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Abstract
Plane-symmetric gravitational waves are considered as gravitational lenses.
Numbers of images, frequency shifts, mutual angles, and image distortion
parameters are computed exactly in essentially all non-singular plane wave
spacetimes. For a fixed observation event in a particular plane wave spacetime,
the number of regular images is found to be the same for almost every pointlike
source. This number can be any positive integer, including infinity. Wavepackets
of finite width are discussed in detail as well as waves which maintain a constant
amplitude for all time. Short wavepackets are found to generically produce up
to two images of each source which appear (separately) only some time after
the wave has passed. They are initially infinitely bright, infinitely blueshifted
images of the infinitely distant past. Later, these images become dim and
acquire a rapidly-increasing redshift. For sufficiently weak wavepackets, one
such ‘flash’ almost always exists. The appearance of a second flash requires
that the Ricci tensor inside the wave exceed a certain threshold. This might
occur if a gravitational plane wave is sourced by, e.g., a sufficiently strong
electromagnetic plane wave.

PACS numbers: 98.62.Sb, 04.30.−w, 04.20.Jb

(Some figures may appear in colour only in the online journal)

1. Introduction

The theory of gravitational lensing has by now reached a considerable degree of sophistication
[1–4]. Theorems have been found predicting (or bounding) the number of images in very
general systems [5–7]. Shapes of stable caustics have been exhaustively classified [2, 3, 8, 9],
a non-perturbative notion of the lens map has been obtained [10], and various universal
behaviours of images have been found for sources lying near caustics [11–13]. These general
results have been complemented by a number of detailed calculations for specific types of
lenses. The majority of such calculations have been performed within the quasi-Newtonian
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viewpoint of gravitational lensing commonly used in astrophysics [3]. While various flavours
of this formalism exist, most require that bending angles be small and that all lenses be
nearly-Newtonian mass distributions.

This is to be contrasted with the more fundamental picture of gravitational lensing where
light rays are modelled as null geodesics in a Lorentzian spacetime. Within this context,
specific lensing calculations have been performed in Kerr, Reissner–Nordström, and a handful
of other geometries [1]. While curvatures and bending angles may be large in these examples,
they all involve (at least conformally) stationary spacetimes. It is of interest to understand if
qualitatively new effects appear in dynamical cases.

This paper considers the bending of light by (decidedly non-stationary) plane-symmetric
gravitational waves. Gravitational lensing by gravitational waves has previously been
considered by a number of authors, although almost all of this work has been carried out
within the weak-field regime [14–18]. One exception is [19], where redshifts were computed
in an exact solution to the vacuum Einstein equation representing a plane gravitational wave.
This work considered only very specific waveforms, and was confined to a coordinate patch too
small to include caustics and other effects associated with the formation of multiple images.
Separately, extensive work has been devoted to non-perturbatively understanding the geodesic
structure of generic plane wave spacetimes [20–26]. This is clearly a subject closely related to
gravitational lensing, although few explicit relations between the two subjects appear to have
been made (see, however, remarks in [1]).

It is the purpose of this work to provide a comprehensive and non-perturbative discussion
of lensing in plane wave spacetimes. These geometries are a well-known subclass of pp-waves;
plane-fronted waves with parallel rays. Many plane wave spacetimes are exact solutions
to the vacuum Einstein equation. Others may be interpreted as, e.g., exact solutions in
Einstein–Maxwell theory. While rather idealized from the astrophysical perspective, plane
wave spacetimes admit a wide variety of interesting phenomena. Depending on the waveform,
any number of astigmatic and anastigmatic caustics may exist. Examples admitting any
specified number of images—even an infinite number—are easily constructed. In particular,
even numbers of images can exist [1]. The image count can also change in time even when
a source does not cross an observer’s caustic. Despite all of these properties, plane wave
spacetimes are geometrically very mild. They are topologically equivalent to R

4 and admit
coordinate systems which cover the entire manifold.

Aside from their value as models of gravitational radiation, the plane wave spacetimes
considered here have also found numerous applications via the Penrose limit. This limit
provides a sense in which the metric near any null geodesic in any spacetime is equivalent to
the metric of an appropriate plane wave spacetime [28, 29]. It allows problems in relatively
complicated spacetimes to be reduced to equivalent problems in plane wave spacetimes (which
are often much simpler). This has been particularly valuable within string theory and related
fields [30, 31]. Penrose limits have also been applied to ordinary quantum field theory in
order to investigate causality and effective indices of refraction for photons and gravitons
propagating in curved spacetimes [24, 25, 32]. More recently, Penrose limits were used to
deduce the effect of caustics on Green functions associated with the propagation of classical
fields in curved spacetimes [23].

Given the content of the Penrose limit, lensing in plane wave spacetimes might be related
to lensing in generic spacetimes as seen by ultrarelativistic observers. More specifically, it
is possible that sources and observers which are nearly comoving but both appropriately
ultrarelativistic with respect to a general background geometry would see each other as though
they were moving non-relativistically in a plane wave spacetime. We make no attempt to
justify this conjecture, however.
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This paper starts by providing a self-contained review of plane wave spacetimes in
section 2. Although most of this material is not new [20–27], it is not widely known. Section 3
then derives the number of images of a point source that may be viewed in plane wave
spacetimes. Under generic conditions, this is found to depend only on the waveform and a
certain time parameter associated with the observation event. The number of images does not
depend on any properties of the source. Once this is established, section 4 computes image
positions, frequency shifts, angles, and image distortion parameters in general plane wave
spacetimes. Section 5 applies these results to symmetric plane waves, which have constant
waveforms. These geometries produce an infinite number of images of almost every source.
Their lensing properties are found to change significantly if the Ricci tensor is increased
beyond a certain threshold. Lastly, section 6 discusses ‘sandwich waves’: wavepackets
with finite width. Sandwich wave spacetimes generically admit images which appear at
discrete times and then persist indefinitely. Such images initially provide infinitely blueshifted,
infinitely bright pictures into the infinitely distant past. Very quickly, however, images of this
type become highly redshifted and effectively fade away. One such ‘transient flash’ is produced
by almost every sufficiently weak vacuum (Ricci-flat) wave. For weak waves, a second flash
appears only if the Ricci tensor of the wavepacket exceeds a certain threshold.

Throughout this work, the spacetime is assumed to be everywhere transparent. The
language used assumes that the geometric optics approximation [3] always holds, even in
situations where it would be severely strained (such as when light is emitted near an observer’s
caustic). Also note that only regular images are discussed. Sources lying directly on an
observer’s caustic are not considered here.

Notation

This paper restricts attention to plane wave spacetimes in four spacetime dimensions. Our
sign conventions follow those of Wald [33]. The signature is − + ++. Latin letters a, b, . . .
(and occasionally A, B, . . .) from the beginning of the alphabet are used to denote abstract
indices. Greek letters μ, ν, . . . are used to denote four-dimensional coordinate indices. The
Latin letters i, j, . . . are instead coordinate indices associated with the two directions transverse
to the direction of wave propagation. Objects involving the latter type of index are often written
in boldface with all indices suppressed. They are then manipulated using the standard notation
of linear algebra (e.g., AkiBk j = (AᵀB)i j and |x| = √

xixi). Overall, notation related to plane
wave spacetimes closely follows the conventions of [23].

2. Geometry of plane wave spacetimes

Plane wave geometries may be interpreted as simple models for gravitational waves emitted
from distant sources. Alternatively, they arise as universal limits for the geometries near null
geodesics in any spacetime [28, 29]. The typical definition of a plane wave spacetime (M, gab)

requires that M = R
4 and that there exist global coordinates (u, v, x) = (u, v, x1, x2) : M →

R
4 such that the line element takes the form

gμνdxμ dxν = −2 du dv + Hi j(u)xix jdu2 + (dx1)2 + (dx2)2. (1)

Hi j = (H)i j is any symmetric 2×2 matrix. Its components describe the waveforms associated
with a wave’s three polarization states1. The u coordinate is interpreted as a phase parameter

1 One of the three polarization states associated with plane wave spacetimes vanishes in the vacuum case Rab = 0.
This leaves the usual two polarizations associated with vacuum general relativity. Note that the six polarization states
typically stated to exist for linearized ‘plane’ gravitational waves in generic theories of gravity [34] cannot all be
represented by the metric (1). Three of these polarizations may be realized only as geometries which are rather less
plane-symmetric than those considered here.

3



Class. Quantum Grav. 30 (2013) 075011 A I Harte

for the wave, while v affinely parametrizes its rays. The remaining two coordinates xi span
spacelike wavefronts transverse to the wave’s direction of propagation.

Note that if H = 0 in some region, the spacetime is locally flat there. In terms
of a Minkowski coordinate system (t, x1, x2, x3), u and v satisfy u = (t + x3)/

√
2 and

v = (t − x3)/
√

2 in such a region. We consider only nontrivial plane waves, so H cannot
vanish everywhere.

The physical interpretation of the so-called Brinkmann metric (1) as a plane-symmetric
gravitational wave follows from considering the integral curves of the vector field �a =
(∂/∂v)a. These curves form a null geodesic congruence which may be interpreted as the rays
of the gravitational wave. ∇a�

b = 0, so these rays have vanishing expansion, shear, and twist.
There is therefore a sense in which they are everywhere parallel to one another. All rays are also
orthogonal to the family of spacelike 2-surfaces generated by the two commuting spacelike
vector fields Xa

(i) = (∂/∂xi)a. The induced metric on each such surface is flat: the wavefronts
are 2-planes. The curvature is constant on these planes in the sense that the Xa

(i) are curvature
collineations:

LX(i)Rabc
d = 0. (2)

Despite this, the Xa
(i) are not everywhere Killing. There do, however, exist linear combinations

of Xa
(i) and �a which are Killing. �a itself is also Killing, which may be interpreted as a

statement that plane waves do not deform along their characteristics. Plane wave spacetimes
admit a minimum of five linearly independent Killing fields. Note that in flat spacetime, five
(out of the total of ten) Killing fields are symmetries of all electromagnetic plane waves [27].
Killing fields of plane wave spacetimes are discussed more fully in section 2.3.

All non-vanishing coordinate components of the Riemann tensor may be determined from

Ruiu j = −Hi j. (3)

It follows that the Ricci tensor is given by

Rab = − Tr H�a�b, (4)

where Tr denotes the ordinary (Euclidean) trace of the 2×2 matrix H. The Ricci scalar always
vanishes in plane wave spacetimes. More generally, there are no nonzero scalars formed by
local contractions of the metric, the curvature, and its derivatives: RabRab = RabcdRabcd =
Rabcdε

ab f hR f h
cd = · · · = 0. This is analogous to the fact that plane electromagnetic waves

satisfy, e.g., FabFab = εabcdFabFcd = 0. Note, however, that electromagnetic plane waves
are not the only electromagnetic fields with vanishing field scalars. Similarly, plane wave
spacetimes are not the only curved geometries with vanishing curvature scalars [35].

It follows from (4) that plane wave spacetimes satisfying the vacuum Einstein equation
(and the vacuum equations of many alternative theories of gravity [36]) are characterized by
the simple algebraic constraint Tr H = 0. For vacuum waves, there exist two scalar functions
h+ and h× such that

H =
(−h+ h×

h× h+

)
. (5)

h+ and h× describe the waveforms for the two polarization states of a gravitational plane wave
propagating in vacuum. A plane wave is said to be linearly polarized if h+ and h× are linearly
dependent (in which case one of these functions can be eliminated by a suitable rotation of the
transverse coordinates x).

If h+ and h× have compact support, the geometry is said to be a sandwich wave. This name
evinces the image of a curved region of spacetime ‘sandwiched’ between null hyperplanes in
a geometry that is otherwise Minkowski. Physically, it corresponds to a wavepacket of finite
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length. Note that the planar symmetry considered here is very special in the sense that passing
waves do not necessarily leave any ‘tail’ behind them. After interacting with a sandwich wave,
all observers enter a region of spacetime which is perfectly flat. There is a sense in which
massless test fields propagating on plane wave spacetimes also lack tails [23, 37].

A general (not necessarily vacuum) wave profile H may be built by adding to (5) a term
proportional to the identity matrix δ. There then exists a third polarization function h‖ such
that

H =
(−h+ − h‖ h×

h× h+ − h‖

)
. (6)

If the Ricci tensor of such a wave is associated with a stress–energy tensor via Einstein’s
equation, that stress–energy tensor obeys the weak energy condition if and only if h‖ � 0.
Assuming this, the stress–energy tensors associated with (6) are very simple. They could be
generated by, e.g., electromagnetic plane waves with the form

Fab = 2h
1
2
‖ ∇[au∇b]x

1. (7)

Alternatively, (6) could be associated with the stress–energy tensor of the massless Klein–
Gordon plane wave

φ =
∫

u
h

1
2
‖ (w) dw. (8)

Besides the vacuum case h‖ = 0, another interesting class of wave profiles are those that are
conformally flat. These satisfy h+ = h× = 0, so H ∝ δ. As gravitational lenses, all caustics
of conformally-flat plane waves are associated with ‘perfect’ anastigmatic focusing. For more
general plane waves, caustics are typically (but not necessarily) associated with astigmatic
focusing.

2.1. The matrices A and B

The geometry of plane wave spacetimes has been analysed in detail by a number of authors
[20–27]. One essential conclusion of this work is that nearly all interesting properties of plane
wave spacetimes may be deduced from the properties of 2 × 2 matrices E = E(u) satisfying
the differential equation

Ë = HE. (9)

This is a ‘generalized oscillator equation’ with −H acting like a matrix of squared frequencies.
Equation (9) arises when solving for geodesics or Jacobi fields in plane wave spacetimes.
Bitensors such as Synge’s function and the parallel propagator may be written explicitly in
terms of its solutions. The same is also true for a plane wave’s Killing vectors.

It is convenient to write all possible matrices E in terms of two particular solutions. Fix
any2 uo ∈ R and define A(·, uo) and B(·, uo) to be solutions to (9) (where derivatives are
applied to the first arguments of A and B) with the initial conditions

lim
us→uo

A(us, uo) = lim
us→uo

∂(1)B(us, uo) = δ, (10)

lim
us→uo

∂(1)A(us, uo) = lim
us→uo

B(us, uo) = 0. (11)

2 The notation uo is used here because this will later be interpreted as a u coordinate associated with some observer.
Similarly, us is often interpreted below as a u coordinate associated with a source (not necessarily when that source
is observable at any observation point with u = uo). Later, the notation ue is used to denote a u coordinate associated
with the emission of light from a source.

5
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Here, the notation ∂(1)A indicates a partial derivative with respect to the first argument of A.
We assume for simplicity that H is a matrix of piecewise-continuous functions and that A and
B are at least C1 (and piecewise-C2) in both of their arguments. Example expressions for A
and B are discussed in sections 5 and 6.

Given any two solutions E1 and E2 to (9), it is easily verified that their Wronskian is
conserved:

Eᵀ
1 Ė2 − Ėᵀ

1 E2 = constant. (12)

Here, ᵀ denotes a matrix transpose. Applying this formula with E1 → A and E2 → B shows
that

Aᵀ∂(1)B − ∂(1)AᵀB = δ. (13)

Neither A nor B are necessarily symmetric matrices. Nevertheless, (12) and (13) may be used
to show that the products

Aᵀ∂(1)A, ∂(1)AA−1 Bᵀ∂(1)B, ∂(1)BB−1, BAᵀ, B−1A (14)

are symmetric wherever they exist [23]. Letting E1 → B(·, uo) and E2 → B(·, us) in (12)
shows that

B(us, uo) = −Bᵀ(uo, us) (15)

for all us, uo ∈ R. This is essentially Etherington’s reciprocity law [1, 3, 38, 39]. A similar
calculation may be used to show that

∂(1)A(us, uo) = −∂(1)Aᵀ(uo, us) (16)

as well.
It is sometimes useful to consider partial derivatives ∂(2) with respect to the second

arguments of A and B. The resulting matrices remain solutions to (9). Comparing initial
conditions shows that

∂(2)A(us, uo) = −B(us, uo)H(uo), ∂(2)B(us, uo) = −A(us, uo). (17)

A may therefore be derived from B. The opposite is also true wherever det H �= 0.
Geometrically, B corresponds to the transverse coordinate components of a Jacobi

propagator describing the evolution of deviation vectors along geodesics passing between
different pairs of points [23]. B is also related to image distortion. Up to an overall
time dilation factor, it translates small differences in image position on an observer’s sky
to spatial deviations from a fiducial source point. In the language of [11], B is proportional
to the Jacobi map. The symmetric matrix ∂(1)BB−1 plays a similar role, but translates source
separations to emission (rather than observation) angles. It is proportional to an object typically
referred to as the optical deformation matrix. These statements are explained more fully in
section 4.3.

2.2. Conjugate pairs

It is often useful when working with plane wave spacetimes to consider hypersurfaces of
‘constant phase’. Recalling the interpretation of the u coordinate as a phase, let

Suo := {p ∈ M : u(p) = uo} (18)

denote such a hypersurface. Given two points ps ∈ Sus and po ∈ Suo (with us �= uo), define the
multiplicity or ‘index’ of these points to be [20]

I(ps, po) := 2 − rank B(us, uo). (19)

6
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We also set I(po, ps) = 0 whenever uo = us. It follows from (15) that I(ps, po) = I(po, ps).
For most pairs of points, I = 0. Such pairs are said to be ‘disconjugate’. Pairs ps, po satisfying
I(ps, po) �= 0 are instead said to be conjugate with multiplicity I(ps, po). Similarly, we call the
pairs Sus , Suo ‘conjugate hyperplanes’ and the pairs of real numbers us, uo ‘conjugate phases’
when rank B(us, uo) < 2. Despite the appearance of (19), the index map I : M×M → {0, 1, 2}
describes phenomena which do not depend on any choice of coordinate system.

Conjugate pairs as described here are closely related to the conjugate points commonly
considered in differential geometry and optics. In general, distinct points ps and po on a given
geodesic are said to be conjugate if and only if there exist nontrivial deviation vectors along
that geodesic which vanish at both po and ps. In plane wave spacetimes, this condition reduces
to I(ps, po) > 0. Defining the multiplicity of a pair of conjugate points to be the number
of linearly independent deviation vectors which vanish at those points, that multiplicity is
equal to I(ps, po). The concept of conjugacy associated with I does not, however, require
the specification of any particular geodesic. It is uniquely defined even for pairs of points
connected by multiple geodesics or by none. Indeed, these are the only cases where I �= 0.

All strong lensing effects associated with plane wave spacetimes are related to the
existence of conjugate hyperplanes. It follows from (19) that every pair of conjugate phases
us, uo satisfies

det B(us, uo) = det B(uo, us) = 0. (20)

Finding conjugate pairs and their multiplicities may be viewed as a matter of direct computation
once H is specified. Alternatively, various Sturm-type comparison theorems can be used to
make general statements regarding the existence and separations of conjugate pairs for various
classes of plane wave. See, e.g., chapter XI of [40] for results relating to mathematical
problems of this type and [20] for an application to ‘tame’ plane wave spacetimes. More
specific examples are discussed in sections 5 and 6 below.

The qualitative structure of geodesics in plane wave spacetimes is closely related to the
index I. First note that every disconjugate pair of points ps, po is connected by exactly one
geodesic. If two points are conjugate, the number of connecting geodesics is either zero or
infinity. Sizes of geodesically connected regions may be summarized by

dim[(all points geodesically connected to po) ∩ Sus ] + I(ps, po) = 3. (21)

A similar relation exists for null cones when uo �= us:

dim[(all points connected to po via null geodesics) ∩ Sus ] + I(ps, po) = 2. (22)

The latter result has been referred to as an ‘index theorem’ in [20]. Equation (21) implies
that geodesics emanating from po and intersecting a hyperplane Sus that is disconjugate to
Suo form a three-dimensional region. Indeed, these geodesics fill the entire hyperplane. More
interestingly, geodesics intersecting a conjugate hyperplane with multiplicity 1 fill only a two-
dimensional region on that three-dimensional surface. Geodesics intersecting a hyperplane
with multiplicity 2 form a line. Similarly, the null cone of a point reduces to a one-dimensional
curve on every hyperplane with multiplicity 1. A null cone intersecting a hyperplane with
multiplicity 2 is focused to a single point on that hyperplane. These two cases correspond to
astigmatic and anastigmatic focusing, respectively. Anastigmatic focusing tends to be unstable
in the sense that perturbations tend to split a single multiplicity 2 phase into two closely-spaced
phases each with multiplicity 1.

In many applications, there exists a preferred point po, or perhaps a preferred hyperplane
Suo . po may, for example, represent the position of an observer at a particular time. Fixing this
point, the set of hyperplanes conjugate to Suo divides a plane wave spacetime into a (possibly
infinite) number of open regions Nn(uo). Let N0(uo) denote the largest connected region

7



Class. Quantum Grav. 30 (2013) 075011 A I Harte

Figure 1. Given a preferred point po or a preferred u = constant hyperplane Suo , plane wave
spacetimes naturally divide into a number of open four-dimensional regions Nn(uo). These regions
are separated from each other by the hyperplanes Sτn(uo) conjugate to Suo .

containing Suo and excluding any portion of a hyperplane conjugate to Suo . If there exists a
smallest τ1(uo) > uo conjugate to uo, the surface Sτ1(uo) is clearly contained in the boundary
of N0(uo). N1(uo) may then be defined as the largest connected region which includes Sτ1(uo)

as a boundary and contains points ps satisfying us > τ1(uo) and I(ps, po) = 0. This continues
the spacetime ‘above’ Sτ1(uo). Similar constructions may be used to define τn(uo) and Nn(uo)

for values of n other than 1. See figure 1. Fixing a particular nonzero integer n and real number
uo, it is not necessary that τn(uo) exist at all. In general, the domain of τn is an open subset of
R. This domain can be empty for some n.

The geodesic uniqueness result described above can now be reduced to the statement
that a point po is connected to another point ps �= po by exactly one geodesic if and only if
there exists some n such that ps ∈ Nn(uo). Two-point tensors like Synge’s world function, the
parallel propagator, and the van Vleck determinant may be defined unambiguously throughout
‘M × (∪nNn).’ This excludes from M × M only a set of measure zero.

2.3. Geodesics

Beyond the qualitative geodesic structure of plane wave spacetimes discussed above, it is not
difficult to obtain explicit coordinate expressions for all geodesics. Let � ⊂ M denote some
geodesic and γ : R → M an affine parametrization of it. The vector field �a = (∂/∂v)a

generating the characteristics of a gravitational wave is Killing, so γ̇ a�a must be constant on
�. If this constant vanishes, � is confined to a hypersurface of constant phase. Such a geodesic
has the form of a (Euclidean) straight line in the coordinates (v, x).

Geodesics satisfying γ̇ a�a �= 0 are more interesting. In these cases, the affine parameter
can always be rescaled such that γ̇ a�a = −1. It is then possible to identify that parameter
with the phase coordinate u. Doing so, u(γ (us)) = us for all us ∈ R. The spatial components
γ := x(γ ) of any geodesic are fixed everywhere once γo := γ(uo) and γ̇o := γ̇(uo) have been
specified at some fiducial phase uo. In terms of the matrices A and B defined in section 2.1,

γ(us) = A(us, uo)γo + B(us, uo)γ̇o. (23)

8
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The associated v coordinate of � may be efficiently derived using that fact that the vector field
(2v∂v + xi∂i)

a is a homothety [23]. This implies that

v(γ (us)) = v(γ (uo)) + 1
2 [κs(us − uo) + γ(us) · γ̇(us) − γo · γ̇o], (24)

where

κs := −γ̇aγ̇
a (25)

is a constant.
κs is closely related to the conserved quantity on � associated with the Killing field �a.

The (unit) 4-velocity Ua
s tangent to � is related to γ̇ a via

Ua
s = γ̇ a

√
κs

. (26)

It follows that

− �aU
a
s = 1√

κs
. (27)

If the spacetime is nearly flat (so H ≈ 0), κs reduces to a particle’s specific energy minus
its specific momentum in the direction of the gravitational wave. The limit −�aUa → 0
(or κs → ∞) may therefore be interpreted as ultrarelativistic motion in the direction of
the gravitational wave. By contrast, the limit −�aUa → ∞ (or κs → 0) corresponds to
ultrarelativistic motion against the background wave.

Other Killing fields present in essentially all plane wave spacetimes may be written as

(xi�̇i)�
a + �iXa

(i), (28)

where �i = �i is any 2-vector with the form

� = A(·, uo)�(uo) + B(·, uo)�̇(uo). (29)

For each choice of uo, there exists a four-parameter family of such vector fields. Each of these
is associated with a conservation law. Two such conserved quantities may be summarized by

P(uo) := 1√
κs

[Aᵀ(us, uo)γ̇(us) − ∂(1)Aᵀ(us, uo)γ(us)]. (30)

Fixing any uo, this 2-vector is conserved in the sense that it is independent of us. Another
conserved 2-vector may be defined by

C(uo) := 1√
κs

[Bᵀ(us, uo)γ̇(us) − ∂(1)Bᵀ(us, uo)γ(us)]. (31)

In the weak-field limit, P corresponds to the specific momentum transverse to the gravitational
wave. In this same context, C may be interpreted as the conserved quantity associated with
boosts transverse to the gravitational wave. It constrains transverse displacements. Note that
both P and C depend on a choice of uo. This is analogous to the choice of origin necessary to
define angular momentum in elementary mechanics.

In stationary spacetimes, it is common to discuss various quantities related to gravitational
lensing in terms of stationary observers (and often stationary sources). While plane wave
spacetimes are not stationary, there does exist sufficient symmetry to define similarly preferred
sources and observers. Two geodesics � and �′ can be said to be ‘instantaneously comoving’
at u = uo when

κs = κ ′
s, P(uo) = P ′(uo). (32)

These conditions imply that the 4-velocities of both geodesics are parallel-transported versions
of each other on the constant-phase hyperplane Suo . Note, however, that geodesics which are
comoving at one phase are not necessarily comoving at any other phase.

9
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As implied by (21), bundles of geodesics are strongly focused on conjugate hyperplanes.
Consider such a hyperplane associated with a phase τn(uo) conjugate to uo with multiplicity
1. It is clear from (19) that B̂n(uo) := B(τn(uo), uo) is a matrix with rank 1. There therefore
exists a unit 2-vector q̂n(uo) such that

q̂ᵀ
n (uo)B̂n(uo) = 0. (33)

q̂n(uo) is unique up to sign. Choosing any p̂n(uo) orthogonal to q̂n(uo), the transverse spatial
coordinates of all geodesics starting at a given point po focus to the line

γ(τn) = Ânγo + wp̂n (34)

as they pass through Sτn(u0). Here, w is any real number. All v coordinates may be reached on
Sτn(u0 ) by appropriate geodesics.

Geodesics starting at po and intersecting a hyperplane Sτn(uo) with multiplicity 2 all focus
to the single transverse position

γ(τn) = Ânγo (35)

as they pass through Sτn(uo). As in the multiplicity 1 case, all values of v may be reached by
appropriate geodesics. Equations (34) and (35) illustrate explicitly how conjugate hyperplanes
with multiplicities 1 and 2 are associated with astigmatic and anastigmatic focusing,
respectively. The former case involves focusing in only one transverse direction, while the
latter case involves simultaneous focusing in both directions transverse to the gravitational
wave.

2.4. Distances

As noted above, all pairs of points not lying on conjugate hyperplanes are connected by exactly
one geodesic. There is therefore no ambiguity in ascribing geodesic distances to these pairs.
In particular, Synge’s world function

σ (ps, po) := 1
2 (squared geodesic distance between ps and po) (36)

is well-defined whenever its arguments do not lie on conjugate hyperplanes. Plane wave
spacetimes constitute one of the few examples where σ is known essentially in closed form:

σ (ps, po) = 1
2 (us − uo)[−2(vs − vo) + xᵀ

s ∂(1)B(us, uo)B−1(us, uo)xs

+xᵀ
o B−1(us, uo)A(us, uo)xo − 2xᵀ

o B−1(us, uo)xs]. (37)

This is symmetric in its arguments: σ (ps, po) = σ (po, ps).
The appearance of B−1 in (37) indicates that σ tends to diverge when its arguments

approach conjugate hyperplanes. More specifically, suppose that us ≈ τn(uo) and
I(τn(uo), uo) = 1. Then,

σ (ps, po) ≈ −1

2

(
uo − us

us − τn(uo)

)
[q̂n(uo) · (xs − Ân(uo)xo)]

2 (38)

is an asymptotic approximation for σ if the bracketed term on the right-hand side of this
equation is nonzero [23]. It follows from (34) that this expression is valid only when there
does not exist any geodesic passing from po to a point on Sτn(uo) with the same transverse
coordinates as ps. The equivalent result if ps is near a hyperplane Sτn(uo) with multiplicity 2 is

σ (ps, po) ≈ −1

2

(
uo − us

us − τn(uo)

)
|xs − Ân(uo)xo|2. (39)

Again, this is valid only when there does not exist any geodesic passing from po to a point on
Sτn(uo) with the same transverse coordinates as ps.

10
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Figure 2. Schematic illustration of the gravitational lensing problem. Images correspond to future-
directed null geodesics from a timelike source � to an observation event po. The arguments of
section 3 show that under generic conditions, exactly one image is emitted from each region
Nn(uo) lying before the observation event. The dashed lines correspond to constant-u hyperplanes
conjugate to Suo .

3. Image counting

One of the most basic questions that can be asked regarding a gravitational lens is the number of
images that it produces of a particular source. Stated somewhat differently, how many future-
directed null geodesics connect a given timelike curve (the source) to a particular spacetime
event (the observer at a particular time)? This may be answered using the geodesic structure
of plane wave spacetimes summarized above.

To fix the notation, let po denote a fixed observation event and � the timelike worldline of a
point source. Assume that � may be parametrized by an everywhere-C1 function γ : R → M.
The phase coordinate u serves as a useful ‘quasi-time’ [21] for plane wave spacetimes3, so let
γ satisfy u(γ (us)) = us for all us ∈ R. The source’s worldline is not required to be geodesic.

This section establishes that under generic conditions, an ideal observer at po may see
exactly one image of � from each of the ‘epochs’ Nn(uo) described in section 2.2. Somewhat
more precisely, there typically exists exactly one future-directed null geodesic from

�n := � ∩ Nn(uo) (40)

to po for each n � 0 such that Nn(uo) exists. See figure 2. Recall that the boundaries of Nn(uo)

depend only on the spacetime under consideration, and not at all on the behaviour of any
particular source. This allows generic bounds to be placed on time delays associated with the
various images that may be observed.

Recall from section 2.2 that each point in �n is connected to po via exactly one
(not necessarily null) geodesic. Synge’s function σ (γ (us), po) is therefore well-defined and
explicitly given by (37) for all us such that γ (us) ∈ �n. Consider instead the rescaled function


n(us) := σ (γ (us), po)

uo − us
. (41)

3 u is not a ‘true’ time function because ∇au is null. Generically, there do exist well-behaved functions t : M → R

where ∇at is everywhere timelike [41]. These are time functions in the usual sense, although they do not appear to
simplify any computations performed here. Incidentally, the existence of such time functions implies that plane wave
spacetimes are stably causal. Plane waves are not, however, globally hyperbolic [42]. Hypersurfaces of constant t are
not Cauchy surfaces.

11
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If n � 0, the domain of 
n(us) is equal to all us such that γ (us) ∈ �n. If n = 0, we additionally
suppose that us < uo for reasons of causality. Images of �n produced by a plane gravitational
wave correspond to the zeros of 
n.

Recalling the form (37) for σ , it is clear that 
n depends on � as well as the matrices
A, B, B−1, and ∂(1)B. We have assumed in section 2.1 that A and B are at least C1. So is γ .
The definition of Nn(uo) ensures that det B(us, uo) �= 0 everywhere 
n(us) is defined. B−1 is
therefore C1 and 
n is continuous.


n is also monotonic. To see this, note that (9), (13), (14), (37), and (41) may be used to
show that


̇n = 1
2 [−γ̇aγ̇

a + |γ̇ + B−ᵀ(xo − ∂(1)Bᵀγ )|2] > 0. (42)


n is both continuous and monotonic, so at most one zero can exist for each n. This means
that at most one image of a source may reach an observer from each epoch Nn(uo). Exactly
one such image exists if some u′, u′′ are known to satisfy


n(u
′) < 0, 
n(u

′′) > 0. (43)

Such inequalities are easily established in many cases of interest.

3.1. Lensing between conjugate hyperplanes

The simplest case to consider is one where Nn(uo) lies ‘in between’ hyperplanes conjugate to
Suo . Suppose that both τn(uo) and τn−1(uo) exist for some n < 0. This is true in figure 2 for
n = −1. More generally, (38) and (39) imply that if there are no geodesics connecting po to
either γ (τn(uo)) or γ (τn−1(uo)),

lim
us→τ+

n−1(uo)

n(us) = −∞, lim

us→τ−
n (uo)


n(us) = ∞. (44)

It follows from these limits together with continuity that 
n is surjective on R. Since this
function is also monotonic, there must exist exactly one emission phase ue ∈ (τn−1(uo), τn(uo))

such that po and γ (ue) ∈ �n are connected by a null geodesic.
Under the same assumptions, projectiles moving on timelike geodesics may be thrown

from γ (us) ∈ �n to po only if us < ue. Choosing us − τn−1(uo) to be sufficiently small (but
positive), these projectiles can require an arbitrarily large amount of proper time to intersect
po. It is somewhat curious that points γ (us) ∈ �n satisfying us > ue cannot be connected to po

by any causal geodesic. Such points may, however, be reached by suitably accelerated curves
which are everywhere causal.

3.2. The youngest image

Next, consider the case n = 0 when there exists at least one conjugate hyperplane in the
observer’s past (as occurs in the example illustrated by figure 2). The arguments given above
imply that if γ (τ−1(uo)) is geodesically disconnected from po,

lim
us→τ+

−1(uo)

0(us) = −∞. (45)

The other boundary of the domain of 
0 occurs at us = uo. Here,

lim
us→u−

o


0(us) = 1

2
lim

us→u−
o

|xo − γ(us)|2
uo − us

. (46)

This limit clearly tends to +∞ if γ(uo) �= xo. Physically, γ(uo) �= xo implies that po cannot be
connected to γ (uo) by any null geodesic. Assuming that this is true, there must exist exactly
one ue ∈ (τ−1(uo), uo) such that po and γ (ue) ∈ �0 are connected by a null geodesic.

12
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3.3. The oldest image

The results of sections 3.1 and 3.2 typically suffice to describe the images formed in plane
wave spacetimes containing an infinite number of conjugate hyperplanes in an observer’s past.
It is, however, important to consider cases where only a finite number of conjugate points
exist. This occurs, e.g., for finite wavepackets where H has compact support. It is also true of
linearly polarized vacuum waves which are tame in the sense described in [20].

If there is at least one conjugate hyperplane in the observer’s past, let N denote the smallest
negative integer such that τN (uo) exists. If there are no conjugate hyperplanes in the observer’s
past, set N = 0. The case illustrated in figure 2 corresponds to N = −2 if N−2(uo) extends into
the infinite past. Regardless, we ask whether there exist any future-directed light rays from �N

to po. Unlike in the cases considered above, sources spend an infinite amount of proper time
in NN (uo).

Even in flat spacetime, a source that accelerates for an infinitely long time may be causally-
disconnected from certain observers via a Rindler horizon. Such phenomena can be ruled out
here by supposing that there exists some finite constant κmin > 0 such that

− γ̇aγ̇
a = 2γ̇ a(us)∇av − [|γ̇(us)|2 + γᵀ(us)H(us)γ(us)] > κmin (47)

for all us less than some cutoff. As is clear from (25) and (26), the left-hand side of this
inequality acts like the square root of a time dilation factor between the coordinate u and the
source’s proper time. Equation (47) implies that the source’s 4-velocity Ua

s ∝ γ̇ a satisfies

0 < −�aU
a
s <

1√
κmin

(48)

sufficiently far in the past. It therefore excludes sources which experience arbitrarily large
boosts against the background gravitational wave in the distant past. Equation (48) is an
extremely weak condition satisfied by, e.g., any source whose motion is geodesic sufficiently
far into the past. Assuming that it holds for some κmin > 0, equation (42) implies that u′ may
be chosen sufficiently small that


N (u′) < 0. (49)

Further assuming that γ (τN (uo)) is geodesically disconnected from po (if N �= 0) or that γ (uo)

is not null-separated from po (if N = 0), it follows that there exists exactly one ue smaller than
τN (uo) (if N �= 0) or uo (if N = 0) such that γ (ue) ∈ �N is connected to po via a future-directed
null geodesic.

3.4. Total image count for generic sources

The results just described may be summarized as follows: suppose that there does not exist
any past-directed geodesic segment from po to � whose endpoints are conjugate (in the usual
sense). Also assume that the source and observer are not instantaneously aligned with the
background wave: xo �= γ(uo). If there exists an ‘oldest’ phase conjugate to uo, further require
that there be some κmin > 0 such that the source’s motion is bounded by (48) sufficiently far
in the past.

For each n � 0, these assumptions imply that an observer at po sees exactly one image
of � as it appeared in Nn(uo). This provides a strong bound on the possible emission times of
different images. If Nn(uo) exists for every negative integer n, an infinite number of images
are formed. If, however, there is some smallest N � 0 such that NN (uo) exists, |N| + 1
images appear at po. Note that these results depend only on the waveform H and the phase
coordinate uo associated with the observer. The total number of images is the same for all
sources satisfying the hypotheses outlined above.

13
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These hypotheses are generic. Recalling (21), the requirement that � exclude any points
conjugate to po along a connecting geodesic is equivalent to demanding that the source’s
worldline avoid certain well-behaved one- or two-dimensional subsets of the three-dimensional
hyperplanes conjugate to Suo . Similarly, the assumption that xo �= γ(uo) demands only that
� avoid a certain line on Suo . The bound (48) on a source’s asymptotic 4-velocity can fail
to hold only for sources which accelerate for an infinitely long time. Violating any of these
conditions for a fixed observer would require that a source’s worldline be quite exceptional.
Moreover, we now show that |N| + 1 images appear under even broader (but more difficult to
state) conditions than those just discussed.

3.5. Non-generic imaging

Despite the comments made above, our assumptions on the behaviour of a source’s worldline
can be violated in certain cases. Suppose, contrary to these assumptions, that there exists
at least one point γe ∈ � which is conjugate to po along a geodesic connecting these two
points. An infinite number of geodesics then pass between γe and po. If the connecting
geodesics are null, γe lies on a caustic of the observer’s past light cone. Continuous images of
point sources—‘Einstein rings’—are then formed at po (ignoring the associated breakdown of
geometric optics). Such cases are not considered any further here. If conjugate points between
the source and observer are associated with non-null geodesics, discrete images of � appear at
po. In these cases, the methods used above are easily adapted to find how many images of �n

arrive at po. As already mentioned, there can be no more than one root for each 
n. Depending
on the details of the system, the associated image from Nn(uo) may or may not exist.

The case considered in section 3.1 where �n lies in between successive conjugate
hyperplanes is the simplest to analyse. Assuming that � does not intersect the caustic of
po, no images are formed of �n if either γ (τn(uo)) is connected to po via a timelike geodesic or
γ (τn−1(uo)) is connected to po via a spacelike geodesic. Otherwise, exactly one image exists
from this region.

If there exists an oldest conjugate hyperplane SτN (uo) as described in section 3.3, suppose
that the source satisfies (47) for some κmin > 0. There are then zero images of �N if γ (τN (uo))

is connected to po via a timelike geodesic. There is exactly one image if these points are either
geodesically disconnected or are connected by a spacelike geodesic.

The last cases to consider concern images of �0. First suppose that xo �= γ(uo). If there
exists at least one conjugate hyperplane in the observer’s past, one image is formed of �0

if either γ (τ−1(uo)) is geodesically disconnected from po or it is connected by a timelike
geodesic. No images are formed if γ (τ−1(uo)) and po are connected by a spacelike geodesic.
If xo �= γ(uo) and there are no conjugate points in the observer’s past, condition (47) implies
that there exists exactly one image of �0.

Cases where the source and observer are instantaneously aligned are more interesting.
Suppose that xo = γ(uo). There then exists one image of �0 with ue = uo. Recalling that uo

is not in the domain of 
0, it is possible for a second image to be emitted from �0 if 
0 = 0
somewhere. This may be seen by noting that

lim
us→u−

o


0 = v(γ (uo)) − vo. (50)

Two images of �0 can therefore exist when v(γ (uo)) > vo and xo = γ(uo).
If a source includes points which are conjugate to the observer (in the ordinary sense),

there is no simple result for the total number of images formed. Nevertheless, it is always
possible to say that the total number of images is less than or equal to |N| + 2 if a source does
not intersect a caustic of the observer’s light cone.
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4. Properties of lensed images

Plane wave spacetimes typically produce multiple images of each source. Even for sources
whose intrinsic properties remain constant, these images can appear with different spectra,
brightnesses, etc. We now compute these properties for generic configurations satisfying the
hypotheses summarized in section 3.4.

For each image of a timelike worldline � seen at po, there is an associated null geodesic
segment connecting po to an appropriate emission point γe = γ (ue) ∈ �. In terms of Synge’s
function (36), these points satisfy

σ (γe, po) = 0. (51)

First derivatives of σ are always tangent to the connecting light ray. In particular, the vector

ra
o := −∇aσ (γe, po)

uo − ue
(52)

at po points along the geodesic which eventually intersects γe (and is therefore past-directed).
The derivative operator here is understood to act on the second argument of σ . Also note that
ra

o is normalized such that �ara
o = 1. Parallel-transporting ra

o to the observation point yields

ra
e = ∇aσ (γe, po)

uo − ue
. (53)

The derivative operator in this equation is understood to act on the first argument of σ . Both
ra

o and ra
e may be viewed as (dimensionless) separation vectors between po and γe.

Equation (37) and the various identities of section 2.1 may be used to compute the
explicit coordinate components of ra

e and ra
o. Components transverse to the direction of wave

propagation are

re = B−ᵀ(ue, uo)[xo − ∂(1)Bᵀ(ue, uo)γe], (54)

where xo = x(po) and γe = x(γ (ue)) denote the transverse coordinates of the observer and
source. A similar calculation shows that

ro = B−1(ue, uo)[A(ue, uo)xo − γe]. (55)

ro and re are related via

re = ∂(1)B(ue, uo)ro − ∂(1)A(ue, uo)xo. (56)

Much of the discussion below considers sources moving on geodesics. In these cases, use
of (23) shows that

ro = B−1(ue, uo)A(ue, uo)δxo − γ̇o. (57)

Here, δxo := xo − γ(uo) = xo − γo. The various identities involving A and B discussed in
section 2.1 may also be used to reduce the imaging condition (51) to

κs(uo − ue) = 2(γ̇o · δxo − δvo) − δxᵀ
o B−1(ue, uo)A(ue, uo)δxo. (58)

Here, δvo := v(po) − v(γo). Equation (58) is a nonlinear relation for the emission ‘time’ ue in
terms of the observer’s position po and the parameters γo, γ̇o, v(γo), κs describing the source’s
worldline. As discussed in section 3, there can be many solutions to (58). These correspond
to different images.

Neither ue nor ra
o depends on the observer’s motion. Nevertheless, redshifts and angles

on the observer’s sky do depend on that motion (as is true even in flat spacetime). It is often
useful to fix this effect by supposing that the observer is instantaneously comoving with the
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source. Following (32), this is taken to mean that the unit 4-velocities Ua
s ,Ua

o of the source
and observer on Suo satisfy

�aU
a
s (uo) = �aU

a
o = − 1√

κs
, (59)

P s(uo) = Us(uo) = Uo = γ̇(uo)√
κs

= ẋo√
κs

. (60)

Recall from section 2.3 that the ‘transverse momentum’ P s(uo) is generated by contracting
Ua

s (uo) with the two Killing fields equal to Xa
(i) at po and having vanishing first derivative at that

point. Also note that (60) defines an instantaneous observer velocity ẋa
o = √

κsUa
o normalized

(like γ̇ a) such that �aẋa
o = −1. Physically, any source which could reasonably be said to

move ‘non-relativistically’ with respect to a given observer would be at least approximately
comoving with that observer in the sense of (59) and (60).

4.1. Frequency shifts

Gravitational lenses typically discussed in astrophysics involve nearly-Newtonian mass
distributions which may be regarded as approximately stationary (at least on sub-cosmological
timescales). If both a source and an observer are sufficiently far from such a lens, there can be
no significant redshift or blueshift from the gravitational field of that lens. Roughly speaking,
a light ray falling into any stationary gravitational potential must climb out of that same
potential. This result breaks down if light passes through non-stationary regions of spacetime.
Indeed, plane wave spacetimes may produce images with significant frequency shifts [19].

Consider an approximately monochromatic beam of light emitted from γe and received at
po. A future-directed tangent vector ka

e ∝ −ra
e to the emitted light ray may always be chosen

such that

ωe = −ke · Ue (61)

is the angular frequency of the light as seen by its source. The frequency ωo of this same light
ray as measured by an observer at po is −ko · Uo, where ka

o is equal to ka
e parallel transported

from the source to the observer. The observed and emitted frequencies are therefore related by

ωo

ωe
= Uo · ko

Ue · ke
= Uo · ro

Ue · re
=

√
κe

κo

(
κo + |ẋo + ro|2
κe + |γ̇e + re|2

)
. (62)

Here, κe := 1/(� · Us(ue))
2 and κo := 1/(� · Uo)

2. The 2-vectors re and ro appearing here are
determined by the source and observer positions via (37), (51), (54), and (55). The resulting
frequency shift is valid for all emission points not contained in a caustic of po.

Now suppose that a source moves on a geodesic and that the observer is instantaneously
comoving with this geodesic in the sense of (59) and (60). Then κe = κs = 1/(� · Us)

2 does
not depend on which image is chosen. Equations (56), (57), and the symmetry of B−1A may
be used to rewrite (62) as

ωo

ωe
= 1 + (B−ᵀδxo)

ᵀ
(

AAᵀ − δ

κs + |B−ᵀδxo|2
)

(B−ᵀδxo). (63)

The matrix in parentheses on the right-hand side of this equation acts like a metric for the
‘separation’ 2-vector B−ᵀ(ue, uo)[xo − γ(uo)]. If both eigenvalues of A(ue, us)Aᵀ(ue, us) − δ

are negative, the source is necessarily redshifted. Conversely, sources are always blueshifted
when this matrix is positive definite. If AAᵀ −δ has both positive and negative eigenvalues, the
sign of the frequency difference depends on the direction of B−ᵀδxo. For special configurations,
there is no frequency shift at all.
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4.2. Angles

Various images formed from a single source appear at different points on an observer’s sky. Like
redshifts, the relative angles between images change depending on an observer’s 4-velocity
Ua

o . The angle θ between two images arriving at po with tangents ra
o and r′a

o is

cos θ = (gab + Uo,aUo,b)ra
or′b

o

(Uo · ro)(Uo · r′
o)

= 1 + ro · r′
o

(Uo · ro)(Uo · r′
o)

. (64)

Simplifying,

cos θ = 1 − 2κo|ro − r′
o|2

(κo + |ẋo + ro|2)(κo + |ẋo + r′
o|2)

. (65)

This expression is valid for arbitrary source and observer configurations. Specializing to
geodesic sources and comoving observers,

cos θ = 1 − 2κs|(B−1A − B′−1A′)δxo|2
(κs + |B−1Aδxo|2)(κs + |B′−1A′δxo|2) . (66)

Here, A = A(ue, uo) and A′ = A(u′
e, uo). It is evident that angles are largely controlled by the

difference between B−1A at the two emission times.
Another interesting angle to consider is the observed separation ψ between a single image

(emitted at γe) and a generator �a of the background gravitational wave. For arbitrarily moving
source and observer configurations,

cos ψ = 1 − 2κo

κo + |ẋo + ro|2 . (67)

For observers comoving with geodesic sources,

cos ψ = 1 − 2κs

κs + |B−1Aδxo|2 . (68)

This may be used to rewrite the angle θ between two different images partially in terms
of the angles ψ and ψ ′ those images make with �a. Using (66),

cos θ = cos ψ cos ψ ′ + (B−1Aδxo) · (B′−1A′δxo)

|B−1Aδxo||B′−1A′δxo| sin ψ sin ψ ′. (69)

Similarly, the frequency shift (63) of an individual image may be rewritten as

ωo

ωe
= κs csc2(ψ/2)

κs + |B−ᵀδxo|2 . (70)

It is evident from this equation that images which appear highly blueshifted to comoving
observers must satisfy ψ ≈ 0.

4.3. Image distortion and magnification

Thus far, all sources here have been modelled as though they were confined to timelike
worldlines. Real objects are not pointlike, however. They form extended worldtubes in
spacetime. Images of such worldtubes form null geodesic congruences which converge on
po. These images can be significantly distorted by the curvature of spacetime. It is simplest to
quantify such distortions by first fixing a particular null geodesic Z passing between some part
of the source and po. Precisely which geodesic is chosen is not important. Z serves only as
an origin from which to discuss nearby light rays connecting po to other points in the source.
Once this origin has been fixed, the image of an extended source may be described entirely
using deviation vectors on Z (at least for sufficiently small sources). See figure 3.
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ra
o

ξa
Z

Figure 3. Imaging for an extended source. The fiducial light ray Z is indicated together with
another light ray separated from it by a deviation vector ξa. The vector ra

o is also drawn. This is
tangent to Z at the observation point po.

Deviation vectors (or Jacobi fields) satisfy the geodesic deviation (or Jacobi) equation
along Z . Letting ra denote the past-directed null vector tangent to Z and obtained by parallel-
transporting ra

o from po, every deviation vector ξ a is a solution to

rb∇b(r
c∇cξ

a) = Ra
bcdrbrcξ d . (71)

This equation is linear, so ξ a must depend linearly on initial data. In particular, all deviation
vectors can be written as linear combinations of appropriate bitensors contracted into the
initial data4 ξA(uo) and ξ̇A(uo). All light rays observed at po must necessarily intersect that
point, so it suffices to set ξA(uo) = 0. The first derivative of a deviation vector at po describes
an angular deviation between one point of an image and the centre associated with Z . We
therefore consider deviation vectors ξ a with the form

ξ a = Ba
A(·, uo)ξ̇

A(uo). (72)

Ba
A is known as a Jacobi propagator. It satisfies the Jacobi equation

rb∇b(r
c∇cBa

A) = Ra
bcdrbrcBd

A (73)

along Z together with the initial conditions

lim
us→uo

Ba
A(us, uo) = 0, lim

us→uo

rb∇bBa
A(us, uo) = δa

A. (74)

Note that Ba
A is a bitensor. It maps vectors at po into vectors at others points on Z . The

transverse components of Ba
A are

BaAXa
(i)X

A
( j) = (B)i j, (75)

where B is the matrix defined in section 2.1. Other components of Ba
A may be deduced from

the eigenvector relations [23]

Ba
A(us, uo)r

A
o = (us − uo)r

a, raBa
A(us, uo) = (us − uo)r

A
o , (76)

Ba
A(us, uo)�

A = (us − uo)�
a, �aBa

A(us, uo) = (us − uo)�A. (77)

All parts of an image must arrive at an observer along null geodesics. Additionally, an
observer with 4-velocity Ua

o can only measure angles of vectors orthogonal to Ua
o . It therefore

suffices to restrict attention to deviation vectors satisfying

ro · ξ̇ (uo) = Uo · ξ̇ (uo) = 0 (78)

4 Capital letters are used in this subsection to denote abstract indices associated with the observation point po. This
is done to avoid confusion when writing down two-point tensors such as Ba

A (see (72)).
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at po. These constraints restrict all interesting initial data to a two dimensional space. The
orthonormal vectors

eA
(i) = XA

(i) − ri
o�

A − 2

(
ri

o + ẋi
o

κo + |ẋo + ro|2
)

rA
o (79)

form a basis for this space at po. They satisfy

e(i) · e( j) = δi j, ro · e(i) = Uo · e(i) = 0. (80)

Parallel-transporting eA
(i) to another point on Z yields

ea
(i) = Xa

(i) − ri�a − 2

(
ri

o + ẋi
o

κo + |ẋo + ro|2
)

ra, (81)

which forms a Sachs basis [1] on Z . Initial data appearing in (72) must be of the form

ξ̇A(uo) = (Uo · ro)α
(i)eA

(i), (82)

where α is an unconstrained 2-vector. The factor (Uo · ro) > 0 is included here so that α is
directly related to angles on an observer’s sky. A sufficiently small image may be described
by a suitable set of 2-vectors α representing the angular locations of each portion of the image
with respect to the centre defined by Z .

Each α may be translated into a physical displacement at the source using (72) and (82).
First note that for every particular α, (76) implies that r · ξ = 0 throughout Z . Indeed, ξ a is
always a linear combination of the ea

(i) together with ra. Components of ξ a proportional to ra

are physically irrelevant, so we consider only the Sachs components

ξ(i) := e(i) · ξ = [
(Uo · ro)BaAea

(i)e
A
( j)

]
α( j). (83)

Defining the 2 × 2 matrix

D(i)( j)(us, uo) := (Uo · ro)BaA(us, uo)e
a
(i)(us)e

A
( j)(uo), (84)

it is then clear that ξ = Dα for any α. D is referred to as the Jacobi matrix or Jacobi map
[1, 11]. Using (75)–(77), (79), (81), and (84),

D(us, uo) = (Uo · ro)B(us, uo). (85)

If a source moves on a geodesic which is instantaneously comoving with the observer,

Uo · ro = κs + |B−1Aδxo|2
2
√

κs
. (86)

This discussion implies that a portion of an image with angular separation εα from the
fiducial direction associated with ra

o is spatially separated from the fiducial emission point
γe ∈ Z by

εξ(ue) = (Uo · ro)B(ue, uo)(εα). (87)

The factors of ε � 1 have been introduced here to emphasize that this description is valid only
for infinitesimal deviations. Regardless, (87) shows that up to the time dilation factor (Uo · ro),
the matrix B central to all aspects of plane wave geometry may be physically interpreted as a
transformation converting infinitesimal angles on the vertex of a light cone into infinitesimal
separations elsewhere on that light cone. B depends only on the u coordinates of the source
and emission points, and not on any other aspects of the physical configuration. It may be
computed for all possible observer–source pairs directly from the wave profile H.

Angles of emission (as opposed to observation) of the various light rays travelling from
the source to the observer may be found by differentiating (87) and applying the appropriate
time dilation factor:

ξ̇(ue)

Ue · re
=

(
Uo · ro

Ue · re

)
∂(1)B(ue, uo)α =

(
ωo

ωe

)
∂(1)B(ue, uo)α. (88)
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The last equality here makes use of (62). Applying (87) shows that

ξ̇ = ∂(1)BB−1ξ. (89)

The symmetric matrix ∂(1)BB−1/(Ue · re) therefore converts spatial locations to emission
angles within the source (with the constraint that all light rays intersect po). It is referred to as
the optical deformation matrix [1, 11].

Equation (87) implies that there is a sense in which circles on the observer’s sky correspond
to ellipses near γe. This deformation may be parametrized by performing a polar decomposition
on D(ue, uo):

D = Rᵀ
β

(
D+ 0
0 D−

)
Rχ . (90)

Here, Rβ and Rχ represent rotation matrices through some angles β and χ . The ratio D+/D−
is related to the ellipticity of the aforementioned ellipse. χ represents the angle between the
principal axes of that ellipse and the Sachs basis. D± and χ are referred as shape parameters
[1, 43].

Recalling that polarization vectors are parallel-transported in the geometric optics
approximation [3], any polarization vector must have Sachs components which are constant
along Z . In principle, the angle χ might therefore be measured by comparing the relative
‘rotation’ between an object’s observed shape and an appropriate polarization angle [1, 44].
For linearly polarized waves where H can be made diagonal by an appropriate coordinate
choice, χ = 0 with respect to this coordinate system and the basis (81). It is shown in section 6
that χ also vanishes in a natural way for all sufficiently weak wavepackets which are nonzero
only for short times.

Equation (87) implies that D converts angles at the observer to separations within the
source. The determinant of D must therefore relate solid angles at po to physical areas near γe:

dA
d�

= | det D| = |D+D−| = (Uo · ro)
2| det B|. (91)

It follows that

dang :=
√

| det D| = (Uo · ro)
√

| det B| (92)

may be interpreted as an ‘angular diameter distance’. Absolute value signs are necessary here
because det B changes sign after each pass through a conjugate hyperplane with multiplicity
1. Physically, such sign changes represent parity inversions of the resulting image. Note that
dang does not necessarily increase monotonically with the age of an image (as computed using
the source’s proper time).

Closely related to the angular diameter distance is the luminosity distance

dlum := (ωo/ωe)
−2dang. (93)

One factor of ωo/ωe arises here from considering light cones emanating from the source
instead of the observer. The other factor of ωo/ωe is related to the energy change associated
with frequency shifts.

5. Symmetric plane waves

Now that various optical quantities have been computed for general plane wave spacetimes,
we consider their application to various special cases. The simplest nontrivial plane waves are
the symmetric waves. These are locally symmetric in the sense that ∇aRbcd

f = 0. It follows
from (3) that symmetric plane waves must have constant waveforms. Also note that (∂/∂u)a

is Killing in these examples (as well as �a = (∂/∂v)a, which is Killing in all plane wave

20



Class. Quantum Grav. 30 (2013) 075011 A I Harte

spacetimes). Particular symmetric plane waves may be specified entirely by the (constant)
eigenvalues of H.

Recalling the decomposition (6) of H into h+, h× and h‖, a coordinate rotation may always
be used to set h× = 0 for symmetric waves. It is then evident that the two eigenvalues of H
are given by ±h+ − h‖. It is always possible to set

H =
(−h1 0

0 −h2

)
, (94)

where

h1 := h‖ + h+, h2 := h‖ − h+. (95)

The weak energy condition implies that h‖ � 0, so at least one eigenvalue of H must be
negative (implying that at least one of the h1,2 must be positive). We assume for definiteness
that h+ � 0. Then,

h1 > 0, h1 � |h2|. (96)

If the vacuum Einstein equation is imposed, h‖ = 0 and h2 = −h1. For conformally-flat
geometries representing spacetimes associated with, e.g., pure electromagnetic plane waves,
h+ = 0 and h2 = h1. Other cases may be viewed as superpositions of gravitational and
(‘gravito’-)electromagnetic waves.

All symmetric waves produce an infinite number of images of almost every source. It is
clear from (94) that these waves are also linearly polarized. The angles χ and β appearing in
(90) therefore vanish when considering image deformations with respect to the Sachs basis
(81). Other lensing properties depend on the sign of h2. We call the case h2 < 0 ‘gravity-
dominated’ and the case h2 > 0 ‘matter-dominated’.

5.1. Gravity-dominated symmetric waves

Consider symmetric plane wave spacetimes where h2 = h‖ − h+ < 0. Gravity-dominated
waves such as these generalize the vacuum waves satisfying h1 = −h2. Symmetric vacuum
waves arise from, e.g., the Penrose limit of a null geodesic orbiting a Schwarzschild black
hole on the light ring.

For any gravity-dominated symmetric wave, the matrices A and B defined in section 2.1
are

A(us, uo) =
(

cos h
1
2
1 (us − uo) 0

0 cosh |h2| 1
2 (us − uo)

)
, (97)

B(us, uo) =
(

h
− 1

2
1 sin h

1
2
1 (us − uo) 0
0 |h2|− 1

2 sinh |h2| 1
2 (us − uo)

)
. (98)

It is clear that det B(·, uo) has an infinite number of zeros for any choice of uo. Each of these
zeros represents a phase conjugate to uo. There are an infinite number of such phases in both
the past and future of every observer. The discussion in section 3 therefore implies that under
generic conditions, an infinite number of images appear for almost every source. Explicitly,
all conjugate phases are given by

τn(uo) = uo + nπh
− 1

2
1 , (99)

where n is any nonzero integer. It is evident from (19) that all of these phases have multiplicity
1. For any n < 0 and any observation point po with u(po) = uo, exactly one image of each
source is visible as that source appeared in Nn(uo). This corresponds to the region between
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u = uo + nπh
− 1

2
1 and u = uo + (n − 1)πh

− 1
2

1 . Note that det B(·, uo) switches sign on each pass
through a conjugate phase. The parity of an image emitted from Nn(uo) is therefore opposite
to the parity of an image emitted from Nn−1(uo).

Specializing to cases where the source is a geodesic and the observer is instantaneously
comoving with that source on Suo , some configurations lead to redshifts and others to blueshifts.
Using (63),

ωo

ωe
= 1 + δxᵀ

o Hδxo

κs + |B−ᵀδxo|2 . (100)

An image is therefore redshifted if and only if

δxᵀ
o Hδxo = −h1(δx1

o)
2 + |h2|(δx2

o)
2 < 0. (101)

It is blueshifted when δxᵀ
o Hδxo > 0. There is no frequency shift at all in cases where(

δx1
o/δx2

o

)2 = |h2/h1|. (102)

The direction of the frequency shift clearly depends only on the instantaneous orientation
δxo/|δxo| of the source and the observer on Suo . In particular, it does not depend on which
image is considered. All images of a particular source experience the same type of frequency
shift.

Emission times ue for an observer comoving with a geodesic source may be found by
solving (58). For gravity-dominated symmetric waves, this equation reduces to

κs(uo − ue) = 2(γ̇o · δxo − δvo) + h
1
2
1 (δx1

o)
2 cot h

1
2
1 (uo − ue)

+|h2| 1
2 (δx2

o)
2 coth |h2| 1

2 (uo − ue). (103)

If −n � 1, it is evident that the image from Nn(uo) must satisfy cot h
1
2
1 (uo − ue) � 1. Images

from the distant past are therefore emitted at phases ue very nearly conjugate to uo:

ue ≈ τn(uo) − h
1
2
1 (δx1

o)
2

|n|πκs
. (104)

Substituting this relation into (68) and (100) shows that very old images cluster near �a on the
observer’s sky and experience increasingly-negligible frequency shifts:

ψ ∝ |n|−1, |ωo/ωe − 1| ∝ |n|−2. (105)

Old images of slightly extended sources are also highly distorted and demagnified. Their
angular diameter and luminosity distances both scale like

dang ∼ dlum ∝ |n| 3
2 exp

(
1

2

√
|h2/h1||n|π

)
. (106)

Gravity-dominated symmetric waves therefore produce an infinite number of exponentially
dimming images for almost every source.

5.2. Matter-dominated symmetric waves

Matter-dominated symmetric waves satisfying h2 > 0 act somewhat differently than gravity-
dominated waves. In these cases,

A(us, uo) =
(

cos h
1
2
1 (us − uo) 0

0 cos h
1
2
2 (us − uo)

)
, (107)

B(us, uo) =
(

h
− 1

2
1 sin h

1
2
1 (us − uo) 0

0 h
− 1

2
2 sin h

1
2
2 (us − uo)

)
. (108)
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Phases conjugate to uo occur at uo + nπh
− 1

2
1 and at uo + n′πh

− 1
2

2 , where n, n′ are any
nonzero integers. If

√
h1/h2 is an irrational number, these two families of phases are distinct.

Each conjugate pair then has multiplicity 1. If
√

h1/h2 is rational, some conjugate pairs
have multiplicity 2. In the conformally-flat case where h1 = h2, all conjugate phases have
multiplicity 2. In every other case where

√
h1/h2 is rational, an infinite number of conjugate

phases occur with each multiplicity. Regardless of h2, an infinite number of images are formed
for almost every source.

Now consider a luminous source moving on a geodesic. If the source and observer are
instantaneously comoving in the sense of (59) and (60), frequency shifts associated with each
image are given by (63). Since

B−1(AAᵀ − δ)B−ᵀ = H (109)

is negative-definite in this case, all images are redshifted.
If −n � 1, an image originating from Nn(uo) must be emitted just before the source

intersects Sτn(uo). All such images cluster towards �a in the observer’s sky and have negligible
frequency shifts. Images emitted near conjugate hyperplanes with multiplicity 1 are highly
distorted. Images emitted near conjugate hyperplanes with multiplicity 2 are not significantly
distorted at all. In both cases, however, older images are dimmer (although the rate at which
this occurs is much slower than for gravity-dominated symmetric waves).

Regardless of the sign of h2, the oldest images formed by symmetric plane wave spacetimes
depend on the spacetime structure at arbitrarily large transverse distances. If the metric is
modified so that the wave decays at large distances, only a finite number of images discussed
here would be unaffected. The oldest images found in pure symmetric waves likely do not
appear at all in perturbed symmetric waves.

6. Sandwich waves

Symmetric plane waves are mathematically simple, but are not reasonable models for
gravitational radiation emitted from compact sources. More interesting are waves where H is
nonzero only for a finite time: sandwich waves. Suppose, in particular, that there exists some
u+ > 0 such that H(u) = 0 for all u /∈ [0, u+]. It follows from (3) that such spacetimes
are locally flat whenever u < 0 or u > u+. The curved region containing the gravitational
wave is effectively sandwiched between the two null hyperplanes S0 and Su+ . Every timelike
geodesic eventually passes entirely through such a wave.

Before an observer interacts with the wave, spacetime is flat and optics is trivial. The case
uo > u+ where an observer has already passed through the wave is more interesting. In this
case, A and B reduce to their flat space forms

A(us, uo) = δ, B(us, uo) = (us − uo)δ (110)

when us > u+. The forms of A and B inside the wave depend on the details of H, and will not
be discussed here. If us < 0, however, there always exist four constant 2 × 2 matrices α, α̇, β

and β̇ such that

B(us, uo) = (α + α̇uo) + (β + β̇uo)us. (111)

Note that the dots on α̇ and β̇ do not refer to derivatives in this case. They are only used as a
labelling device. It follows from (17) that A(us, uo) is independent of uo. Moreover,

A(us, uo) = −α̇ − β̇us. (112)

If there were no wave at all, α = β̇ = 0 and −α̇ = β = δ.
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The matrices α̇ and β̇ have a simple physical interpretation. If two geodesics are comoving
and have a transverse separation δxo when u > u+, it follows from (23) that the transverse
separation between these geodesics is −α̇δxo immediately before they interact with the wave
at u = 0. Similarly, the relative transverse velocity of these geodesics is −β̇δxo when u < 0.

Interpretations for α and β are somewhat less direct. Consider two geodesics which
intersect at some time uo > u+ after the wave has passed, but which have a relative transverse
velocity δẋo at u = uo. The difference in transverse velocities between these two geodesics
is then (β + uoβ̇)δẋo when u < 0. Similarly, the difference in the transverse positions of
these geodesics is (α + uoα̇)δẋo at u = 0. It follows that α controls shifts in position that are
independent of the time uo at which the two geodesics cross each other.

In principle, α, α̇, β, β̇ may all be found by solving (9) if H is known. At first glance, this
would appear to imply that 4 × 4 = 16 numbers are required to describe observations through
a sandwich wave. The actual number of required parameters is somewhat less than this. First
note that the Wronskian identity (13) implies that α̇ᵀβ̇ is a symmetric matrix. It also implies
that

β̇
ᵀ
α − α̇ᵀβ = δ. (113)

Further simplifications arise by recalling from (14) that BAᵀ and Bᵀ∂(1)B are symmetric. It
follows that

αα̇ᵀ, ββ̇
ᵀ
, αᵀβ (114)

are symmetric as well. These expressions are completely general, and hold for any sandwich
wave. They significantly constrain the number of independent parameters needed to specify
A and B. Equivalently, they limit the number of parameters that must be extracted from H.

It follows from the arguments of section 3 that the number of images of a generic source
observable in any plane wave spacetime is governed by the number of hypersurfaces conjugate
to the u = constant hypersurface Suo containing the observation event po. Continuing to assume
that uo > u+, all phases conjugate to uo must be smaller than u+. It follows from (20) and
(111) that conjugate phases occurring before the wave may be found by solving

det[(α + α̇uo) + (β + β̇uo)τ ] = 0 (115)

for all τ < 0. This equation is quadratic, so at most two solutions exist. An observer ahead
of the wave may therefore see at most three images of a source as it appeared behind the
wave. There may also be at most one image of a source as it appeared ahead of the wave. In
principle, any number of images may arise from inside the wave (where (111) is not valid) if
H is sufficiently large.

Conjugate phases found by solving (115) clearly depend on the observation time uo. Less
obviously, the number of conjugate phases can also depend on uo. For an observer moving on a
timelike worldline (where uo increases monotonically), new conjugate phases—and therefore
new images—sometimes appear at discrete times. These images correspond to observation
times where (115) momentarily degenerates to a linear equation. New images can therefore
arise when uo = ūo and

det(β + β̇ūo) = 0. (116)

If det β̇ �= 0, the two solutions to this equation are

ūo =
−[Tr β Tr β̇ − Tr(ββ̇)] ±

√
[Tr β Tr β̇ − Tr(ββ̇)]2 − 4 det β det β̇

2 det β̇
. (117)
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Only solutions satisfying ūo > u+ > 0 are physically relevant. When a conjugate phase of this
type first appears, it satisfies

lim
uo→ū+

o

τ (uo) = −∞. (118)

The associated image therefore provides a picture of the infinitely distant past. Furthermore,
an infinite amount of the source’s history appears to the observer within a finite amount of
proper time. This implies that new images are highly blueshifted.

No matter how long an observer waits, no conjugate phase can exceed u+. The emission
time for an associated image might therefore be expected to tend towards a constant value as
uo → ∞. This means that a very large amount of proper time at the observer corresponds to
only a small amount of proper time at a source. Images which appear suddenly and are initially
highly blueshifted therefore become highly redshifted at late times.

It is unclear precisely what these types of images imply. To the extent that geometric
optics remains valid, all observers passing through Sūo momentarily see almost the entire
universe appear infinitely blueshifted as it was in the infinitely distant past. Furthermore, (70)
implies that all of the universe is briefly compressed into a single point on each observer’s
sky. Of course, such phenomena lie outside the domain of geometric optics. They may even
lie outside of the realm of test fields propagating on a fixed background spacetime. Extreme
focusing events like these might indicate instabilities inherent in the plane wave geometry
itself. It should, however, be noted that all of the infinities just alluded to are likely to have
finite cutoffs in ‘realistic’ plane waves which decay at large transverse distances.

Weak wavepackets

One important class of sandwich waves are those that are very weak and last only for a short
time. In these cases, α, α̇, β, and β̇ may be expanded as integrals involving successively higher
powers of H. To lowest order in such a scheme, A and B are approximately unaffected by the
wave while inside of it. Assuming that −us, uo � u+, the first corrections to this assumption
are

A(us, uo) ≈ δ − us

∫ u+

0
dwH(w), (119)

B(us, uo) ≈ (us − uo)δ + usuo

∫ u+

0
dwH(w). (120)

This approximation is consistent with (13) (and therefore (113) as well). In terms of the
matrices appearing in (111), α ≈ 0, −α̇ ≈ β ≈ δ, and

β̇ ≈
∫ u+

0
dwH(w). (121)

Note that equations (119) and (120) should be applied with care if H involves many oscillations
of an approximately periodic function. In these cases, the integral of H can be very nearly
zero. Terms nonlinear in H might then be significant.

Assuming that (119) and (120) are indeed adequate approximations for A and B, a
coordinate rotation may always be used to diagonalize β̇. There then exist two constants H1

and H2 such that

β̇ =
(−H1 0

0 −H2

)
. (122)
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In this sense, all sufficiently short gravitational plane waves act as though they are linearly
polarized (so β = χ = 0 in (90)). In terms of the individual wavefunctions appearing in (6),

H1 =
∫ u+

0
dw[h‖(w) + h+(w)], (123)

H2 =
∫ u+

0
dw[h‖(w) − h+(w)]. (124)

The transverse coordinates xi have also been chosen such that∫ u+

0
dwh×(w) = 0. (125)

If a wave satisfies the vacuum Einstein equation, h‖ = 0 and H1 = −H2. More generally,
it follows from the weak energy condition that

H1 + H2 � 0. (126)

Now assume that the integral of h+ is non-negative, which entails only a minimal loss of
generality. Then,

H1 > 0, H1 � |H2|. (127)

We say that a wave is gravity-dominated if H2 < 0 and matter-dominated if H2 > 0. These
definitions are closely analogous to those used to classify symmetric plane waves in section 5.
There, a wave was said to be gravity- or matter-dominated depending on the sign of the
constant h2 = h‖ − h+ appearing in (94).

For weak gravity-dominated wavepackets, there can be at most one phase conjugate to an
observer satisfying uo > u+. If this exists, it is evident from (120) that

τ−1(uo) = − uo

H1uo − 1
(128)

is conjugate to uo with multiplicity 1. This equation is valid only if τ−1(uo) < 0. A conjugate
phase therefore exists only for observers satisfying

H1uo > 1. (129)

Note thatH1ūo = 1 is the unique physically-relevant solution to (116) in the gravity-dominated
case.

Waves that are matter-dominated (so H2 > 0) also admit the conjugate phase (128) when
uo satisfies (129). In the conformally-flat case whereH1 = H2, this is the only conjugate phase.
Unlike in the gravity-dominated case, the multiplicity of τ−1 is equal to 2 for conformally-flat
waves. In all other matter-dominated cases, τ−1 has multiplicity 1 and a second conjugate
phase is admitted (also with multiplicity 1) for all observers satisfying

H2uo > 1. (130)

This occurs at

τ−2(uo) = − uo

H2uo − 1
. (131)

Note that (130) is a more stringent condition than (129). As implied by the notation,
τ−2(uo) < τ−1(uo).

Consider a point source moving on a timelike worldline � in a weak sandwich wave
spacetime. Such a source appears differently when observed at different times. It is clear
that when uo < 0, exactly one image of � is viewable under generic conditions. As time
passes, the wave eventually passes through the observer. A second image then appears when
uo = H−1

1 > u+. This image is always emitted before the first. If the wave involves a sufficient
amount of Ricci curvature5 (from e.g., electromagnetic plane waves) and is not conformally-
5 Distinguishing between different cases based on the Ricci tensor inside a wave requires that the approximations
leading to (119) and (120) be valid. It is possible for, e.g., sufficiently strong vacuum waves to admit two conjugate
phases in the region u < 0.
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Figure 4. Example emission versus observation times in the presence of weak wavepackets.
The left figure assumes a vacuum wave, while the right figure is a matter-dominated wave with
H2 = 4H1/5. Dotted lines represent τ−1(uo) and τ−2(uo). The wave’s location is indicated
schematically by a thin grey rectangle. The source and observer are placed on geodesics assumed
to be comoving after the wave has passed. In both cases, κs = 1, H1δx1

o = H1δx2
o = 1/2, and

H1(γ̇o · δxo − δvo) = 3.
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Figure 5. Frequency shifts for a vacuum wavepacket. The parameters and dashing used here are
the same as those in the left panel of figure 4. The younger image (solid) experiences a temporary
blueshift and then a redshift before settling down to ωo = ωe. The slight initial blueshift as uo → 0+
is due to the source and observer moving towards each other before interacting with the wave.
The older image (dashed) initially appears with infinite blueshift. It then suffers an ever-increasing
redshift.

flat, a third image appears when uo = H−1
2 > H−1

1 . This is emitted before the first two images.
All images persist indefinitely once they appear. Sufficiently far in the future, one image is
observed of the source as it appeared after interacting with the gravitational wave. All other
images predate this interaction. See figure 4.

When the second image first appears at uo = H−1
1 , the new conjugate phase τ−1(uo) is

divergent. At all later times, it is finite. The same is also true for the emission times associated
with the second image. Almost the entire past history of the source is therefore observable
within a finite proper time. This implies an infinite blueshift. At late times, τ−1 → −H−1

1 . The
observed evolution of the source via the second image effectively freezes as ue asymptotes
to −H−1

1 (which predates the source’s interaction with the wave). Images such as these are
highly redshifted, as indicated in figure 5. Note that a similar transition from infinite blueshift
to infinite redshift also applies to the third image if it exists.

Another qualitative feature of the emission times plotted in figure 4 is that there is a sense
in which pairs of images can ‘switch roles’. Consider, e.g., the left panel of that figure. At late
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Figure 6. Bending of emission curves for a vacuum wavepacket. All parameters are the same
as in the left panel of figure 4 except that three different choices are made for the value of δvo.
Curves for both images are shifted to the right as δvo is decreased. The younger (solid) curves are
almost unaffected by the wave if δvo is sufficiently large. For smaller values of δvo, both curves
are strongly bent by the constraint that they can’t pass through the dotted curve representing τ−1.
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Figure 7. Angular diameter and luminosity distances for a vacuum wavepacket. All parameters
are the same as those used in the left panel of figure 4.

times, the solid curve (corresponding to the younger image) is very nearly linear. Indeed, it
remains quite linear until H1uo ≈ 5. A rapid transition then occurs where the dashed curve
effectively takes over this linear behaviour while the solid curve strongly deviates from it. In a
sense, the two images reverse their roles. This phenomenon occurs one more time (somewhat
less sharply) around H1uo ≈ 1 when the second image first appears. It arises essentially
because ue > τ−1 for the younger image and ue < τ−1 for the older image. These constraints
can cause emission curves to bend sharply—with large accompanying frequency shifts—in
order to avoid intersecting τ−1. Whether or not this occurs depends on whether the ‘average’
linear increase of ue ever comes near τ−1. If it does, this role switching occurs. If not, the
younger image is barely affected by the gravitational wave at all. This is illustrated in figure 6,
where emission curves for several sources are plotted simultaneously.

To summarize, images which appear at discrete times briefly appear as bright, highly
blueshifted ‘flashes’. Indeed, figure 7 shows that their luminosity distances go to zero.
Simultaneously, the angular diameter distance of each new image tends to infinity. It is
implied by (70) that all highly blueshifted images make must a very small angle ψ with �a on
the observer’s sky. The second (and third) images therefore appear aligned with the direction
of propagation of the gravitational wave when they first appear. This direction could be quite
different from the location of the other image(s). As time progresses, all images migrate across

28



Class. Quantum Grav. 30 (2013) 075011 A I Harte

H1uo

ψ(deg)

0 2 4 6 8

45

90

135

180

0 2 4 6 8

45

90

135

180

H1uo

θ(deg)

Figure 8. Angles (in degrees) for images produced by a vacuum wavepacket with the same
parameters as those used in the left panel of figure 4. θ measures the angle between both images,
while ψ measures the angle between each image and �a on an observer’s sky.

the observer’s sky as illustrated in figure 8. Different images may, however, remain distant
from each other at all times. It is interesting to note that images separated by such large angles
on an observer’s sky are—in practice—unlikely to be noticed as arising from the same source.

7. Discussion

Despite their simplicity, plane gravitational waves behave in qualitatively different ways from
lenses associated with quasi-Newtonian mass distributions. As expected from their dynamic
nature, plane waves generically shift the observed frequencies of various images. They may
also admit images which appear to move, deform, change brightness, and shift colour as time
progresses.

More subtle differences relate to the number of images that are produced of a given
source. For example, even numbers of images can appear generically (which has led plane
wave spacetimes to be cited [1] as well-behaved examples where the odd number theorem
[5, 7] does not apply). Some plane waves can even produce an infinite number of discrete
images. Perhaps most striking of all are the bright flashes shown to be produced by generic
sandwich waves in section 6. These correspond to individual images which appear at discrete
times. More typical gravitational lenses can produce new images if a source crosses an
observer’s caustic. Individual images then split into two (or vice versa). The flashes produced
by sandwich waves are quite different. Their appearance does not require that a source pass
through an observer’s caustic. Such images appear individually from the infinitely distant past.
Initially, they are infinitely bright and infinitely blueshifted points of light appearing in the
direction of propagation associated with the gravitational wave.

Many of these more unusual effects depend at least partially on the idealization that a plane
wave extends undiminished to infinitely-large transverse distances. Plane wave spacetimes are
not asymptotically flat. Despite being topologically trivial and locally well-behaved, they
are not even globally hyperbolic: Null geodesics passing between appropriately-chosen pairs
of points can extend to arbitrarily large transverse distances in between those points. It is
this property which permits the infinite number of images described in section 5 to be
produced by symmetric waves. The flashes described in section 6 also depend on the spacetime
structure at arbitrarily large distances. This structure likely affects the formation of even
numbers of images as well. Indeed, the usual proofs of the odd number theorem require
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global hyperbolicity, among other assumptions [1, 5] (see, however, [7] for a more general
formulation).

If a spacetime has the geometry of a plane wave only out to some finite transverse
distance, all results derived here remain valid if the associated images involve light rays which
never extend sufficiently far to interact with any large-distance modifications. The infinite
sequence of images formed by a symmetric plane wave would then be expected to become
finite for spacetimes which are only approximately plane waves. Calculations involving
the oldest images could no longer be trusted in these cases. Similarly, the bright flashes
associated with ideal sandwich waves are likely to be somewhat less extreme for waves which
decay at infinity. Large brightnesses and large blueshifts can still exist, but these will be cut
off at some finite maximum. Such maxima may, however, remain quite large.

It is reasonably clear that modifications of the geometry at large distances can remove
some images. Less obviously, these modification can also introduce new images. Consider,
for example, the pp-wave spacetimes obtained by substituting

Hi j(u)xix j → H(u, x) (132)

in the metric (1). These generalize the plane wave spacetimes. It has been shown that if H grows
subquadratically as |x| → 0, the resulting geometries are globally hyperbolic [45]. Moreover,
every pair of points is connected by at least one geodesic in these cases (unlike in pure plane
wave spacetimes where the growth of H is precisely quadratic). This implies that modifications
of the geometry at large transverse distances can introduce new null geodesics even between
points at small transverse distances. It would be interesting to explore these effects in more
depth to understand precisely how modifications of this sort (or more general ones) alter the
lensing properties described here for ideal plane waves. It would also be interesting to better
understand what the transient flashes of section 6 imply for waves—as opposed to light rays—
propagating on plane (or almost-plane) wave spacetimes. This can likely be facilitated by the
Green functions derived in [23].

Another possible extension of this work could concern the Penrose limit [28, 29]. It
is known that Penrose limits may be used to relate aspects of wave propagation in general
spacetimes to wave propagation in appropriate plane wave spacetimes [23]. It would be
interesting to understand if there is a sense in which a similar correspondence also exists
within geometric optics. As conjectured in the introduction, generic gravitational lenses might
be equivalent to plane wave spacetimes in an appropriate ultrarelativistic limit.
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