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We theoretically study slow collisions of NH3 molecules with He atoms, where we focus in partic-
ular on the observation of scattering resonances. We calculate state-to-state integral and differential
cross sections for collision energies ranging from 10−4 cm−1 to 130 cm−1, using fully converged
quantum close-coupling calculations. To describe the interaction between the NH3 molecules and
the He atoms, we present a four-dimensional potential energy surface, based on an accurate fit of
4180 ab initio points. Prior to collision, we consider the ammonia molecules to be in their antisym-
metric umbrella state with angular momentum j = 1 and projection k = 1, which is a suitable state
for Stark deceleration. We find pronounced shape and Feshbach resonances, especially for inelas-
tic collisions into the symmetric umbrella state with j = k = 1. We analyze the observed resonant
structures in detail by looking at scattering wavefunctions, phase shifts, and lifetimes. Finally, we
discuss the prospects for observing the predicted scattering resonances in future crossed molecu-
lar beam experiments with a Stark-decelerated NH3 beam. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3683219]

I. INTRODUCTION

The tremendous experimental progress in performing
scattering experiments has evolved to the point where it is
nowadays possible to study collisions between particles in
the laboratory over an energy range of about 25 orders of
magnitude. The collisions of highest energy are produced by
modern charged-particle accelerators reaching the TeV range,
while the collisions of lowest energy are studied in ultra-
cold atomic quantum gases going all the way down to the
nK regime. In both types of collision experiments, scattering
resonances play an important role. In high-energy collisions,
a resonance in the cross section caused by the formation of
an intermediate bound state is a direct way to detect previ-
ously unseen particles. In ultracold atomic scattering, the en-
ergy of an intermediate bound molecular state to be formed
during the collision can sometimes be accurately tuned by
applying an external magnetic field. As a result, the scatter-
ing length of low-energy s-wave collisions gets under full ex-
perimental control, giving rise to a unique quantum many-
body environment with a completely tunable interaction
parameter.1, 2

Because molecules are typically harder to manipulate
than atoms and charged particles, the observations of reso-
nances in molecular beam scattering have been limited to a
few rare cases.3–8 However, in recent years rapid progress
has been made in performing high-precision cold molecu-
lar scattering experiments due to the application of the Stark
deceleration technique to the study of molecular collisions.9

A Stark decelerator operates according to the same princi-

a)Electronic mail: K.Gubbels@science.ru.nl.
b)Electronic mail: A.vanderAvoird@theochem.ru.nl.

ples as a linear charged-particle accelerator, where the dipolar
or Stark force is used to decelerate neutral polar molecules
with time-varying electric fields.10 With the Stark decelera-
tor it is possible to generate almost perfectly quantum-state
selected molecular beams with a computer-controlled final
velocity and a small longitudinal velocity spread. By apply-
ing this technique to the scattering of the OH radical with
rare gas atoms, such as Xe,9 Ar,11 and He,12 the threshold
behavior for inelastic scattering into the first excited rota-
tional levels of OH could be accurately determined. Excel-
lent agreement was found with cross sections obtained from
close-coupling calculations using ab initio potential energy
surfaces (PESs).9, 11, 13 In the same way, also cold inelastic
collisions of OH radicals with D2 molecules were studied
experimentally.12

In this article, we study in detail cold collisions between
NH3 molecules and He atoms. The ammonia-He system is
a van der Waals complex, and in general the (quasi-)bound
states of such complexes are sensitive to the interaction po-
tential. As a result, high-resolution spectroscopy on van der
Waals complexes has been an important tool for increas-
ing our understanding of intermolecular forces.14, 15 High-
precision scattering experiments are a very promising addi-
tional tool for obtaining detailed information on potential en-
ergy surfaces. At higher scattering energies the short-range
repulsive part of the interaction is mainly probed, while at
very low collision energies the long-range part of the po-
tential is dominant in determining the scattering behavior.
Moreover, scattering resonances give important information
on the energy of quasi-bound states that are sensitive to po-
tential wells at mid-range interparticle distances. This shows
that large parts of the potential energy surfaces can be accu-
rately probed by cold collision experiments. Recent scattering

0021-9606/2012/136(7)/074301/15/$30.00 © 2012 American Institute of Physics136, 074301-1
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experiments have indeed been able to distinguish between
PESs that were only of good quality and PESs that were of ex-
cellent quality.11, 13 A very different experiment in which the
NH3-He interaction plays an important role, is the trapping
of NH3 molecules inside He nanodroplets to perform high-
resolution spectroscopy.16

Rotational energy transfer by cold collisions is an impor-
tant process in various astrochemical environments, such as
interstellar clouds and cold exoplanetary atmospheres. Since
the first identification of NH3 molecules in the interstellar
medium,17 ammonia has been detected in several gas-phase
astrochemical spectra. The rate coefficients of NH3-He scat-
tering are an important ingredient for a numerical modelling
of astrochemical environments. This is one of the reasons why
NH3-He collisions have been studied experimentally18–22 and
theoretically23–28 by several groups. The most recent scatter-
ing calculations have been performed with the potential en-
ergy surface of Hodges and Wheatley.29 However, in order
to get agreement with experimentally determined virial co-
efficients, this potential had to be scaled by a rather large
factor.26 The same potential has also been used to theo-
retically study low-energy NH3-He collisions, where strong
scattering resonances were observed for various initial and
final states of the NH3 molecule.28 Unfortunately, the ini-
tial state that is most suitable for Stark deceleration was
not considered. This is namely the state |jk±〉 = |11−〉,
where j is the angular momentum of the ammonia molecule,
k is the projection on its threefold symmetry axis, and
± refers to its symmetric/antisymmetric umbrella inversion
tunneling state. For the energy level diagram of the ammo-
nia molecule, see Fig. 1. Moreover, in the study of Ref. 28
ammonia was treated as a rigid molecule, implying that the
umbrella inversion motion of the NH3 molecule was not
considered.

In this article, we study all possible elastic and inelas-
tic scattering processes at low collision energies using |11−〉
as an initial state of the para NH3 molecule. For para am-
monia, k is either 1 or 2 (modulo 3), while for ortho am-
monia, k is equal to 0 (modulo 3). We note that the nuclear
spin configurations for the para ammonia molecules have a
smaller statistical weight than those for the ortho ammonia
molecules. For the considered initial state, we find that partic-
ularly the inversion inelastic scattering to the |11+〉 state gives
rise to pronounced resonant structures that are promising to
be observed experimentally in crossed beam experiments. We
start by introducing the theoretical framework for studying the
atom-molecule collisions. After this, we present a new NH3-
He potential using the most recent developments in electronic
structure calculations. We describe the numerical methods to
fit the potential, after which we present the calculations of
the integral and differential cross sections. In both cross sec-
tions, we find rapid variations as a function of energy, which
are clear signs of resonant behavior. To determine the origin
of these resonances, we perform bound state calculations as
well as reconstructions of the full scattering wavefunctions.
The phase shifts and the lifetimes are also determined near
resonance. Finally, we comment on the prospects of observing
these scattering resonances in the NH3-He system in the near
future.
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FIG. 1. Energy levels |jk±〉 of the ammonia molecule, where j is the angu-
lar momentum of the molecule, k is the projection on its threefold symmetry
axis and ± refers to the symmetric/antisymmetric umbrella state. Throughout
this article, we use the |11−〉 state as the initial state, so that we only con-
sider para ammonia. We do not take into account hyperfine interactions. The
collision energy is defined relative to the initial state.

II. THEORY

To theoretically study the low-energy scattering of NH3

molecules with He atoms, we briefly introduce three coordi-
nate frames that are used in the calculations.30 These coor-
dinate frames are discussed in more detail in the Appendix.
The first frame is an orthonormal, right-handed space-fixed
(“sf”) laboratory frame located at the center of mass Q of
the dimer. The coordinate R is the length of the vector R that
points from the center of mass X of the NH3 monomer to the
He atom, while θ sf is the zenith angle of the vector R and
φsf is the azimuth angle in the space-fixed frame. The sec-
ond frame is an orthonormal, right-handed body-fixed (“bf”)
dimer frame, also centered at the center of mass of the dimer.
As explained in the Appendix, this frame is obtained by a
rotation that aligns its z axis with the vector R. The third
frame is an orthonormal, right-handed monomer-fixed (“mf”)
frame centered at the center of mass of the NH3 molecule,
whose z axis is aligned with the symmetry axis of the am-
monia molecule. This monomer frame is obtained from the
space-fixed frame by rotating over the three Euler angles ζ sf

= (αsf, βsf, γ sf). Here, αsf and βsf are the azimuth and zenith
angles of the ammonia C3 symmetry axis in the space-fixed
frame, while γ sf describes the rotation of the NH3 molecule
about this axis. The Euler angles of the monomer frame can
also be given with respect to the body-fixed frame, and are
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then denoted by ζ bf = (αbf, βbf, γ bf). Finally, we introduce
the umbrella or inversion angle ρ of the ammonia molecule,
which is the angle between the z axis of the monomer frame
and a vector pointing from the N atom to one of the H atoms,
so that ρ = π /2 corresponds to a planar NH3 geometry.

The Hamiltonian of the NH3-He system can now be writ-
ten as31

Ĥ = Ĥmol − 1

2μR

∂2

∂R2
R + 1

2μR2
[Ĵ 2 + ĵ 2 − 2ĵ · Ĵ]

+Vint(R, βbf, γ bf, ρ), (1)

where throughout the article we set ¯ = 1, Ĥmol is the Hamil-
tonian of the NH3 molecule, μ is the reduced mass of the
atom-molecule complex, ĵ is the angular momentum operator
of the NH3 monomer with respect to the body-fixed frame, Ĵ is
the total angular momentum operator also with respect to the
body-fixed frame, and Vint is the interaction energy. We con-
sider the interaction potential to depend on four coordinates,
which implies that we assume the N-H bond length to be fixed
and NH3 to keep its threefold symmetry. The Hamiltonian of
the NH3 molecule includes the monomer’s rotation, as well
as the kinetic and potential energy of its umbrella motion,31

namely,

Ĥmol =
∑

λ=x,y,z

ĵ 2
λ

2Iλλ(ρ)
− 1

2
√

g(ρ)

∂

∂ρ

√
g(ρ)

Iρρ(ρ)

∂

∂ρ

+Vumb(ρ), (2)

where Ixx(ρ), Iyy(ρ), and Izz(ρ) are the moments of inertia
of the threefold symmetric ammonia molecule with respect
to the monomer frame axes, see, e.g., Ref. 31, while Iρρ(ρ)
= 3mHr2

0 (cos2 ρ + η sin2 ρ) with mH the hydrogen mass, r0

= 1.9099a0, the fixed N-H bond length,32 η = mN/(3mH

+ mN) and mN the nitrogen mass. Moreover, we have that g(ρ)
= IxxIyyIzzIρρ , while the potential energy for the umbrella mo-
tion Vumb(ρ) leads to a double well potential that we model by

Vumb(ρ) = kρ

2

(
ρ − π

2

)2
+ aρ exp

[
−bρ

(
ρ − π

2

)2
]

, (3)

with the parameters kρ = 90 651 cm−1rad−2, aρ = 23 229
cm−1, and bρ = 3.1846 rad−2. The resulting double well
potential gives rise to umbrella vibration levels of which two
levels have an energy below that of the barrier at the planar
ammonia geometry.31 Moreover, each of these two vibration
levels splits into a pair of energy levels due to tunneling. The
parameters of the umbrella potential are chosen such that the
experimental energy splitting between the two tunnel states
in the vibrational ground state, as well as the experimental
splittings33 between the ground state and the two tunnel
states of the first vibrationally excited level are accurately
reproduced.

To treat the Schrödinger equation in body-fixed coordi-
nates, we expand the scattering wavefunction in the following
coupled-channel basis


bf(R) = 1

R

∑
n

|n〉χn(R), (4)

where the radial dependence of the wavefunction is given by
χn(R), while the body-fixed angular basis set,

|n〉 ≡ |j, k,K, J,MJ , v±〉 =
[

(2j + 1)(2J + 1)

32π3

]1/2

×φ±
v (ρ)D(j )∗

Kk (ζ bf)D(J )∗
MJ K (φsf, θ sf, 0), (5)

is used to treat the angular part of the Hamiltonian. Here,
D

(j )∗
mm′ (ζ ) = eimαd

(j )
mm′ (β)eim′γ with d

(j )
mm′ (β) the well-known

Wigner d-functions, k is the projection quantum number of
the monomer angular momentum with eigenvalue j on the
monomer z axis, K is the projection quantum number of both
the monomer angular momentum and the total angular mo-
mentum with eigenvalue J on the body-fixed dimer z axis, MJ

is the projection of the total angular momentum on the space-
fixed z axis, v is the umbrella vibration quantum number, and
the superscript ± refers to the even/odd umbrella tunneling
function.

As a result, our task is to solve the following second-
order matrix differential equation:

−∂2χn′(R)

∂R2
=

∑
n

〈n′|Ŵ |n〉χn(R), (6)

where we introduced the operator Ŵ = 2μ(E − Ĥ + K̂)
with the kinetic energy operator K̂ given by the second term
on the right-hand side of Eq. (1). We note that J and MJ are
good quantum numbers, and that the operator Ŵ is diagonal
in J and independent of MJ. Furthermore, the monomer part
of the Hamiltonian, Ĥmol, is also diagonal in the angular basis
set. The complexity of the matrix 〈n′|Ŵ |n〉 can be further re-
duced by considering the symmetry properties of the NH3-He
complex. Because the Hamiltonian commutes with permuta-
tions of the three hydrogen atoms in NH3 and the operator
for inversion in space Ê∗, it is useful to adapt the basis states
such that they transform as the irreducible representations of
the corresponding molecular symmetry group D3h(M) in the
notation of Bunker and Jensen.34 The adapted basis states of
different symmetry cannot be mixed by the Hamiltonian. The
precise procedure for this adaptation is described in the Ap-
pendix. Moreover, in Ref. 14, several useful relations can be
found for determining the matrix elements of the Ŵ operator
in the angular basis.

In order to fully solve Eq. (6), the wavefunctions
must satisfy the appropriate scattering boundary conditions.35

These boundary conditions are directly formulated in a space-
fixed frame. The exact solution of the space-fixed Schrödinger
equation at larger separations R, i.e., when the interaction
energy has approached zero, is a linear combination of the
proper spherical Bessel functions. These Bessel functions are
labelled by the space-fixed end-over-end rotational quantum
number L, which has become a good quantum number at such
large separations. Therefore, the matching of the propagated
wavefunction from Eq. (6) to spherical Bessel functions can
be performed at distances where the centrifugal energy, set by
L and decaying as R−2, is still large, as long as the interaction
energy, decaying in our case as R−6, has become negligibly
small. To perform the matching, it is necessary to transform
between the body-fixed and the space-fixed basis sets. The
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latter basis set is for the present case given by

|j, k, L, J,MJ , v±〉 =
[

(2j + 1)(2L + 1)

32π3

]1/2

φ±
v (ρ)

×
∑

mj ,ML

D
(j )∗
mj k

(ζ sf)CL
ML

(θ sf, φsf)

×〈jmj ; LML|JMJ 〉, (7)

with CL
ML

(θ sf, φsf) the Racah-normalized spherical harmon-
ics and ML the projection of the end-over-end angular mo-
mentum on the space-fixed z axis, mj the projection of the
monomer angular momentum on the space-fixed z axis, and
〈j1m1; j2m2|j3m3〉 a Clebsch–Gordan coefficient. The trans-
formation between the body-fixed and the space-fixed basis
then becomes14

|j, k, L, J,MJ , v±〉 =
∑
K

|j,k,K,J,MJ , v±〉
(

2L + 1

2J + 1

)1/2

×〈jK; L0|JK〉. (8)

To end our discussion of the matching procedure, we mention
the various possible open and closed channels following from
the Hamiltonian of Eq. (2). The vibration-tunneling states of
the umbrella motion are determined by calculating the eigen-
states of the Hamiltonian formed by the last two terms of
Eq. (2). Only the lowest four eigenstates, labeled φ±

v (ρ) with
vibrational quantum numbers v = 0 and v = 1, are kept. With
these four states as a basis for the umbrella motion, we turn
to the first term of the Hamiltonian of Eq. (2). As a result,
the rotational constants 1/2Iλλ(ρ) become 4 × 4 matrices, but
the + and − states are not mixed. The eigenstates that re-
sult from diagonalization of the full monomer Hamiltonian
in a basis containing all rotational states with j ≤ 6 and the
four umbrella states, determine the open and closed channels.
We label the open channels by |jk±〉; the vibrational quantum
number v is omitted from this notation because all vibrational
states with v > 0 are closed for the energy range in which we
are interested. We consider the ammonia molecules to be pre-
pared in the |11−〉 state, so that the lower lying |11+〉 state
is open for all collision energies. Increasing the collision en-
ergy beyond the energy of excited monomer states opens up
the corresponding channels, and inelastic scattering into these
states occurs if it is allowed by symmetry. The matching pro-
cedure of the wavefunctions to the boundary conditions for
scattering at large distance R ultimately leads to an expres-
sion for the scattering matrix. This S matrix is subsequently
directly related to the differential and integral cross sections
for the elastic and inelastic channels, which can be compared
with the outcome of collision experiments.36

III. THE NH3-HE POTENTIAL

Before we can apply the above described formalism to
solve the scattering problem, we need to determine the NH3-
He interaction potential. To this end ab initio calculations
were performed with MOLPRO (Ref. 37) using the super-
molecule approach with the counterpoise procedure of Boys
and Bernardi.38 We considered the interaction energy to be
dependent on four coordinates, namely, R, βbf, γ bf, and ρ.

TABLE I. Comparison of the interaction energy between the CCSD(T)
method (abbreviated as CC) and the CCSD(T)-F12 method (abbreviated as
F12) for different basis sets and different geometries as calculated with MOL-
PRO (Ref. 37). We used the augmented triple zeta (AVTZ), quadruple zeta
(AVQZ), and quintuple zeta (AV5Z) basis sets. We also studied the effect of
midbond functions,43 which are indicated in the table by the + sign, when
they are added to the basis set. For the short-range geometry, indicated by
xs in the table, we used R = 4.5a0, βsf = 0, γ sf = 0, and ρ = 14π /24. For
the mid-range geometry, indicated by xm, we used R = 7a0, βsf = π /2, γ sf

= π /6, and ρ = 15π /24. For the long-range geometry, indicated by xl, we
used R = 15a0, βsf = π , γ sf = π /3 and ρ = 16π /24. The interaction energies
are given in cm−1.

AVTZ AVTZ+ AVQZ AVQZ+ AV5Z

CC (xs) 1446.2 1414.2 1407.4 1397.3 1394.7
F12 (xs) 1393.5 1386.0 1389.8 1386.8 1386.1
CC (xm) −21.716 −23.529 −22.733 −23.521 −23.179
F12 (xm) −23.329 −23.679 −23.237 −23.510 −23.381
CC (xl) −0.2506 −0.2583 −0.2521 −0.2538 −0.2526
F12 (xl) −0.2622 −0.2637 −0.2548 −0.2554 −0.2524

The grid for the ab initio calculations consisted of 4180
points. For R, in total 19 points were used. In the short and in-
termediate range, i.e., for 4a0 ≤ R ≤ 10a0, we used an equidis-
tant grid of 13 points with a separation of 0.5a0, while in the
long range, that is for R > 10a0, we used an approximately
logarithmic grid consisting of the points 12a0, 14.4a0, 17.3a0,
20.8a0, 25a0, and 30a0. For βbf, we used a Gauss–Legendre
grid consisting of 11 points for 0 ≤ βbf ≤ π , while for γ bf, we
used an equidistant Gauss–Chebyshev grid consisting of the
points π /24, 3π /24, 5π /24, and 7π /24. Finally, for the grid in
ρ we used an equidistant grid of 5 points, where the middle
point was given by the value ρ3 = 0.6226π , while the distance
between the points was given by �ρ = (2ρ3 − π )/5.

The calculations in the long range were performed with
the coupled-cluster method taking into account single and
double excitations and a perturbative treatment of triple exci-
tations [CCSD(T)] (Ref. 39) using the augmented correlation-
consistent polarized valence quadruple-zeta (AVQZ) basis
set.40, 41 For the short range, we used the explicitly corre-
lated CCSD(T)-F12 method42 to account more efficiently for
the strong effect of electron correlations in this regime. The
CCSD(T)-F12 method was found to yield accurate results
with the smaller triple-zeta basis set (AVTZ), as illustrated
by Table I. In this table, the interaction energies are shown
for different NH3-He geometries in the short, intermediate,
and long range with both the CCSD(T) and the CCSD(T)-F12
method using different basis sets. Also the effect of using mid-
bond functions43 is included in this table, where the midbond
orbitals were located along the vector connecting the center
of mass of the ammonia molecule with the helium atom at a
distance of (r0 + R)/2 from the ammonia center of mass. Par-
ticularly in the short and intermediate range, these midbond
functions improve the interaction energies, so that they were
used in the calculations with F12. From Table I, we see that in
the short range, the CCSD(T)-F12 method with an AVTZ ba-
sis set including midbond functions performs better than the
CCSD(T) method with an AV5Z basis set, although the latter
calculation is much more expensive due to the large basis set.
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The main reason why we did not use the F12 method in
the long range is that we found that the implementation of this
method in MOLPRO (Ref. 37) gives rise to an incorrect 1/R
behavior in the very long range, rather than the correct 1/R6

behavior for the system under consideration. This behavior
is caused by the fitting of the electron density distributions,
which unfortunately does not result in exactly charge neutral
monomers. Although the artificial residual charges can be re-
duced by introducing a larger electron density fitting basis set,
the 1/R behavior will eventually always dominate the correct
1/R6 behavior. Hence, we decided to use the CCSD(T) method
without F12 for the long range. We used the AVQZ basis set,
and we may conclude from Table I that this basis set indeed
gives rise to accurate interaction energies in the long range.
In order to switch smoothly between the results of the two
methods, we used the switching function s(R),

s(R) =

⎧⎪⎨
⎪⎩

0 if R ≤ a

1 if R ≥ b

1
2 + 1

4 sin πx
2 (3 − sin2 πx

2 ) otherwise,

(9)

with x = (2R − b − a)/(b − a), a = 10a0, and b = 13a0. The
function is chosen such that the first three derivatives of s at
R = a and R = b are zero. We thus calculated the interaction
energies for the angular geometries at distance R = 12a0 with
both methods, where the calculated value with F12 was given
a weight of 1 − s(12a0), while the value without F12 was
given a weight s(12a0).

To obtain an analytic representation of the interaction po-
tential between the NH3 molecules and the He atoms, we
first perform an expansion in tesseral spherical harmonics,
namely,

Vint(R, βbf, γ bf, ρ) =
∑
l,m

(−1)mvlm(R, ρ)Slm(βbf, γ bf),

(10)
where due to the symmetry of the dimer only terms with m
= 0, 3, 6, . . . are present. Because we have 11 grid points in
βbf, the summation over l is from 0 ≤ l ≤ 10. The summation
over m is from 0 to the largest multiple of 3 that is smaller
than or equal to the corresponding l value. On all grid points
Ri and ρ j, we determine the coefficients of the angular expan-
sion vlm(Ri, ρ j) by means of a quadrature on the ab initio grid
with the appropriate Gauss–Legendre and Gauss–Chebyshev
weights.14 For the resulting expansion coefficients vlm, we
distinguish between the short-range and the long-range be-
havior, so that vlm(R, ρ) = vsr

lm(R, ρ) + vlr
lm(R, ρ). Both in

the short range and the long range, the dependence of the co-
efficients vlm on ρ is represented by a polynomial expansion
in (ρ − π /2)p, where p ranges from 0 to 9. If l + m is even,
then the polynomial expansion only contains even powers in
p, while if l + m is odd only odd powers are present. In the
long range, we expanded the potential in powers of R−n, re-
sulting in

vlr
lm(R, ρ) =

∑
n,p

clmpnfn(aR)
(
ρ − π

2

)p

R−n, (11)

where the inverse powers of R that are involved depend on l.
It can be shown44 that for l = 0, 2 the expansion starts with ni

= 6, while for l = 1, 3 it starts with ni = 7. For l ≥ 4, it starts

with ni = l + 4. We used the analytic long range expansion
of Eq. (11) only for l ≤ 5, and for each l we took the leading
term R−ni and the next-to-leading term R−ni−2 into account.
The Tang–Toennies damping function

fn(x) = 1 −
(

n∑
i=0

xi

i!

)
e−x, (12)

was included to avoid the singular behavior of the long-
range terms in the short range.45 For the value of a in
Eq. (11), we used the isotropic exponent in the short-range,
or, to be more precise, a = ln[v00(R1, ρ3)/v00(R2, ρ3)]/�R

= 2.088a−1
0 with R1 and R2 the first two points of the R grid

and �R = R2 − R1. The expansion coefficients clmpn were
obtained from vlm(Ri, ρ j) by performing a weighted least-
squares fit using the last three points of the R grid and all
points of the ρ grid. The three R points were weighted for
each l by R

ni

i , with ni the leading power of the long range
decay for the considered l.

To describe the short and intermediate range of the poten-
tial the same expansion was employed in βbf, γ bf, and ρ as for
the long range, but the behavior in R was treated differently.
The following procedure was used. First, for all the grid ge-
ometries, the corresponding value of the analytic long range
potential was subtracted from the ab initio values. Next, af-
ter performing the expansion in tesseral harmonics and pow-
ers of (ρ − π /2), the behavior of the resulting coefficients
vlmp(R) was interpolated with a reproducing kernel Hilbert
space (RKHS) method.46 The smoothness parameter of the
RKHS interpolation was set to 2, while the RKHS parameter
mRKHS, which determines the power with which the interpo-
lation function decays, was chosen to depend on l. For l ≤ 5,
the parameter was set to mRKHS = ni + 1. Then the RKHS
function decays as R−ni−2, which is faster for each l than the
leading term in the analytic fit of Eq. (11). However, for l > 5,
no analytic long range fit was done, and we used mRKHS = ni

− 1. As a result, the corresponding RKHS functions decayed
for each l as R−ni with ni = l + 4, which is the correct leading
long range behavior for l > 5.44

We have compared the fitted potential with the ab ini-
tio values on the full grid to test the accuracy of the fit in
the angles βbf, γ bf, and ρ. The quality of the fit in R can-
not be tested in this way, because the RKHS procedure goes
by construction precisely through the points to be fitted. We
calculated the RMS (root mean square) error for each grid
distance Ri and divided by the mean ab initio interaction en-
ergy at that distance, giving for the relative RMS error ξ (Ri)
that

ξ (Ri) =
√

1
n

∑
j,k,l[�V (Ri, β

bf
j , γ bf

k , ρl)]2∣∣∣ 1
n

∑
j,k,l V

abi
int (Ri, β

bf
j , γ bf

k , ρl)
∣∣∣ 100%, (13)

where �V (Ri, β
bf
j ,γ bf

k ,ρl) = V fit
int(Ri, β

bf
j ,γ bf

k ,ρl) − V abi
int (Ri,

βbf
j , γ bf

k , ρl), and the summations are over all n = 220 angu-
lar grid points. For our potential fit, we found that the rela-
tive error ξ (Ri) is less than 0.05 % for all Ri, so the fits in
the angular coordinates are excellent. To also test the fit in R,
we calculated ab initio interaction energies for an additional
495 points, that were chosen to lie about halfway between
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FIG. 2. Contour plot of the NH3-He interaction potential as a function of R
and βbf for γ bf = 0 and the equilibrium umbrella angle ρe = 112.15◦. The
energies of the contours are given in cm−1.

the grid points used for the fit. The relative RMS error of the
values calculated from the fit compared to the new ab initio
values depended quite strongly on R, where the largest error
was found to occur in the short range. Namely, for the test
points at R = 4.3a0, we found with the use of 45 different an-
gular points a relative RMS error of 3.5%, while for all other
R values we obtained a relative error of about 0.5% or less. An
important reason for this behavior is that we use a RKHS fit
for the short range, which behaves as a power law, while the
true behavior of the potential is exponential. The fitting pro-
cedure could thus have been further improved using an expo-
nential form. However, we note that already the present fitting
error is rather small. Moreover, in the present paper, we use
the potential to describe cold scattering with collision ener-
gies of maximally 130 cm−1, so that the extreme short-range
behavior of the potential is not being probed.

In Fig. 2, we show a contour plot of the NH3-He interac-
tion potential for γ bf = 0 and the equilibrium umbrella angle
ρe = 112.15◦. For this value of γ bf and ρ, the minimum of
the potential is given by Vmin = −35.08 cm−1 for R = 6.095
a0 and βbf = 89.0◦. This may be compared to the potential of
Hodges and Wheatley,29 where the minimum of the potential
for γ bf = 0 and ρe = 112.15◦ is given by Vmin = −33.46 cm−1

for R = 6.133 a0 and βbf = 88.75◦. Although this difference
in the well depth is not very large, we have found that the
consequences for low-energy scattering can still be quite sub-
stantial, as we will discuss in Sec. V. Finally, we have for the
leading isotropic coefficient, defined as C6 = −v00(R, ρ3)R6

for large R, that in atomic units C6 = 39.6Eha
6
0 . The relative

importance of the various vlm(R, ρe) expansion coefficients is
shown in Fig. 3. The potential is available in FORTRAN 77
online (see supplemental material given in Ref. 47).
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FIG. 3. Coefficients vlm(R, ρe) of the NH3-He interaction energy as a func-
tion of center of mass distance R, evaluated at the equilibrium umbrella angle
ρe = 112.15◦. The isotropic v00(R, ρe) coefficient is largest. The v10, v20,
v30, v33, v40, and v43 coefficients are shown as well.

IV. COMPUTATIONAL ASPECTS

Having discussed the formalism and the potential, we
now turn to the numerical procedures that we used in order
to obtain converged cross sections that can be compared with
future cold-collision experiments. To numerically determine
the four lowest lying vibration-inversion levels φ±

v (ρ) of the
Hamiltonian of Eq. (2) for j = 0, we used the discrete variable
representation based on sinc-functions (sinc-DVR).48 The re-
sulting eigenfunctions were used to determine the matrix el-
ements 〈φ′|1/2Iλλ|φ〉 with φ = φ±

v (ρ) by numerical integra-
tion. For the propagation in solving Eq. (6), the renormalized
Numerov algorithm was used, starting at 4a0 and ending at
50a0, using an equidistant grid with 273 points. The renor-
malized Numerov method also allows for a complete recon-
struction of the scattering wavefunctions.

The angular basis set contained all monomer states with
j ≤ 6, where we checked that the inclusion of more monomer
levels resulted only in deviations of maximally 1 % for the
calculated cross sections. The maximal value for the total an-
gular momentum J that we used depended on the collision
energy. For collision energies E ≤ 10 cm−1, we included all
angular basis states with J ≤ 10, while for 10 < E ≤ 50 cm−1,
we included all basis states with J ≤ 20, and for 50 < E ≤ 130
cm−1, we included all states with J ≤ 30. The convergence of
the cross sections with respect to the total angular momentum
J is slowest for the elastic cross section. The inelastic cross
sections are converged at considerably lower values of J than
reported here.

In order to check our results and gain additional insight,
we also implemented a commonly applied model to treat the
ammonia umbrella motion in scattering calculations.49, 50 In
this model, no vibrationally excited umbrella states are taken
into account and the ground-state umbrella tunneling states
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are approximated as an even and odd combination of the two
rigid equilibrium structures. These two states are thus writ-
ten as |±〉 = [f(ρ − ρe) ± f(π − ρ + ρe)]/21/2, where f(x) is a
function localized around x = 0. More precisely, the two-state
model amounts to approximating the matrix elements of the
potential by 〈±|vlm(R, ρ)|±〉 = vlm(R, ρe) for l + m even, and
〈±|vlm(R, ρ)|∓〉 = vlm(R, ρe) for l + m odd. For the rotational
constants, we use the experimentally determined values Axx

= Ayy = 9.9402 cm−1, and Azz = 6.3044 cm−1 in the model.
Furthermore, we include the experimental ground state split-
ting of 0.79 cm−1 (Ref. 33) between the two tunneling states
in the scattering calculations. This simple model has been im-
plemented in the scattering program MOLSCAT.51 We have
used MOLSCAT to double-check the results that we obtained
from our own scattering program. The model was previously
found to result in good agreement with more elaborate treat-
ments of the umbrella motion for scattering at higher collision
energies.52 In this article, we also want to test the accuracy of
the model for cold collisions, and in particular for the calcu-
lation of scattering resonances.

V. RESULTS

In Fig. 4, we show the integral cross sections for the scat-
tering of NH3 molecules with He atoms for collision energies
ranging from 10−4 cm−1 to 20 cm−1. Initially, we only have
elastic scattering and inelastic scattering into the |11+〉 state,
which lies 0.79 cm−1 lower in energy. Figure 4 was made us-
ing the previously described elaborate treatment of the um-
brella motion; however, with the use of the model treatment
almost exactly the same results were obtained. We observe
in the first place that, in agreement with the Wigner thresh-
old laws,53 the elastic cross section becomes constant for very
small collision energies, while the inelastic cross section de-
creases with E as 1/

√
E. Going more into the details of the

figure, we observe two shape resonances closely together in
the elastic channel at collision energies of 1.86 and 2.22 cm−1.
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FIG. 4. Integral cross sections for NH3-He scattering as a function of col-
lision energy. The initial state of the NH3 molecule is the |11−〉 state. At
low collision energies only elastic scattering (upper red curve) and inelastic
scattering into the lower lying |11+〉 state (lower blue curve) can occur.

In bound state calculations with the NH3-He complex en-
closed in a box of variable size, we found continuum levels
with nearly the same energies that are practically independent
of the box size, so we may conclude that these peaks in the
scattering cross section indeed correspond to shape or orbiting
resonances caused by quasi-bound states. Such quasi-bound
states may occur either in the incoming or in the outgoing
scattering channel; for the specific case of elastic scattering,
these are the same. Looking at the dominant contributions to
the cross section, the first peak was found to be mainly caused
by quasi-bound states with total angular momenta J = 4 and
J = 6, while the second peak was mainly caused by a quasi-
bound state with total angular momentum J = 5. In both cases,
they corresponded to an end-over-end angular momentum of
L = 5. Looking in the same energy range at the inelastic scat-
tering into the |11+〉 state, we observe not only two similar
peaks at the same collision energies, but also two additional
peaks at 1.08 and 1.44 cm−1. These two additional shape res-
onances can be readily understood by noting that for inelastic
scattering the resonant quasi-bound state can occur either in
the incoming channel or in the outgoing channel, where the
latter channel is about 0.8 cm−1 lower in energy. This is in-
deed precisely the energy with which the two additional peaks
in the inelastic channel are shifted to the left in Fig. 4.

For completeness, we note that we studied this colli-
sion energy range also with the potential of Hodges and
Wheatley.29 Although the difference in the well depth be-
tween the two potentials at the equilibrium umbrella angle
was only about 5%, we still found large differences in the
resonant structures at very low energies. For example, using
the Hodges and Wheatley potential,29 we observed two very
strong shape resonances at collision energies of 0.03 and 0.45
cm−1 induced by quasi-bound states with total angular mo-
menta J = 3 and J = 4 and end-over-end angular momen-
tum L = 4. However, because our own potential is deeper,
we find that these quasi-bound states have become true bound
states with energies below the scattering continuum, so that
they cannot cause shape resonances anymore. As a result, the
first shape resonances we find with our potential are induced
by quasi-bound states with total angular momenta J = 4, 5,
and 6 and L = 5, as shown in Fig. 4. This point also clearly
shows that scattering resonances at low energy can be very
sensitive to the precise shape of the potential energy surface,
which means that accurate scattering experiments can be used
to probe very precisely our knowledge of intermolecular in-
teractions.

In Fig. 5, we again show the integral cross sections for
elastic scattering and inelastic scattering into the |11+〉 state,
but now considering collision energies from 10 to 50 cm−1.
Note that the inelastic cross is actually 150 times smaller than
shown in the figure. As can be seen from Fig. 1, at a collision
energy of 28.33 cm−1, it becomes energetically possible to
excite the ammonia molecule from its |11−〉 state to its |22+〉
state, and a new scattering channel opens. At 29.12, 39.33,
and 40.12 cm−1, the |22−〉, |21+〉, and |21−〉 channels open,
respectively, as also indicated in Fig. 5. The opening of the
new channels is seen to have a profound effect on the inelas-
tic cross sections to the |11+〉 state. Namely, before these new
channels open a bunch of Feshbach resonances is observed.
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FIG. 5. Elastic (upper red curve) and inversion inelastic (lower blue curve)
integral cross sections as a function of collision energy for NH3-He scat-
tering. The inelastic cross section is scaled with a factor of 150, so that the
actual inelastic cross section is 150 times smaller than shown in the figure. At
higher collision energies, the |22±〉 and the |21±〉 channels open. As a result,
Feshbach resonances are observed, which are most pronounced for the inelas-
tic scattering into the |11+〉 state.

These resonant structures are called Feshbach resonances be-
cause they are caused by a molecular level that is different
from the incoming and the outgoing channel. In Fig. 5, we
see that especially the Feshbach resonances induced by the
|21±〉 levels at collision energies around 40 cm−1 are strong,
giving rise to almost a factor of 3 increase compared to the
background inelastic cross section. These resonances seem to
be particularly suited to observation in a collision experiment.
We come back to this point more elaborately in Sec. VI.

To understand the Feshbach resonances in more detail,
we have studied the scattering wavefunctions. In Fig. 6, con-
tributions to the scattering wavefunction are shown at a colli-
sion energy of 37.28 cm−1. At this collision energy, there is
a Feshbach resonance for inelastic scattering into the |11+〉
state, somewhat below the energy at which the |21−〉 chan-
nel opens. In the bottom panel of Fig. 6, we show contribu-
tions of different open and closed channels to the scattering
wavefunction. For this particular figure, we considered a to-
tal angular momentum of J = 3 and symmetry E′′ (see the
Appendix). This means that for the incoming channel, i.e.,
the |11−〉 state, asymptotically only the partial wave with L
= 3 contributed. For the four open outgoing channels, namely
|11±〉 and |22±〉, in total eight open partial waves are possible
for the considered J and E′′ symmetry. In the inner region also
contributions corresponding to asymptotically closed chan-
nels can gain amplitude, when they are coupled to the con-
sidered incoming state and outgoing state by the interaction
potential. In the top panel of Fig. 6, we show for each channel
the resulting contributions to the square of the wavefunction.
From Fig. 6, we clearly see that in particular the closed |21−〉
channel has a very strong amplitude in the collision region,
which shows that this state is responsible for the strong Fesh-
bach resonance observed at this collision energy.
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FIG. 6. Bottom panel: Contributions of various channels and partial waves
to the scattering wavefunction at a collision energy of 37.28 cm−1, where a
Feshbach resonance for inelastic scattering into the |11+〉 state occurs. We
used a total angular momentum of J = 3 and considered E′ ′ symmetry. As
a result, the initial state |11−〉 asymptotically corresponds to L = 3, while
there are eight open partial waves in outgoing channels. The wavefunctions
are flux normalized and are given in atomic units. Top panel: Contributions of
various channels to the square of the wavefunction. In the inner region, where
the collision takes place, a large amplitude in the asymptotically closed |21−〉
channel is observed.

A different way to study the Feshbach resonances is by
looking at phase shifts in the scattering wavefunction. These
phase shifts can be obtained from the eigenvalues of the scat-
tering matrix.36, 54 In Fig. 7, we show in the top panel the
sums of the phase shifts in all open channels for various to-
tal angular momenta J. Since we consider both symmetries E′

and E′′, we have two curves for each J. From scattering theory
it follows that when a resonance occurs, the phase shift sum
rapidly increases by π as a function of energy.54 In the top
panel of Fig. 7, we indeed see this happening many times at
the collision energies where resonances are found in the elas-
tic and inelastic cross sections. The derivatives of the phase
shifts with respect to the energy give the lifetimes of the col-
lision complexes.36 These lifetimes are shown in the lower
panel of Fig. 7. This figure shows that at the collision energies
where resonances occur, we indeed have long-lived interme-
diate quasi-bound states.

In Fig. 8, we show the integral cross sections for inelas-
tic scattering into the |21±〉 and the |22±〉 states, for a colli-
sion energy ranging from the energies at which these channels
open, up to 50 cm−1. Note that the inelastic cross sections to
the |22+〉 and |21+〉 states are scaled with a factor of 2. Im-
mediately after each channel opens, we see strong resonant
features, which are shape resonances, caused by quasi-bound
states in the outgoing channel. In the |22±〉 channels, we also
find Feshbach resonances due to quasi-bound states of |21±〉
character.
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FIG. 7. Top panel: Phase shift sum as a function of collision energy for var-
ious total angular momenta J. Both E′ and E′ ′ symmetries are considered,
so that we have two curves for each J. Bottom panel: The corresponding life-
times as a function of the collision energy. The lifetimes are obtained from the
derivative of the phase shifts with respect to the collision energy (in cm−1);
they are given in units of 5.3088 ps.

In the energy range from 10 to 50 cm−1, we also studied
the scattering cross sections using the previously described
model treatment of the NH3 umbrella motion. We found that
the model calculations have the tendency to somewhat over-
estimate the strength of certain resonance peaks compared to
the elaborate treatment of the umbrella motion. Studying this
effect in more detail, we found that the differences are mainly
due to the approximation of the nonzero potential matrix el-
ements for the two tunneling states as vlm(R, ρe), rather than
due to the neglect of the higher lying φ±

1 (ρ) states. Namely,
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FIG. 8. Inelastic integral cross sections for scattering into the |22±〉 channels
and the |21±〉 channels as a function of collision energy. The inelastic cross
sections for the |22+〉 and the |21+〉 channels are scaled with a factor of 2.
After the various channels open, shape resonances are observed.
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FIG. 9. Elastic and inelastic integral cross sections for scattering into the
|11+〉, |22±〉, and |21±〉 states as a function of collision energy. The inelastic
cross sections for the |22−〉 and |21−〉 channels are scaled with a factor of 20,
and for the |11+〉, |22+〉, and |21+〉 channels with a factor of 40. At higher
collision energies, various |3k±〉 and |4k±〉 channels for the para ammonia
molecules open. As a result, small Feshbach resonances are observed.

by calculating the cross sections with the elaborate treatment
and taking only the lowest two umbrella functions φ±

0 (ρ) into
account we obtained cross sections that were nearly equal to
the elaborate treatment with four umbrella functions, while
they gave rise to the same differences with the model treat-
ment. However, we note that in general the model treatment
performed very satisfactory in describing the resonance struc-
tures. All resonant peaks found with the elaborate treatment
were also found with the model treatment, and typically the
strength of the scattering resonances differed by less than
10%. Because the precise strength and location of the reso-
nances are very sensitive to the the potential, we conclude that
the use of the model treatment is useful in studying scattering
resonances, especially in cases when the elaborate treatment
is computationally too expensive.

Looking again at Fig. 8, we note that there are significant
differences in the magnitudes of the inelastic cross sections
for the various collision channels. For example, the transition
to the |22−〉 state is seen to be much stronger than the transi-
tion to the |22+〉 state, and the same holds for the transition
to the |21−〉 state compared to the |21+〉 state. The relative
magnitude of the integral cross sections for the elastic and in-
elastic scattering channels can be even more clearly observed
in Fig. 9. In this figure, we show the integral cross sections
for scattering into the |11±〉, |21±〉, and |22±〉 states, for col-
lision energies ranging from 80 cm−1 to 130 cm−1. Notice the
scaling of the inelastic cross sections indicated in the figure.
To explain the relative strengths of the transitions shown, we
note that the scattering from the |11−〉 channel into different
|jk±〉 channels is caused by different anisotropic terms in the
interaction potential with coefficients vlm(R, ρ), cf. Eq. (10).
For example, in order to change the umbrella state of the am-
monia molecule (i.e., going from the odd − state to the even
+ state) we need terms in the potential for which l + m is odd,
so that also the corresponding coefficient vlm(R, ρ) is odd in
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FIG. 10. Inelastic integral cross sections for scattering into the |32±〉 and the
|31±〉 states as a function of collision energy. At higher collision energies, the
|44±〉 channels for the para ammonia molecules open. As a result, Feshbach
resonances are observed.

ρ. The various potential energy coefficients are plotted as a
function of R at the equilibrium umbrella angle ρe in Fig. 3.

From this figure, we see that the isotropic coefficient
v00(R, ρe) is by far the largest coefficient of all. This coef-
ficient can only couple the initial |11−〉 state to itself (see for
example Refs. 14 and 55), causing a large elastic scattering
cross section. For a transition to a different umbrella state,
or to a state with different j, we need potential energy coeffi-
cients with l ≥ 1. Since v10 and v30 are odd in ρ, they cause
transitions from the |11−〉 state to the |21+〉 and the |11+〉
state for example. From Fig. 9, we see that the inelastic cross
sections to these two states are indeed approximately equally
large. The v20 term causes transitions to the |21−〉 state, and
because this expansion coefficient is relatively large, the cor-
responding cross section is large as well. Finally, in order
to change k in the collision, we need potential terms with m
�= 0, of which the first two are the v33 and the v43 coefficients.
The v33 coefficient causes −→ − transitions and the v43 co-
efficient causes −→ + transitions. From Fig. 3, we see that
the v33 coefficient is rather large, explaining the large cross
sections to the |22−〉 state, while the v43 coefficient is small,
explaining the small cross sections to the |22+〉 state.

In Fig. 10, we show the integral cross sections for inelas-
tic scattering into the |32±〉 and the |31±〉 states, for a col-
lision energy ranging from the energies at which these chan-
nels open, up to 130 cm−1. These small cross sections will be
harder to observe experimentally. However, if these channels
can be detected, they allow for the observation of pronounced
shape resonances at higher collision energies. The cross sec-
tions for scattering into the |32±〉 states also give rise to
Feshbach resonances with quasi-bound states of |31±〉 char-
acter. Even stronger Feshbach resonances at higher colli-
sion energies between about 120 and 125 cm−1 are found in
the cross sections for scattering into the |31−〉 state. These
Feshbach resonances are caused by the opening of the |44±〉
channels at a collision energy of about 125 cm−1.

Finally, we also studied differential cross sections, where
we looked in particular at the behavior of the differential cross
sections as a function of energy close to resonance. In gen-
eral, we found that the differential cross sections can change
rapidly and dramatically close to resonance. This behavior is
illustrated by Fig. 11. Here, we see in the upper two panels,
the differential cross sections for elastic scattering at colli-
sion energies of 0.87 and 1.86 cm−1. For the first of these
energies there is no resonance, while for the second there is a
shape resonance. For the off-resonance case we find that, apart
from diffraction oscillations, there is only a forward scatter-
ing peak. On resonance there is also a strong backward peak.
The lower four panels show the differential cross sections for
inelastic scattering to the |11+〉 state at collision energies of
20, 24.36, 30, and 37.28 cm−1. At 20 and 30 cm−1, which are
shown in the two lower plots on the left, there is no resonance
and the differential cross sections look rather similar to the up-
per left one, giving predominantly rise to forward scattering.
At 24.36 and 37.28 cm−1, which are shown in the two lower
plots on the right, there is a Feshbach resonance present, and
as a result the differential cross sections look very differently,
giving again rise to significant backscattering. In general, the
precise structure of the differential cross section depends on
various aspects such as the lifetime and the rotational state of
the intermediate collision complex. As a result, it is expected
that the differential cross sections show clear changes near a
resonance, but the precise way in which they change is hard
to predict and can be very different for different resonances,
as is also seen in Fig. 11.

VI. DISCUSSION AND CONCLUSION

In this article, we have theoretically studied cold colli-
sions of NH3 molecules with He atoms, where we looked in
detail at shape and Feshbach scattering resonances. Prior to
collision, we considered the ammonia molecules to be in their
antisymmetric umbrella state with angular momentum j = 1
and projection k = 1, which is a suitable state for Stark de-
celeration. We calculated state-to-state integral and differen-
tial cross sections for collision energies ranging from 10−4

cm−1 to 130 cm−1, using fully converged quantum close-
coupling calculations. We treated the umbrella motion of the
ammonia molecule by solving the corresponding Hamiltonian
in curvilinear coordinates and taking the resulting first four
vibration-tunneling states exactly into account. We call this
the elaborate treatment. We also used a common model for
the umbrella motion which approximates the umbrella tun-
neling states as an even and odd combination of the two pos-
sible rigid equilibrium structures for ammonia. This we call
the model treatment.

To describe the interaction between the NH3 molecules
and the He atoms accurately, we presented a new four-
dimensional potential energy surface, based on a high-quality
fit of 4180 ab initio points. In the short range, we used the ex-
plicitly correlated CCSD(T)-F12 method with an AVTZ basis
set including midbond functions, and we showed that this ap-
proach leads to excellent results in the short range. In the long
range, we used the CCSD(T) method with an AVQZ basis but
without F12, since we found that the electron density fitting
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FIG. 11. Differential cross sections as a function of the zenith angle θ for collisions between NH3 and He at various collision energies. Upper two panels:
Differential cross sections for elastic scattering at a collision energy of 0.87 cm−1 (left) and 1.86 cm−1 (right). In the first case there is no resonance, the second
case corresponds to a shape resonance. Middle two panels: Differential cross sections for inelastic scattering into the |11+〉 state at a collision energy of 20
cm−1 (left panel, no resonance) and 24.36 cm−1 (right panel, Feshbach resonance). Lower two panels: The same but for a collision energy of 30 cm−1 (left
panel, no resonance) and 37.28 cm−1 (right panel, Feshbach resonance).

that accompanies the F12 treatment does not exactly preserve
charge neutrality of the monomers and eventually leads to a
dominant 1/R dependence of the potential at very large R val-
ues. Our potential has a well depth De = 35.08 cm−1, which is
to be compared with the well depth of 33.46 cm−1 for the po-
tential of Hodges and Wheatley.29 Although this difference is
not very large, we found that small differences in the potential
can have profound consequences for the observed resonance
structures at low scattering energies.

We studied all open collision channels for para ammonia
up to j = 3 and in all these channels we found pronounced
shape resonances right after the opening of these channels,
caused by quasi-bound states in the incoming and outgoing
channels. We also found Feshbach resonances that are partic-
ularly strong for the outgoing |11+〉 channel at collision en-
ergies of about 25 cm−1 caused by intermediate |22±〉 states,
and at collision energies of about 35 cm−1 caused by inter-
mediate |21±〉 states. Due to the large cross section of these
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inelastic resonances, namely more than 1 Å2, they seem to
be a good candidate for experimental observation. Also in the
|31−〉 channel at collision energies of about 120 cm−1, rel-
atively strong Feshbach resonances were seen that are due to
intermediate |44±〉 states. We analyzed the observed resonant
structures in detail by looking at the corresponding scatter-
ing wavefunctions, phase shifts, and lifetimes. We also in-
vestigated the validity of using the model treatment for the
ammonia umbrella motion in describing low-energy scatter-
ing resonances. We found that the model performs qualita-
tively very well, but on a quantitative level some resonance
peaks are somewhat overestimated compared to the elaborate
treatment. However, considering the sensitivity of these res-
onances to the interaction potential, for which even state-of-
the-art ab initio methods still lead to uncertainties on the order
of a percent, the model treatment seems adequate in treating
low-energy resonant scattering, especially in cases when the
elaborate treatment becomes computationally too expensive.

The calculated integral cross sections at low collision
energies can be measured using Stark-decelerated molecu-
lar beams. The NH3 molecule, and its isotopologue ND3, are
amenable to the Stark deceleration technique, and have been
employed frequently in deceleration experiments.56 The Stark
decelerator provides a beam of ammonia molecules, state-
selected in the upper inversion component of the j = k = 1
level, with a velocity that is tunable between standstill and
high velocities.57 In a crossed beam experiment, the Stark de-
celerated ammonia molecules can be collided with an atomic
beam of helium. In an optimized geometry, the two beams
collide at a small beam intersection angle. An intersection an-
gle of less than 90◦ reduces the attainable collision energy and
improves the collision energy resolution of the experiment.58

As shown in Sec. V, there are a number of scattering chan-
nels with pronounced shape and/or Feshbach resonances.
The most promising prospects for the experimental obser-
vation of resonant features are found in the channels |11+〉
← |11−〉 (see Fig. 5), |22−〉 ← |11−〉, and |21−〉 ← |11−〉
(see Fig. 8).

The resonant structures are found at collision energies in
the 20−50 cm−1 range. To simulate what would be observed
in a molecular beam scattering experiment, we convoluted the
integral scattering cross section for the |11+〉 ← |11−〉 in-
version inelastic channel with Gaussian collision energy dis-
tributions having both a 1 cm−1 and a 3 cm−1 full width at
half maximum (FWHM). In the considered scattering channel
bunches of Feshbach resonances are observed that are caused
by the opening of the |22±〉 and |21±〉 channels, as seen in
Fig. 5. The result of the convolutions are shown in Fig. 12.
From this figure, we conclude that the details of the dense

resonance structures in Fig. 5 can only be resolved when an
experimental collision energy spread that is much less than
1 cm−1 can be achieved. For an experimental resolution of 3
cm−1, however, the bunch of scattering resonances can still be
discerned from the background inelastic signal by measuring
the inelastic cross section as a function of collision energy.
Figure 12 shows that such a measurement would lead to a
clear enhancement of the inelastic signal by more than a fac-
tor of two at the energies where the bunch of resonances is
located.
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FIG. 12. Convoluted inversion inelastic integral cross sections as a function
of the mean collision energy for NH3-He scattering. The initial state of the
NH3 molecules is the |11−〉 state and the final state is the |11+〉 state. The
figure is similar to Fig. 5, only now we have assumed a Gaussian collision
energy distribution for the colliding particles to simulate more realistically
what would be observed with present day experimental technology. The blue
curve corresponds to a full width at half maximum of 1 cm−1, and the red
curve of 3 cm−1.

To estimate the feasibility of obtaining collision energy
resolutions in this range with current experimental technol-
ogy, we assume an experiment in which a Stark-decelerated
packet of NH3 molecules collides with a conventional beam of
He atoms at a beam intersection angle of 45◦. We assume that
the He atom beam is produced using a cryogenic source that
is maintained at a temperature of about 30 Kelvin, resulting
in a He atom velocity of 550 m/s. The relevant range of col-
lision energies is then obtained when the velocity of the NH3

molecules is tuned between 370 and 850 m/s. This is well
within the range of state-of-the-art Stark deceleration molec-
ular beam machines.59 We further assume velocity spreads of
10 m/s and 55 m/s for the NH3 molecules and He atoms, re-
spectively, and a spread in the beam intersection angle of 40
mrad due to the divergence of both beams. These are values
that can realistically be obtained with current experimental
techniques. With these parameters, we expect an optimum
in the collision energy resolution to occur at a collision en-
ergy of 30 cm−1, i.e., at the center of the relevant collision
energy range. This maximum accuracy amounts to a spread
of 3.1 cm−1 (FWHM), while the collision energy spread in-
creases to approximately 4 cm−1 both for collision energies
down to 20 cm−1 and collision energies up to 50 cm−1. These
energy resolutions will not yet allow for the observation of
single scattering resonances in the NH3-He system, but they
will produce an observable enhancement of about a factor of
two in the inelastic cross section as a function of collision en-
ergy shown in Fig. 12, revealing the combined effect of the
underlying bunch of Feshbach resonances.

An alternative and complementary approach to study
scattering resonances is to measure differential cross sections.
Referring back to Fig. 11, dramatic changes in the differ-
ential cross section can occur at collision energies where a
resonance is observed. Feshbach resonances that give rise to
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strong backward scattering can be detected by measuring se-
lectively the scattered flux in the backward direction. A sim-
ilar approach has been used recently to measure partial-wave
resolved resonances in the collision energy dependence of re-
actions between F atoms and HD molecules.8 For inelastic
scattering between NH3 molecules and He atoms, differen-
tial cross sections are measured most conveniently using the
velocity map imaging (VMI) technique.60 To experimentally
resolve the angular dependence of the differential cross sec-
tions, large recoil velocities of the scattered molecules are ad-
vantageous. For the |11+〉 ← |11−〉 channel, the recoil ve-
locity of the scattered NH3 molecules in the center of mass
frame amounts to about 100 m/s at the most relevant collision
energies. This is well within the range of velocities that can
be imaged using current VMI techniques, offering interesting
prospects to study the behavior of molecular scattering reso-
nances.

At the Fritz-Haber-Institute in Berlin, Germany, and the
Radboud University Nijmegen, the Netherlands, we have em-
barked on an experimental program to study scattering res-
onances in both the integral and differential cross sections
using Stark-decelerated molecular beams. It is the hope that
the experimental study of these resonances will test our theo-
retical understanding of molecular interactions with unprece-
dented accuracy, and also will contribute to an enhancement
of our ability to control the way in which molecules collide.
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APPENDIX: COORDINATES AND SYMMETRY

In this appendix, we consider in more detail the various
coordinates used to describe the NH3-He system and how
these coordinates transform under various symmetry opera-
tions that commute with the Hamiltonian. These symmetry
operations form a group generated by the permutations of
the hydrogen atoms in NH3 and the operator for inversion in
space Ê∗. The location of the center of mass of the NH3-He
dimer is given by the vector Q, while the locations of the nu-
clei with respect to Q are given by the vectors H1, H2, and
H3 for the three H atoms, by the vector N for the N atom,
and by He for the He atom. The center of mass of the ammo-
nia molecule is given by the vector X. We start by introduc-
ing a orthonormal, right-handed space-fixed (“sf”) frame cen-
tered at the center of mass of the dimer Q. We also make the
convention that a superscript denotes the frame in which the

coordinates of a vector are expressed. So in the space-fixed
frame an arbitrary vector P has the space-fixed coordinates
Psf. Moreover, when no frame superscript is given, we do not
specify the frame in which the coordinates of the vector P are
evaluated. The space-fixed frame consists of three unit vec-
tors, which are the columns of the matrix s = (sx, sy, sz). In
our notation, ssf is the unit matrix. Moreover, in the space-
fixed frame the inversion operator Ê∗ maps the position of
any nucleus Psf onto the position reflected in the origin −Psf.

Another useful frame, the dimer frame or body-fixed
frame d = (dx, dy, dz), is obtained by performing two rota-
tions to the space-fixed frame in order to align the dz axis of
the dimer frame along the vector R = He − X, which points
from the center of mass of the ammonia molecule to the he-
lium atom. We have in space-fixed coordinates that

Rsf =

⎛
⎜⎝

R cos φsf sin θ sf

R sin φsf sin θ sf

R cos θ sf

⎞
⎟⎠ , (A1)

so that φsf and θ sf are the azimuth and zenith angle of the
vector R in the space-fixed frame. The body-fixed frame is
then defined in the following way. For any vector P, we have
that P = s · Psf = d · Pbf with Psf = Rsf

bf · Pbf and Rsf
bf

= Rz(φsf)Ry(θ sf), where Ry(θ sf) and Rz(φsf) are the usual
rotation matrices for rotation about the y axis and the z axis,
respectively, with the convention that Rz(φsf)12 = − sin φsf

and Ry(θ sf)31 = − sin θ sf. Note that as a result, we find for
the coordinates of the vector R in the body-fixed frame that
(Rsf

bf)
T Rsf = Rbf resulting in Rbf

x = Rbf
y = 0 and Rbf

z = R, as

was required. When we apply the Ê∗ operator to the complex,
the coordinates Rsf get inverted, so that Ê∗: Rsf → −Rsf. As
a result, the angles in Eq. (A1) are changed according to φsf

→ φsf + π and θ sf → π − θ sf. Note that the dimer frame is
invariant under permutations of the hydrogen atoms.

The third useful frame is called the monomer frame and
it is located at the center of mass of the ammonia molecule X.
The frame is spanned by the vectors,

vx = 2H1 − H2 − H3,

vy = H2 − H3, (A2)

vz = vx × vy.

Since the ammonia molecule keeps its threefold symme-
try, the above frame is orthogonal. The monomer frame can
consequently be made orthonormal by dividing the vectors
in Eq. (A2) by their length, resulting in the right-handed
monomer frame denoted by f. The rotation matrix that ex-
presses the monomer frame axes in space-fixed coordinates is
given in terms of the three Euler angles ζ sf = (αsf, βsf, γ sf), re-
sulting in Rsf

mf = Rz(αsf)Ry(βsf)Rz(γ sf). When the Ê∗ op-
erator is applied to the complex, then both the x axis and the
y axis of the monomer frame are reversed in the space-fixed
frame, which leaves the z axis in place. As a result, the Ê∗

operator has the following effect on the Euler angles, Ê∗: αsf

→ αsf, βsf → βsf, and γ sf → γ sf + π . Another angle that is
important in our treatment of the ammonia-helium complex
is the inversion or umbrella angle ρ, defined as the angle be-
tween the z axis of the monomer frame and the vector pointing
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TABLE II. Transformation properties of the coordinates under symmetry operations.

Operation Effect on angular coordinates

Ê θ sf φsf ρ αsf βsf γ sf αbf βbf γ bf

(123) θ sf φsf ρ αsf βsf γ sf − 2π /3 αbf βbf γ bf − 2π /3
(23)* π − θ sf φsf + π ρ αsf + π π − βsf π − γ sf π − αbf βbf −γ bf

Ê∗ π − θ sf φsf + π π − ρ αsf βsf γ sf + π −αbf π − βbf γ bf

(123)* π − θ sf φsf + π π − ρ αsf βsf γ sf + π /3 −αbf π − βbf γ bf − 2π /3
(23) θ sf φsf π − ρ αsf + π π − βsf −γ sf αbf + π π − βbf −γ bf

from the N atom to one of the H atoms. So, for ρ = π /2, am-
monia has a planar geometry. We just showed that Ê∗ leaves
the z axis in place, while the coordinates of the nuclei change
sign. As a result, we have that Ê∗: ρ → π − ρ.

When we permute the hydrogen nuclei, the space-fixed
coordinates of the monomer frame axes are changed. For ex-
ample, when we interchange �H2 and �H3 we find that the
monomer y axis and also the z axis are reversed in the space-
fixed frame. As a result, the corresponding Euler angles trans-
form as (23): αsf → π + αsf, βsf → π − βsf, and γ sf

→ −γ sf. Since the (23) operation inverts the monomer z axis,
we also find that (23): ρ → π − ρ. In Table II, we show
the transformation properties of the various angles that de-
scribe the ammonia-helium complex when symmetry opera-
tions of the permutation-inversion group D3h(M) are applied
to the complex. These transformation properties are useful in
determining the transformation properties of the angular basis
functions.

The monomer frame can also be obtained by a rota-
tion from the body-fixed dimer frame rather than the space-
fixed frame, defining the body-fixed Euler angles ζ bf = (αbf,
βbf, γ bf). The rotation matrix that expresses the monomer
frame axes in body-fixed coordinates is given by Rbf

mf
= Rz(αbf)Ry(βbf)Rz(γ bf). When the hydrogen atoms are
permuted, the body-fixed frame is unchanged, and as a result
the body-fixed Euler angles transform in precisely the same
way as the space-fixed ones. However, when Ê∗ is applied,
not only the monomer frame axes in space-fixed coordinates
change, but also the dimer frame axes. As a result, the body-
fixed Euler angles transform somewhat differently than the
space-fixed angles, as seen in Table II.

Having determined the effect of the various symmetry
operations on the coordinates that describe the NH3-He com-
plex, we can also find out the corresponding effect on the an-
gular basis functions of Eqs. (5) and (7) by using the transfor-
mation properties of the Wigner d-functions. Moreover, we
have that Ê∗φ±

v (ρ) = ±φ±
v (ρ). The effect of the various sym-

metry operations on the angular basis functions is shown in
Table III.

As a result, we are now able to construct the symmetry
adapted basis sets for both the body-fixed and the space-fixed
case. To this end, it is most convenient to start by discussing
the symmetry group C3v(M) with irreps A1, A2, and E. The
C3v(M) group is generated by the operations Ê, (123), and
(23)*. Using this group implies that we consider the ammo-
nia molecule as a rigid rotor without umbrella motion. Then,
for the body-fixed case with k = K = 0, we conclude from
Table III that the state |j00JM〉 is of A1 symmetry when J is
even, while it is of A2 symmetry when J is odd. When either k
or K is nonzero, we have for k = 0 (mod 3) that (|jkKJM〉
+ (−1)J + k|j −k −KJM〉)/21/2 is of A1 symmetry, while
(|jkKJM〉 − (−1)J + k|j −k −KJM〉)/21/2 is of A2 symmetry.
Finally, we have for k �= 0 (mod 3), that two-dimensional E
irreps are spanned by the states (|jkKJM〉, |j −k −KJM〉).

For the space-fixed case and considering rigid ammonia,
we conclude from Table III that the state |j0LJM〉 is of A1

symmetry when j + L is even, while it is of A2 symmetry
when j + L is odd. When k is nonzero and a multiple of 3,
we have that (|jkLJM〉 + (−1)j + L + k|j −kLJM〉)/21/2 is of
A1 symmetry, while (|jkLJM〉 − (−1)j + L + k|j −kLJM〉)/21/2

is of A2 symmetry. For k �= 0 (mod 3), we have that two-
dimensional E irreps are spanned by the states {|jkLJM〉,
|j −kLJM〉}.

Finally, the complete symmetry adapted basis is obtained
by considering the full D3h(M) symmetry group of the non-
rigid ammonia molecule. The functions adapted to the irreps
of D3h(M) are obtained from those adapted to the C3v(M) ir-
reps by using

(Ê + Ê∗)|A1〉 = |A′
1〉, (Ê − Ê∗)|A1〉 = |A′′

2〉,
(Ê + Ê∗)|A2〉 = |A′

2〉, (Ê − Ê∗)|A2〉 = |A′′
1〉, (A3)

(Ê + Ê∗)|E〉 = |E′〉, (Ê − Ê∗)|E〉 = |E′′〉.

TABLE III. Effect of the symmetry operations on the angular basis functions.

Operation Body-fixed Space-fixed

Ê |jkKJMv±〉 |jkLJMv±〉
(123) e2π ik/3|jkKJMv±〉 e2π ik/3|jkLJMv±〉
(23)* ±(− 1)J + k|j −k −KJMv±〉 ±(− 1)j + k + L|j −kLJMv±〉
Ê∗ ±(− 1)J + j + k|jk −KJMv±〉 ±(− 1)L + k|jkLJMv±〉
(123)* ±(− 1)J + j + ke2π ik/3|jk −KJMv±〉 ±e2π ik/3|jkLJMv±〉
(23) (− 1)j|j −kKJMv±〉 (− 1)j|j −kLJMv±〉
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Further we note that the v+ umbrella functions belong to the
(Ê + Ê∗) projection, while the v− umbrella functions belong
to the (Ê − Ê∗) projection.
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