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c Consequences of metabolic theory and resource dynamics on life history traits.
c Individual-based model using allometric scaling of metabolic rates with body mass.
c Individuals using more faster growing resources have shorter lifespans.
c Adult body mass increases unlimited resembling Copes rule.
c Other factors than allometric scaling keep the evolution of body mass in limits.
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a b s t r a c t

We explore the consequences of metabolic theory for life histories and life history evolution. We use a

mathematical model for an iteroparous species and its resources, taking into account the allometric

scaling of consumption, metabolism, and mortality with consumer body mass. Mortality is assumed to

be density-dependent, and the dynamics of resources are modeled explicitly. By evaluating life history

features in equilibrium populations, we find that in populations that use more or faster growing

resources the individuals have a shorter lifespan and a higher mortality, and that individuals in

populations with a larger adult body mass have a longer lifespan, a larger number of offspring per

female, and a higher biomass density. When we allow the adult body mass to evolve, it increases in

time without limits. When we allow the offspring body mass to evolve independently from adult body

mass, it becomes smaller. However, when we take into account that larger individuals have larger

offspring, both body masses evolve to larger values. These trends result from the allometric scaling of

mortality and can be kept in limits by trade-offs other than those included in our model.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The life history of an organism is affected by trade-offs that are
due to a limited energy budget. There are for instance trade-offs
between growth in body mass and reproduction, between off-
spring number and offspring mass, between reproduction and
survival and health, and between present and future reproduction
(Stearns, 1992). It is generally believed that life histories are
shaped by evolution such that they optimize the population
growth rate. The central equation used to determine the
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maximum growth rate r is the Euler–Lotka equation (Euler,
1760; Lotka, 1907)

X
X

e�rX lðXÞmðXÞ ¼ 1, ð1Þ

where X denotes the age class; l(X) is the probability that a
newborn individual survives at least to the beginning of age class
X, and m(X) is the average clutch size of individuals in age class X.
For stationary populations that have reached their carrying
capacity, the growth rate is r¼0, and the average number of
offspring that reach maturity is 1 per individual.

The main challenge in life history theory consists in obtaining
realistic estimates of the functions l(X) and m(X), or, equivalently,
of the elements of the so-called Leslie matrix (Leslie, 1945).
Usually, they are postulated on the basis of plausible scenarios
and empirical knowledge.
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Recently, it has been emphasized that metabolic theory has
profound implications on the evolution of life histories (Brown and
Sibly, 2006). Larger organisms have a lower rate of production per
unit body mass, and they have a lower mortality (Ernest et al., 2003;
Brown et al., 2004). Also, metabolic theory has been used to explore
consequences for population-level processes, such as the intrinsic rate
of exponential growth and carrying capacity (Savage et al., 2004), as
well as population interactions, such as predation (Weitz and Levin,
2006). Recently, metabolic theory has been included in food web
models (Rall et al., 2008; Berlow et al., 2009). However, studies
investigating life history evolution in context of metabolic theory
typically explore scaling relationships of life history traits such as
those between age at maturity and body mass (Charnov and Gillooly,
2004). Here we take another approach by using individual based
modeling of the dynamics of consumers and their resources, and
incorporate metabolic theory to explore the power of the theory to
predict life history attributes, such as adult body size and age at
maturity. A similar approach has been used by Kawecki (1993), who
considers consumers exploiting resources in a patch with the
consumption rate and maintenance cost depending on body mass.
The consumers may adopt different strategies for investing in growth
and in offspring production. Which strategy has the highest fitness
depends on the total amount of resources in the patch and on the
other strategies present. This paper differs also in other respects from
the classical life history literature, since it includes explicit dynamics
and competition between different strategies, instead of performing
an optimization calculation. As has been pointed out by Stearns
(2000), approaches of this type to life history theory are very much
needed.

In this paper, we derive for the first time life history traits from
a full dynamical model for a consumer species and its resource,
taking into account metabolic theory, which determines the
scaling of consumption, metabolism and mortality with the body
mass of the consumer. The consumer population size is limited by
a density-dependent term, and consequently the population
becomes stationary after some time. We evaluate various life
history parameters in the stationary population. Furthermore, we
perform an evolutionary simulation by introducing into the
population individuals with a different body mass at maturity.
We find that body mass evolves towards larger values. This means
that Cope’s rule (Hone and Benton, 2005) follows from metabolic
theory alone, without need to take into account additional
advantages of larger body size such as the ability to exploit new
niches or to avoid predators more efficiently.

Our model is a minimal model insofar as it includes only the
mentioned ingredients, i.e., consumer–resource dynamics and
allometric scaling of consumption, metabolism, and mortality.
These effects are due to different metabolic rates, i.e., due to the
fact that the pace of life is slower for larger organisms. The model
does not consider other factors that depend on body size or age
and may therefore affect life histories, such as predation, aging,
and body-size restrictions due to physical and environmental
conditions, although we will discuss some of these effects. Our
results therefore tell what would be the case if only the factors
included in the model were at work. Surprisingly, already this
minimal, in several respects incomplete or unrealistic, model
reproduces various known features of life histories, while it is
admittedly unrealistic in other respects.
2. Model

Our model is an individual-based model for iteroparous
species. The dynamics of the body mass of each individual are
simulated explicitly. The size of the habitat is defined as unit area.
Hence, the biomass density of the population numerically equals
the total biomass of the population. After birth, individuals grow
due to consuming resources, they lose mass due to respiration,
and once a year they produce offspring if their body mass is above
a threshold value. The probability of dying depends on body mass
and density. Resources have a logistic growth, and they are
reduced due to consumption. Our consumer–resource model is
similar to the one used by Rall et al. (2008), which is based on the
work of Yodzis and Innes (1992) and is updated with new
allometric coefficients (Brown et al., 2004; Ernest et al., 2003).
Since an individual dies as a whole and not partially, mortality is
implemented as a probability for occasional death in our indivi-
dual-based model. Since including males makes no significant
difference apart from making the equation more complicated, we
consider only females, like in other treatments of life history
theory (Stearns, 1992).

The model is initiated with the resource biomass at the
carrying capacity, R¼ Kr. The body mass of resources is taken as
mass unit. Resources grow continuously according to the logistic
function with a maximum growth rate G and lose biomass due to
being eaten by consumer individuals

_R ¼ G 1�
R

Kr

� �
R�

X
i ¼ consumers

xieBiFðRÞ, ð2Þ

where the sum is taken over all consumer individuals. Consumer
individuals eat resources according to a Holling type II functional
response (Holling, 1959)

FðRÞ ¼
R=Kr

1þR=Kr
, ð3Þ

where the attack rate and the handling time are absorbed into the
parameters exi and Kr, so that our functional response is formally
the same as the Monod equation (Liu, 2007). The body mass Bi of
consumer i increases from the initial value Bjuvenile ¼ 1 due to
feeding and respiration according to the equation

_Bi ¼�xiBiþlxieBiFðRÞ: ð4Þ

The ecological efficiency l was chosen to be 0:4 (Turner, 1970),
and the maximum consumption rate e of the consumers relative
to their metabolic rate is a parameter of the model. The loss term
scales with body mass according to

xi ¼ aB�0:25
i : ð5Þ

The allometric constant a is chosen to be 0.314, which is a typical
value for consumers of resources with unit body mass (Rall et al.,
2008). Larger individuals need less energy per body mass for
metabolism. The parameters in the functional response are
chosen such that R=Kr cannot be close to 0 in the stationary state
of Eq. (2), which means that the resources are always exploited to
some extent. Otherwise, the consumers would not be able to
survive (if R=Kr was close to 0).

While we are aware of alternative approaches as to how attack
rates and handling times should scale with consumer and
resource body mass (Weitz and Levin, 2006), we chose here a
form that is also used by other authors in the food web literature
(Rall et al., 2008), and that has the attractive features that the
maximum ingestion rate scales with consumer body mass in the
same way as the metabolic rate and that the half-saturation
density of the functional response does not depend on consumer
body mass.

When an individual does not obtain enough food, its body
mass may drop below the minimum juvenile mass Bjuvenile, in
which case the individual is removed from the system.

A year has the duration t¼ 1. In order to efficiently implement
the mortality of individuals, each year is divided into 10 time
intervals of equal length, at the end of which every individual dies
with a probability pA ½0;1� depending on its body mass and the
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total biomass of all consumers in the system

p¼ 1�e�wi , with wi ¼
1

n

X
l ¼ consumers

Bl=B0:25
i : ð6Þ

This is the time-discrete version of a density-dependent mortal-
ity, such as for instance implemented by Kartascheff et al. (2010).
Larger individuals have a smaller probability of dying. A scaling of
mortality with B�0:25

i means that the dominant causes of death
affect the biomass of an age class in a similar way as metabolism
does. This type of scaling is widely accepted (Brown et al., 2004;
Charnov and Gillooly, 2004; Peters, 1983; Savage et al., 2003).

The parameter n is related to the maximum biomass imposed
by the limited space of the system. Its inverse, 1=n, specifies the
strength of mortality. Dead individuals are removed from the
system. Our model does not include a dependence of mortality on
age. This agrees with the widespread idea that most individuals
die of causes other than old age and that longevity is mainly
determined by extrinsic mortality, so that aging is due to late-
acting deleterious alleles that are not eliminated by natural
selection (see for instance Mueller, 1987). Although empirical
reality is more complex than this simple view (Williams et al.,
2006), our minimal model is appropriate as long as it can be
assumed that the majority of adults die due to extrinsic causes
and not due to old age. In fact, we will argue in more detail in the
discussion that including senescence into the model would not
affect the trends observed in the simulation results and would
therefore leave the main conclusions intact.

Once a year, reproduction takes place. We assume that a female is
sexually mature once it reaches the minimum adult body mass Badult.
Females with a body mass Bmother larger than Badult by at least twice
Bjuvenile produce

Bmother�Badult

2 � Bjuvenile
ð7Þ

offspring (rounded to an integer) with body mass Bjuvenile ¼ 1. Taking
into account parental care such as nursing and feeding, we estimate
the cost of each offspring to be twice Bjuvenile, therefore the body mass
of the mother due to offspring production is decreased by twice the
offspring body mass, 2Bjuvenile ¼ 2, for each child. The offspring body
mass Bjuvenile is the minimum juvenile body mass after parents have
stopped investing into their offspring, i.e. when the juveniles begin to
independently feed on resources.

In the following, we will explore the influence of the five
parameters e, G, Kr, n, and Badult on life history traits such as age at
maturity, mean generation time, expected life time, probability of
surviving from birth to beginning of age class X, expected number
of offspring for a female in age class X, and fecundity for a female
in age class X. Furthermore, we will explore the evolutionary
consequences of metabolic theory by studying the evolution of
minimum adult and juvenile body mass, Badult and Bjuvenile, within
this model.
3. Results

3.1. Influence of the parameter values on life history traits

After 200 years (200t in the simulations) the consumer
population has reached its equilibrium, i.e., it has obtained a
stationary age distribution, and the population size and the total
biomass remain approximately constant due to the density limit-
ing factor n. In order to obtain good statistics, the life history traits
were evaluated by averaging over two million years, 2� 106t.

Fig. 1 shows an example data set for the fecundity of a
female as a function of the age class X. Fecundity VX is defined
as the product of the expected number of offspring, mX, and the
probability of surviving from birth until reaching beginning of age
class X, lX. In our model only individuals with a body mass above
Badult can reproduce, therefore mX remains zero until reaching
maturity. Reproduction takes place once per year, and the clutch
size is determined by the mother’s body mass (Eq. (7)), which in
turn results from resource consumption and metabolism (Eq. (4)).
Therefore, mX is independent of age after maturity. Similarly,
mortality depends only on body mass and not on age in our
simple model. Naturally, lX decreases monotonously with age. It
follows that fecundity is zero until reaching maturity and is
thereafter identical to the product of lX with mX, with the latter
parameter being approximately constant. In the following, we
will explore in more detail the dependence of lX on the model
parameters.

The survival probability lX is closely related to mortality, which
depends on body mass but not on age (Eq. (6)). Since the body
mass of an individual remains approximately Badult after maturity,
mortality is approximately constant for adult individuals in an
equilibrium population. This means that the survival probability
lX decreases exponentially with age class X. This can be seen in
Fig. 2, where the logarithm of lX is perfectly linear once maturity
has been reached. Since population dynamics are at equilibrium,
the body mass of an individual grows within a population of
approximately constant total biomass from birth until reaching
maturity. Therefore, mortality decreases with age until reaching
maturity (Eq. (6)), and so does the slope of ln lX (Fig. 2).

Fig. 2 shows also that adult mortality decreases with decreas-
ing e, decreasing G, decreasing Kr, and increasing n. The decrease
with decreasing e or G or Kr is due to the fact that adults that
consume less resources produce less offspring, which in turn
means less competition from juveniles and therefore a longer
lifespan of the adults. The decrease in adult mortality with
increasing n has a similar reason: for larger n the total biomass
in the stationary population is larger, implying that every indivi-
dual obtains less food and produces fewer offspring.

Fig. 2(e) shows that the slope of ln lX above the age at maturity
is smaller for a population of larger adult body mass Badult. This is
to be expected since larger individuals have reduced mortality
rates. However, before maturity the slope is smaller for a
population of individuals of smaller adult body mass (see inset
of Fig. 2(e)). This means that adults with a smaller body mass are
less severe competitors for a juvenile. The reason for this is the
larger total biomass of a population with larger Badult, which
results from the fact that larger individuals have a slower
metabolism and can therefore maintain a larger biomass on the
same resources.
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We also examined the influence of the model variables on
other life history traits, such as the age at maturity a, the
generation time T, the expected lifespan LS, and the expected
number of offspring for a female in age class X, mX (Fig. 3).
We define the age at maturity as the age at which an individual
reaches a body mass of at least Badultþ2Bjuvenile, when it can
give birth to its first offspring. The expected number of off-
spring, mX, for a female in age class X, is zero until reaching
maturity, and is independent of age when the maturity has
been reached. We therefore dropped the index X from m in the
figure legend.

We have pointed out above that for larger Kr or e or G or a
smaller n, an adult consumes more resources and that the total
biomass and the mortality are larger. Therefore, the age at
maturity, a, the generation time, T, and the lifespan, LS, decrease
with increasing Kr or e or G, and with decreasing n. The generation
time is of course larger than the age at maturity (Fig. 3). The trend
of LS follows that of a, meaning that populations that mature late
live longer. For the same reason, the mean number of offspring
per female per year, m, increases with increasing Kr or e or G, and
with decreasing n. However, since the population is stationary,
the expected total number of offspring that will reach maturity
per female during her lifetime is identical to 1.

For sufficiently high resource growth rate, G, the curves
become constant, because the resource biomass is constrained
by its carrying capacity Kr (Eq. (2), Fig. 3). Changing the carrying
capacity has a similar effect as changing G. This can be understood
by rewriting Eq. (2) as a function of the ratio ~R � R=KrA ½0;1�:

_~R ¼ Gð1� ~RÞ ~R�
1

Kr

X
i ¼ consumers

aeB3=4
i

~R

1þ ~R
: ð8Þ

In this transformed equation, it is obvious that changing G and
changing Kr have the same effect on the stationary value of ~R.

The increase of the generation time T and the age at maturity a
with increasing Badult is due to the fact that it takes longer to grow
to a larger body mass at maturity. The increase of the mean
annual number of offspring per female m with increasing Badult

results from the larger food intake of larger individuals, and the
shorter lifespan is due to the larger juvenile mortality mentioned
earlier. As lX also increases with Badult (Fig. 2), the fecundity
VX ¼ lXm increases with body mass.
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In order to understand which of all the features reported so far
are due to the fact that mortality depends on density, we also
investigated the case where mortality is independent of density, i.e.,

wðdensity independentÞ
i ¼ mB�0:25

i , ð9Þ

with a new parameter m that plays a similar role as 1=n in Eq. (6).
One can also imagine mortality to depend on the sumP

ixBip
P

iB
0:75
i instead of the sum

P
iBi, a situation that is inter-

mediate between these two cases. When mortality is density inde-
pendent, the survival probability lX does not depend on G, e, and Kr. It
increases with decreasing m and increasing Badult. Since survival
probability is independent of G, Kr and e, the age structure of the
population is also independent of these parameters, as is the amount
of resources consumed per individual. Therefore, the generation time,
lifespan, age at maturity, and mean number of offspring per female
per year do not depend on these parameters either. The only change
that occurs when these parameters are increased is an increase in the
total population size. The fraction of available resource at equilibrium,
R=Kr, is kept at the same level with increasing G and Kr, while this
fraction significantly decreases with increasing e. For this reason, the
increase in population size with increasing e lasts only up to a certain
value, then the population size decreases as e increases further. When
m or Badult is changed, the trends of T, a, LS, and m are the same as in
the density-dependent case for changing 1=n or Badult. The mechan-
isms causing these trends remain the same.

However, the change of the equilibrium resource biomass R

with Badult is different in the two cases. When mortality is density
dependent, R increases with increasing Badult, while it decreases in
the density-independent case. In both cases, the total biomass
increases with increasing Badult. However, a density-dependent
mortality counteracts the increase of the total biomass by killing
more individuals when total biomass becomes larger. The result is
that the increase in total biomass is weaker than B0:25

adult (Eq. (6)),
which would be the increase required to obtain the same level of
resource exploitation as in the case with density-independent
mortality.

3.2. Evolution of body mass

All investigations reported so far were performed with a fixed
adult body mass Badult and a fixed minimum juvenile body mass
Bjuvenile. However, these two values are the result of evolutionary
processes, and on the long run those body masses will dominate
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that are the best ‘‘strategies’’ for dividing resources between
growth and offspring production. We performed three types of
computer simulations in order to study the evolution of these
body masses. In the first simulation, we allowed the adult body
mass to evolve, keeping the juvenile body mass fixed. In the
second simulation, we allowed the juvenile body mass to evolve,
keeping the adult body mass fixed. In the third simulation,
we evolved both body masses together. This was done by letting
a female with a body mass Bmother produce exactly one offspring
per year, investing all of its body mass above Badult into this
offspring. This means that the body mass of the mother became
Badult after birth and the initial body mass of the offspring was
ðBmother�BadultÞ=2. In this way, the juvenile body mass scales as the
adult body mass to the power 0.75, because the amount of
resources eaten scales in this way.

The evolution was done by first running the simulation for 200
years in the same way as before. After these 200 years, we
assigned to half of the offspring born in this year a modified
adult or juvenile body mass Bmutant ¼ Boriginal7D. In computer
simulations for the evolution of adult body mass we set
D¼ Bjuvenile ¼ 1, and in computer simulations for the evolution
of the juvenile body mass D¼ 0:1 for Boriginal40:1 and D¼ 0:01
for 0:01oBoriginalr0:1, etc. We then let the simulations run until
one of the two strategies present in the population had driven the
other to extinction. Then we waited for another 200 years before
introducing another mutant by modifying again the adult or
minimum juvenile body mass of some individuals. Our computer
simulation thus investigated the evolutionary stability of popula-
tions with a certain adult body mass with respect to invasion of a
group of individuals with a slightly different adult body mass
(Mylius and Dieckmann, 1995).

Fig. 4 shows three independent simulation runs for each of the
three types of evolutionary simulations. In both cases studied
(Fig. 4(a) and (c)) the evolution of adult body mass resembles a
random walk with a bias towards larger Badult. This means that an
individual with a larger adult body mass has on average more
children surviving to adulthood during its lifetime than an
individual with a smaller body mass. This follows indeed from
the allometric scaling of the terms contributing to population
dynamics: an individual that matures 1 year later than the other
members in its age class, starts producing children 1 year later.
But then it has on average more or larger children per year and
a lower mortality than other individuals of the same age, obtain-
ing in total more children that survive to adulthood during its life
time. This conclusion holds of course only as long as there are no
disadvantages to larger body mass, since our model only includes
the advantage of having a slower metabolism. Moreover, the
evolution towards larger body mass depends crucially on the fact
that mortality decreases as B�0:25

adult with increasing body mass,
which means that mortality scales the same way as resource
consumption and metabolism. If mortality decreased slower with
increasing body mass, the biomass loss due to mortality would
eventually become larger than the biomass gain due to resource
consumption. In this case, the evolutionary increase of Badult

would eventually stop. However, in our minimal model the
only constraints on the adult body mass are due to the limited
resources and the factor n that limits the total biomass of the
population. As the adult body mass increases, the population size
declines and the population thus becomes more susceptible to
extinction (Stanley, 1973). Population extinctions happen in fact
at the end of all the simulations shown in Fig. 4(a) and (c) (only
two of the simulations end in the plotted time interval though).

The evolution of juvenile body mass shows the opposite trend.
This means that it is always better to produce smaller offspring in
our model, as long as correlations between parent and offspring
body mass are ignored. In order to understand this, let us compare
the production of an offspring of body mass Bjuvenile with the
production of two offspring of size Bjuvenile=2. If each of the two
small offspring have a chance larger than 1/2 to survive until they
reach the body mass Bjuvenile, then an adult that produces the
smaller offspring will have more surviving children during its
lifetime than an adult that produces the larger offspring. Indeed,
our model has the feature that the total biomass of all individuals
that were born at the same time increases with time, until
maturity is reached. Consequently, after the time required for an
offspring born with body mass Bjuvenile=2 to grow to the body mass
Bjuvenile, the expected total biomass of the two offspring is larger
than Bjuvenile. This means that the chance that a small offspring
survives until reaching Bjuvenile is larger than 1/2. All this is a result
of the mortality scaling in the same way as resource consumption
and metabolism. Because all three determinants of growth scale in
the same way with body mass, the rate of change of the total
biomass of all individuals that were born at the same time is a
constant. This constant cannot be negative, since the population
would then die out. Therefore, it must be positive, with the result
that it always pays off to produce smaller offspring. If mortality
increased stronger with decreasing body mass, there would be a
minimum offspring body mass. Similarly, if we included con-
straints in the relation between parent and offspring body mass,
as was done in the simulations shown in Fig. 4(c), offspring body
mass would increase with parent body mass. Indeed, such an
allometric relation between parent and offspring body mass is well
known (see for instance Peters, 1983, pp. 130–131), and its
inclusion in the simulations is thus well justified.
4. Discussion

We have investigated the life history traits of a population
feeding on resources which regrow by using a model that
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considers explicitly the dynamics of both the consumers and the
resources. The model takes into account the allometric scaling of
resource consumption, metabolism, and mortality with the body
mass of the consumer. Since no other factors are taken into
account, this is a minimal model that investigates in the purest
possible form the effect of allometric scaling on life history
features. These life history features are evaluated in a stationary
population. Despite the simplicity of the model, several life
history characteristics known from natural systems emerge
correctly from the model, for instance the correlation between
age at maturity and longevity (Migliano et al., 2007; Pettay et al.,
2005), the observation that resource scarceness or slow resource
intake leads to a longer lifetime (Kirkwood and Shanley, 2005;
McCay et al., 1935; Wolf, 2006), or the finding that larger clutch
size is correlated with larger juvenile mortality (Martin, 1987).
The reason behind these trends in our model is the following:
populations that consume less resources have a slower growth
and a smaller rate of offspring production. Due to the slower
growth, maturity sets in later. Due to the smaller number of
offspring, there is a decreased density-dependent mortality and
therefore a larger life expectancy. In our model, these correlations
occur in stationary homogeneous populations, where all indivi-
duals of the same body mass are equivalent.

A close look at our simulation data reveals that the product of
adult mortality and generation time is essentially independent of
the parameter values, and has a value around 2.6. This means that
adult mortality is constant if related to the time scale of
reproduction, and we found that the probability that the parents
are still alive when their offspring reach maturity is approxi-
mately 15%. The scaling of mortality with generation time in our
model is similar to the scaling of senescence rates with generation
time found in nature (Jones et al., 2008) (Senescence rates are
determined by ranking on the fast-slow life-history continuum).
This means that the effect of senescence on our model would be
identical to the effect of a somewhat increased mortality of
adults. Whether mortality of adults is age-dependent or not is
irrelevant in stationary populations, what matters is the average
adult mortality and its dependence on the generation time.
Therefore, the effect of including senescence in our model would
be a small shift of all curves, but not a change of the observed
trends.

When an individual with restricted resource intake is placed in
a well fed and fast growing population in our model, its mortality
is the same as that of the other individuals of the same body mass,
because mortality is determined by population density and body
mass alone. In contrast, in laboratory populations individuals that
obtain less food live longer than well-fed individuals, due to the
physiological changes occurring in these individuals (Kirkwood
and Shanley, 2005; McCay et al., 1935; Wolf, 2006). We suggest
that this response to food shortage may ultimately be shaped by
evolutionary history, since earlier ageing does not confer a
substantial disadvantage in stationary well-fed populations, but
in resource restricted populations. Therefore, a mutant aging
earlier might establish in well-fed populations but not in popula-
tions restricted in resource supply during evolution.

When adult body mass is allowed to evolve, it increases
without limits in this simple model—until the population crashes
because the number of individuals has become so small that
random fluctuations can cause its extinction. This finding demon-
strates that Cope’s rule can result from allometric scaling alone,
without taking into account other advantages of large body mass.
In our model, the three conditions mentioned by Kozlowski and
Wiegert (1987) as promoting an increased body mass are satis-
fied: larger individuals are better competitors due to a slower
metabolism, they have a larger reproductive rate and a smaller
mortality than smaller individuals.
An important condition for the evolution towards larger body
mass is that the population is stationary. If the population was
growing exponentially, individuals with a smaller adult body mass,
which produce offspring earlier, could multiply faster. Another
important condition for the evolution towards larger body mass is
that there are no causes of mortality that deviate from allometric
scaling as is the case in non-stationary populations as those, e.g.,
exposed to harsh environments or facing pathogens in spatially
structured populations (Kirchner and Roy, 1999; Nylin and
Gotthard, 1998; Southwood, 1988). Consequently, in order to produce
pygmies the model for example would need to include mortality
which is independent of body mass. Alternatively, smaller adults may
be obtained by including catastrophic events killing a large portion of
the population and allowing subsequent population expansion where
smaller body masses confer an advantage due to earlier onset of
reproduction (Connell and Slatyer, 1977; Huston, 1994).

We also found that the offspring body mass evolves towards
smaller size in the allometric model when adult body mass is kept
fixed and offspring body mass is allowed to evolve. In our model,
the offspring body mass is the body mass that the offspring
reached when parents stopped nourishing them. Furthermore, we
have assumed that the investment into offspring is twice the body
mass of the offspring, but the results would be similar had we
used a factor different from 2. The result of our model suggests
that offspring body mass cannot be explained based on allometric
scaling of mortality and metabolism alone. However, if we
included the constraint that offspring body mass scales with the
parent body mass to the power 0.75 (which would be realistic for
species without parental care after hatching, such as reptiles),
evolution to larger body size of parents and offspring did occur.
Including such a relation into the model is simply done by
requiring that the number of offspring produced per year is
independent of body size. However, the weaning mass of off-
spring is known to be proportional to the body mass of the adults
in many species, in particular in mammals (Peters, 1983), and this
can only be explained by taking into account the many factors
that affect infant mortality and the parental investment required
to produce offspring of a given body mass. When we implemen-
ted this feature in our evolutionary simulations, we did not obtain
an evolution towards larger body mass, showing again that causes
of infant mortality that are unrelated to energy considerations
must be a strong determinant of juvenile body mass.

An important cause of juvenile mortality not considered in our
model is predation. The effect of predation on juveniles does not
scale with body mass. Smaller prey are consumed by a larger
number of predators and with increasing body mass prey move
towards size refuges from predation of an increasing number of
predators. This is most pronounced in aquatic systems where
prey swallowing is limited by the gape width of fish predators
(Christensen, 1996; Persson et al., 1996). In fact, there is evidence
that, e.g., predation on fish eggs of different mass follows a hump
shape curve (Paradis et al., 1996). On the other hand, trade-offs
concerning predation success also limit adult body mass. The
evolution towards lower body mass of offspring in our model
therefore lacks realism. However, this is conform with our goal to
explore the evolution of life history characteristics based on the
metabolic theory only thereby uncovering its predictive power
but also its limits. Recently, it has been shown that for under-
standing predator–prey body mass ratios foraging theory needs to
be incorporated considering that successful prey capture by
predators changes with predator body mass (Brose et al., 2006,
2008). Rather than by a power law function, as predicted by the
metabolic theory (Brown et al., 2004), energy flux in predator–
prey interactions peaks at intermediate body mass of the predator
as the escape efficiency of prey increases beyond a certain
threshold of predator body mass (Vucic-Pestic et al., 2010). The
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evolution towards higher body mass of adult body mass in our
model apparently lacks realism as it is based solely on metabolic
theory and ignores foraging theory. Again, it was not our intention
to incorporate realism in our models but rather to explore the
strengths and limits of metabolic theory in predicting life history
characteristics. In the evolution of offspring body mass limitations
are most obvious and call for the integration of foraging theory as
in models on predator–prey body mass ratios in general.

To conclude, we presented a life history model solely taking
into account resource use and metabolic scaling. Despite its
simplicity, this model reproduces fundamental life history char-
acteristics of species, such as number of offspring and longevity,
which are in large consistent with nature. This was achieved by
combining metabolic theory with consumer resource dynamics in
stationary populations. The results reflect that resources do not
only play a fundamental role in ecological processes, i.e., on short
time scales, but also at shaping life histories, i.e., on evolutionary
time scales. As the ingredients of the model are very fundamental
and apply to any organisms consuming resources, consumer–
resource dynamics combined with metabolic theory provide a
null model for evaluating the role of other factors, such as
predation, environmental stochasticity and spatial or temporal
resource distribution, and for the evolution of life history char-
acteristics in future studies.
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