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Figure 1: An animation of an actor created with our method from a multi-view video database. The motion was designed by an animator and
the camera was tracked from the background with a commercial camera tracker. In the composited scene of animation and background, the
synthesized character and her spatio-temporal appearance look close to lifelike.

Abstract

We present a method to synthesize plausible video sequences of
humans according to user-defined body motions and viewpoints.
We first capture a small database of multi-view video sequences
of an actor performing various basic motions. This database needs
to be captured only once and serves as the input to our synthesis
algorithm. We then apply a marker-less model-based performance
capture approach to the entire database to obtain pose and geometry
of the actor in each database frame. To create novel video sequences
of the actor from the database, a user animates a 3D human skeleton
with novel motion and viewpoints. Our technique then synthesizes
a realistic video sequence of the actor performing the specified mo-
tion based only on the initial database. The first key component
of our approach is a new efficient retrieval strategy to find appro-
priate spatio-temporally coherent database frames from which to
synthesize target video frames. The second key component is a
warping-based texture synthesis approach that uses the retrieved
most-similar database frames to synthesize spatio-temporally co-
herent target video frames. For instance, this enables us to easily
create video sequences of actors performing dangerous stunts with-
out them being placed in harm’s way. We show through a variety
of result videos and a user study that we can synthesize realistic
videos of people, even if the target motions and camera views are
different from the database content.

CR Categories: I.4.8 [Computer Graphics]: Scene Analysis—
Time-varying imagery;

1 Introduction

There is still a substantial quality gap between photo-realistic video
sequences and fully animated human characters. In current video
games, animation techniques are highly developed and intricate
motions can be created. However, the realism of the rendered an-
imation sequences still does not match a captured video. In con-
trast, acquired video sequences for movie productions are realistic
because they are directly captured through high-quality cameras.
However, all required motions and actions need to be performed
by actors, and it is very difficult to make any kind of motion edits
later on – even changing body appearance in videos with the same
motion is already a challenge [Jain et al. 2010]. This means that
actors need to repeat their performance many times until the desired
motion/action is achieved to a sufficient quality. Consequently, gen-
erating photo-realistic sequences of human beings is highly desir-
able for both computer games and movie production. Video-texture
methods first attempted to synthesize new video footage by recom-
bining existing video clips [Schödl et al. 2000]. However, they
do not allow modification of the camera viewpoint and they face
a big challenge in resynthesizing videos showing plausible artic-
ulated body motion [Flagg et al. 2009]. To our knowledge, our
proposed method is the first technique that enables the synthesis of
photo-realistic videos of human characters performing user-defined
motions, observed from user-defined viewpoints.

One of the main difficulties in synthesizing photo-realistic videos of
animated characters lies in the creation of realistic textures. When
people perform different kinds of motions, their appearance con-
tinually changes according to their motion. For example, highlights
appear and disappear, folds and wrinkles form and move on clothes,
and skin color varies with motion. As the appearance of human
characters is affected by various physical conditions, simulating re-
alistic texture is a difficult problem [Jimenez et al. 2010].

In our scheme, we develop an image-based method to overcome this
difficulty. We build and search a multi-view multi-motion database
for video frames with appropriate texture to synthesize frames of
a novel target animation. We do not run any kind of simulation
but rather perform retrieval and image-based warping to achieve
realistic textures. Image-warping is guided by a detailed model of



skeletal motion and dynamic shape that we capture for each multi-
view sequence in the database with a state-of-the-art marker-free
performance capture approach. Our re-animation approach also al-
lows us to support novel viewpoints by jointly considering the pose
and viewpoint. This guarantees sufficient view and pose informa-
tion to synthesize target frames. Specifying a target animation is
easy: In a standard animation tool, a new motion for the actor’s
skeleton is specified, applied to the body model, and rendered into
the desired camera path. We then use a warping-based method to
integrate information from multiple database frames to generate a
rendering of the texture sequence of the target poses and views.

2 Related Work

We capitalize on recent performance capture approaches that re-
construct detailed dynamic shape and motion models of humans
from multi-view video without using optical markers [de Aguiar
et al. 2008; Vlasic et al. 2008; Bradley et al. 2008; Vlasic et al.
2009; Cagniart et al. 2010]. In particular, we use the joint skeleton
and surface tracking approach of Gall et al. [2009] to automati-
cally capture performance models of all multi-view sequences in
the database without optical markers.

Several previous image-based approaches can render novel footage
of humans from input video, but none can simultaneously alter the
motion and the camera viewpoint and still achieve photo-realistic
results. 3D video methods capture a dynamic scene with multi-
ple video cameras (see Theobalt et al. [2007] for an overview),
reconstruct [Zitnick et al. 2004; Matusik et al. 2000; Tung et al.
2009] or fit [Carranza et al. 2003; Ballan and Cortelazzo 2008] a
geometry model, or use light field rendering to create novel view-
points [Wilburn et al. 2005]. While these approaches enable render-
ing a moving actor from novel viewpoints, large changes in motion
are not possible. Waschbüsch et al. [2006] presented a 3D video
processing framework that extends 2D video operations such as
segmentation and compositing to the 3D domain; editing the motion
of a 3D video object is not possible. Weyrich et al. [2005] captured
the reflectance field of a static object and used a geometric warping
method to render the appearance of the object under new lighting
after surface deformation. Scaling such an approach to videos of
full humans would be a major engineering effort, and realistic sur-
face deformations in the target animation would have to be entirely
simulated. This is still a major problem in itself. Recently, Stoll
et al. [2010] modified animation models of humans captured from
multi-view video with estimated physics-based cloth models. How-
ever, they cannot generate realistic textures for the new animations.

Some previous work tries to create novel images or videos in which
certain appearance aspects of a person are modified. Leyvand et
al. [2008] proposed a learning based method to change the face
shape of an input image. Kemelmacher-Shlizerman et al. [2010]
transferred source facial expressions to a target character by finding
similar frames in a video of the target’s face. Zhou et al. [2010]
reshaped a human body in one image based on user interaction.
Jain et al. [2010] edited body shape in video sequences. All these
approaches deliver realistic novel image or video footage, but none
produce new camera views and new motions different from the in-
put. In Hornung et al.’s [2007] work, a person in a single picture
is animated by fitting to it a kinematic skeleton, and warping the
image based on motion capture data. Viewpoint and texture cannot
be changed. Cobzas et al. [2002] synthesized non-rigid motions of
a moving arm by learning dynamic texture from multiple images.
However, full body motion and varying viewpoints are not consid-
ered.

The video textures concept [Schödl et al. 2000] is also related to our
work. The original idea is to analyze video sequences for possible

transitions between any two frames. A new video can be assembled
by rearranging the video frames and passing through transitions in
a random order. As an extension, Schödl and Essa [2002] built
a motion graph of input video sequences and use repeated sub-
sequence replacement to support the control of transitions by users.
Applying video textures to synthesize new videos of moving hu-
mans is challenging since identifying correct transitions without
any knowledge of 3D pose and shape is difficult. Celly and Zor-
dan [2004] took on that challenge by identifying transition regions
between a restricted set of filmed human motions and performing
purely image-based warping at transitions. Mori et al. [2004] fol-
lowed a similar strategy but manually marked skeletons on images
to support the creation of correct transitions. Flagg et al. [2009]
used marker-based motion capture on the video footage to build
a motion graph structure for synthesizing new footage. All these
methods use some form of internal motion graph, i.e., they create
new motion by re-ordering entire sub-sequences of specific input
motions such as walking, jogging, or running. In other words, no
novel motions can be synthesized and viewpoint changes are not
feasible. The work by Starck et al. [2005] extends some of the
above ideas to 3D video sequences, i.e., it creates a motion graph
based on shape-from-silhouette meshes and textures reconstructed
from multi-view video. For a few basic motion types, 3D blends are
pre-computed. This enables creating new animations by concate-
nating the basic motions through the transitions. Similarly, Huang
et al. [2009] built a motion graph to transition between 3D meshes
reconstructed from a handful of multi-view video sequences show-
ing basic motions. New 3D mesh sequences can be concatenated
from the original mesh sequences. However, new sequences are
restricted to the space of basic motions in the database, and texture
synthesis is not considered. In contrast, our approach can synthe-
size new motions and textures even if none of the poses and camera
views are part of the database.

When creating textures for the frames of a target animation we need
to warp textures from the input video frames both across pose and
viewpoints. One way of synthesizing textures in novel views or
poses would be to use some form of projective texturing and blend-
ing, e.g., [Debevec et al. 1996; Narayanan et al. 1998; Buehler et al.
2001; Carranza et al. 2003; Cheung 2003; Hornung and Kobbelt
2009]. However, these approaches are known to produce texture
ghosting when there are even the slightest of inaccuracies in scene
geometry. For our work this is even more of an issue since we
perform texture transfer across view and model pose. An alterna-
tive to texturing approaches are view synthesis methods that warp
the source images into the target view using image-based corre-
spondences, sometimes supported by a 3D scene model [Einarsson
et al. 2006; Stich et al. 2008]. Warping approaches often prevent
ghosting artifacts even if none or only approximate scene geometry
is at hand. Ballan et al. [2010] used a billboard to transition from
one video sequence to another at some optimized temporal frame
using a warping approach without considering human geometry.
Thus, we use an image-based warping method guided by our re-
constructed performance models to warp textures across pose and
viewpoint.

3 System Overview

Input to our system is a user-defined query: a skeletal animation
seen from a user-defined camera, corresponding to a rigged surface
mesh of an actor. The posed mesh in each animation time step
is used to retrieve appropriate images from our multi-view video
database of the captured actor in order to synthesize a realistic, an-
imated output video (Fig. 2).
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Figure 2: Overview. The system maintains a database of multi-view video sequences of an actor performing simple motions. Skeleton motion
and surface geometry were captured for each sequence using marker-less performance capture. The user is given a skeleton and surface
mesh model of an actor. By specifying skeletal motion and camera settings, he can create a query animation. Our algorithm synthesizes a
photo-realistic video of the actor performing the user-designed animation by selecting appropriate poses and their respective images from
the database and warping these images to the target view.

Database To guarantee sufficient images for synthesizing novel
pose and viewpoint, we capture multi-view images of a charac-
ter performing various basic motions. We call these database se-
quences, containing database frames. We then perform a skeleton-
based performance capture algorithm [Gall et al. 2009] on the
database sequences to obtain a 3D bone skeleton and a deformed
mesh surface for each database frame. The obtained skeletons and
meshes form the database skeletons and database meshes. The
database sequences only need to be acquired and tracked once to
synthesize novel target animations of the same character.

Query The skeleton and rigged surface mesh of the actor, or body
model, is presented to the user for creating an animation. The user
can also animate the camera to synthesize video sequences from
novel viewpoints. For creation of a target animation, henceforth
called a query, the user can employ any standard 3D animation
package that supports character animation. Once the query is cre-
ated, we deform the mesh surface of the character according to the
skeleton. After that, for each query frame we have a query skeleton,
a query camera and a query mesh. The same mesh and skeleton
models of the actor are used to specify the queries and to capture
the database performances.

Retrieval In this step we find appropriate images for synthesizing
each target frame in our final output sequence (a so-called target
sequence, frames of which are called target frames). We define a
similarity to measure the distance between a database frame and
a query frame from joint and camera positions. We find database
frames matching the whole query sequence with this similarity, and
call them source frames.

Warping-based Synthesis We synthesize the target sequence
with the retrieval results. In this step, image-based warping adjusts
the pose of the source character and the viewpoint of the source
camera to satisfy the query. This is necessary as our database
frames are not exactly the same as our target frames. We use vertex
correspondence between the query mesh and the database mesh to
guide the warping. By using the projected vertex correspondences
in the image domain, the proposed warping method warps source
images to obtain the final target sequence.

4 Multi-view Database and Motion Query

We first capture an actor performing multiple basic motions in our
multi-view capture system. Our system has 12 synchronized and
calibrated video cameras that capture the actor from different view-
points at 45 fps with a frame resolution of 1296× 972 pixels. Our
basic motions are walking, running, jumping, kicking, punching,
rolling, twisting and waving sequences. The database could be ex-
tended by adding more complex motions; however, we found that

these basic motion types were enough to realistically synthesize a
range of complex input animations. We found it unnecessary to
design database motions such that the range of poses is maximized.
To acquire sufficient view-dependent information, each basic mo-
tion is performed several times facing different directions.

After acquiring multi-view video sequences, skeleton-based
marker-less performance capture [Gall et al. 2009] is applied
to all captured sequences. This method requires an initial mesh
surface of the captured character and a corresponding skeleton. The
initial mesh surface is obtained by a static full-body laser scan. The
resolution of the mesh surface is low, containing only 5000 vertices
for one human character. The underlying skeleton of the mesh is
created by manually marking joint positions. We use a skeleton
with 16 joints as shown in Fig. 2. The skinning weight between
each mesh vertex and each skeleton joint is calculated using the
method of [Baran and Popovic 2007]. Motion tracking provides a
skeleton and a mesh surface for the actor for each database frame.
The skeletons, models, and captured multi-view sequences will be
used in the following steps. The same skeleton and surface model
are provided to the user to create new queries.

A query sequence is a user defined sequence that specifies the target
video sequence using the same skeleton and mesh model as are in
the database (Fig. 3, top row). It comprises a query skeleton se-
quence which defines the pose of the character at all time instances
and a query camera sequence which specifies the camera param-
eters. The skeleton motion is used to animate the surface mesh
from the query camera view. Animation tools allow the whole ani-
mation sequence to be defined, including key frame-based skeletal
animation and camera motion. Alternatively, motion retargeting
techniques [Gleicher 1998] can apply motion capture data from ex-
isting databases to the given skeleton, and match-moving software
can extract camera paths from background videos, e.g., Voodoo1.

5 Retrieval

In this step we take the query sequence and perform a database
retrieval to find source frames for synthesis. The retrieved source
frames need to contain enough information to synthesize the target
frame. Our retrieval method accounts for pose and view similarity,
and temporal consistency.

We base our retrieval method on the following observations: Ren-
dering the target animation with a static texture creates implausible
results as the natural expected motion and appearance changes on
the surface of the character are not reproduced, see Sec. 7. It is cru-
cial that the target animation features a spatio-temporally coherent

1 http://www.digilab.uni-hannover.de/docs/manual.html
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Figure 3: Illustration of finding matching candidate sequences using ` = 2. This figure shows 4 candidate frames for each query skeleton.
Here SX-CY-TZ denotes the image frame from sequence X, camera view Y and time index Z. Candidate sequences are color-coded. No
sequence of suitable length can be found for query frame 10.

time-varying textural appearance that shows plausible dynamics for
the given pose sequence and as little spatial and temporal aliasing
as possible. Thus, the first goal is to find a plausible texture for
each query pose. It is clear that for most poses and camera views
in the query sequence we will not find an exact matching frame in
the database. However, in most cases the appearance of the surface
in a database frame will be very similar to the desired target if the
camera angle and posture in the database are close to the query.
The appearance is also influenced by lighting differences, but most
of these can be equalized through color-based post-processing, as
described in Sec. 6. The second goal is to favor temporally coher-
ent texture patterns from the database rather than rapidly switching
between database frames that are not temporally adjacent. This
leads to naturally evolving and temporally coherent surface detail
motion. The two goals are often conflicting, and the retrieval and
synthesis strategy should find a balance that leads to high-fidelity
output. In designing the best retrieval strategy we can capitalize
on additional qualitative observations, such as that texture patterns
usually change more rapidly if the motion in the scene is very fast.
In the following paragraphs we describe how we translate the above
concepts into a practical retrieval algorithm.

We need a frame-to-frame distance metric that measures the simi-
larity between a query frame and a database frame (Sec. 5.1). To
guarantee temporal consistency in the output, we prefer to find
sub-sequences in the database in which every frame is sequentially
matched to a query sub-sequence. We call this step sequence-to-
sequence matching (Sec. 5.2). Matching only individual frames
would often lead to temporal flickering artifacts in the result.

Sequence-to-sequence matching can only be established when there
are some sub-sequences in the database similar to the query. How-
ever, as we use a database which contains only a handful of basic
motion sequences to synthesize all possible motions, this similarity
is difficult to guarantee. Therefore, we also allow the algorithm to
fall back to frame-to-sequence matching, i.e., matching successive
query frames to a single common database frame if no appropri-
ate sequence-to-sequence match can be found (Sec. 5.3). The face
region undergoes special processing, as we explain in Sec. 5.4.

5.1 Frame-to-frame Distance Metric

Let us first define a frame-to-frame distance metric which we will
then extend to find sequence-to-sequence matches. Our distance
definition is based on pose and camera differences. Both the tracked
database skeletons and the query skeletons are first registered to the
same world coordinate system by translating all root joints to the
same 3D position and rotating all skeletons to face to the same di-
rection. The camera is moved using the same global transformation
as the skeleton in each frame to preserve its relative position and
orientation to the skeleton. Given two frames, Fq from the query
and Fd from the database, we first measure the camera difference:

Dcam(Cq,Cd) =
√

(Cq − Cd)2 (1)

between the registered camera centers C in the registered query and
database frame. Considering that all cameras are facing the actor
at similar distances, this is a reasonable measurement. We also
measure the skeletal distance:

Dskel(Sq,Sd) =

√√√√ 16

∑
j=1

(S j
q − S j

d)
2

σ
2
j

(2)

where S j
q is the position of the j-th joint of the skeleton in Fq (and

S j
d for Fd) and σ j is the variance of the position of joint j in the

database. We weight the individual joint position distances accord-
ing to the variance in 3D pose of the respective joint in the database.
Without such a weighting, joints that naturally undergo larger mo-
tions (such as joints towards the tips of end effectors like the wrist or
ankle joints) would dominate the distance measure when compared
to joints that are closer to the torso. We finally combine the two
distance measures:

D(Fq,Fd) = Dskel(Sq,Sd) + λ · Dcam(Cq,Cd) (3)

where λ weights the camera and joint-similarity contributions. In
practice, Dskel(Sq,Sd) and Dcam(Cq,Cd) are normalized, and we
set λ = 2 which we determined through experiments. Using this
distance measure, we search the database and collect the 100 best-
matching frames F c

d (c = 1 . . . 100) as candidates for synthesizing
the texture in each query image.

Ranking Candidates Our final aim is to synthesize a realistic
image for each query Fq, so we wish the chosen database frames to
contain as much information as possible. The measure D(·, ·) finds
similar poses and views reliably and very quickly, which is crucial
to ensure that overall retrieval run times are reasonable. However,
it is based on the assumption that pose and view similarity corre-
sponds to the amount of information available in a candidate frame.
While this assumption generally holds, the measure is not based
on candidate frame information content and does not allow for an
accurate ranking of candidates F c

d . Therefore, we have derived a
different measure to rank candidate frames F c

d . As described in
Sec. 4, we have a 3D model and camera parameters for each frame
in both the query and the database sequences. We use as a measure
a visibility score V (Fq,F c

d ), defined as the number of mesh facets
that are visible from both the view of the query and the view of the
tracked mesh of a database frame. While it may be possible to use
this visibility score to find the 100 best candidate frames as well
(instead of ranking them), it would be inefficient as only similar
poses and views are likely to contain reasonable matches.

5.2 Sequence-to-sequence Matching

After collecting the best-matching frames for the whole query se-
quence, we try to extend the matches to generate sequence-to-
sequence correspondence as follows: For each candidate of the first
query frame, we check whether its temporally successive frame in
the database is also a candidate of the second query frame. If so,



we link the later temporal candidate to the former candidate. This
process is continued to form a candidate sequence until no tempo-
rally consistent candidate can be found. In this case, we start a new
candidate sequence at the frame where the sequence is interrupted.
We repeat this for each candidate frame, building all possible can-
didate sequences Si which may cover different parts of the query
sequence and may have different lengths (see Fig. 3). The candidate
sequences can start at any point in the animation.

We now select the best candidate sequences by considering three
different factors. First, sequences should be as long as possible,
since short sequences cannot guarantee temporal consistency. Sec-
ond, the frames in a candidate sequence should be highly ranked
(among the best matching frames for each query frame), as the
ranking order corresponds to the similarity between the target frame
and the database frames. Third, the amount of motion in a se-
quence should be similar to the query sequence. This ensures that
the detailed surface motion (i.e., folds and wrinkles) does not vary
infrequently because a slow motion from the database was used to
synthesize a fast motion query sequence.

To describe the amount of motion, we define a motion energy be-
tween consecutive frames F I and F I+1 as:

Emotion
(

F I ,F I+1) = Dskel(SI ,SI+1), (4)

where SI represents the skeleton corresponding to frame F I . The
sum of motion energies in all frames in a sequence defines the
amount of motion in the sequence.

The combined score Λ(·) for a candidate sequence Si, is:

Λ(Si) = exp (−αdis · Edis(Si)− αrank · Rank(Si)− 1/L(Si)) , (5)

Edis (Si) = ∑
I∈Si

Emotion(F I
d ,F I+1

d )− ∑
I∈QSi

Emotion(F I
q ,F I+1

q ), (6)

Rank(Si) =
1

L(Si)
∑
I∈Si

Rank(F I
d ), (7)

where L(Si) is the number of frames in candidate sequence Si,
αdis and αrank weight the three factors and QSi is the query sub-
sequence corresponding to the candidate sequence Si. We usu-
ally set αEdis = minI∈QSi

1/Emotion(F I
q ,F I+1

q ) and αrank = 1
200 (200

is twice the number of candidates for a single query). This achieves
good performance in our experience. A candidate sequence will not
be used when its sequence length is smaller than a threshold ` (with
` = 10 for all our results) or its corresponding query sequence is
covered by another sequence element with a higher score. Accord-
ing to this mechanism, long sequence elements composed of high
ranking candidates and with similar amounts of motion to the query
will be chosen as the final matching result F match(I)

d for frames F I
q .

5.3 Frame-to-sequence Matching

After the sequence-to-sequence matching there may still be some
query frames with no matches, because all candidate sequences
were less than ` frames long. For example, the 10th query in
Fig. 3 is a frame with no match. If the query sequence motion
and viewpoint is quite different from the database then the number
of unmatched query frames may be large. In this step, we ensure
consistent matches are found from the 100 candidate frames. We
could reduce the length ` to guarantee no unmatched query frames.
However, this would introduce many short sequences to the result
and so add temporal jitter (see Sec. 7 validation II).

For an unmatched query sub-sequence, F U1
q to F U2

q , we could sim-

ply find the top ranked candidate F best(U)
d for each query frame F U

q

(U ∈ [U1,U2]) as F match(U)
d . However, top candidates may change

frequently in a sub-sequence and therefore cause considerable tem-
poral jittering in the final synthesized sequence (see user study,
Sec. 7). Considering that consecutive frames in a query sequence
are likely to change slowly, we instead use the single best database
frame for as many consecutive query frames as possible. Here, we
trade reduced texture motion (moving cloth folds) in the synthe-
sized result for reduced temporal jitter.

Given that for frame F J
q (initially J = U1) we have found the best

matching database frame F best(J)
d , we must decide how many con-

secutive query frames F J+n
q can use this database frame match. We

apply insight as before: The query sequence parts with fast motion
will require more database frames to represent them. Conversely,
slow motions will require fewer frames. With this observation, we
keep the best database frame F best(J)

d until the visibility score be-
tween the current query frame F J+n

q and the database frame falls
below a threshold:

V (F J+n
q ,F best(J)

d ) < θvis. (8)

This threshold is based on accumulated motion energy over consec-
utive frames:

θvis = 0.9 ·V (F J+n
q ,F best(J+n)

d ) · exp(
J+n−1

∑
I=J

αmot ·Emotion
(

F I
q ,F I+1

q

)
),

We require an increasingly large visibility score as the number of
frames increases (we set αmot = αdis/200). This ensures that for fast
motions we switch to the current best candidate F best(J+n)

d quickly
and a transition occurs.

5.4 Retrieval for Face Region

The described pipeline retrieves database entries for the whole
body except for the head. The head is processed separately
by a simplified version of the retrieval pipeline. The com-
plete pipeline retrieves enough information to reconstruct complete
spatio-temporally coherent target views (see Sec. 6), which is es-
sential for the body region. The quality criteria for the head is
slightly different. Since human perception is tuned to recognize
faces, any form of visual discontinuity in the rendered target face
would be highly disturbing (such as a visible seam across the face).
Spatial coherence is significantly more relevant here, and other
forms of small errors such as missing texture are less visually ob-
jectionable. We do not use the full retrieval pipeline because even
subtle errors in tracked head poses in the database lead to starkly
visible discontinuities when several source images are combined to
form the target face. Instead, in each query frame we find the single
best database frame F head

d from which to copy over the entire head
texture. Since we want to copy the face region from a database
frame where the face is completely visible, we choose the frame for
which the visibility score V between target face facets and database
face facets is highest. Similar to Sec. 5.3, we use the same F head

d for
as many subsequent query frames as possible.

6 Warping-based Video Synthesis

We now want to synthesize a realistic image for each of the target
frames. After retrieval (for the body), we have the best matching
frame F match

d from the database (and the corresponding camera view
and pose / surface mesh as seen from that camera) for every query
frame Fq of the target sequence (and the query mesh and query
camera at every time step). In addition, we also employ the frames
F k

d (k ∈ Cd \ {match}, Cd being the set of database camera views)
from all other camera views onto the same database pose. For every
query frame, we also have the single best matching frame F head

d for
synthesizing the head texture in the target view. For every query
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Figure 4: (a) Surface mesh of a person used in query and database.
(b) Vertices of the model that are used as MLS warping constraints.
(c) Vertices are labeled according to the body part upon which they
lie (color=label). In MLS warping each vertex only affects the
appearance of the respective body part, except for the boundary
regions between body parts where warps are blended.

frame, we also synthesize an initial guess for the appearance of
the target frame by projectively texturing the query mesh with a
static surface texture taken from all camera views at the first time
step in the database, henceforth called F static

d . The final texture for
the query frame is then synthesized by model-guided warping of
texture information from the best matching database frames to the
target. In practice, we first synthesize the target view for the head,
and subsequently for the rest of the body (Fig. 5).

For the head, only a single source image F head
d is warped. In the

case of the body, frame F match
d contains most of the texture informa-

tion needed to synthesize the target texture. However, due to slight
pose and camera differences between database and target, we warp
additional image data F k

d to the target and blend with the existing
result (Fig. 5). If any holes remain we blend with F static

d . Image-
based warping with this data creates complete target textures even
with visibility differences, completely invisible regions and geom-
etry inaccuracies in the query and database meshes.

We capitalize on the fact that we are given the same surface mesh in
both the query and database poses (i.e., the same connectivity but
different poses). We use vertex correspondences between image
projections of the same vertex in the source and target to determine
the warp. Using these correspondences as guidance, we use moving
least square (MLS) [Schaefer et al. 2006] to obtain corresponding
pixels in the source frame for all pixels in the target frame; i.e., to
calculate motions of pixels between source and target frame.

MLS warping weights every pixel neighborhood in an image
equally, and thus through a local coherence assumption creates
smoothly interpolated warps even if actual warping constraints are
sparser than the pixel grid (see Fig. 4(b)). In some regions, such as
at occlusion boundaries between different parts of the body (e.g.,
an arm in front of the torso) this smooth interpolation may be
unwanted. However, if two neighboring body parts are actually
connected, the warp should be smooth. The problem is that the
original MLS method is agnostic to scene geometry. Therefore, we
develop a strategy to enable smooth warping where it is wanted and
to prevent it across occlusion edges. First, we group human body
pixels into 16 segments based on the body part information of the
query 3D mesh (see Fig. 4(c)). The motions of pixels in each body
part are computed only from vertex correspondences in the same
body part. For every pixel lying on the boundary between con-
nected body parts A and B, we compute two warp hypothesis: one
under the assumption that it belongs to A, and one that it belongs to
B. The final warp is computed by weighted blending according to
the distance to the body part boundary. Finally, we warp the source
frame to the target. There are specific implementation details which

Warping

Figure 5: Step-by-step warping-based synthesis of the result using
MLS. First row: source frames used in warping (F match

d and F k
d ).

Second row: results after warping the respective frame (above) to
the target. Holes in the target view (blue) are continuously filled
in.

need to be addressed during the warping, and these are described in
the following paragraphs.

Missing Regions The best-matching database frame F match
d does

not usually contain all the information required to synthesize the
target frame, and missing regions may occur in the target image
after warping. As a consequence, F k

d are also used in our warping
process. The warping algorithm performed on these frames is the
same as the warping of F match

d . However, only missing pixels in
the target frames are considered for warping. A complete target
image is obtained after spatial blending of the warping results from
different images. This procedure is shown in Fig. 5. Any pixel to
which the query mesh projects that is still untextured after all warps
is colored from the statically textured result F static

d using Poisson
image blending for compositing.

Ghosting Due to small inaccuracies in the tracked 3D mesh, its
projection will never align exactly with the database frames, and
pixels may be matched with incorrect body parts. These mis-
matches will lead to ghosting artifacts (see Fig. 6(b)).

We detect the occurrence of these artifacts using depth informa-
tion. Ghosting in the target frame is likely to originate from areas
around depth discontinuities in the database frame. In these re-
gions, occlusion boundaries may not be correctly represented by
the 3D geometry, e.g., pixels on an arm may be treated as pixels on
the torso and warped to torso pixels in the target frame. Based on
this observation, we first define occlusion boundaries in database
frames by analyzing depth discontinuities. We then ignore pixels
near occlusion boundaries in the warping procedure. Detecting
depth discontinuities alone is not sufficient since the depth differ-
ence may be very small if the arm is close to the body, but ghosting
may still occur. Thus, we ignore pixels if they are close to a depth
and body part label discontinuity. Consequently, all pixels used are
far from occlusion boundaries and have correct body part labels,
and ghosting artifacts are eliminated from our final results.

Temporal Jumps Noticeable temporal jumps in appearance can
occur when consecutive target images are synthesized from very
different database images. While we ensure that this happens as
little as possible (see Sec. 5), it can still occur. We overcome this
problem by temporally blending between consecutive sequences
Sr, Ss. Namely, each target frame is synthesized twice from two
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Figure 6: Ghosting is minimized by ignoring pixels near depth dis-
continuities in the database frame. (a) the best matching database
frame F match

d – ignored pixels are shown in red. (b,c) are the warp-
ing results from F match

d without and with the deghosting method.
(d,e) are the final results corresponding to (b) and (c).

different candidate sequences. A smooth transition is achieved by
blending the two results (after spatial alignment with optical flow),
weighted by their distances to the centers of the two sequences (see
Fig. 7). The time duration of the blend can be adjusted to suit each
sequence (see Sec. 7). Temporal blending is only triggered for seg-
ments of the target animation for which candidate sequences in the
database were found.

Lighting Adjustment When compositing a target image,
database frames are warped and combined into a single view
that may exhibit noticeable lighting changes. To compensate, we
color adjust warped frames to the already existing target texture
by means of a linear color transform. Since the new texture to
be warped will usually have some overlap with the existing target
texture, this transform can be estimated from overlapping regions.

Color adjustment also needs to be applied over time. During a
transition from one target frame to another, whenever a transition
happens to a new best matching database sequence a similar color
adjustment is computed to match the new database sequence to the
color of the previous target frame.

7 Results

We have evaluated our approach with three actor databases: a male
wearing a black t-shirt with a logo pattern and jeans (s1, Fig. 8 top),
a male subject wearing a blue t-shirt with a strongly textured logo
and normal pants (s2, Fig. 8 bottom), and a female subject wearing
a red sweater and normal pants (s3, Fig. 8 middle). For each subject
we recorded a database of 10 multi-view video sequences, each one
showing a basic motion such as walking, running, punching (one
hand punch, two hand punch, up-down punch, left-right punch),
jumping (one foot and two feet) or waving. Please refer to the
supplemental video for a visualization. The database sequences are
between 400 and 1000 frames long. Skeleton and mesh motion
for each sequence were captured with the camera system and the
algorithm described in Sec. 4. Also, as described in that section,
we create a skeleton model and a laser scan of each subject and rig
the skeleton to the latter.

We use 8 different skeleton motion sequences as queries. Six of
these were captured with the marker-less capture system (but are
not part of the multi-view database): KungFu, Fight1, Fight2,
March, Run1, and Run2. We also use two skeletal motion se-
quences that we downloaded from an online motion capture repos-
itory2: MJDance and Catwalk. These sequences are between 600
and 1000 frames long. All motions are quite different from the

2 http://mocap.cs.cmu.edu/

Results

Transition

Figure 7: We avoid temporal appearance jumps by smoothly blend-
ing between two consecutive sequences Sr (top) and Ss (bottom).
Red and blue are used to color-code respective blending weights
used for the final result in the middle.

contents of the databases. Using these data, we created 13 new
video animations by applying the query motions to the different
subjects, and by specifying different camera paths. In the paper
and the video we will refer to a synthesized sequence by the name
s_m_c, meaning subject s performing motion m seen from camera
c. We used Autodesk MayaTM to set up cameras and preview the
queries, and also used the built-in retargeting tool if the motion data
came from a different subject than the one in the target animation.
The size of the synthesized characters in our sequences varied from
80× 220 to 400× 600 pixels.

The figures in the paper and the accompanying video show a variety
of synthesized animations. In addition to the synthesized character,
we also render synthetic shadows in the background using the 3D
model from the target animation and 8 light sources.

In all results, the appearance of the final video result looks plau-
sible since the motions and the dynamic textural appearance are
synthesized in a realistic and spatio-temporally coherent way. In se-
quences s2_March_c9 and s2_MJWalk_c6 one can see that plau-
sible coherent patterns of folds are created on the clothes, and the
dynamics of the texture patterns reflects the dynamics of the overall
character motion.

We also successfully synthesized the same target motion from two
different camera views (s3_Catwalk_c7 and s3_Catwalk_c8, as
well as s1_Run1_c2 and s1_Run1_c3) showing the flexibility and
freedom in animation synthesis that our approach provides. Simi-
larly, we can generate in high quality the same target motion from
the same camera view for two different characters (s1_Kungfu_c5
and s3_Kungfu_c5).

The video and Fig. 1 also show a composite of the sequence
s3_Catwalk_c11 with a real background. Camera c11 was tracked
with a commercial camera tracker and shadows of the person on the
ground were rendered in Maya. The final result looks convincing
and demonstrates that it is feasible to insert video-based animations
with user-designed motions into real videos.

Our approach also succeeds if the frame rates of target animation
and database videos are not the same, but equal frame rates allevi-
ates some problems. Tracking accuracies of the database sequences
may vary, and thus some parameters of the method may need ad-
justment: for instance, the number of pixels around depth discon-
tinuities that are ignored for ghosting removal (4 for s2 and 8 for
other subjects); also, the temporal window in which transitions are
blended varies between 6 and 10 frames.

User Study We performed a user study with 32 participants to
validate the visual fidelity of our synthesized video animations.



Each of the participants was shown a web page containing four
videos: one (video B) was a real video recorded in our studio, while
the other three videos were generated all from the same camera
view with our system. To generate these animations, a test se-
quence, s1_Run2_i2, was recorded in our studio, which was not
part of the database used for synthesis. We then use the captured
performance of that sequence from one of the input camera views,
i2, as query to synthesize new results. For the synthetic sequences
we created synthetic shadows and composited the results with a
background frame of the empty studio to match the background
of the real video. Video C was synthesized by applying a static
projective texture to the model (F static

d from Sec. 6). Video A uses
the best matching database frame (according to the visibility score
from Sec. 5.1) plus six closest camera views from the same database
sequence at the same time step to synthesize each target frame in-
dependently. Video D shows the result of our full pipeline.

In the first experiment, participants were asked to evaluate how real-
istic and convincing the character in each video looks with respect
to its motion and appearance on a scale from 1 (very realistic) to
5 (not realistic at all). All participants correctly identified video B
showing the real footage as the most realistic character with average
score 1.4. Our result was ranked as second best (video D: 3.1), and
is clearly preferred over the static texture (video C: 4.15) and the
best match per frame of animation (video D: 4.12). This result is
statistically significant with a one-way ANOVA p-value < 0.01. A
similar result was achieved in our second experiment, where we
asked the subjects to rank the videos according to realism (1=most
realistic, 4=least realistic). All subjects ranked the real sequence
(video B) highest. 66% of the subjects ranked our result (video D)
as the second most realistic character.

Validation The user study confirms that all components of the
retrieval and rendering pipelines are crucial to the success of our
method. Not surprisingly, the user study shows that using a static
texture for creating the final video is not considered plausible, as
any variation of surface appearance characteristic of real videos is
missing entirely. Using the best matching database frames at each
query frame independently does not take spatio-temporal coherence
into account and leads to objectionable high-frequency brightness
variations and incoherent texture patterns. Thus, retrieval of match-
ing sequences is an important feature.

A crucial rendering component is temporal blending at sequence
transitions, as a comparison on sequence s1_Run2_i2 (labeled val-
idation I in the second supplementary video) shows. We show our
full pipeline versus the pipeline without temporal blending. The
video without blending contains objectionable jumps.

Another comparison on s1_Run2_i2 (labeled validation II in sec-
ond supplemental video) shows that simply lowering parameter `
(see Sec. 5.3) to minimize the number of frames not matched to
a candidate sequence from the database is not advisable. As op-
posed to our method, the latter strategy creates too many temporal
artifacts. This is why we resorted to the best frame matching from
Sec. 5.3 only as a last resort after as-long-as-possible sequences
from the database were matched. In all our experiments, the ratio
of the target frames from frame-to-sequence matching to the target
frames from sequence-to-sequence matching ranged from 1:9.99 to
1:2.39.

Fig. 6 shows that deghosting is key to achieving plausible results.
It effectively removes artifacts stemming from subtle geometry-to-
image misalignments that would otherwise spoil the impression.

Timings We evaluated our method on an Intel Core 2 with 2.66
GHz. The skeleton is manually embedded in the mesh for each
character which takes around 5 minutes. This is the only manual

processing step in our pipeline (apart from generating query anima-
tions and viewpoints), and it only needs to be performed once for
each actor. The database tracking takes around 10s per multi-view
video time step and needs to be performed only once for each actor
database. Given a database and a target animation, synthesizing the
output video takes between 40s and 50s per frame. This includes
neighbor search (about 10s per frame), and warping+composition
(about 30s per frame). Per-frame run times are mostly dependent on
the resolution of the person in the target frame, as well as the num-
ber of frames for which temporal blending is triggered. All steps
are performed automatically without any user intervention. Manual
intervention is possible to inspect results and rerun computations
with changed parameters if desired.

7.1 Discussion

Even though we cannot guarantee that our final results look exactly
like the real person performing a specified motion, our results are
plausible. Our textures are spatio-temporally coherent, exhibit little
aliasing, and reproduce plausible time-varying appearance patterns
that match the dynamics of the target motion. This enable us to
convey a very realistic impression of a real person.

Our approach is subject to limitations. To a certain extent, the qual-
ity of the final results depends on the performance capture accuracy
of the database. As a specific example, even subtle inaccuracies in
tracked head pose sometimes lead to artifacts in the final warping
result. These artifacts could be mitigated through an improved pose
tracking of the head, or through optional manual correction of the
pose in the database.

Currently, we do not demonstrate results with people wearing loose
apparel, but we believe this is feasible. The performance capture
approach could track such database sequences, but we would need
to identify cloth on the body model and simulate its motion when
generating the query. The latter is a challenging problem in itself.
[Stoll et al. 2010] show an approach to identify cloth in 3D per-
formances and simulate new motions, and combining it with our
approach may be an avenue worth taking.

Our method is geared towards minimizing objectionable spatial
and temporal artifacts. However, they cannot be entirely pre-
vented. Sometimes the result videos have subtle brightness vari-
ations in some regions, which are due to lighting differences be-
tween database frames. Our strategy to minimize these artifacts is
to create uniform lighting in the database recording environment.
In future, more advanced lighting adjustment strategies could be
researched. Some subtle implausible texture shifting is due to non-
optimal skinning of the model. In professional productions, it is
very common that skinning weights are adjusted for every anima-
tion sequence individually. For time reasons we did not do this, and
some artifacts may be lessened by this.

While we can synthesize previously unseen motions, the synthe-
sized animations may contain artifacts if the query motion is too
dissimilar to all database motions. In this case, one should augment
the database with additional sequences closer to the query. How-
ever, our examples suggest that with a database of moderate size, a
decent range of cameras and motions can be generated.

Finally, we purposefully decided to use an image-based MLS warp-
ing scheme to synthesize the final video rather than a projective
texturing variant. A purely image-based warping scheme concep-
tually provides more flexibility. For instance, with MLS warping it
is possible to warp pixel information to the target from areas close
to the projected model boundaries, even if they fall outside of the
projected model in the database frames. This way, inaccuracies in
the shape model will be less noticeable in the target image. Also,



Figure 8: Individual frames from several of our result videos for actors s1 (top), s3 (middle), and s2 (bottom). The inlays show the respective
query skeleton poses used to synthesize the target frame.

the warping scheme gives us more control over how many warp-
ing constraints to use in target texture generation and we expect
the result to be smoother in the target for a large range of triangle
mesh resolutions. However, in principle it is feasible to implement
source-to-target frame warping with projective texturing.

8 Conclusion

We have presented a new data-driven approach for image-based
synthesis of realistic video animations containing user-defined hu-
man motions seen from user-defined camera views. One key com-
ponent of our approach is a retrieval algorithm to find suitable
images for synthesis of target textures from a multi-view video
database of simple motions. Our approach exploits skeleton and
shape knowledge for each input sequence, obtained via marker-less
performance capture. The retrieval component is designed to as-
semble spatio-temporally coherent texture patterns in the target that
are plausible depictions of the actor performing the user-designed
motion. An image-base warping approach composites the textural
appearance in the target frame and is designed to minimize temporal
and spatial appearance artifacts, as well as lighting mismatches and
ghosting. We have demonstrated the success of our method with
numerous examples and validated it with a user study.
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