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1. Introduction

ABSTRACT

In situ X-ray photoelectron spectroscopy (in situ XPS) was used to study the structural and catalytic prop-
erties of Pd-In near-surface intermetallic phases in correlation with previously studied PdZn and PdGa.

Room temperature deposition of ~4 monolayer equivalents (MLEs) of In metal on Pd foil and subse-
quent annealing to 453 K in vacuum yields a ~1:1 Pd/In near-surface multilayer intermetallic phase. This
Pd;In; phase exhibits a similar “Cu-like” electronic structure and indium depth distribution as its meth-
anol steam reforming (MSR)-selective multilayer Pd;Zn; counterpart.

Catalytic characterization of the multilayer Pd;In; phase in MSR yielded a CO,-selectivity of almost
100% between 493 and 550 K. In contrast to previously studied In,Os-supported PdIn nanoparticles
and pure In,03, intermediate formaldehyde is only partially converted to CO, using this Pd;In; phase.
Strongly correlated with PdZn, on an In-diluted PdIn intermetallic phase with “Pd-like” electronic struc-
ture, prepared by thermal annealing at 623 K, methanol steam reforming is suppressed and enhanced CO
formation via full methanol dehydrogenation is observed.

To achieve CO,-TOF values on the isolated Pd;In; intermetallic phase as high as on supported PdIn/
In,03, at least 593 K reaction temperature is required. A bimetal-oxide synergism, with both bimetallic
and oxide synergistically contributing to the observed catalytic activity and selectivity, manifests itself
by accelerated formaldehyde-to-CO, conversion at markedly lowered temperatures as compared to sep-
arate oxide and bimetal. Combination of suppression of full methanol dehydrogenation to CO on Pd;In,
inhibited inverse water-gas-shift reaction on In,03 and fast water activation/conversion of formaldehyde
is the key to the low-temperature activity and high CO,-selectivity of the supported catalyst.

© 2012 Elsevier Inc. Open access under CC BY-NC-ND license,

structure explanation of CO,-selective methanol steam reforming
via the Cu-like catalytic function of PdIn was expected.

Investigation of Pd-M (M = Zn, Ga, In) near-surface intermetal-
lic phases (NSIPs) is critical for developing/improving Pd-based
methanol steam reforming (MSR) catalysts. We aimed to extend
our combined in situ X-ray photoelectron spectroscopy (in situ
XPS) and kinetic studies on the palladium-zinc [1] and the Pd-
Ga systems [2] to the catalytic activity/selectivity of an indium-
doped Pd foil sample in MSR toward CO,, formaldehyde, and CO.
Similar to PdZn, palladium and indium form an 1:1 intermetallic
compound exhibiting a density of states (DOSs) at the Fermi edge
similar to that of Cu metal. Additional support for the electronic
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Although both the “real” (i.e., small particles on oxide supports)
and “inverse” (i.e., small oxide islands supported on metal foils or
single crystals) model systems of PdZn have been scrutinized from
both the structural and catalytic point of view and many aspects of
the intermetallic formation and the structure-activity/selectivity
interplay are already satisfactorily covered [1-19], the crucial de-
tails of the also highly selective supported Pd,Ga,/Ga,05 and Pd,.
In,/In,05 systems are less clear. There is common agreement that
the presence of bimetallic phases of defined composition, formed
after a reductive treatment at elevated temperatures, is beneficial
for switching from CO-selective methanol dehydrogenation to
CO,-selective methanol steam reforming [3]. Recent investigations
revealed the necessary presence of stable PdZn, Pd,Ga, and PdIn
bimetallic structures [3] and emphasized also the necessity of
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bimetallic bi-functional active sites for water activation and reac-
tion of methanol to CO, [1,16]. Specifically for the “isolated” (i.e.,
unsupported) bimetallic Pd-Zn system, careful tuning of the inter-
metallic composition especially in surface-near regions turned out
to be a prerequisite for the formation of these bifunctional active
sites. In this respect, only a multilayer Pd-Zn surface alloy with a
Pd/Zn = 1:1 composition exhibited a “Zn-up/Pd-down” corrugation
affiliated with Pd;Zn, surface entities being active for water split-
ting and exhibiting the formaldehyde-promoting “Cu-like” low-
ered density of states close to the Fermi edge [1,14]. The PdZn
results already suggest to extend these PdZn inverse model studies
to the corresponding intermetallic Pd-In inverse catalyst system,
with the objective to extract the role of the single purely interme-
tallic PdIn surface regarding its specific catalytic properties with-
out superimposed, potentially promoting metal-support interface
effects. The related, highly CO,-selective supported Pd,In,/In,03
catalyst [19] might indeed be strongly promoted by the “isolated”
properties of the pure supporting oxide In,0s. Both supported cat-
alyst and pure oxide have already been shown in recent contribu-
tions by some of the present authors, focusing both on the Pd-
In,05 interaction upon reduction of small In,03-supported Pd par-
ticles in hydrogen [19] and the catalytic and reductive behavior of
pure In,03 [20-22]. In short, pure In,05 is very susceptible to lose
lattice oxygen upon annealing in hydrogen or CO [22] and is thus
prone to strong metal-support interaction effects [19]. Most
importantly, the reduced state of In,Os is capable of activating
water, but almost completely inactive in the reaction of CO, with
oxygen defects to CO [22]. Hence, it does not catalyze the inverse
water-gas shift reaction, which can spoil the CO,-selectivity in
methanol steam reforming. Moreover, pure In,Os is, although
being not very active, a rather selective methanol steam reforming
catalyst with a CO, selectivity >95% at ~673 K reaction tempera-
ture [20]. This, however, sets In,03 apart from ZnO [23,24] and
Gay03 [25], which are both water-gas shift active and thus
considerably less CO,-selective, especially at elevated reaction
temperatures.

Our primary aim therefore is to correlate the catalytic selectiv-
ity of In-metal and In,Os-modified Pd toward CO and CO, with
in situ XPS and mass spectrometry under realistic MSR conditions.
These studies are a further step toward the thorough understand-
ing of the peculiar common catalytic properties of the pool of Pd-
based intermetallic phases featuring CO,-selective methanol steam
reforming. The present studies again reveal the universal validity
of the important concept of improved water activation by the dop-
ant. In combination with the previously assumed electronic struc-
ture explanation for suppression of total dehydrogenation of
methanol toward CO, and consequently enhanced formaldehyde
formation, via the Cu-like electronic structure of PdIn [7,13-18],
this provides a reliable basis for explanation of the pronounced
CO,-selectivity.

To correlate with the structure-insensitive total oxidation of
methanol with O, toward CO, and water at low temperatures on
the PdGa NSIP [2], two types of reforming reactions were studied
in situ, namely “water-only” methanol steam reforming (MSR),
corresponding to the “ideal” reaction CH30H + H,0 — CO, + 3H,,
and oxidative steam reforming (OSR), whereby a certain added
amount of O, may give rise to Hy-formation stoichiometries rang-
ing from partial methanol oxidation (CH3;0H + 1/2 O, — CO, + 2H5)
to total oxidation (CH30H + 3/2 O, — CO, + 2H,0). The interest in
comparing MSR and OSR is basically derived from the fact that
admission of a defined oxygen partial pressure to a methanol-
water mixture is common to additionally suppress CO formation
in the product stream by further CO oxidation and to compensate
for the endothermicity of the pure methanol steam reforming
reaction.

2. Experimental
2.1. Innsbruck experimental setup

The UHV system with attached all-glass high-pressure reaction
cell [26] is designed for catalytic studies up to 1 bar on a larger
piece of 1.8 cm x 2 cm polycrystalline Pd foil, allowing us to detect
reaction products and even minor intermediates with high sensi-
tivity, either by discontinuous sample injection into the gas chro-
matography-mass spectrometry (GC-MS) setup (HP G1800A) or
by direct online MS analysis of the reaction mixture via a capillary
leak into the GC/MS detector. The system consists of an UHV cham-
ber with a long-travel Z-manipulator and a small-volume Pyrex
glass reactor (52 ml, no hot metal components) attached to the
outside of the UHV chamber and accessible via a sample transfer
port. The UHV chamber is equipped with an XPS/Auger/ISS spec-
trometer (Thermo Electron Alpha 110) and a standard double
Mg/Al anode X-ray gun (XR 50, SPECS), an electron beam heater,
an ion sputter gun, and a mass spectrometer (Balzers).

For controlled In deposition, a home-built In evaporator was at-
tached, which consists of a small boron nitride crucible filled with
In metal (99.999%, Goodfellow) and heated by electron bombard-
ment. A water-cooled quartz-crystal microbalance monitored the
amount of deposited In.

The UHV-prepared samples are thereafter transferred by means of
a magnetically coupled transfer rod from the UHV sample holder to a
Pyrex glass sample holder used inside the all-glass reaction cell. With
this all-glass setup of the ambient-pressure reaction cell, no wires or
thermocouples are connected to the sample during catalytic mea-
surement (thermocouple mechanically contacted at the outside).
Accordingly, background (blind) activity of the reaction cell is rou-
tinely checked and no conversion was observed for all test reactions.
A detailed graphic representation of the ambient-pressure reaction
cell setup is provided in the Supplementary material (Fig. S1).

The main chamber is pumped by a turbomolecular pump, an ion
getter pump, and a titanium sublimation pump to a base pressure
in the low 107'° mbar range. High-purity gases (H,, O, Ar: 5.0)
were used as supplied from Messer-Griesheim and dosed via
UHV leak valves. The high-pressure cell is evacuated sequentially
by a rotary pump (via LN, cooled zeolite trap) and then via the
main chamber down to UHV base pressure and can be heated from
outside to 723 K with an oven covering the cell. For better mixing
of the reactants, the high-pressure cell is operated in circulating
batch mode. By using an uncoated GC capillary attached to the
high-pressure cell, the reaction mixture in the close vicinity of
the sample is analyzed continuously by the electron ionization
detector (EID) of the GC/MS system. For quantitative measurement
of H,, we used (in parallel to the EID) an additional Balzers QMA
125 detector specifically tuned for optimum H, detection. EID
and QMS signals of methanol, CO,, CO, H,, and CH,0 were exter-
nally calibrated and corrected for fragmentation (i.e., CO and
CH,0 fragments for methanol and CO fragment for CO,).

A polycrystalline palladium foil (Goodfellow, purity 99.999%,
0.125 mm thick, size 3.5 cm?) was cleaned on both sides by succes-
sive cycles of Ar* ion bombardment (6.0 x 107> mbar Ar, 503 eV,
1 A sample current), oxidation (5.0 x 10~ mbar O, T = 1000 K),
and annealing in hydrogen (5.0 x 107 mbar H,, T=700K) and in
vacuum (T = 1000 K) until no impurities (surface carbon) were de-
tected by AES and XPS. Details of the preparation of the PdIn mul-
tilayer intermetallic phase will be given in Section 3.1. Methanol
and methanol/water mixtures were degassed by repeated freeze-
and-thaw cycles. All MSR reactions were conducted with metha-
nol/water mixtures of a 1:10 composition of the liquid phase. This
corresponds to a room temperature partial pressure ratio of meth-
anol/water = 1:2, as verified by mass spectrometry.
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The catalytic experiments were performed in a temperature-
programmed manner, that is, the reaction cell was heated at a con-
stant linear rate of ~8 K/min to the final temperature of 623 K and
then kept isothermal at this temperature for ~20 min. Experimen-
tal details will be given in context with the individual reaction
runs. The advantage of the temperature programmed reaction
(TPR) runs is that pronounced selectivity changes can be moni-
tored via the partial pressure changes as a function of the reaction
temperature, yielding useful qualitative information about changes
of the reaction mechanism and the catalyst state. From the product
partial pressures vs. time plots, the reaction rates were obtained by
differentiation and are usually given in partial pressure change per
minute (mbar/min), but whenever desired, the “idealized” turn-
over frequencies (TOF’s) given in molecules per site and second
(site™! s71) can be calculated by multiplication of the partial pres-
sure change with a factor f=4.8, for example, a reaction rate of
1 mbar/min corresponds to a TOF of 4.8 site™! s~1. One “idealized
active site” is viewed as a hypothetical Pd-In pair of surface atoms
on the 1:1 intermetallic surface. Since this estimation yields the
maximum conceivable number of active sites, the so-derived TOF
values represent the lowest estimation limit. As a basis, we as-
sumed a total number of potential catalytic surface sites Ng
=5 x 10" on the entire 1:1 PdIn surface area of 7 cm? on the
basis of equally distributed (111) and (100) facets. The conversion
factor is based on the partial pressures of the reaction products al-
ready corrected for the temperature change in the reaction cell
during the TPR run and for the steady removal of a fraction of
the reaction mixture through the capillary leak. The correction
has been achieved by adding 30 mbar Ar inert gas at the beginning
of the reaction run and monitoring the m/z=40 Ar intensity
throughout the whole experiment. The Ar intensity over time then
was used to recalculate the changes of the molar amounts of all
products and reactants as referred to the initial state (before TPR
start, reactor volume 60.6 ml and 300 K in the whole re-circulating
batch system).

2.2. In situ XPS experimental setup

The in situ XPS system [27] at the beamline ISISS-PGM of BESSY
II allowed us to perform in situ photoelectron spectroscopy up to
1 mbar total reactant pressures. It is equipped with differentially
pumped electrostatic lenses and a SPECS hemispherical analyzer.
The sample is positioned inside the near ambient-pressure cham-
ber ~2 mm away from a 1 mm aperture, which is the entrance to
the lens system separating gas molecules from photoelectrons.
Binding energies (BEs) were generally referred to the Fermi edge
recorded after each core level measurement. Samples were
mounted on a transferable sapphire holder. The temperature was
measured by a K-type Ni/NiCr thermocouple spot-welded to the
side of the sample and temperature-programmed heating was
done by an IR laser from the rear. Sample cleaning procedures con-
sisted of repeated cycles of Ar* sputtering at room and elevated
temperatures, annealing up to 950 K in UHV, and exposure to O,
followed by flashing at 950 K for 60 s in UHV. The cleanliness of
the Pd foil substrate was checked by XPS. The sensitivity of the
simultaneous MS detection of the reaction products at NAP-XPS
setup was not sufficient to extract reliable reaction rate and selec-
tivity data for H,/CO/CH,0/CO,, mainly because of an unfavorable
ratio of the large total reactant flow through the XPS high-pressure
cell (which is generally operated in constant flow mode) relative to
the minor amounts of products formed on the low surface area cat-
alyst (only ~0.5 cm? PdIn intermetallic surface on Pd foil). How-
ever, “connecting” experiments performed in the Innsbruck setup
using the same conditions with respect to initial reactant pres-
sures, PdIn NSIP preparation and reaction temperature range, al-
lowed to assess a possible “pressure gap” effect and provided a

reliable connection between the data obtained in either experi-
mental setup.

Inelastic mean free paths (IMFPs) have been calculated on the
basis of a formula given by Tanuma et al. for given photon energies
[28]. We note, that for calculation, the element specific parameters
of Ag have been used as an approximation, since the corresponding
parameters of In are not known and Ag comes closest to the atomic
mass of In.

3. Results and discussion

3.1. In deposition (4 MLE) followed by annealing from 323 K to 673 K
in ultrahigh vacuum

Fig. 1 highlights the XPS spectra of the Pd3ds,, In3ds, and va-
lence band (VB) regions, taken after successive annealing steps in
vacuum (5 min each) of a 4 MLE In film to various temperatures.
The photon energies were adjusted to 570eV (In3d), 460 eV
(Pd3d), and 150eV (VB) to ensure equal kinetic energies (and
hence probe depths and equal electron scattering with the gas
phase) for all three regions. A high degree of alloying was observed
already at 300-350 K sample temperature, as evident from the
room temperature spectra in Fig. 1. Between 300 K and 453K,
the Pd3d peaks gradually shifted from ~336.3 eV (below 373 K)
to ~335.7 eV (Fig. 1) due to transition from an In-rich to a more
In-depleted near-surface intermetallic phase. The related changes
of the valence band spectra showed the expected transition from
a “Cu-like” DOS (In-rich NSIP) to a “Pd-like” DOS (In-lean NSIP).
Above 453 K, accelerated loss of near-surface indium into the Pd
bulk occurred. The rather gradual change of the maximum position
of the Pd3d signal from ~336.3 eV down to ~335.3 eV between RT
and 673 K rather suggests a continuous transition from an In-rich
to an In-depleted coordination chemistry of Pd (Fig. 2).

Analysis of depth profiling by photon energy variation (see
Fig. 3, data derived from the XPS spectra shown in Fig. S2 of the
supplementary material) showed both that the Indium concentra-
tion, at a given IMFP/kinetic energy, changes from In-rich to In-de-
pleted conditions with increasing annealing temperature and that,
at a given annealing temperature, an In concentration gradient per-
sists. This gradient is strongest for the lowest annealing tempera-
ture (363 K: In/Pd = 63:37 at 0.4 nm to 51:49 at 1.0 nm IMFP). At
high temperatures (623 K), the concentration gradient almost van-
ishes, and the In/Pd ratio remains around 19:81, irrespective of the
XPS probe depth. According to the In3ds,, and Pd3ds,, peak areas
obtained after annealing at 453 K, a ~48:52 =In/Pd composition
is observed next to the surface (120 eV kinetic energy, inelastic
mean free path of photoelectrons ~0.4 nm [29]. In deeper layers,
the In/Pd ratio drops down to ~40:60 after 453 K-annealing
(520 eV kinetic energy, ~1.0 nm IMFP). The 453 K annealing state
thus exhibits the most similar electronic structure and Indium
depth distribution as compared to the MSR-selective 1:1 PdZn
“multilayer alloy” [1].

In summary, Figs. 1 and 2 show a continuous trend (with
increasing annealing temperature) of the change of Pd electronic
structure, due to the gradual lowering of coordination of Pd by In
(gradual Pd3ds, shift to lower BE). Vice versa, gradual increase
in In coordination by Pd (equivalent to a gradual decrease in In
coordination by In, In3ds,, shift to lower BE) is evident. Valence
band related changes induced by changes in Pd-In coordination
are accompanied by a strong shift of the Pd4d “center of mass”
of density of states (DOSs) near the Fermi level to higher BE. VB
spectra up to 453 K are “Cu-like”, beyond 453 K they progressively
change to “Pd-like”. Considerable changes are induced beyond
~400 K, with a subsequent “transition region”. Major changes,
however, occur roughly between 423 K and 523 K.
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Fig. 1. XPS spectra of the Pd3ds,, In3ds,, and valence band (VB) regions, taken after successive anneals in vacuum (5 min each) of a 4 MLE In film to various temperatures.
Photon energies were 570 eV (In3d), 460 eV (Pd3d), and 150 eV (VB) to ensure equal kinetic energies (probe depths) for all three regions. Spectra are unsmoothed data,
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Nevertheless, the stoichiometry changes with temperature are
more gradual in nature as compared to the related PdZn NSIP,
where a well-defined stability region of a 1:1 PdZn “multilayered”
NSIP state was observed between ~500 K and ~570K, but are in
analogy to the PdGa NSIP [2], where more gradual changes of the
near-surface composition with increasing annealing temperature
have been observed, too.

Considering the Pd-In coordination in the surface-near regions,
a simple charge transfer model yields a qualitative interpretation
of relative BE shifts. With increasing temperature, the relative con-
tribution of Pd-Pd coordination increases, as well as the Pd coordi-
nation of In. Considering a simple Pd®*-In®" charge model, a
relative decrease in the number of In-In (i.e., simultaneous in-
crease in In-Pd) bonds should cause a relative increase in charge
at the In centers and thus lowering of the In3d BE. In turn, a
decreasing Pd3d BE is as well expected because Pd should be less
positively charged in the “clean-Pd” state relative to the In-coordi-
nated state. Analogous BE trends of Pd3d, Ga3d, and the VB region
have already been observed on the related PdGa NSIP [2]. At this
point, it must be emphasized that such a simple charge transfer
model, based on (minor) electronegativity differences, cannot ac-
count for the strong covalent bonding character in the 1:1 interme-
tallic compounds such as Pd;Ga; and Pd,In;, which will strongly
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Fig. 4. Temperature-programmed methanol steam reforming on the “In-rich” 4
MLE PdIn NSIP annealed at 453 K (upper panel) vs. MSR reaction on “In-lean” PdIn
NSIP (lower panel). Reaction conditions: 12 mbar methanol, 24 mbar water,
977 mbar He; linear temperature ramp (~8 K/min) up to 623 K, followed by
isothermal reaction for 25 min. The decrease in the formation rates in the
isothermal region is caused by progressive carbon-induced catalyst deactivation.
Complete reaction mass balance involving stoichiometric hydrogen formation was
verified by mass spectrometry analysis.

influence the electronic structure of the VB of the resulting solid
phase. Nevertheless, neither the present Pd;In; NSIP nor the re-
lated Pd;Ga; NSIP has so far been shown to feature any structural
analogies to the related bulk intermetallic phases (PdGa crystal-
lizes in a cubic FeSi-structure, a =0.489 nm, PdIn in cubic CsCl-
structure, a = 0.326 nm). Rather, a “substitutional alloy” state with
progressive replacement of Pd atoms by In (or Ga) within the basic
Pd-fcc lattice represents an appropriate structure model [29].
Whether the relative mean charge on Pd and In is, because of this
structural dissimilarity, markedly different for the bulk- and near-
surface intermetallic phases, presently remains an open question.

Anticipating the catalytic experiments discussed in the subse-
quent sections, the model catalyst bimetallic initial state therefore
is prepared by deposition of 4 MLE In followed by thermal anneal-
ing at 453 K. This appears reasonable because the data of Fig. 3
showed that the composition of surface layer and near-surface re-
gions is closest to 1:1. It also shows an already improved thermal

stability relative to lower annealing temperatures and comes clos-
est to the PdZn~1:1 “multilayer” NSIP already studied in MSR [1],
both with respect to the BE of Pd3d (~335.8 eV vs. ~335.9 eV) and
the density of states at the Fermi edge (“Cu-like” electronic struc-
ture). A ~1:1 surface layer composition (with an already rather
homogeneous depth distribution of In) is likely matched best.
We, however, emphasize that the composition was solely extracted
from XPS data. Unfortunately, low-energy ion scattering data for
analysis of top layer composition are not available for PdIn, due
to the too similar masses of Pd and In.

Hence, the ~48:52 = In/Pd NSIP present after annealing at 453 K
was tested in the following as a model surface for methanol steam
reforming (“MSR”) and oxidative steam reforming (“OSR”).

3.2. MSR reactivity studied in the recirculating batch reactor on the 4
MLE In NSIP annealed at 453 K and 623 K

The MSR measurements were performed in 12 mbar metha-
nol + 24 mbar water and to simulate OSR conditions, 6 mbar O,
were further added to this reaction mixture. Fig. 4 shows the re-
sults for the temperature-programmed methanol steam reforming
reaction on the “In-rich” 4 MLE PdIn NSIP (annealed to 453K,
upper panel), and, for comparison, on an “In-lean” PdIn NSIP (an-
nealed to 623 K, lower panel). For a better comparison to the
respective experiments on the PdZn and PdGa NSIP’s [1,2], the
MSR reaction rates are given in mbar/min. To ensure an unambig-
uous correlation to the specific reaction (reactant/product partial
pressure, temperature) conditions on other model systems and
also supported systems, Figs. S3-S5 in the Supplementary material
highlight the partial pressure changes of both the educts and MSR
products during the reaction (mbar vs. reaction time) as well as the
TOF data (in site ' s~!) vs. reaction time.

As it can be clearly seen, CO formation is almost completely
suppressed on the 453 K-annealed PdIn-NSIP up to 623 K reaction
temperature. A total conversion of 18% methanol was observed.
CO, formation sets in at ~493 K and reaches its maximum rate
at 623 K (6.6 x 10~ mbar/min). Notable formation of formalde-
hyde (HCHO) is observed at ~550K, reaching its maximum rate
(3.4 x 1073 mbar/min) also at 623 K. This indicates that the iso-
lated PdIn-NSIP is already much more CO,- than CO-selective,
but complete conversion of the intermediate formaldehyde into
CO, is not accomplished. At this stage, we want to emphasize that
both the supported PdIn/In,05 catalyst and the pure In,03 support
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on the 4 MLE In NSIP annealed to 453 K in vacuum prior to reaction. Pd3ds;, and In3ds/, core level spectra were recorded with 460 eV and 570 eV photon energy, respectively,

and the VB region with 150 eV in order to enhance the surface sensitivity.
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Fig. 6. Pd3ds), core level spectra (left), In3ds, spectra (middle), and VB spectra (right) obtained in situ during methanol steam reforming (0.07 mbar MeOH + 0.14 mbar H,0)
on the 1 MLE In NSIP. Pd3ds; and In3ds,, core level spectra were recorded with 460 eV and 570 eV photon energy, respectively, and the VB region with 150 eV in order to

enhance the surface sensitivity.

are highly CO,-selective, but intermediary formed formaldehyde
has never been detected [19,20]. This already indicates the impor-
tance of the bimetallic/support interface for quantitative oxidation
of formaldehyde by water and is further corroborated by compar-
ison of the measured TOF on the isolated PdIn-NSIP and on the
In,03-supported PdIn bimetallic. Iwasa and Takezawa [3] reports
a TOF of 0.1 s~ ! for CO, at 493 K (methanol/water 1:1 inlet partial
pressures, 101 mbar each), the presented isolated model PdIn-NSIP
annealed to 453 K exhibits a TOF of 0.007 s~! at comparable tem-
peratures. Only at ~590K, a similar TOF value of ~0.1s! is ob-
tained. Arrhenius plots In TOF vs. 1/T yield apparent activation
energies of ~61 kJ/mole.

To simulate an In-leaner PdIn-NSIP, the 4 MLE PdIn-NSIP was
additionally annealed to 623 K. As shown in the lower panel of
Fig. 4, this results in a distinctly different selectivity pattern. As
anticipated from previous experiments on PdZn, the selectivity
pattern CO/CO, is now reversed and CO is the main product up
to 623 K (~30 min reaction time). CO formation starts at around
493 K with an in parallel increase in formaldehyde. The formation
rate of formaldehyde is higher than that of CO, at ~600K
(46 x 103 mbar/min compared to 26 x 10~ mbar/min for CO,).
Note that according to Fig. 3, only ~20% In remains in the topmost
surface layers, hence the surface-near regions are relatively Pd-
rich, but a clear assignment to a surface “monolayer alloy” state
similar to that of PdZn [1] (surface layer composition close to
1:1, but subsurface region strongly diluted) is not possible due to
the inability to carry out reliable ion scattering experiments.

3.3. In situ XPS analysis during MSR on 1 MLE and 4 MLE In NSIP
annealed at 453 K

Fig. 5 highlights the Pd3ds,, core level spectra (left), In3ds),
spectra (middle), and VB spectra (right) obtained in situ during
methanol steam reforming (0.07 mbar MeOH + 0.14 mbar H,0)
on the 4 MLE In NSIP annealed to 453 K in vacuum prior to reac-
tion. Both Pd3ds, and In3dsj, core level spectra were recorded
with 460 eV and 570 eV photon energy, respectively, and the VB
region with 150 eV in order to enhance the surface sensitivity.

For the in situ spectroscopic analysis under more realistic MSR
conditions, a 1:2 reaction mixture of 0.07 mbar methanol and
0.14 mbar water was used for all experiments, and the sample
temperature was raised in 30 K steps from 298 to 623 K. Oxidized
In appeared due to the influence of the MSR gas atmosphere, as
evidenced by the shoulder of the In3ds, peak at 444.7 eV in
Fig. 5. However, in situ mass spectrometry detection at during

in situ XPS experiment was not sensitive enough to detect the
quite small reforming activity shown in Fig. 4 (which was only
measurable with reasonable sensitivity in the batch reactor system
at higher pressures). A shift of the thermally induced decomposi-
tion of the PdIn surface alloy was observed, that is, the initial bime-
tallic state of the catalyst was clearly stabilized by the gas phase
and started to decompose only above 563 K under MSR conditions
(for comparison see Figs. 1 and 2, showing a continuous change
above 453 K).

Valence band spectra exhibit a Cu-like DOS at the Fermi edge up
to about 523 K. The In 3ds;, peaks do not show shifts up to 523 K,
above which a “dilution” is observed and the In(ox) fraction is re-
duced, in close correlation to similar observations on the Pd;Zn,
monolayer NSIP [1]. At 623 K, only a very small amount of In(ox)
is left, again in agreement with the Pd;Zn; monolayer NSIP [1].
The respective 1 MLE In NSIP in situ analysis, shown in Fig. 6,
yielded only a surface In/Pd ratio of ~24:76 (i.e., ~1:3).

The initial state (423 K) very much resembles the 623 K state in
Fig. 5 (Pd3d at 335.4 eV, In3d at 443.6 eV), and this state does
hardly change with increasing reaction temperature. Also the VB
spectra are “Pd-like” right from the beginning and remain almost
unchanged.

With respect to MSR performance, the selectivity pattern of this
preparation resembled that of the 4 MLE/623 K sample (data not
separately shown, cf. Fig. 4, lower panel). Nevertheless, it still
showed the expected relative selectivity trends in comparison to
clean, undoped Pd foil both in the QMS analysis and the batch reac-
tor experiments, namely a relative promotion of formaldehyde and
CO, formation as well as suppression of CO formation relative to
clean Pd foil. Not too surprisingly, the total CO,-selectivity was
not as good as in the 4 MLE/453 K case (compare Fig. 4, upper pa-
nel) and almost no oxidized In was observed during reaction.

3.4. OSR reactivity studied in the recirculating batch reactor setup on4
MLE In-doped Pd-foil annealed at 453 K

Temperature-programmed oxidative steam reforming reactions
(OSR) have additionally been carried out (Fig. 7). Experimental
conditions were similar to those of the methanol steam reforming
reaction with the one exception of 6 mbar O, additionally admitted
to the steam reforming mixture (OSR reactant mixture: 12 mbar
methanol, 24 mbar water, 6 mbar O,). Measurements have been
carried out on the “In-rich” 4 MLE PdIn NSIP prepared at 453 K
(lower panel) in comparison with the MSR reference reaction
(i.e., without O;) on the same initial NSIP state (upper panel). As
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Fig. 7. Temperature-programmed OSR (initial reactant mixture: 12 mbar methanol,
24 mbar water, 6 mbar O,) on the “In-rich” 4 MLE PdIn NSIP annealed at 453 K
(lower panel) vs. MSR reference reaction (without O,) on the same initial NSIP state
(upper panel); linear temperature ramp (~8 K/min) up to 623 K, followed by
isothermal reaction for 25 min.

revealed by Fig. 7, in striking contrast to the pure MSR reaction, the
OSR reaction sets in a much lower temperature, that is, at around
450 K. CO,, is the primary oxidation product up to ~580 K, at which
temperature full consumption of the initially added 6 mbar O, is
attained. The maximum CO, formation rate is about 0.8 mbar/
min (3.84 site”! s1) at 493 K, which is considerably higher than
under simple MSR conditions at 623 K.

Comparing MSR and OSR, the selectivity trends in terms of CO,,
CO, H,, and H,0 formation were quite similar to those observed on
the “multilayered” PdGa-NSIP. Under MSR conditions, CO, forma-
tion was found to be dominating up to 623 K reaction tempera-
tures with almost entirely suppressed CO formation. Under OSR
conditions, accelerated CO, formation was observed at lower tem-
peratures (~423 K) [compare Fig. 8 in Ref. 2].

The time-resolved H,-mass balance of the OSR reaction run of
Fig. 7 has been deduced from the relative consumption of methanol
by reaction with O, toward CO, (T < 580 K) and by dehydrogenation
toward CO (>580 K) and is also represented graphically in the Sup-
plementary material (Fig. S6-8). During the oxygen-consuming

reaction, about 31% of the converted methanol is totally oxidized
to CO, and water, and a ~69% contribution of partial oxidation to-
ward CO, and H, is observed. In conclusion, only this minor fraction
of the methanol becomes partially oxidized, according to the reac-
tion stoichiometry CH3O0H + 1/2 O, — CO, + 2H,. Nevertheless, this
proves that a reaction pathway for a hydrogen-producing reaction
even in the simultaneous presence of O, is possible and that total
oxidation according to the stoichiometry CH3OH+3/2 O,-
— CO, + 2H,0 does not take place exclusively. Moreover, the very
high CO,-selectivity in the temperature range around 500 K indi-
cates that O,-addition could indeed be helpful to optimize CO,
selectivity and to efficiently suppress the CO content of the refor-
mate gas also under continuous flow reaction conditions.

In summary, a highly CO, selective, combined total/partial oxi-
dation reaction was obtained under OSR conditions in the temper-
ature region ~450-580 K. The 4 MLE In/453 K annealed NSIP is
capable of efficiently activating oxygen at low temperatures, while
being mostly inactive for CO formation at the same time. Methanol
is converted by O, to CO, via combined total/partial oxidation of
intermediary formed C;-oxygenates at the surface with some
simultaneous hydrogen production. Since we are not aware of
methanol total or partial oxidation TOF's measured on any of the
literature-reported PdGa or PdZn systems, a comparison of the
OSR rates between model and real systems is currently not possi-
ble. Above ~580K (i.e., after quantitative O, consumption), water-
driven yet CO, selective MSR is observed. The CO- and CO,-selec-
tivities at 623 K are around 14% and 86%, respectively, and the
maximum CO, activity at 623 K (gas-phase composition 8 mbar
CO, and 0.2 mbar CO) amounts up to 0.12 mbar/min (0.29 site™! -
s~1), which is comparable to the maximum value of 0.068 mbar/
min (0.16 site™! s~!) for “simple” MSR at 623 K (Fig. 7 upper panel),
especially when accounting for the already lowered methanol
reactant pressure. The latter result also implies that the PdIn NSIP
is rather stable in the presence of O,, because strong, irreversible
oxidative decomposition of the NSIP toward Pd and In,O3 while
being exposed to the O, partial pressure would be eventually
accompanied by a strong selectivity shift toward CO at T> 580K,
which was not observed. This relatively high segregation stability
will be described from the following AP-XPS section.

3.5. In situ XPS analysis during OSR on the 4 MLE In-doped Pd-foil
annealed at 453 K

For the in situ spectroscopic analysis under more realistic OSR
conditions, a 1:2:0.5 reaction mixture of 0.07 mbar methanol,
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Fig. 8. Pd3ds, core level spectra (left), In3ds;, spectra (middle), and VB spectra (right) obtained in situ during oxidative methanol steam reforming (0.07 mbar
MeOH + 0.14 mbar H,0 + 0.035 mbar O,) on the 4MLE In NSIP annealed to 453 K in vacuum prior to reaction. Pd3ds, and In3ds,, core level spectra were recorded with 460 eV
and 570 eV photon energy, respectively, and the VB region with 150 eV in order to enhance the surface sensitivity.
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Fig. 9. Pd3ds,, In3ds),, and VB regions on the initial In,03-on-Pd “inverse catalyst” showing the transition from the initial oxide-on-metal state to the intermetallic InPd state

in the temperature region around 523 K under MSR conditions.

0.14 mbar water and 0.035 mbar O, was used, and the sample
temperature was again raised in 30 K steps from 363 to 623 K. In
comparison to MSR without added O, an increased amount of oxi-
dized indium (In3d component at 444.7 eV in Fig. 8, relative to
MSR induced In(ox) at 444.7 eV in Fig. 5), was observed in situ un-
der OSR conditions between 363 and 553 K, along with strongly
diminished carbon contamination.

Despite the more oxidizing conditions, the bimetallic near-sur-
face catalyst state turned out to be stable up to ~553 K (Pd3d posi-
tion remaining around 335.8 eV).

At 583K, already a slight shift toward a lower BE of Pd3d
(~335.6 eV) is visible, probably due to progressing dilution of In
into deeper layers by bulk diffusion, but at 623 K the Pd3d BE
of 335.5eV is still markedly above the value of clean Pd
(335.0 eV). Surprisingly, at 583 K, the 444.7 eV In(ox) component
has disappeared rather than increased, which means that In(ox)
becomes fully reduced to the bimetallic PdIn state even in the
presence of O,. This reduction is necessarily caused by the ongo-
ing methanol oxidation, which obviously consumes In(ox) at
increasing rates with increasing reaction temperature. Due to
the pronounced thermal and chemical stability of the Pdin NSIP,
both in the high-pressure MSR and OSR experiments, hardly
any selectivity shift toward CO due to the thermally and/or oxida-
tively induced decay of the NSIP was observed (see also Fig. 7,
lower panel). This result is in strong contrast to our observations
both on the related PdZn and PdGa NSIPs, where a clear selectiv-
ity shift toward CO was observed at temperatures above 573 K
[1,2].

3.6. In situ XPS analysis under MSR conditions starting from In,0s3-
covered Pd metal

This “inverse” In,03/Pd-metal catalyst was prepared by reactive
deposition of 1 MLE In in a background of 10~> mbar of oxygen, fol-
lowed by post-oxidation in 0.1 mbar oxygen at 453 K. Thereafter,
MSR was started on the In,O5; covered surface on an otherwise
electronically unaltered Pd substrate (initial BE of Pd3ds; at
335.1eV). Up to ~523 K, indium remained mostly in the oxidized
state, and the presence of monometallic Pd gave rise to predomi-
nant CO formation. At 523 K, indium is gradually reduced, as
shown in Fig. 9, and the surface “switches” to a diluted bimetallic
state, as documented by both the In3d and VB spectral changes.
Pd3d remains in the region below 335.5 eV, because the reduction
temperature is already too high to allow for a multilayer NSIP state.
These results prove that the PdIn-NSIP is also the thermodynami-
cally stable phase under MSR conditions.

4. Conclusions

With respect to mechanism, the hypothesis that “In-poisoning”
of Pd shifts the selectivity in methanol steam reforming toward
formaldehyde, and subsequently also CO, is selectively formed
from formaldehyde (as a consequence of improved water activa-
tion), is again verified in our PdIn “inverse” model study. With re-
spect to differences to the related supported catalysts and pure
In,03, there are strong indications for a bimetal-oxide bi-func-
tional synergism on the supported catalysts. Similar to the PdZn/
ZnO and Pd,Ga/Ga,05 cases, the interplay between oxidic support
and bimetallic surface induces three desirable catalytic effects:

(1) Lowering of onset temperature of reforming relative to both
the clean oxide and the isolated, unsupported PdIn NSIP.

(2) Enhanced selectivity toward CO,, as compared to both iso-
lated oxide and PdIn NSIP.

(3) Enhanced reforming rate to CO, at comparably lower
temperatures.

Altogether, the “bifunctional synergism” between oxide and bi-
metal can be pinned down to the three advantages mentioned
above for all three systems. It appears likely that the active area
of the bimetal-oxide interface is particularly suited to lower the
individual activation barriers of the required sequence of elemen-
tary reaction steps by conducting the respective process at the place
where they work most efficiently. Most likely, water activation is
improved at reduced (defective) oxidic (interface) centers, whereas
hydrogen and CO, desorption likely is less activated on the bimetal-
lic surface, which can promote CO,-selective formate decarboxyl-
ation and suppress unwanted decarbonylation processes.
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