], which uses string
theory only as a guiding principle. The starting point of this “string-inspired worldline formalis-
m” is the following path integral representation of the nonabelian one-loop effective action due
to a scalar loop [24] (this generalizes Feynman’s famous 1950 formula for scalar QED [33]),
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Γ0[A] =
∞∫

0

dT

T
e−m2T tr

∫
Dx exp

[
−

T∫
0

dτ

(
1

4
ẋ2 + igẋ · A

)]
, (1.11)

where the integral
∫
Dx is over the space of all closed trajectories in spacetime with periodicity T

in proper-time, xμ(T ) = xμ(0).
Although this approach fell somewhat short of yielding a rederivation of the full set of Bern–

Kosower rules including the non-1PI contributions, it provides a simple way to see that the master
formula (1.6) as it stands is valid off-shell as a formula for the 1PI part of the N -gluon Green’s
function (see [24,28]). In [25], Strassler moreover started a systematic investigation of the IBP
procedure, and discovered that it bears an interesting connection to gauge invariance. Namely,
it so turns out that, once all G̈Bij ’s have been removed and all terms contributing to a given
‘τ -cycle’ ĠBi1i2ĠBi2i3 · · · ĠBini1 been combined, the sum of their Lorentz factors can be written
as a ‘Lorentz cycle’ Zn, defined by

Z2(ij) ≡ 1

2
tr(fifj ),

Zn(i1i2 . . . in) ≡ tr

(
n∏

j=1

fij

)
(n � 3), (1.12)

where

f
μν
i ≡ p

μ
i εν

i − ε
μ
i pν

i (1.13)

is the momentum space form of the abelian field strength tensor. Zn generalizes the transversal
projector which is familiar from the two-point case. However, in [25] no systematic way was
found to perform the partial integrations at arbitrary N , nor how to preserve the permutation
symmetry. This issue was taken up again in [27], where a definite and computerizable IBP al-
gorithm was given which works for any N and preserves the full permutation symmetry. This
algorithm is still not satisfactory from the point of view of gauge invariance, though. A given
term in the integrand after the IBP in general has not only cycle factors, but also a leftover, called
“tail”, and the algorithm arranges into field strength tensors only the polarization vectors con-
tained in the cycles, not the ones in the tails. Only very recently an extension of the algorithm
of [27] was found which, for any N and preserving the permutation invariance, achieves this
“covariantization” for all the polarization vectors, including the ones in tails [34].

This in some sense completes the investigation started in [25]. It also suggests that, with this
optimized IBP at hand, the string-inspired formalism might become a powerful tool for the com-
putation of the N -vertex. This is for three reasons: (i) The covariantization means that the bulk
integrand after the IBP is manifestly transversal, so that any nontransversality must come from
boundary terms. Thus the IBP procedure itself should generate a transversality-based form factor
decomposition similar to the Ball–Chiu one (1.2). (ii) Like the Ball–Chiu one, this decomposition
will respect the cyclic invariance (which is the remnant of the permutation invariance after the
color ordering). (iii) The work of [24] also suggests that the “loop-replacement” part of the Bern–
Kosower rules may hold off-shell for the 1PI amplitudes, which would reduce the calculational
effort very significantly.

Here we will recalculate the three-gluon vertex along the above lines, and find these expecta-
tions to be fully justified. The organization of the paper is as follows:

In Section 2 we will start with the scalar loop contribution to the vertex. We perform the
IBP using the old algorithm of [27] as well as the improved one of [34]. With both choices we
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obtain a very compact integral representation for the vertex, however the new algorithm has the
advantage that all nontransversality is pushed into the boundary (two-point) terms.

In Sections 3 and 4 we show that the “loop replacement rules” indeed hold for the three-gluon
vertex. As is well-known, the Dirac fermion possesses an N = 1 supersymmetric worldline path
integral representation [35–41], and the gluon an N = 2 supersymmetric one [35,37,42,24,43].
Analogously to the original string-based derivation of those rules [21–23], where worldsheet
SUSY was identified as the underlying symmetry, in the worldline approach the same rules can
be related to this worldline SUSY [24,28].

In Section 5 we summarize and unify our results for the scalar, spinor and gluon loop. In Sec-
tion 6 we establish their exact relation to the Ball–Chiu decomposition (1.2), and also explicitly
verify the Ward identities (1.4) and the Binger–Brodsky relation (1.5).

The 1PI vertices hold the same information as the effective action. Nevertheless, contrary
to the QED case where there is no essential difference between the calculation of the effective
action and of the off-shell N -photon amplitudes, in the nonabelian case the effective action is
mathematically an intrinsically more natural object. This is because it can be written in terms of
full field strength tensors

Fμν ≡ Fa
μνT

a = (
∂μAa

ν − ∂νA
a
μ

)
T a + ig

[
Ab

μT b,Ac
νT

c
]

(1.14)

whereas upon Fourier transformation those inevitably get split up into their “abelian parts”
f a

μν := ∂μAa
ν − ∂νA

a
μ and the commutator terms. This suggests that the analysis of the struc-

ture of the 1PI vertices should benefit from a comparison with the low-energy expansion of the
effective action, and indeed we will show in Section 7 for the three-point case that in the present
formalism, due to the systematic generation of “abelian” field strength tensors and commutator
terms by the IBP, it is possible to keep the relation between the effective action and the vertex
very transparent.

Our conclusions are given in Section 8. In particular, we give there a general argument show-
ing that the off-shell validity of the loop replacement rules extends to the N -vertex. Appendix A
lists our conventions.

2. The scalar loop case

Before coming to the calculation of the (off-shell, 1PI) three-gluon amplitude for a scalar
loop, let us first consider the two-point (vacuum polarization) case. This will not only be useful
as a warm-up, but also for the verification of the Ward identity (1.4) later on.

For N = 2 we get from the master formula (1.6), after expanding out the exponential (in the
following we generally omit the global factor (2π)4iδ(

∑
pi) for energy–momentum conserva-

tion),

Γ
a1a2

0 [p1, ε1;p2, ε2] = (−ig)2 tr
(
T a1T a2

) ∞∫
0

dT (4πT )−D/2e−m2T

×
T∫

0

dτ1 (−i)2P2e
GB12p1·p2 (2.1)

where

P2 = ĠB12ε1 · p2ĠB21ε2 · p1 − G̈B12ε1 · ε2 . (2.2)
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By an IBP of the term involving G̈B12 we can remove the second derivative and transform P2
into Q2,

Q2 = ĠB12ĠB21(ε1 · p2ε2 · p1 − ε1 · ε2p1 · p2)

= 1

2
ĠB12ĠB21 tr(f1f2) = ĠB12ĠB21Z2(12). (2.3)

Thus the IBP has allowed us to absorb the polarization vectors into the “abelian” field strength
tensors fi , defined in (1.13), thereby making the transversality of the two-point function manifest.
Setting p ≡ p1 = −p2 and using tr(T a1T a2) = C(r)δa1a2 , we can write

Γ
a1a2

0 [p1, ε1;p2, ε2] = ε
μ
1 Π

a1a2
0μν (p)εν

2 ,

Π
a1a2
0μν (p) = δa1a2

(
ημνp

2 − pμpν

)
Π0

(
p2) (2.4)

where

Π0
(
p2) = C(r)

g2

(4π)D/2

∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1 ĠB12ĠB21e
−GB12p

2
. (2.5)

Moving on to the three-point level, here the expansion of (1.6) yields

Γ
a1a2a3

0 [p1, ε1;p2, ε2;p3, ε3] = (−ig)3 tr
(
T a1T a2T a3

) ∞∫
0

dT (4πT )−D/2e−m2T

×
T∫

0

dτ1

τ1∫
0

dτ2 (−i)3P3e
(·) (2.6)

where

P3 = ĠB1iε1 · piĠB2j ε2 · pj ĠB3kε3 · pk − G̈B12ε1 · ε2ĠB3kε3 · pk

− G̈B13ε1 · ε3ĠB2j ε2 · pj − G̈B23ε2 · ε3ĠB1iε1 · pi (2.7)

and we have introduced the convention that repeated indices i, j, k, . . . are to be summed from 1
to N = 3. To remove, e.g., the term involving G̈B12ĠB31 in the second term of P3, we add the
total derivative

− ∂

∂τ2

(
ĠB12ε1 · ε2ĠB31ε3 · p1e

(GB12p1·p2+GB13p1·p3+G23p2·p3)
)
. (2.8)

Adding five more similar total derivative terms removes all the G̈B ’s. Decomposing the new
integrand according to its “cycle content”, P3 gets replaced by Q3 = Q3

3 + Q2
3, where

Q3
3 = ĠB12ĠB23ĠB31Z3(123) ,

Q2
3 = ĠB12ĠB21Z2(12)ĠB3kε3 · pk + ĠB13ĠB31Z2(13)ĠB2j ε2 · pj

+ ĠB23ĠB32Z2(23)ĠB1iε1 · pi. (2.9)

Note that Q3
3 contains a τ -cycle of length three and Q2

3 of length two, as indicated by the upper
indices, and that each τ -cycle appears together with the corresponding “Lorentz-cycle”, as ad-
vertised in the introduction. The terms of Q2

3 have, apart from the cycle, also a “one-tail”, defined
by [25]
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T1(a) := εa · piĠBai . (2.10)

Although the form of the integrand reached in (2.9) is already suitable for the application of the
Bern–Kosower rules, it is natural to ask whether the polarization vectors appearing in the tails
can also somehow be completed to field strength tensors. Now in this three-point case there are
already various chains of integrations-by-part that can be used to remove all the G̈B ’s, but if one
assumes that the corresponding total derivative terms are added with constant coefficients (i.e.,
they involve no functions of momentum or polarization other than the ones already present in
the term which one wishes to modify), then it is easy to convince oneself that they all lead to the
same Q3 of (2.9). This applies, in particular, to the “old” IBP procedure proposed in [27], where
this Q3 is obtained by a chain of IBPs different from the above. Thus a more general type of IBPs
is called for if one wishes to achieve this “covariantization of the tails”, and in a companion paper
[34] it will be shown how, using a more general type of total derivative terms with coefficients
that do depend on momenta and polarizations, this can indeed be done for arbitrary N . Here we
need not discuss this matter in more depth, since for N = 3 the solution of this problem is still
very simple. Consider the first term in Q2

3 above, Eq. (2.9). Choose a momentum vector r3 such
that r3 · p3 �= 0, and add the total derivative

− r3 · ε3

r3 · p3
Z2(12)

∂

∂τ3

(
ĠB12ĠB21e

(·)). (2.11)

The addition of this term to the first term in Q2
3, and of similar terms to the second and third one,

transforms Q2
3 into

R2
3 := ĠB12ĠB21Z2(12)ĠB3k

r3 · f3 · pk

r3 · p3
+ ĠB13ĠB31Z2(13)ĠB2j

r2 · f2 · pj

r2 · p2

+ ĠB23ĠB32Z2(23)ĠB1i

r1 · f1 · pi

r1 · p1
. (2.12)

Thus now all polarization vectors have been absorbed into tensors fi , leading to manifest
transversality. This IBP procedure can be systematized to obtain closed-form integral represen-
tations of the Scalar and Spinor QED N -photon amplitudes that are manifestly gauge invariant
at the integrand level [34].

Here, however, we are in the nonabelian case, where the color-induced restriction of the pa-
rameter integrations to ordered sectors leads to the appearance of boundary terms in the IBP
[24,25]. Let us look again at our total derivative term (2.8). In the abelian case it would be inte-
grated over the whole circle, and the result would be zero, since the worldline Green’s function
GB(τ1, τ2) has the appropriate periodicity properties to make the two boundary terms cancel.
Here instead we find a nonzero result:

−ĠB12ε1 · ε2ĠB31ε3 · p1e
(·)∣∣τ2=τ1

τ2=τ3
= 0 + ĠB13ε1 · ε2ĠB31ε3 · p1e

GB13p1·(p2+p3). (2.13)

Now, in the three-point case there are already two inequivalent orderings, say, (123) and (132);
thus the full amplitude will also have a part Γ a1a3a2 with color trace tr(T a1T a3T a2), and the same
total derivative term will contribute to it a boundary term

−ĠB12ε1 · ε2ĠB31ε3 · p1e
(·)∣∣τ2=τ3

τ2=τ1
= −ĠB13ε1 · ε2ĠB31ε3 · p1e

GB13p1·(p2+p3) − 0. (2.14)

These two boundary terms would cancel in the abelian case, but now instead combine to produce
a color commutator tr(T a1 [T a2 , T a3 ]). Moreover, among the other five similar total derivative
terms needed to convert P3 into Q3 there is one that differs from (2.8) only by the interchange
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2 ↔ 3. With some relabeling of integration variables, we can combine the two boundary terms
generated by that term with the two above to the structure

tr
(
T a1

[
T a2 , T a3

])
ε3 · f1 · ε2ĠB12ĠB21 eGB12p1·(p2+p3). (2.15)

Comparing with (2.5), we note that this term yields a parameter integral identical to the one of
the two-gluon amplitude, except for the replacement of p2 by p2 + p3. In terms of the effec-
tive action, from (1.14) and (2.15) its role is evidently to provide a piece needed to extend the
“abelian” Maxwell term tr(fμνf

μν) to the full nonabelian one tr(FμνF
μν). We will discuss this

in more detail in Section 7 below.
To summarize so far, we can decompose the three-point amplitude for the scalar loop as (here

and in the following we will often suppress the superscript “a1a2a3”)

Γ0 = g3

(4π)
D
2

(
Γ 3

0 + Γ 2
0 + Γ bt

0

)
(2.16)

where

Γ 3
0 = − tr

(
T a1T a2T a3

) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1

τ1∫
0

dτ2 Q3
3 e(·)

− tr
(
T a1T a3T a2

) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1

τ1∫
0

dτ3 Q3
3e

(·),

Γ 2
0 = Γ 3

0

(
Q3

3 → Q2
3

)
,

Γ bt
0 = tr

(
T a1

[
T a2 , T a3

]) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1 ĠB12ĠB21

× [
ε3 · f1 · ε2 eGB12p1·(p2+p3) + ε1 · f2 · ε3 eGB12p2·(p1+p3)

+ ε2 · f3 · ε1 eGB12p3·(p1+p2)
]

(2.17)

(here and in the following it is understood that always the last integration is eliminated by setting
its integration variable equal to zero; e.g., for the ordering τ1 > τ3 > τ2 we set τ2 = 0).

Alternatively, we can replace Q2
3 by R2

3 in the Γ 2
0 part, but then we have to also add to Γ bt

0
a term Γ̃ bt

0 containing the further boundary contributions coming from the total derivative terms
of the type (2.11). Collecting those, one finds

Γ̃ bt
0 = 1

2
tr
(
T a1

[
T a2 , T a3

]) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1 ĠB12ĠB21

× {[
tr(f1f2)ρ3 − tr(f3f1)ρ2

]
eGB12p1·(p2+p3)

+ [
tr(f2f3)ρ1 − tr(f1f2)ρ3

]
eGB12p2·(p1+p3)

+ [
tr(f3f1)ρ2 − tr(f2f3)ρ1

]
eGB12p3·(p1+p2)

}
(2.18)

where we have now abbreviated ρi := ri · εi/ri · pi .
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3. The spinor loop case

For the spinor loop case, it will be convenient to use the worldline super formalism [38–40,44–
47]. In this formalism, one defines for each gluon leg a Grassmann variable θi , θ2

i = 0, and also
considers the polarization vectors εi as being Grassmann. Thus all εν

j , θk , and dθl anticommute
with each other. One further introduces the superderivative

D = ∂

∂θ
− θ

∂

∂τ
(3.1)

and the super proper-time distance

τ̂ij := τi − τj + θiθj . (3.2)

Then the Bern–Kosower master formula can be generalized to the case of a Dirac fermion loop
case as follows [44,28]:

Γ
a1...aN
1
2

[p1, ε1; . . . ;pN, εN ]

= −2(−ig)N tr
(
T a1 . . . T aN

) ∞∫
0

dT

T
(4πT )−

D
2 e−m2T

×
N∏

k=1

T∫
0

dτk

∫
dθk δ

(
τN

T

)
ϑ(τ̂1N)

N−1∏
l=1

ϑ(τ̂l(l+1))

× exp

{
N∑

i,j=1

[
1

2
Ĝijpi · pj + iDiĜij εi · pj + 1

2
DiDjĜij εi · εj

]}∣∣∣∣∣
lin(ε1...εN )

. (3.3)

Here ϑ is the Heaviside step function and the Green’s functions GB and GF appear now com-
bined into the super Green’s function

Ĝ(τi, θi; τj , θj ) ≡ GB(τi, τj ) + θiθjGF (τi, τj ). (3.4)

The overall sign of (3.3) refers to the standard ordering of the polarization vectors ε1ε2 . . . εN .
Next, note that

ϑ(τ̂ij ) = ϑ(τi − τj ) + θiθj δ(τi − τj ). (3.5)

The terms arising in the expansion of the spinor loop master formula (3.3) can be divided into
three types: (i) terms that were there already for the scalar loop, (ii) new terms not involving any
of the delta functions appearing in (3.5) and (iii) terms that do involve such delta functions (only
single delta function can appear up to the three-point level). Concerning the type (ii) terms, those
are known already from the abelian case, and it was shown in [28] by a direct combinatorial
argument, starting from the abelian version of (3.3), that they can be taken into account correctly
by the “loop replacement rule” Eq. (1.10). Terms of type (iii) are specific to the nonabelian case.
They would cancel between adjacent ordered sectors in the abelian case, but now produce color
commutators, so that it is natural to think of them as a fermionic counterpart to the boundary
terms encountered in the scalar loop calculation.

The loop replacement rule applies already in the two-point case, where the ĠB12ĠB21 appear-
ing in Q2 has to be replaced by ĠB12ĠB21 − GF12GF21. Also a term of type (iii) appears at the
two-point level, but it gives an integrand proportional to
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δ(τ1 − τ2)GF (τ1, τ2)e
GB(τ1,τ2) (3.6)

that vanishes since GF (τ, τ ) = 0 by antisymmetry. Taking the global normalization into account,
the vacuum polarization function for the spinor loop case becomes

Π 1
2

(
p2) = −2C(r)

g2

(4π)D/2

∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1 (ĠB12ĠB21 − GF12GF21)e
−GB12p

2
.

(3.7)

In the three-point case, the effect of the type (ii) terms is to change each of the “bulk terms” Γ
2,3

0

of (2.17) to a corresponding Γ
2,3
1
2

differing from its scalar loop counterpart by a change of Q
2,3
3

to Q̂
2,3
3 , where

Q̂3
3 = (ĠB12ĠB23ĠB31 − GF12GF23GF31)Z3(123),

Q̂2
3 = (ĠB12ĠB21 − GF12GF21)Z2(12)ĠB3kε3 · pk + two permutations. (3.8)

But now terms of type (iii) will really contribute. As mentioned above, those are similar to the
boundary terms of the scalar loop case, and a simple calculation shows that their role is precisely
to make the “loop replacement rule” work for the boundary terms, too. Thus for the total spinor
loop contribution we find

Γ 1
2

= −2
g3

(4π)
D
2

(
Γ 3

1
2

+ Γ 2
1
2

+ Γ bt
1
2

)
(3.9)

where

Γ 3
1
2

= − tr
(
T a1T a2T a3

) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1

τ1∫
0

dτ2 Q̂3
3

∣∣∣∣
τ3=0

e(·)

− tr
(
T a1T a3T a2

) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1

τ1∫
0

dτ3 Q̂3
3

∣∣∣∣
τ2=0

e(·),

Γ 2
1
2

= Γ 3
1
2

(
Q̂3

3 → Q̂2
3

)
,

Γ bt
1
2

= tr
(
T a1

[
T a2 , T a3

]) ∞∫
0

dT

T
D
2

e−m2T

T∫
0

dτ1 (ĠB12ĠB21 − GF12GF21)

× [
ε3 · f1 · ε2 eGB12p1·(p2+p3) + ε1 · f2 · ε3 eGB12p2·(p1+p3)

+ ε2 · f3 · ε1 eGB12p3·(p1+p2)
]
. (3.10)

The alternative form of the scalar loop result, involving R2
3 instead of Q2

3 and the additional
boundary contribution Γ̃ bt

0 , can similarly be generalized to the spinor loop case by an application
of the replacement rule (1.10).
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4. The gluon loop case

As was already mentioned, the case of the gluon loop is intrinsically more subtle, because
here one has the issue of gauge (in)dependence not only for the background field but also for
the loop particle. The preferred way of fixing the corresponding ambiguity for the three-vertex
leads to the “gauge-invariant vertex”, which obeys the simple Ward identity (1.4). This version
of the vertex is generated by the BFM with Feynman gauge for the quantum part, and it so
happens that the only generalization of the worldline path integral representation (1.11) of the
effective action to the gluon-loop case presently known is just based on the BFM with quantum
Feynman gauge, and thus the right starting point for a calculation of the “gauge-invariant vertex”.
This representation was developed in [24,47] in component fields, and reformulated in terms of
worldline superfields in [46]. Although from the point of view of string theory it is a “poor man’s
version” of the Polyakov path integral in the infinite string tension limit, it is perfectly adequate
as far as the 1PI amplitudes are concerned. It is also consistent with full string theory in the sense
that in the approach of [31,32], too, the field theory limit of the off-shell continued string gluon
amplitudes naturally leads to the Green’s functions corresponding to the BFM with Feynman
gauge.

We will continue to take a user’s approach here and proceed directly to the relevant master
formula; the interested reader may consult [28] for more details. This master formula for the
(color-ordered) contribution to the off-shell 1PI N -gluon amplitude due to a gluon loop reads

Γ
a1...aN

gluon [p1, ε1; . . . ;pN, εN ]

= − (−ig)N

4
tr
(
T a1 . . . T aN

)
lim

C→∞

∞∫
0

dT

T
(4πT )−

D
2 e−CT

×
N∏

k=1

T∫
0

dτk

∫
dθk δ

(
τN

T

)
ϑ(τ̂1N)

N−1∏
l=1

ϑ(τ̂l(l+1))
∑

p=P,A

σpZp

× exp

{
N∑

i,j=1

[
1

2
ĜC

p,ijpi · pj + iDiĜ
C
p,ij εi · pj + 1

2
DiDjĜ

C
p,ij εi · εj

]}∣∣∣∣∣
lin(ε1...εN )

.

(4.1)

Here the generators T a are now fixed to be in the adjoint representation. We have defined σP = 1,
σA = −1 (corresponding to periodic (p = P ) and antiperiodic (p = A) boundary conditions in
the original path integral), and

ZA = (
2 cosh[CT/2])4

,

ZP = (
2 sinh[CT/2])4

, (4.2)

ĜC
P,A(τ1, θ1; τ2, θ2) = GB(τ1, τ2) + θ1θ2G

C
P,A(τ1, τ2), (4.3)

where

GC
P (τ1, τ2) = 2 sign(τ1 − τ2)

sinh[C(T
2 − |τ1 − τ2|)]

sinh[CT/2] ,

GC
A(τ1, τ2) = 2 sign(τ1 − τ2)

cosh[C(T
2 − |τ1 − τ2|)]

. (4.4)

cosh[CT/2]
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The limit C → ∞ and sum
∑

p=P,A serve the purpose to remove unwanted degrees of freedom
circulating in the loop. Now, note that at fixed C,p the gluon loop master formula (4.1) is iso-
morphic to the spinor loop one (3.3). For the two-point case, this formal analogy allows us to
reuse (3.7) and write the vacuum polarization function due to a gluon loop in the form

Πgluon
(
p2) = −1

4
C(r)

g2

(4π)D/2
lim

C→∞
∑

p=P,A

σp

∞∫
0

dT

T
D
2

e−CT Zp

×
T∫

0

dτ1
(
ĠB12ĠB21 − GC

p12G
C
p21

)
e−GB12p

2
. (4.5)

Similarly, in the three-point case the isomorphism implies that we can generalize the decompo-
sition (3.9) to

Γgluon = −1

4

g3

(4π)D/2
lim

C→∞
∑

p=P,A

σp

(
Γ 3

gluon(C,p) + Γ 2
gluon(C,p) + Γ bt

gluon(C,p)
)

(4.6)

where Γ
(·)

gluon(C,p) differs from the corresponding Γ
(·)
1
2

in (3.10) only by a replacement of m2 by

C, GFij by GC
p,ij , and the insertion of Zp under the T integral.

It remains to analyze the limit C → ∞ and the sum over boundary conditions; however, this
has already been done in complete generality in [24,47,28]. For the integrands appearing in the
two-point and three-point cases, the general rules found there give

lim
C→∞ e−CT

∑
p=P,A

σpZp = −8,

lim
C→∞ e−CT

∑
p=P,A

σpZpGC
p,ijG

C
p,ji = 16,

lim
C→∞ e−CT

∑
p=P,A

σpZpGC
p,12G

C
p,23G

C
p,31 = 16. (4.7)

For the two-point case, this results in

Πgluon
(
p2) = 2C(r)

g2

(4π)D/2

∞∫
0

dT

T
D
2

T∫
0

dτ1 (ĠB12ĠB21 + 2)e−GB12p
2
. (4.8)

For the three-point case we can write, from (3.9), (3.10), (4.6) and (4.7),

Γgluon = 2
g3

(4π)D/2

(
Γ 3

gluon + Γ 2
gluon + Γ bt

gluon

)
(4.9)

where, in terms of the spinor loop results of (3.10),

Γ 3
gluon = Γ 3

1
2
(GF12GF23GF31 → −2),

Γ 2
gluon = Γ 2

1
2
(GF12GF21 → −2),

Γ bt
gluon = Γ bt

1 (GF12GF21 → −2). (4.10)

2
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However, we must not forget the ghost loop contribution, which is necessary for the subtraction
of the unphysical degrees of freedom of the gluon in the loop, and not contained in (4.1). This
one is equal to the scalar loop contribution (2.5), but has to be taken with the opposite sign. Thus
e.g. for the two-point case we get the total spin-one contribution

Π1
(
p2) ≡ Πgluon

(
p2) + Πghost

(
p2)

= C(r)
g2

(4π)D/2

∞∫
0

dT

T
D
2

T∫
0

dτ1 (ĠB12ĠB21 + 4)e−GB12p
2
. (4.11)

Finally, in the gluon loop case, too, we have the option of using R2
3 instead of Q2

3 in the three-
point vertex, with an additional boundary contribution Γ̃ bt

gluon, and it is easy to check that this
form of the result still relates to the corresponding one for the spinor loop result by (4.10).

5. Summary

We will now summarize our results for the scalar, spinor, and gluon loop cases. For easy
comparison, here we also rewrite the multiple τi -integrals in terms of the more standard Feyn-
man/Schwinger parameters αi . First, as usual we rescale τi = T ui , after which the T integral can
be done trivially. Then in the two-point case we set u2 = 0 and change from u1 to α, and in the
three-point case we set u3 = 0 and change from u1, u2 to α1, α2, α3 via

u1 = α2 + α3,

u2 = α3, (5.1)

with α1 + α2 + α3 = 1. Only six different parameter integrals appear:

ID
2pt,B

(
p2) =

1∫
0

dα
(1 − 2α)2

(m2 + α(1 − α)p2)2− D
2

,

ID
2pt,F

(
p2) =

1∫
0

dα
1

(m2 + α(1 − α)p2)2− D
2

,

ID
3,B

(
p2

1,p
2
2,p

2
3

) =
1∫

0

dα1 dα2 dα3 δ(1 − α1 − α2 − α3)

× (1 − 2α1)(1 − 2α2)(1 − 2α3)

(m2 + α1α2p
2
1 + α2α3p

2
2 + α1α3p

2
3)

3− D
2

,

ID
3,F

(
p2

1,p
2
2,p

2
3

) = −
1∫

0

dα1 dα2 dα3 δ(1 − α1 − α2 − α3)

× 1

(m2 + α α p2 + α α p2 + α α p2)3− D
2

,

1 2 1 2 3 2 1 3 3
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ID
2,B

(
p2

1,p
2
2,p

2
3

) =
1∫

0

dα1 dα2 dα3 δ(1 − α1 − α2 − α3)

× (1 − 2α2)
2(1 − 2α1)

(m2 + α1α2p
2
1 + α2α3p

2
2 + α1α3p

2
3)

3− D
2

,

ID
2,F

(
p2

1,p
2
2,p

2
3

) =
1∫

0

dα1 dα2 dα3 δ(1 − α1 − α2 − α3)

× 1 − 2α1

(m2 + α1α2p
2
1 + α2α3p

2
2 + α1α3p

2
3)

3− D
2

. (5.2)

Our results for the vacuum polarization tensors (2.5), (3.7), (4.11) can then be summarized as

Π0
(
p2) = −C(r)

g2

(4π)D/2
Γ

(
2 − D

2

)
ID

2pt,B

(
p2),

Π 1
2

(
p2) = −2Π0

(
p2)(ID

2pt,B → ID
2pt,B − ID

2pt,F

)
,

Π1
(
p2) = Π0

(
p2)(ID

2pt,B → ID
2pt,B − 4ID

2pt,F

)
. (5.3)

Here it is understood that the formula for Π1 refers to the adjoint representation and to the
massless case.

For the three-point case, too, we can unify our results as follows:

Γs = ds

g3

(4π)
D
2

(
Γ 3

s + Γ 2
s + Γ bt

s

)
. (5.4)

Here d0 = d1 = 1, d 1
2

= −2 and

Γ 3
0 = −Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
tr(f1f2f3)I

D
3,B

(
p2

1,p
2
2,p

2
3

)
+ (a2 ↔ a3, f2 ↔ f3,p2 ↔ p3),

Γ 2
0 = 1

2
Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
× [

tr(f1f2)
(
ε3 · p1I

D
2,B

(
p2

1,p
2
2,p

2
3

) − ε3 · p2I
D
2,B

(
p2

2,p
2
1,p

2
3

))
+ tr(f2f3)

(
ε1 · p2I

D
2,B

(
p2

2,p
2
3,p

2
1

) − ε1 · p3I
D
2,B

(
p2

3,p
2
2,p

2
1

))
+ tr(f3f1)

(
ε2 · p3I

D
2,B

(
p2

3,p
2
1,p

2
2

) − ε2 · p1I
D
2,B

(
p2

1,p
2
3,p

2
2

))]
+ (a2 ↔ a3, f2 ↔ f3, ε2 ↔ ε3,p2 ↔ p3),

Γ bt
0 = −Γ

(
2 − D

2

)
tr
(
T a1

[
T a2 , T a3

])[
ε3 · f1 · ε2I

D
2pt,B

(
p2

1

) + ε1 · f2 · ε3I
D
2pt,B

(
p2

2

)
+ ε2 · f3 · ε1I

D
2pt,B

(
p2

3

)]
, (5.5)

Γ 3
1
2

= −Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
tr(f1f2f3)

(
ID

3,B

(
p2

1,p
2
2,p

2
3

)
− ID

(
p2,p2,p2)) + (2 ↔ 3),
3,F 1 2 3
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Γ 2
1
2

= 1

2
Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
× [

tr(f1f2)
(
ε3 · p1

(
ID

2,B

(
p2

1,p
2
2,p

2
3

) − ID
2,F

(
p2

1,p
2
2,p

2
3

))
− ε3 · p2

(
ID

2,B

(
p2

2,p
2
1,p

2
3

) − ID
2,F

(
p2

2,p
2
1,p

2
3

))) + 2 perm.
] + (2 ↔ 3),

Γ bt
1
2

= −Γ

(
2 − D

2

)
tr
(
T a1

[
T a2 , T a3

])[
ε3 · f1 · ε2

(
ID

2pt,B

(
p2

1

) − ID
2pt,F

(
p2

1

)) + 2 perm.
]
,

(5.6)

Γ 3
1 = −Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
tr(f1f2f3)

(
ID

3,B

(
p2

1,p
2
2,p

2
3

)
− 4ID

3,F

(
p2

1,p
2
2,p

2
3

)) + (2 ↔ 3),

Γ 2
1 = 1

2
Γ

(
3 − D

2

)
tr
(
T a1T a2T a3

)
× [

tr(f1f2)
(
ε3 · p1

(
ID

2,B

(
p2

1,p
2
2,p

2
3

) − 4ID
2,F

(
p2

1,p
2
2,p

2
3

))
− ε3 · p2

(
ID

2,B

(
p2

2,p
2
1,p

2
3

) − 4ID
2,F

(
p2

2,p
2
1,p

2
3

))) + 2 perm.
] + (2 ↔ 3),

Γ bt
1 = −Γ

(
2 − D

2

)
tr
(
T a1

[
T a2 , T a3

])[
ε3 · f1 · ε2

(
ID

2pt,B

(
p2

1

) − 4ID
2pt,F

(
p2

1

)) + 2 perm.
]
.

(5.7)

The parameter integrals at the three-point level are already highly nontrivial, and we refer the
reader to [6], and references therein, for methods for their evaluation.

We note that the “loop replacement rules” now have, for both the two-point and three-point
cases, assumed the form

Γ
(·)
1
2

= Γ
(·)

0

(
ID
(·),B → ID

(·),B − ID
(·),F

)
, (5.8)

Γ
(·)

1 = Γ
(·)

0

(
ID
(·),B → ID

(·),B − 4ID
(·),F

)
. (5.9)

Further, it can be easily checked that, for the bulk terms Γ
3,2
(·) , the terms with the interchange

(2 ↔ 3) just provide the other half of a color commutator [T a2, T a3 ], so that for them, as for the
boundary terms, the color structure factors out in a tr(T a1 [T a2 , T a3]). Therefore we can now use

tr
(
T a1

[
T a2, T a3

]) = iC(r)f a1a2a3 (5.10)

to get the expected proportionality to f a1a2a3 . Thus we can write

Γ a1a2a3
s = ds

g3

(4π)
D
2

tr
(
T a1

[
T a2 , T a3

])(
γ 3

s + γ 2
s + γ bt

s

)
= if a1a2a3C(r)ds

g3

(4π)
D
2

(
γ 3

s + γ 2
s + γ bt

s

)
(5.11)

with

γ 3
0 = −Γ

(
3 − D

2

)
tr(f1f2f3)I

D
3,B

(
p2

1,p
2
2,p

2
3

)
,

γ 2
0 = 1

Γ

(
3 − D

)[
tr(f1f2)

(
ε3 · p1I

D
2,B

(
p2

1,p
2
2,p

2
3

) − ε3 · p2I
D
2,B

(
p2

2,p
2
1,p

2
3

))

2 2
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+ tr(f2f3)
(
ε1 · p2I

D
2,B

(
p2

2,p
2
3,p

2
1

) − ε1 · p3I
D
2,B

(
p2

3,p
2
2,p

2
1

))
+ tr(f3f1)

(
ε2 · p3I

D
2,B

(
p2

3,p
2
1,p

2
2

) − ε2 · p1I
D
2,B

(
p2

1,p
2
3,p

2
2

))]
,

γ bt
0 = −Γ

(
2 − D

2

)[
ε3 · f1 · ε2I

D
2pt,B

(
p2

1

) + ε1 · f2 · ε3I
D
2pt,B

(
p2

2

)
+ ε2 · f3 · ε1I

D
2pt,B

(
p2

3

)]
(5.12)

and the γ
(·)
1
2 ,1

’s obtained from the γ
(·)
0 ’s by the rule (5.8) resp. (5.9).

In the version where Q2
3 is traded for R2

3 , γ 2
0 gets replaced by

γ̃ 2
0 = 1

2
Γ

(
3 − D

2

){
tr(f1f2)

[
r3 · f3 · p1

r3 · p3
ID

2,B

(
p2

1,p
2
2,p

2
3

)
− r3 · f3 · p2

r3 · p3
ID

2,B

(
p2

2,p
2
1,p

2
3

)] + 2 perm.

}
(5.13)

and one has the additional boundary contribution

γ̃ bt
0 = 1

2
Γ

(
2 − D

2

){[
tr(f1f2)ρ3 − tr(f3f1)ρ2

]
ID

2pt,B

(
p2

1

) + 2 perm.
}
. (5.14)

The rules (5.8) and (5.9) continue to hold.

6. Comparison with previous results

We now study the connection between our results for the three-gluon vertex and previous
work. Since our treatment of the gluon loop case is equivalent to the use of the BFM with
quantum Feynman gauge, we expect the Binger–Brodsky relation (1.5) to hold; and indeed this
relation here follows immediately from the replacement rules (5.8) and (5.9). (Similarly we can
use (5.3) to verify the vanishing of the gluon propagator in N = 4 SYM theory.)

For the same reason, the QED-like Ward identity (1.4) should be fulfilled not only for the
scalar and spinor, but also for the gluon loop case. Here it is advantageous to use the version
where R2

3 is used instead of Q2
3. Since R2

3 is transversal, the Ward identity then involves only the
boundary terms γ bt

0 , γ̃ bt
0 , and can be easily verified using (5.3), (5.12), and (5.14).

Next, we proceed to the less straightforward task of relating our representation to the Ball–
Chiu decomposition. As usual we start with the scalar case. Comparing our final result (5.11),
(5.12) with (1.2), (1.3) we first note that TH = tr(f1f2f3). Thus we must identify

H
(
p2

1,p
2
2,p

2
3

) = C(r)
d0g

2

(4π)D/2
Γ

(
3 − D

2

)
ID

3,B

(
p2

1,p
2
2,p

2
3

)
(6.1)

which is indeed totally symmetric in its arguments.
Further, it is also easy to recognize the functions A and B as symmetric and antisymmetric

combinations of the functions contained in γ bt
0 :

A
(
p2

1,p
2
2;p2

3

) = C(r)
d0g

2

2(4π)D/2
Γ

(
2 − D

2

)[
ID

2pt,B

(
p2

1

) + ID
2pt,B

(
p2

2

)]
,

TA = ε1 · ε2(p1 · ε3 − p2 · ε3) (6.2)

and
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B
(
p2

1,p
2
2;p2

3

) = C(r)
d0g

2

2(4π)D/2
Γ

(
2 − D

2

)[
ID

2pt,B

(
p2

1

) − ID
2pt,B

(
p2

2

)]
,

TB = ε1 · ε2(p1 · ε3 + p2 · ε3). (6.3)

Coming to the structure F , the fact that TF is transversal suggests that we should again use the
transversal structure γ̃ 2

0 rather than γ 2
0 ; the question is, how to choose the still undetermined

vectors ri? By inspection one finds that, with the cyclic choice r1 = p2 − p3, r2 = p3 − p1,
r3 = p1 − p2, and using the antisymmetry of fi , e.g. the first term in braces in (5.13) turns into

tr(f1f2)
p1 · f3 · p2

(p1 − p2) · p3

[
ID

2,B

(
p2

1,p
2
2,p

2
3

) − ID
2,B

(
p2

2,p
2
1,p

2
3

)]
. (6.4)

Noting that

TF = 1

2
tr(f1f2)p1 · f3 · p2 (6.5)

we are led to set

F
(
p2

1,p
2
2;p2

3

) = C(r)
d0g

2

(4π)D/2
Γ

(
3 − D

2

)
ID

2,B(p2
1,p

2
2,p

2
3) − ID

2,B(p2
2,p

2
1,p

2
3)

p2
1 − p2

2

(6.6)

where we have also used momentum conservation to rewrite

(p1 − p2) · p3 = p2
2 − p2

1. (6.7)

Thus the remaining structure C must match γ̃ bt
0 , and indeed one has

TC = 1

2
tr(f1f2)(p1 − p2) · ε3 = −1

2
tr(f1f2)ρ3

(
p2

1 − p2
2

)
(6.8)

leading to the identification

C
(
p2

1,p
2
2;p2

3

) = C(r)
d0g

2

(4π)D/2
Γ

(
2 − D

2

)
ID

2pt,B(p2
1) − ID

2pt,B(p2
2)

p2
1 − p2

2

. (6.9)

Note that F and C are indeed symmetric functions in the first two arguments, and that C is
actually independent of p2

3. Also, A is the only one of the functions having a UV divergence
(since in B the expression in square brackets is O(ε)), and B and C are simply related by [6]

2B = (
p2

1 − p2
2

)
C. (6.10)

Passing from the scalar to the spinor and gluon loop cases using (5.8) and (5.9) will obviously
not change anything essential in this analysis.

For the (massive) spinor loop case we have also verified the above correspondences explicitly,
using the formulas for the functions A to H given in [6] (to be precise, we have done this check
for A,B,C with arbitrary momentum, for F specializing to p2

3 = 0 and for H specializing to
p2

1 = p2
2 = 0. This provides also a check on the much more involved calculations of [6]).

7. Comparison with the effective action

It will be instructive to compare our results for the three-point amplitude with the low-energy
expansion of the one-loop QCD effective action induced by a loop particle of mass m. The
general form of this expansion is
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Γ0[F ] =
∞∫

0

dT

T

e−m2T

(4πT )D/2
tr

∫
dx0

∞∑
n=2

(−T )n

n! On[F ], (7.1)

where On(F) is a Lorentz and gauge-invariant expression of mass dimension 2n. For the scalar
loop, in [48,49] this expansion was obtained to order O(T 6). To see the relation with our form
factor decomposition, it will be sufficient to consider the n = 2 and n = 3 terms:

O2 = −1

6
g2FμνFμν,

O3 = − 2

15
ig3FκλFλμFμκ − 1

20
g2DλFμνD

λFμν. (7.2)

Here changing from the scalar to the spinor or gluon loop will change only the coefficients
in the expansion (7.1), not its structure. Comparing with, e.g., (5.12) we easily recognize the
correspondences

γ 3
(·) ↔ Fλ

κ F
μ
λ F κ

μ = f λ
κ f

μ
λ f κ

μ + higher point terms,

γ 2
(·) ↔ (∂ + ig A)F (∂︸ ︷︷ ︸+igA)F,

γ bt
(·) ↔ (

f + ig [A,A])(f︸ ︷︷ ︸+ig[A,A]). (7.3)

Thus all the pieces of our form factor decomposition have a simple meaning in terms of the effec-
tive action. Note that commutator terms are always generated by boundary terms in the IBP, and
that our three-point results allow us to predict certain terms in the higher-point gluon amplitudes
using the knowledge that any “abelian” field strength tensor in the nonabelian effective action
must appear as part of the full nonabelian field strength tensor including the commutator term.
Note also that the tensor structure multiplying the function S in the Ball–Chiu decomposition
does not correspond to anything in the expansion (7.1), which is one way of understanding why
S turned out to be zero in the calculations of [4,6]. Since the structure of the effective action is
independent of the loop order, this observation allows us also to predict that the vanishing of S

is not a one-loop accident, and will be found to persist at higher loop orders.

8. Conclusions

We have recalculated here the one-loop QCD three-gluon vertex for the scalar, fermion and
gluon loop cases in a unifying way, achieving a compact result involving only six different pa-
rameter integrals. We have established the precise relation of this result to the standard Ball–Chiu
decomposition, and also verified this relation for the massive spinor loop case using the explicit
results of [6].

As was mentioned already in the introduction, even in a four-dimensional calculation the use
of the vertex as a building block for higher-loop calculations will in most cases make it necessary
to know its D-dimensional continuation. For that reason we have kept the full D-dependence as
much as possible. In fact, our result for the scalar loop is complete in this sense and holds for
arbitrary D. And also in the spinor loop case the only place where we have used D = 4 is in the
normalization of the path integral, which however corresponds to the usual fixing of trγ 1 = 4
in dimensional regularization. It is only in the gluon loop case where D = 4 has been used in a
nontrivial way, namely already in the derivation of (4.1). Here a true extension to other spacetime
dimensions would require some more work. For the purpose of dimensional regularization it is,
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however, sufficient to note that our result for the gluon loop case corresponds to the dimensional
reduction variant of dimensional regularization proposed in [23].

In this calculation, three main advantages of our approach have emerged.
First, the IBP procedure generates the standard transversality-based Ball–Chiu decomposition

of the vertex almost automatically, bypassing the usual tedious analysis of the nonabelian Ward
identities. Let us recapitulate how this happens: for the bulk terms, in the IBP all polarization
vectors get absorbed into “abelian” field strength tensors f

μν
i , and thus become transversal. In the

abelian case, there would be no boundary contributions, and one would have achieved manifest
transversality at the integrand level. In the nonabelian case there are boundary terms, and those
combine into commutator terms that carry all nontransversality, and generally contribute to the
covariantization of some lower-point bulk term.

Second, this emergence of field strength tensors in the IBP allows one to maintain a close
relation between the momentum space amplitudes and the low-energy effective action, and thus
to profit from the superior organization of the latter with respect to gauge invariance. This has
led us to predict that the vanishing of the coefficient function S of the Ball–Chiu decomposition
will be found to persist beyond one-loop.

Third, the integrands of the spinor and gluon loop contributions can be obtained from the
scalar loop one trivially using the off-shell extended Bern–Kosower “loop replacement rules”
(5.8) and (5.9). The gluon loop result corresponds to a field theory calculation in the BFM with
quantum Feynman gauge, and thus to the preferred “gauge-invariant vertex” which fulfills the
simple Ward identity (1.4) and the SUSY-related identity (1.5). The latter here appears as a
simple consequence of the replacement rules and thus relates to worldline SUSY.

Concerning the last point, in the calculation presented here we have verified, rather than as-
sumed, the validity of this off-shell extension. Had we taken the validity of the replacement rules
off-shell for granted from the beginning, our method of calculating the three-point vertex would
have been even much more efficient; in fact, incomparably more efficient than the combined ef-
fort of [4,6,7] that was necessary to arrive at an explicit result for the scalar, spinor and gluon
loop contributions to the three-gluon vertex with standard field theory methods. Before applying
it to higher-point vertices, it will thus be important to show the validity of this off-shell extension
in general. With hindsight, this can be done as follows: it is sufficient to show the validity of
the replacement rules for the effective action. Let us consider the spinor loop case first. Here it
was shown in [28] that the replacement rule in the abelian case holds for the off-shell N -photon
amplitudes. Thus it holds also for the abelian effective action. The nonabelian effective action
in the low-energy expansion can be decomposed into terms that are Lorentz scalars built from
covariant derivatives and field strength tensors. Each such term in general will, after Fourier
transformation, contribute to momentum space functions with various different numbers of legs;
e.g., the term tr(DμFαβDμFαβ) will contribute to the N -point functions with N between two
and six. Generally, each such term in the nonabelian effective Lagrangian has a “core” term,
which has a counterpart already in the abelian case (in the example this would be ∂μfαβ∂μf αβ )
and a number of “covariantizing” terms that all involve commutators, and belong to amplitudes
with more legs than the core term. For the core term the IBP leads from bulk term to bulk term
and is formally identical to the abelian case, so that the replacement rule holds. But a core term
in the effective action appears combined with all its covariantizing terms, all sharing the same
coefficient. The replacement rule induces a change of this coefficient defined through a cycle
ĠBi1i2ĠBi2i3 · · · ĠBini1 which is multiplied by a tr(fi1fi2 · · ·fin) that in the effective action cor-
responds to a tr(f n). Consistency is therefore possible only if the same change of coefficient
applies also to all the terms where one or several of the factors f μν are replaced by a [A,A]
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term, or where a ∂ acting on some F is replaced by a [A,F ]. This settles the spinor loop case.
For the gluon loop case, it is sufficient to remember that the corresponding master formula be-
fore taking the limit C → ∞ and the projector sum

∑
p=P,A, Eq. (4.1), is still isomorphic to the

spinor loop one (3.3).
Based on this general validity of the off-shell replacement rules and the general IBP algorithm

developed in [34] we anticipate that with the method presented here a first explicit calculation of
the four-point vertex should be well in reach.

Less straightforward but very interesting would be the extension of the formalism presented
here to the gravitational case. The one-loop three-graviton vertices have already been exten-
sively studied for their conformal properties (see [50] and references therein). As far as external
gravitons are concerned, suitable string-inspired representations exist already for the (off-shell)
one-loop N -graviton amplitudes with a scalar or spinor loop [51,52] as well as for a photon loop
[53,54]. However, a suitable IBP procedure still remains to be developed.
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Appendix A. Summary of Conventions

We work with the (−+++) metric. The nonabelian covariant derivative is Dμ ≡ ∂μ +
igAa

μT a , with [T a,T b] = if abcT c. The adjoint representation is given by (T a)bc = −if abc . The

normalization of the generators is tr(T aT b) = C(r)δab , where for SU(N) one has C(N) = 1
2 for

the fundamental and C(G) = N for the adjoint representation.
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