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Der g-Faktor des gebundenen Elektrons in 28Si13+: Der empfindlichste
Test der Quantenelektrodynamik gebundener Zustände.
In dieser Arbeit wird die ultra-hochpräzise experimentelle Bestimmung des g-Faktors
des in wasserstoffähnlichem 28Si13+ gebundenen Elektrons beschrieben. Das Ex-
periment basiert auf der gleichzeitigen Bestimmung der Zyklotron- und Larmorfre-
quenz eines einzelnen Ions, dass in einem dreifach-Penningfallensystem gespeichert
ist. Dabei wird der kontinuierliche Stern-Gerlach Effekt genutzt, der einen nicht-
destruktiven Nachweis des Spinzustandes durch eine Kopplung des Spins des gebun-
denen Elektrons an die Bewegungsfrequenzen des Ions mittels einer magnetischen
Flasche ermöglicht. Dazu wurde ein hochempfindliches, kryogenes Nachweissystem
entwickelt, das eine direkte, nichtdestruktive Messung der Eigenfrequenzen mit der
erforderlichen Präzision erlaubt. Die Entwicklung eines neuartigen, phasensensi-
tiven Nachweisverfahrens erlaubte schließlich die Bestimmung des g-Faktors mit
einer bisher unerreichbaren relativen Genauigkeit von 4 · 10−11. Der Vergleich des
so ermittelten Wertes mit dem von der Quantenelektrodynamik (QED) vorherge-
sagten erlaubt die Überprüfung der Gültigkeit dieser fundamentalen Theorie unter
den extremen Bedingungen des starken Bindungspotentials des hochgeladenen Ions.
Die exakte Übereinstimmung von Theorie und Experiment ist eine eindrucksvolle
Demonstration der Genauigkeit der QED. Die in dieser Arbeit geschaffenen ex-
perimentellen Möglichkeiten erlauben in naher Zukunft nicht nur weitergehende
Tests der Theorie, sondern auch die Bestimmung der Masse des Elektrons mit einer
Genauigkeit, die den bisherigen Literaturwert ummehr als eine Größenordnung über-
trifft.

The g-factor of the electron bound in 28Si13+: The most stringent test of
bound-state quantum electrodynamics
This thesis describes the ultra-precise determination of the g-factor of the electron
bound to hydrogenlike 28Si13+. The experiment is based on the simultaneous deter-
mination of the cyclotron- and Larmor frequency of a single ion, which is stored in
a triple Penning-trap setup. The continuous Stern-Gerlach effect is used to couple
the spin of the bound electron to the motional frequencies of the ion via a magnetic
bottle, which allows the non-destructive determination of the spin state. To this
end, a highly sensitive, cryogenic detection system was developed, which allowed the
direct, non-destructive detection of the eigenfrequencies with the required precision.
The development of a novel, phase sensitive detection technique finally allowed the
determination of the g-factor with a relative accuracy of 4 · 10−11, which was previ-
ously inconceivable. The comparison of the hereby determined value with the value
predicted by quantumelectrodynamics (QED) allows the verification of the validity
of this fundamental theory under the extreme conditions of the strong binding po-
tential of a highly charged ion. The exact agreement of theory and experiment is an
impressive demonstration of the exactness of QED. The experimental possibilities
created in this work will allow in the near future not only further tests of theory,
but also the determination of the mass of the electron with a precision that exceeds
the current literature value by more than an order of magnitude.
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1. Introduction

Quantum electrodynamics (QED, see [1] and the references therein), the theory of
the interaction of light and matter, was established by Richard P. Feynman, Julian
Schwinger and Sin-Itiro Tomonaga in the 1940s, who received the Nobel Prize in
1965 for this fundamental work. QED is today considered to be the most successful
of all quantum field theories in the Standard Model [2]. This is on the one hand
owed to the capability of the theory to predict physical observables with impressive
precision, on the other hand the scope of validity of QED seems to cover all energy
and field scales that are accessible to current experiments. Furthermore, the detailed
understanding of the electromagnetic interaction is an indispensable foundation for
most natural sciences. The evident importance of QED motivated a number of fasci-
nating experiments that aimed for the verification of its predictions. Indeed, despite
the impressive precision of these tests, no discrepancy between theoretical prediction
and experimental observation has ever been observed.
Among the most prominent of these tests are the determinations of the electron
g-factors. The g-factor, which determines the magnetic moment of the electron due
to its spin, can be predicted extremely accurately within the framework of QED [3].
The slight deviation of the free electron g-factor from the naive Dirac value of 2 [4]
due to the coupling to the radiation field (electron anomaly), described by QED,
has been measured by Dehmelt and coworkers in the 1980s [5]. In 1989, Dehmelt
received the Nobel Prize, together with Wolfgang Paul and Norman Ramsey, for his
work on Penning traps. The refinement of his experiment by Gabrielse in Harvard
[6] lead to the determination of the electron anomaly with a relative uncertainty
of 0.3 ppb1. By comparing the determined value with the theoretical prediction,
making use of the tabulated value of the fine structure constant, allows to test QED
to about 0.7 ppb.
However, the stringency of this test is restricted to the regime of low field strength.
It is therefore of great interest to perform similar tests in the presence of large field

1parts per billion, 1 part in 109
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strengths, where hypothetical nonlinearities of QED in the field tensor F µν become
observable. A couple of experiments have been performed on this account, which
make use of highly charged ions to provide the highest field strengths available in
the laboratory, which range up to 1016 V/cm in hydrogenlike uranium. Among the
most important measurements are the hyperfine structure of 207Pb81+ [7] and the
Lamb-shift in 238U91+ [8]. However, although these experiments enable tests of the
theory in the strongest fields, the significance is limited due to the strong influence of
nuclear structure on these values. In order to bridge the gap in precision, a series of
experiments to determine the g-factor of bound electrons in highly charged ions has
been started at the Johannes Gutenberg-University of Mainz. The g-factor of the
bound electron is altered considerably from the free electron case by the interaction
of the electron with the binding potential of the nucleus, but the influence of the
nuclear structure is significantly lower. The experiment is conceptually similar to the
free electron experiments and also makes use of the continuous Stern-Gerlach effect
[9]. However, the determination of atomic g-factors imposes additional difficulties for
the experiments, due to the drastically larger mass which complicates the detection
of the spin state considerably. These experimental challenges have been addressed
by the team around H.-J. Kluge, G. Werth, W. Quint and S. Stahl, which culminated
in the determinations of the g-factors of hydrogenlike carbon [10] and oxygen [11],
conducted by H. Häffner and J. Verdú and coworkers, with an impressive precision
of about 1 ppb. The apparatus constructed for this experiment for the first time
comprised two Penning traps, one for the precision frequency measurements, termed
the Precision Trap (PT), and a second trap that provides the magnetic bottle field
for the spin state detection, which was called Analysis Trap (AT). The combination
of these two traps allowed to probe the spin transition with microwaves in the homo-
geneous magnetic field of the PT and to detect successful transitions in the AT. The
comparison of the experimentally determined g-factors with bound-state quantum
electrodynamic (BS-QED) calculations constitute an important verification of QED
in the regime of intermediate field strength.
Despite the great success of these experiments, the constructed apparatus limited
the extension of the measurements towards heavier systems. For this reason, a com-
plete rebuild of the setup, incorporating significant technical improvements, became
necessary. In addition to the two traps AT and PT, the new apparatus includes a
dedicated electron beam ion source and trap (EBIS/T) for the charge-breeding of
medium-heavy ions. Within the course of this thesis large parts of the electronics,
both for the room temperature and the cryogenic section, and crucial parts of the
new setup have been developed. The formidable performance of the new apparatus
not only allowed the challenging determination of the g-factor of hydrogenlike silicon
[12], but simultaneously enabled to cut down the dominant systematic shifts of the
experiment by orders of magnitude and to reach significantly improved precision.
Furthermore, a novel phase sensitive frequency detection technique was developed
[13] and applied during a second measurement run, which yielded a previously in-
accessible precision of 40 ppt2, an improvement by almost 2 orders of magnitude

2parts per trillion, 1 part in 1012
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compared to previous experiments. In combination with several further improve-
ments that have been driven forth, this paves the way for intriguing measurements,
including further tests of fundamental theories and ultra-precision metrology. The
results presented in this thesis, combined with the theoretical predictions, currently
constitute the most stringent test of QED in strong fields.
This thesis is organized as follows: Chapter 2 gives a short introduction into quantum
electrodynamics and specifically into the effects that determine the g-factor. Chapter
3 describes the Penning trap in general, the most important tool used in this work,
and some of the techniques used to manipulate and observe ions stored therein. In
this context, also the dominant systematic frequency shifts are discussed. Chapter 4
describes the newly developed triple-trap apparatus and details the development of
the detection system, which constitutes the heart of this experiment. Furthermore,
exemplary results obtained with the developed electronics are shown. Chapter 5
is devoted to the presentation of experimental techniques and the possibilities they
open up. Moreover, the novel PnA detection technique and its experimental imple-
mentation is introduced. After all elements of the experiment have been presented,
chapter 6 finally illustrates the results of the two g-factor measurements performed
in this work, one with the traditional cyclotron frequency measurement technique
and a second one with the novel PnA method. Both measurements agree perfectly
with each other and with the theoretical prediction. The last chapter concludes the
thesis and gives an outlook onto the exciting perspectives of this experiment.
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2. Quantum Electrodynamics

Quantum electrodynamics (QED) is a fundamental quantum field theory that de-
scribes the interaction of fermions with electromagnetic fields mediated by photons.
Today QED is considered the most successful of all current theories within the Stan-
dard Model of physics, a result of the high predictive power of the theory. The first
attempts to build a quantum field theory that would be able to describe the inter-
action of charged particles with the electromagnetic radiation field were started by
Dirac in the late 1920s [14]. However, his results were only in lowest order leading
to interpretable results but led to divergences in higher orders. It was not until
1942, when experimental results had already shown that the established theory is
giving imperfect predictions [15], that Richard P. Feynman, together with Julian
Schwinger and Shinichirō Tomonaga, was able to resolve the problems in the for-
malism put forth by Dirac by appropriate renormalization. His formulation of QED
is based on so-called Feynman diagrams that represent the fundamental interaction
at discrete vertices. The interaction strength is ruled by a single number, the fine-
structure constant α ≃ 1

137.035999679(94)
. The small value of α causes higher order

terms of perturbation theory to contribute less although the number of Feynman
diagrams increases with the order. This allows high precision calculations with only
a reasonable number of processes being considered.
The newly found theory was hereafter used to predict values for a number of physi-
cal observables with intriguing precision. In the last 60 years there was considerable
effort to test QED predictions experimentally with continually improving accuracy,
yet there was not a single discrepancy found. Nevertheless, the Standard Model and
with it also QED, is expected to be incomplete and fail in the limit of high energies
or high field strength. In fact it is assumed that the Standard Model is a low-energy
approximation of a more fundamental theory that will eventually be able to describe
all processes in the universe from its genesis [16]. It is therefor of utmost interest to
test the range of validity of QED in order to find an indication for the structure of
the superior theory.
On the experimental side the QED of free particles is already tested extensively
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and the corresponding comparison between theoretical results and experimental ob-
servation demonstrates the remarkable predictive power of QED. Among the most
imposing tests is the g-factor of the free electron that has been measured in the
Harvard g-2 experiment by Gabrielse et al. [6] and is in perfect agreement with the
theoretical value that has been calculated using the fine-structure constant derived
in an independent photon recoil measurement[17]:

gexp − 2

2
= 1.159 652 180 73(28) 10−3 [6] (2.1)

gtheo − 2

2
= 1.159 652 181 13(84) 10−3 [3, 17]. (2.2)

In the regime of high interaction energy, the measurement of cross-sections for lepton
scattering and production can provide a percent-level test [18].
By studying bound systems, many more interesting observables become accessible.
A bound system can be isolated from external influences while the binding potential
itself can reach impressive values, especially in highly charged systems where the
1s1/2 level is very close to the nucleus. This allows to test QED in extreme field
strength, which might increase the chance to grasp the boundary of the scope of
validity of QED. In order to provide a conclusive test of theory, simple systems are
of special interest. In these systems, it is possible to identify observables that can be
both calculated and measured with high accuracy. Furthermore, both experiment
and theory must be able to give correct confidence intervals. There are a number
of experiments with bound systems, such as the measurement of the Lamb-shift
of hydrogenlike 238U91+ [8] that allows a test of bound-state QED (BS-QED) on
the percent level, and the hyperfine-splitting in heavy ions [7], that allows for tests
in the 10% range. The tests on the basis of these experiments are limited by the
accuracy of the theoretical value rather than the experimental accuracy. This is,
among other things, a result of the large influence of the nuclear charge distribution
on the measured value. The lower influence of this value on the electronic spin
g-factor constitutes an important advantage.

2.1 The g-factor of the free electron

The determination of the g-factor of the free electron by directly measuring the
electron anomaly renders the most precise test of the free QED in the low field
range. Historically, the anomaly of the electron has been measured throughout the
last 50 years, from the first experiments of Kusch and Foley [19], to the modern
experiments of H. Dehmelt and G. Gabrielse [5, 6], an evolution that expresses the
impact of these measurements.
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The magnetic moment of the electron can be written as the product of the spin
vector (S1), the Bohr magneton (µB = e~

2me
) and the dimensionless quantity gs

2:

µ = −gsµB
S

~
,

where e/me is the charge-to-mass ratio of the electron and ~ the Planck constant
h/2π. If exposed to a magnetic field, the energy of the particle thus depends on the
direction of the spin orientation as ∆E = −µB. The value of g is predicted by the
Dirac equation to be exactly 2. This solution assumes a freely propagating electron
that couples to a homogeneous background magnetic field. However, in the scope
of QED, the electron can interact with the complete electromagnetic field rather
than just passively feel the static externally applied magnetic field. This coupling
to the electromagnetic field (both real and virtual) alters the energy of the particle
and thus accordingly the g-factor. The QED contributions can be expanded in a
power series of the fine-structure constant, according to the number of vertices in
the corresponding Feynman graphs [20]:

gfree = 2
(
C0 + C2

(
α
π

)
+ C4

(
α
π

)2
+ C6

(
α
π

)3
+ C10

(
α
π

)5
(2.3)

+ . . .+ aheavy lepton,hadronic,weak) (2.4)

The leading contribution is due to the self-energy, where the electron temporarily
“stores”part of its energy in a virtual photon while it interacts with the external field.
The corresponding Feynman diagram is shown in figure 2.1. Mainly due to historical

Figure 2.1: Feynman diagrams for the lowest order contributions to the free electron
g-factor. The plain line stands for a freely propagating electron, the wavy line
is a virtual photon and the dots are interaction vertices. The triagram depicts
the coupling to the external magnetic field. The closed loop in the right diagram
depicts the creation and annihilation of a virtual lepton / anti-lepton pair (vacuum
polarization).

reasons, the vacuum polarization, i.e. the creation of virtual lepton / anti-lepton
pairs from the interaction photon, is not considered in the first order because for the
electron with its low mass this effect is rather small. However, in the case of the muon

1Bold faced letters denote vectorial quantities.
2In the following, the electron spin g-factor gs is denoted only as g, since in the context of our

experiment the orbital angular momentum always vanishes.
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g-factor, this effect increases significantly [21]. The coefficient C2 can be analytically
calculated (as well as the C4 and the C6 terms) and has the value 0.5, showing
that the QED contribution to the free electron g-factor is on the order of 0.12%.
Here, the advantage of the direct measurement of the anomaly becomes obvious
as it increases the precision of the final g-factor value by almost three orders of
magnitude. The theoretical g-factor obviously has a dependence on the fine-structure
constant, motivating an independent measurement of α in order to complete the
QED test. Currently, the most precise independent α-value comes from a rubidium
recoil measurement [17], which results in a ∼0.7 ppb test of the QED calculations.
The last term in equation (2.4) shows that at the current level of precision also the
coupling to virtual heavy particles has to be taken into account. The g-factor has
the fascinating property that it depends on contributions from all possible particles
interacting with the electron. With further increasing resolution, this might be used
to test for the existence of unknown particles such as speculative light dark matter
[6].

2.2 The g-factor of the bound electron

Even though the free electron g-factor already constitutes an intriguing test for QED
theory, the determination of the same value for an electron bound to a strong po-
tential, imposes an even more stringent test in the sense that theory is more likely
to break down under the influence of extremely strong fields. Highly charged hy-
drogenlike ions provide an ideal environment for such tests since these systems are
relatively simple to calculate and provide electric field strengths not available else-
where in laboratories. In the case of the hydrogenlike 28Si13+ ion that personates
the protagonist of this thesis, the expectation value for the 1s1/2 state is close to
1014 V/cm. Figure 2.2 shows the field strength in hydrogenlike ions as a function of
the nuclear charge Z.
In the past, the g-factors of 12C5+ and 16O7+ were already determined with ac-

curacies in the order of δg
g
≃ 10−9. The extension of these measurement to higher

charge states required a complete reconstruction of the setup, and the advances real-
ized within this thesis work lead to the possibility to test BS-QED in a significantly
higher field strength while simultaneously a further breakthrough in experimental
accuracy was achieved.

2.2.1 Implications of the binding potential

The presence of a strong binding potential alters the g-factor of the electron and
with it also the theoretical calculations, a fact which is accounted for by calling
these calculations bound-state QED. The description of an electron bound to a
heavy nucleus demands the QED propagator of the electron to be a solution of the
Dirac equation in the potential of the charge distribution of the nucleus. Although
this propagator can be readily constructed [22], the calculation of the corresponding
Feynman graphs raises major difficulties concerning the renormalization. To date,
only the contributions up to the one-loop level have been calculated using the full
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Figure 2.2: Expectation value of the electric field strength for the 1s1/2 state in
hydrogenlike ions. The hatched area shows the electric field range provided by the
most intense lasers available today.

bound-state propagator. The two-loop diagrams are evaluated as a second expansion
in orders of (Zα), a value that comes close to unity when considering highly charged
ions, putting this expansion into question at least for heavy nuclei. Already for
28Si13+ as investigated here, the uncalculated higher order terms of this expansion
constitute the dominating uncertainty of the theoretical value [12]. In the following,
the contributions that are considered at the current level of accuracy are introduced.

2.2.2 Relativistic Corrections

The most important difference to the free electron g-factor comes already from the
solution of the Dirac equation of the electron in the potential of a point-charge
with infinite mass. This approximation leads to additional correction terms that are
evaluated independently. The so-called relativistic correction was first introduced by
Breit in 1928 [23]. In fact the term “correction” is misleading in this context, since
it is the direct relativistic solution of the Dirac equation rather than an additional
term. The evaluation is straightforward and requires only the calculation of the
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expectation value of the magnetic energy of the spin in the well-known 1s state with
wave function | ψ100⟩ of a pure Coulomb field:

∆E = −⟨ψ100 | µB | ψ100⟩ = gsmzµBB

⇒ gBreit = −⟨ψ100 | µB | ψ100⟩
mzµBB

=
2(1 + 2

√
1− (Zα)2)

3
. (2.5)

The relativistic treatment of the electron motion causes a L-S spin orbit interaction
between the large and small components of the Dirac equation even for the 1s state.
The Breit term makes the g-factor smaller than the value of 2 for the free electron.
The effect amounts to 10 ppm of the total g-factor for the hydrogen atom and 5%
for hydrogenlike uranium.

2.2.3 Bound-state QED corrections

The radiative corrections originating in the interaction of the quantized electromag-
netic field and the electron that are described by QED theory. They constitute,
unlike in the case of the free electron, only a smaller correction, causing the g-factor
to be smaller than 2 for all Z > 8. Analogous to the free electron g-factor, the
radiative corrections are evaluated as a series expansion in the fine-structure con-
stant α, corresponding to an ordering of the Feynman diagrams according to the
number of emitted virtual photons. However, beyond the coupling to the external
magnetic field, the coupling to the binding potential of the nucleus has to be taken
into consideration. As already mentioned the additional series expansion in powers
of (Zα), corresponding to the number of photons exchanged with the nucleus, is
not converging properly for highly charged ions. The most elegant solution is to use
an electron propagator that has to been constructed from the solution of the Dirac
equation in the binding potential of the nucleus [22]. This way, the interaction with
the nucleus is already incorporated in the propagator in all orders of (Zα) and the
number of Feynman diagrams that have to be evaluated decreases drastically. Fig-
ure 2.3 shows the BS-QED diagrams contributing to the g-factor in first order. The
increased complexity of the resulting expressions, however, inhibits an analytical
solution and forces a numerical evaluation. Only the diagrams in second order of α
have been evaluated in orders of (Zα), justified by the lower relative size of these
contributions. Nevertheless, the uncertainty arising from the uncalculated higher
order contributions is dominating the theoretical error budget.

2.2.3.1 Nuclear recoil correction

When solving the equations of motion of the electron in the constant central bind-
ing potential, the motion of the nucleus due to the recoil from the electron was
neglected. Though this is a decent approximation considering the mass ratio me

mnucl
,

in the context of the experimental accuracy of the experiment achieved to date, this
has to be taken into account as a correction to the g-factor. The most recent calcula-
tions are presented in [24] and are based on an expansion in the product (Zα) me

mnucl
.

The remaining uncertainty of higher order can be neglected at the current level of
precision.
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Figure 2.3: Feynman diagrams of BS-QED in first order of α. The double line
depicts the BS-QED electron propagator. Additional to the direct analogons to the
free electron g-factor, 4 causal permutations have to be considered that were already
included in the mass and charge renormalization of the electron propagator for the
free electron.

2.2.3.2 Finite nuclear size correction

The Dirac equation is solved for a pure Coulomb potential in order to derive the
electron propagator. However, since the charge distribution of the nucleus itself has
a finite size, the potential is altered for radii smaller than the nuclear charge radius.
This in turn has to be taken into account as a correction to the g-factor. If nuclear
levels can be excited by virtual photons, a resulting deformation can furthermore
change the radial symmetry of the nucleus [25, 26]. However, due to the arbitrary
orientation of the nucleus, the effect mainly manifests as a tiny change in the effec-
tive charge radius, the explicitly shape dependent terms are negligible on the current
level of precision [25]. The dependence of the g-factor on the charge radius allows in
the converse argument to determine the charge radius from a g-factor measurement,
if QED is believed to be correct at the required precision. In chapter 6, the charge
radius of 28Si is determined as a proof of principle and found to be in excellent
agreement with the tabulated value. The nuclear corrections can be discriminated
from the remaining effects by measuring the so-called isotope effect, i.e. the differ-
ence in g-factor for two isotopes of the same element. The theoretical accuracy is
significantly higher for this difference since most of the limiting contributions from
uncalculated higher order terms cancel. Such a measurement in currently under
preparation in the Ph.D. thesis of Anke Wagner. In Figure 2.4 and table 2.1 all
contributions to the g-factor are summarized.
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Figure 2.4: Contributions to the g-factor of the last electron in a hydrogenlike ion.
The shaded area represents the current theoretical precision limit due to uncalculated
higher order terms of the two loop BS-QED [27].

Contribution Value

Dirac value 1.993 023 571 6
Finite nuclear size 0.000 000 020 5
One-loop QED (Zα)0 0.002 322 819 5

(Zα)2 0.000 004 040 7
(Zα)4 0.000 001 244 6
h.o. SE 0.000 000 542 8(3)
h.o. VP-EL 0.000 000 032 6
h.o. VP-ML 0.000 000 002 5

Two-loop QED (Zα)0 -0.000 003 515 1
(Zα)2 -0.000 000 006 1
(Zα)4 -0.000 000 001 3
h.o. 0.000 000 000 0(17)
Recoil me/mion 0.000 000 206 1(1)
rad-rec -0.000 000 000 2
h.o. -0.000 000 000 1

Total 1.995 348 958 0(17)

Table 2.1: Summary of the contributions to the g-factor of 28Si13+ [12].
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The aim of the experiment is the ultra-accurate determination of the g-factor of the
bound electron in hydrogenlike 28Si13+. The core requisite for such a measurement
is a sufficiently long observation time while the ion under investigation is kept in
an extremely well-controlled environment. Furthermore the measurement of the
spin-precession frequency calls for a homogeneous magnetic field. The Penning trap
constitutes a formidable tool for providing these conditions while simultaneously
allowing the non-destructive detection of single ions. This chapter addresses the
Penning trap as a measurement tool and introduces the techniques necessary for the
g-factor determination.

3.1 The ideal Penning trap

In order to trap a charged particle in the charge-free space, electromagnetic fields
have proved their worth. However, pure electrostatic fields cannot provide point-
shaped confinement in all three spatial dimensions in charge-free space as can be
seen from the Laplace equation. Point-shaped confinement demands the Hessian
matrix of the electrostatic energy of the particle be locally positive definite, posing
the necessary requirement:

Tr
(
Hess

(
Φ(x)q

))
= ∆Φq > 0. (3.1)

This is in obvious contradiction to the Laplace equation, demanding

∆Φ = 0. (3.2)

The combination of the homogeneous magnetic field (which is anyway necessary
for the Zeeman-splitting in the context of a g-factor experiment, see chapter 3.5)
with a quadrupolar electrostatic field of suitable strength, however, creates a strong
confinement for charged particles with arbitrary energy. This configuration is termed



14 3. Penning-trap spectrometry

B

U

Figure 3.1: Schematic representation of a hyperbolical Penning trap, producing the
quadrupolar electrostatic saddle potential for the axial ion confinement.

the ideal Penning trap [28, 29]. In reality, this configuration can be approximated
very well. However the finite size of the experiment in combination with finite
machining precision gives rise to deviations from the ideal field configuration, which
have to be considered at the envisaged measurement accuracy. In the presence of a
homogeneous magnetic field, chosen in z-direction without loss of generality,

B = (0, 0, B0) (3.3)

a charged particle undergoes a helical eigenmotion around the magnetic field lines.
However, the motion along the z-axis is unbound. For this reason, a quadrupolar
electrostatic field1 of suitable polarity

E = C2(x, y,−2z) (3.4)

is superimposed, causing a bound harmonic eigenmotion along the magnetic field
lines. Figure 3.1 shows a possible electrode configuration that produces this poten-
tial configuration. In the radial plane, the additional field alters the circular motion
slightly, as the perpendicular electric and magnetic fields cause a slow drift in az-

1Note that the implicit definition of the Cn coefficients used in the following contracts both the
length scale and the applied voltage.
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imuthal direction. The resultant motion can be decomposed into two independent2

harmonic oscillations. The drift results in a circular motion around the electrostatic
trap center with the frequency ω−, referred to as magnetron frequency, while the free
cyclotron frequency becomes slightly modified and is denoted as ω+, usually called
modified cyclotron frequency. In the non-relativistic classical limit the equations of
motion of an ion with mass m and charge q in an ideal Penning trap are [29]:

ẍ =
q

m
(C2x+B0ẏ)

ÿ =
q

m
(C2y −B0ẋ) (3.5)

z̈ = −2
q

m
C2z.

For suitable voltages the coefficient C2 is positive and this coupled system of dif-
ferential equations can be solved, yielding the three eigenfrequencies as functions of
the lowest-order field parameters:

ωz =

√
2
q

m
C2 (3.6)

ω± =
ωc

2
± 1

2

√
ω2
c − 2ω2

z , (3.7)

where ωc = q/mB0 denotes the free cyclotron frequency. In the ideal Penning trap
the eigenfrequencies obey the following relations:

ωc = ω+ + ω− (3.8)

ω2
z = 2ω+ω− (3.9)

ω2
c = ω2

+ + ω2
z + ω2

−. (3.10)

While (3.8) and (3.9) lose validity in the presence of trap imperfections, equa-
tion (3.10), the so-called invariance theorem [29, 30], stays valid under certain devi-
ations from the ideal Penning trap, as will be discussed in chapter 3.2.5. In order
to prevent the repulsive radial electrostatic field from making the ion trajectories
unstable, the axial frequency has to be chosen sufficiently low:

ωz ≤
ωc√
2
. (3.11)

The typical field parameters then imply the following important hierarchy for the
frequencies:

ωc > ω+ ≫ ωz ≫ ω−. (3.12)

For the Penning trap used in this experiment typical parameters for a 28Si13+ ion
stored at 7.5 V and 3.76 T are listed in table 3.1:

2Independent here means that the energy and phase of one mode does not affect the other. This
is only true in the ideal and uncoupled trap. Already special relativity leads to a dependence of
the frequencies from the energy in the other modes.
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Figure 3.2: Electrostatic potential in the radial plane including an exemplary particle
trajectory, projected to the x-y plane. For details see text.

Frequency (Hz) Energy (meV) Amplitude (µm) Temperature (K)

ν+ = 26857410 6.6 1.2 76
νz = 704700 0.17 7.8 2
ν− = 9251 -0.002 1.2 0.026

Table 3.1: Typical parameters for the eigenmodes of a 28Si13+ ion stored in the
precision trap (PT) at 7.5 V and 3.76 T.

3.2 The real cylindrical Penning trap
The implementation of a Penning trap with finite-sized electrode structures entails an
inherent deviation from the ideal potential distribution. Furthermore, the prepara-
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tion of a perfectly homogeneous magnetic field is not possible. It is thus an important
challenge to develop a trapping system, providing a nearly ideal field configuration.
Simultaneously, the implications of the remaining imperfections have to be well un-
derstood. The inherent cylindrical symmetry of the quadrupolar field calls for a
rotationally symmetric electrode configuration. The obvious solution is a hyperboli-
cally shaped electrode system, resembling the equipotential surfaces of the ideal field
(see figure 3.1). However, there are a number of drawbacks in this configuration.
The setup used in this work is composed of a stack of three cylindrical traps, called
Creation Trap (CT), used for the charge breeding of ions, Precision Trap (PT), where
the high-precision measurements of the eigenfrequencies are done, and Analysis Trap
(AT), which uses a magnetic bottle for the detection of the spin state. The AT and
PT are geometrically identical 5-pole traps. In the following, the properties of this
trap type will therefore be discussed.

U U
c

Figure 3.3: Schematic representation of a cylindrical Penning trap with the correc-
tion voltages Uc allowing for electrostatic compensation.

3.2.1 The anharmonic electrostatic potential

The necessity to introduce ions from outside the trap demands additional holes in
the hyperbolical electrodes and the precision manufacturing and alignment of a stack
of hyperbolical traps is not straightforward. As a simple solution, G. Gabrielse has
proposed the compensated 5-pole cylindrical Penning trap [31]. This configuration
consists of five cylinders with identical inner diameter but different lengths, providing
an inherently cylindrical symmetric and mirror symmetric potential. This allows the
expression of the potential as a Legendre series:

Φ(r, θ) =
∑
k even

Ckr
kPk(cos θ). (3.13)
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3.2.1.1 Compensation of an orthogonal cylindrical trap

Due to the mirror symmetry, all odd terms vanish, but in general there are undesired
terms with k > 2. For small motional amplitudes obviously the most important
non-trivial anharmonic contribution is the C4 term. Just as any field configuration
with k > 2 the quartic potential exhibits a highly undesirable dependence of the
frequency on the ion radius. Since the radius cannot be as accurately measured as
the frequency, it is of utmost importance to minimize the C4 term to avoid systematic
frequency shifts. A rigorous calculation of the resulting frequency corrections was
carried out by Brown and Gabrielse [29]. The result can be depicted in matrix form:


∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL

 =
6C4

C2
2


1

4
(ωz/ω+)

4 −1

2
(ωz/ω+)

2 −(ωz/ω+)
2

−1

2
(ωz/ω+)

2 1

4
1

−(ωz/ω+)
2 1 1

0 0 0

 ·

E+

Ez

E−

 . (3.14)

The last line of the matrix describes the shift of the electron spin precession (Larmor)
frequency, which does not depend on the electric field, for completeness. Considering
that the use of five electrodes allows the application of two independent voltages,
U0 and Uc to the ring- and correction electrode, respectively (see figure 3.3), it is
obvious that in general it will be possible to choose a voltage Uc ≡ TU0 such that
C4 = 0. The dimensionless quantity T is usually called tuning ratio. In addition,
it is highly desirable to have C6z

2
0 ≪ C4 for typical axial amplitudes z0 (listed in

table 3.1) in order to minimize systematic frequency shifts. Moreover, in the process
of trap optimization it is very convenient to make C2 = C2(U0) independent of the
correction voltage Uc and thus the tuning ratio T . Using the Greens function of
conducting cylinders, it is possible to calculate the coefficients Ck for a given set of
electrode dimensions. After freely choosing the trap radius, it is generally possible
to make C4 = C6 = 0 and simultaneously ∂C2/∂Uc = 0 by adjusting the ring- and
correction electrode lengths and the tuning ratio T , representing three degrees of
freedom. The resulting trap configuration is called compensated (C4 and C6 are
compensated by the correction potential) and orthogonal (the field parameters C2

and Ck>2 can be addressed independently) [31]. Close to the optimal tuning ratio,
the higher order perturbation coefficients can then be approximated as:

C4,6 = (T − Topt) ·D4,6, (3.15)

where D4,6 characterize the dependence of the potential contributions C4,6 from
the mistuning of the tuning ratio and can be obtained numerically. For small ion
radii, the resulting potential is not distinguishable from the ideal harmonic poten-
tial, providing a basis for high-precision measurements. However, the value of field
parameters with k > 6 cannot be simultaneously minimized, limiting the usable trap
volume considerably. If larger radii have to be used, a hyperbolical trap might be
more advantageous.
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3.2.2 The inhomogeneous magnetic field

In the ideal Penning trap, the magnetic field is considered to be perfectly homoge-
neous. In reality, there will generally be deviations from this idealized configuration
even in well-shimmed3 magnetic fields due to the susceptibility of the trap system
and ultimately by virtue of the displacement current in the electrostatic field of the
trap causing motional magnetic fields [32].
The influence of the radial field component is strongly suppressed by the large axial
field component and can thus be neglected in most cases. However, the dependence
of the axial magnetic field on the axial and radial coordinates can cause significant
systematic frequency shifts. Since the trapped particle is rotating around the trap
axis it will in the adiabatic limit4 generally experience an effectively cylindrically
symmetric magnetic field. The effective magnetic field can thus be decomposed into
a Legendre series in direct analogy to the electric field. The resulting field coeffi-
cients Bn will generally all have secular effects on the ion frequency that have to be
considered for finite mode energies.

3.2.2.1 The magnetic bottle

The lowest order correction, apart from the non-secular linear gradient (B1), is the
quadratic component B2, usually termed the magnetic bottle. This inhomogeneity
modifies the eigenfrequencies in all traps, the difference is purely quantitative. How-
ever, the strength of the magnetic bottle in the AT, provided by a ferromagnetic
ring electrode, is about a factor of 20 000 larger than in the PT, where the dominant
contribution to the quadratic component is the tail of the magnetic field of the AT
ring electrode.
From the Legendre series of the magnetic field, it follows that in second order

∆Bz(ρ, z) = B2

(
z2 − ρ2

2

)
. (3.16)

Just as in the electrostatic case, the second order contribution creates a saddle
point5. This means for positive B2, the ion will see an increasing magnetic field with
increasing axial energy. Averaged over one axial oscillation period, the additional
magnetic field will be (for negligible radial energy):

∆B = B2z
2
rms = B2

z20
2

=
B2

mω2
z

Ez. (3.17)

3Superconducting magnets typically allow to tune the magnetic field to near-perfect homogene-
ity using so-called shim-coils in different field configurations to compensate the field errors of the
main field coil.

4Adiabatic here means the variations of the motional amplitudes are slow compared to all
eigenfrequencies.

5Note, however, that this depicts the magnetic field, unlike the corresponding Legendre series
of equation (3.13), which represents the electric potential.
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This translates into a relative shift for the modified cyclotron frequency:

∆ω+

ω+

≃ B2

B0

1

mω2
z

Ez (3.18)

On the other hand, when increasing the cyclotron radius, the magnetic moment
resulting from the ion current I = qω+/(2π)

µcycl
z = −Iπρ2+ = −

ω+qρ
2
+

2
= − qE+

mω+

(3.19)

will feel an additional magnetic pseudo-potential in the magnetic bottle:

Φmag ≡ −µcycl
z

B

q
= −µ

cycl
z B2

q
z2 =

B2

mω+

E+z
2 (3.20)

and thus experiences an additional axial force:

Fz = −q ∂zΦmag = −2qB2

mω+

E+z. (3.21)

This additional force will add to the electrostatic force from the trapping potential
and alter the axial frequency:

ω̄z =

√
ω2
z −

Fz

mz
. (3.22)

The axial frequency shift thus is:

∆ωz ≃
B2

B0

1

mωz

E+. (3.23)

This very important result opens the possibility to measure the energy in the cy-
clotron mode in terms of a shift in the axial frequency. At the same time the cyclotron
frequency will shift as a result of the lower magnetic field at higher cyclotron radii:

∆ω+

ω+

≃ ∆B

B
= − B2

2B0

ρ2+ = −B2

B0

1

mω2
+

E+. (3.24)

From equations (3.23) and (3.24) it becomes obvious that

∆ωz

ωz

= −
(
ω+

ωz

)2
∆ω+

ω+

. (3.25)
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Similarly, there exist equivalent relations for the dependence of the remaining eigen-
frequencies on the energy in all modes. Again, Brown and Gabrielse [29] derived the
result in matrix form:

∆ω+/ω+

∆ωz/ωz

∆ω−/ω−
∆ωL/ωL

 =
B2

B0

1

mω2
z


−(ωz/ω+)

2 1 2
1 0 −1
2 −1 −2

−(ωz/ω+)
2 1 2

 ·

E+

Ez

E−

 . (3.26)

Note that the relative shifts of the modified cyclotron and Larmor frequency are
identical for the magnetic bottle, an important result that will be helpful when
measuring the frequency ratio ωL/ωc.

3.2.2.2 The continuous Stern-Gerlach effect and non-destructive spin-
state detection

The same effect that translates the cyclotron mode energy into a shift of the axial
frequency can be used to detect the spin state of the single electron bound to the
trapped ion non-destructively. The corresponding magnetic moment couples to the
magnetic bottle and causes a frequency shift that is related to the spin direction. This
is in analogy to the splitting of spin-carrying atomic beams in magnetic gradients
discovered by O. Stern and W. Gerlach in 1922 [33] and was first introduced for spin
state detection in Penning traps by Dehmelt [5].
The complete magnetic moment in axial direction can be calculated from the sum
of the magnetic moments of the spin and the cyclotron motion6:

µz = µcycl
z + µspin

z = − qE+

mω+

∓ gse~
2me

, (3.27)

where e is the elementary charge and me denotes the electron mass. Combining the
dependence of the axial frequency on the cyclotron energy and the spin state yields:

∆ωz ≃
µz ∇B

2mz
=

B2

mωz

(
E+

B0

± gse~
2me

)
. (3.28)

It is evident that there is an axial frequency difference for the two possible spin
orientations. However, the tiny difference that amounts to 240 mHz for a 28Si13+ ion
within the axial frequency of several hundred kHz in our Analysis Trap will be only
detectable if the cyclotron energy E+ is either extremely small (≪ 2K) or at least
sufficiently stable. Simultaneously, the ring voltage fluctuations between consecutive
measurements have to be considerably smaller than(

δUrms

U

)
≪ 2

(
∆ωz

ωz

)
≃ 10−6. (3.29)

This imposes a challenge for the design of a suitable voltage source.

6The tiny magnetic moment caused by the magnetron motion is neglected here.



22 3. Penning-trap spectrometry

3.2.2.3 Other secular magnetic field inhomogeneities

All field components Bk>2 lead to frequency shifts with nonlinear energy dependence.
However, considering that for typical energies in the precision trap the shift from B2

is barely visible, it is not necessary to account for higher field components during
the precision measurements with the measurement methods employed in this thesis.
An estimate can be derived by calculating the magnetic field on typical cyclotron
radii:

∆νc
νc

≃ 3B4

8B0

ρ4 ≪ 10−13. (3.30)

In the Analysis Trap, the B4 coefficient is large as a result of the ferromagnetic
ring, but there is no need to perform absolute frequency measurements in this trap.
However, there is a subtle consequence of this field component on the tuning ratio of
the trapping potential [34]. Already the magnetic bottle alters the tuning ratio by
adding a voltage-independent harmonic pseudo-potential. The quartic magnetic field
component comprises a term that makes the magnetic pseudo-potential dependent
on the cyclotron energy7. The quartic part of the combined magnetic and electric
potential reads:

Φ4(z) = −µcycl
z

B4

q
z4 +D4(T − Topt)z

4 (3.31)

= B4

mω+
E+ z

4 +D4(T − Topt) z
4. (3.32)

Combining this expression and equation (3.19), the energy dependence of the optimal
tuning ratio T ′

opt can be deduced:

T ′
opt = T0 −

B4

D4mω+

E+. (3.33)

In principle, this effect leads to tuning-ratio variations if the cyclotron energy is
changed, potentially corrupting the spin-state detection by introducing energy cou-
pling between the axial and radial modes. However, for the equilibrium temperatures
achieved in the g-factor setup (see table 3.1), the variation of the tuning ratio is less
than 1 ppm, which is negligible.
The analysis of the odd order perturbations of the magnetic field is slightly different
since these do not have a direct secular effect on the ion frequencies. However, the
radial magnetic moment causes a shift of the equilibrium position of the ion in axial
direction:

0 = ∂z (Φm + Φel) → ∆z ≃ − B1

2C2mω+

E+. (3.34)

This leads to a energy dependent cyclotron frequency shift [34]:

∆ν+
ν+

≃ B1∆z

B0

≃ − 1

mω2
z

(
B1

B0

)2

E+, (3.35)

7All other contributions (magnetron and spin energy) are neglected here.
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corresponding to ∆ν+/ν+ ≃ 2 ppt/eV E+ in the g-factor setup, which is small
compared to the effect of the harmonic magnetic perturbation.

3.2.3 Relativistic corrections

Although the velocities of the ion, which is typically cooled to 4.2K, are extremely
small compared to the speed of light, the precision attained in this experiment
demands to account for relativistic corrections to the eigenfrequencies. In good
approximation the corrections to the free cyclotron frequency are given by the mass
increase predicted by special relativity due to the speed of the ion in the reduced
cyclotron mode [29]:

δωc

ωc

=
ω̄c − ωc

ωc

=
γ − 1

γ
≃ E+

mion c2
, (3.36)

where γ = 1/
√

1− β2 = 1/
√
1− (v/c)2 denotes the Lorentz factor of special rel-

ativity. The effect of special relativity upon the spin precession frequency is more
subtle. Since the spin precession, as opposed to the cyclotron rotation, occurs in the
rest frame of the moving electron and ion, rather than in the laboratory frame, its
value within the rotating reference frame of the ion8 is subject to a Lorentz boost of
the magnetic field:

B′ = γ
(
B− v

c2
v × E(r+, r−, z)

)
, (3.37)

where B′ denotes the magnetic field in the reference frame of the ion, which moves
with the velocity v with respect to the laboratory system. Fortunately, the motional
magnetic field induced by the electrostatic trapping field is negligible compared to
the static magnetic field for typical conditions on the current level of accuracy9. The
Larmor frequency in the rotating frame is thus:

ω′
L =

gs
2

e

me

γBz = γωL. (3.38)

When transforming back to the laboratory system, the time contraction cancels the
effect of the magnetic field boost10. However, the rotation of the rest frame of the
ion gives rise to a shift of the Larmor frequency due to the Thomas precession [35]:

ωL =
1

γ
ω′
L + (1− γ)ωc ≃ ω0

L − β2

2
ωc. (3.39)

For typical ion velocities of β ≤ 4 ·10−6, the correction due to the Thomas precession
is negligible, in contrast to the free electron case, where the large cyclotron frequency

8Strictly speaking, the rest frame of the ion is not an inertial system in terms of special relativity,
a fact that is accounted for later.

9A rough estimate can be done by assuming a thermalized magnetron motion and a cyclotron
energy no larger than 3000 K. Under these assumptions the motional magnetic field for a 28Si13+

ion is smaller than 4 · 10−14 T, which is negligible compared to the 3.76 T static field.
10Provided that the Lorentz factors of the electromagnetic field boost and the time dilation are

exactly identical as assumed by special relativity.
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of the electron increases this correction drastically [36].
Since the relativistic transformation of the Larmor- and cyclotron frequency are
different, the measured frequency ratio will generally depend on the ion energy,
especially of the cyclotron mode. This is a strong motivation for keeping the motional
amplitudes during the measurement small.

3.2.4 Alignment errors

When placing the trap system in the magnetic field, great care is taken to align the
electric trap axis with the magnetic field lines. However, a minimal tilt of typically
|Θ| < 0.2◦ is generally inevitable. In order to calculate the corresponding frequency
deviations, it is assumed that the particle trajectory will still be aligned to the strong
magnetic field while the electrostatic field is tilted. Then the rotated electrostatic
potential in the new axial direction (defined by the magnetic field lines) reads:

Φtilt
z (z,Θ) = C2

(
cos (Θ)2 − sin (Θ)2

2

)
z2 ≃ C2z

2
(
1− 3

2
Θ2
)
. (3.40)

Using equation (3.6), it is simple to calculate the axial frequency shift:

∆ωz ≃ −3
4
ωzΘ

2. (3.41)

This relation can obviously be used to tune the alignment of the trap in situ, provided
that the mechanical requirements are given. Similarly, it is possible to calculate the
effect of the tilt on the other frequencies. Additionally, the finite machining preci-
sion of the trap and unwanted patch potentials at the surface of the electrodes can
conspire to produce in first order an ellipticity of the otherwise harmonic potential.
The systematic shifts arising from these mechanical imperfections in principle have
the potential to cause systematic frequency shifts much larger than the precision
aimed for in this experiment. Fortunately, the invariance theorem [29] discussed
above helps to circumvent these issues.

3.2.5 The invariance theorem and its implications

Since all eigenfrequencies experience different shifts from the alignment, the final sys-
tematic error when determining the free cyclotron frequency depends on the relation
used to translate the measured eigenfrequencies into the final measurement result.
Brown and Gabrielse noticed that, when using equation (3.10), the frequency shifts
arising from alignment errors and ellipticity cancel completely. This is illustrated by
expressing the so-called invariance theorem [29] as:

ω2
c = ω̄2

+ + ω̄2
z + ω̄2

−, (3.42)

where the accented quantities are representing the measured frequencies, while the
cyclotron frequency is the ideal free cyclotron frequency in absence of the electro-
static field. This paves the way for measuring the free cyclotron frequency in the
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presence of a non-perfect electrostatic field to extremely high accuracy. Closer in-
spection reveals that even the magnetic bottle correction drops out when measuring
the axial and cyclotron frequencies at the same cyclotron energy (e.g. simultane-
ously), while the magnetron frequency is measured at low energy.

3.3 Image-current detection

For a successful g-factor measurement, the eigenfrequencies have to be measured
non-destructively and with high precision. These requirements can be met by the
image-current detection method. To this end, the current induced by the oscillating
charge of the stored ion in one of the electrodes is measured. For small amplitudes,
the induced charge will depend linearly on the ion’s deflection:

qel(t) =
q

D
z(t). (3.43)

Here, D denotes a typical length scale that relates the response of the trap system to
an equivalent plate capacitor. The numerical value of D can be accurately calculated
with the solution of the Laplace equation for the electrode set. With equation (3.43)
it is possible to calculate the current:

Iel(t) = q̇el(t) =
q

D
ż(t) → Ielrms,z =

qωz

D
zrms. (3.44)

When the ion is cooled to low energies around 4 K (see table 3.1), the current in our
experiment amounts to Ielrms,z ≃ 7 fA. The measurement of such a tiny current calls for
a transimpedance amplification with a large resistance at the axial frequency. This
can be realized with a superconducting tank circuit with a high quality factor (Q),
tuned to the ion’s eigenfrequency. In resonance, this tank circuit forms a resistance
R = QωL, where L denotes the tank circuit’s coil inductance. For ions of high axial
energy, the voltage drop across the resonator is given by U = Z(ω) Iel, and reaches
values that are relatively simple to measure with solid-state electronic amplifiers
(see chapter 4.3.3). However, the orthogonal part of the voltage appearing at the
electrode has a retroactive effect on the ion, which experiences an effective drag force
[29]

F drag(t) =
q2 Re(Z(ω))

D2
ż(t) ≡ mγż(t), (3.45)

giving rise to energy transfer from the hot ion to the colder electron plasma of the
resonator. Since the electron plasma is coupled to the lattice, the resonator consti-
tutes a heat bath where the ion’s energy is dumped. In general, the temperature
of the ion will exponentially approach the temperature of the resonator’s electron
plasma with a time constant11

τ =
mD2

q2 Re (Z(ω))
. (3.46)

11This time constant τ is typically referred to as cooling time constant.
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In our system with D = 7.38 mm and Re(Z) = 6.8 MΩ, we obtain τ ≃ 88 ms
for a single 28Si13+ ion. The final equilibrium temperature is typically similar to
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Figure 3.4: Detected signal of a single 28Si13+ ion in the analysis trap and the cor-
responding fit (red line) with the theoretical line shape introduced in chapter 3.3.1.

the lattice temperature, in the g-factor experiment 4.2 K, but can be altered with
electronic feedback techniques as outlined in chapter 4.3.3.2.
When the ion is in thermal equilibrium with the tank circuit, the ion’s signature
on the resonator will adopt a fundamentally different shape. The ion is now driven
and damped by the incoherent thermal noise of the resonator. The detected signal
is not anymore dominated by the coherent peak signal of a hot ion, but resembles
the thermal noise of the coupled system formed by the ion and the resonator (see
figure 3.4).
Since there is virtually no energy sink for the ion but the resonator, it is evident that
in equilibrium the voltage spectrum at the position of the ion has to feature a dip in
the spectral power density, as any remaining signal would lead to excitation of the
axial motion of the otherwise undamped ion. The ion’s axial energy and phase will
thus adjust until its induced signal cancels the thermal noise of the resonator at the
axial frequency.

3.3.1 Signal line shape of the thermalized ion

This consideration opens the possibility to measure the ion’s axial eigenfrequency
at the lowest possible energy, which is very advantageous for precision experiments
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because it decreases the influence of trap imperfections dramatically. In order to
extract the eigenfrequency from the axial dip signal, the line shape has to be known
analytically. The equations of motion (eom) of the trapped ion in contact with the
tank circuit can be expressed as function of the voltage ue at the electrode [37]:

z̈ = −ω2
z z +

ue q

mD
. (3.47)

By using equation (3.44) it is possible to express the eom in terms of the ion current:

ue = m
D2

q2
∂ti+

mω2
zD

2

q2

∫
i dt = Lion ∂ti+

1
Cion

∫
i dt. (3.48)

As expected this is the equation of motion of a linearly damped harmonic oscil-
lator. By exploiting the obvious analogy to a damped electrical series resonator,
substitutional parameters can be extracted:

Cion ≡ q2

mD2ω2
z

≃ 90 · 10−21 F

Lion ≡ m
D2

q2
≃ 600 kH (3.49)

ω2
z ≡ 1

LionCion

.

Using this analogy, the Johnson noise voltage density at the electrode, ue, can be
calculated by determining the transfer function K(ω) ≡ ue

uJ
from the virtual noise

generator uJ , representing the Johnson noise of the equivalent resistance of the tank
circuit:

uJ =
√

4 kB T R

|ue(ω)| = |un ·K(ω)| (3.50)

= un

∣∣∣∣∣ ωωR(ω − ωz)(ω + ωz)

ωωRω2
z(ı−

γω
ω2
R
)− ıω3ωR +Q(ω − ωR)(ω + ωR)(ω − ωz)(ω + ωz)

∣∣∣∣∣ .
Here, ωR is the resonance frequency of the tank circuit. After correcting for the
electronic noise contribution of the amplifier, uen, and allowing for a slight frequency
dependence of the detection system, the final line-shape function can be determined:

ud(ω) = A · (1 + κdet(ω − ωR)) ·
√
u2e(ω) + u2en(ω), (3.51)

where κdet accounts for a possible frequency dependence of the detector’s transfer
function in first order. Figure 3.5 shows the equivalent circuit representation and
the resulting line shape. In practice, the resonator parameters Q,R and ωR as
well as κ and uen are determined independently and fixed during the fit procedure.
The functional parameters of the fit are thus the ion frequency ωz, the dip-width
parameter γ = 1/τ and the amplification of the detection system, A.
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If n identical ions are stored simultaneously, all previous considerations still hold in
the limit of negligible direct coulomb interaction when substituting

q → n · q, m→ n ·m ⇒ γ → n · γ. (3.52)

Since the width of the observed dip scales linearly with γ, the fitted value of γ can
be used to determine the number of simultaneously stored ions.
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Figure 3.5: Equivalent circuit of the trapped ion (left) in contact with the resonator.
The intrinsically lossless ion is mathematically directly equivalent to a series res-
onator with an infinite quality factor. The line shape of a trapped 28Si13+ ion in
equilibrium with the precision trap resonator (right), slightly off resonance and in
resonance (inset).

3.4 Radiofrequency excitations

For high-precision Penning trap measurements it is of utmost importance that the
ion’s motional state can be extremely well controlled. The instrument of choice for
this purpose is the radiofrequency excitation of the ion’s motion and sidebands. The
following chapter will outline the basic excitations in the monopolar- to quadrupolar
field configuration and their respective resonances. Higher-order excitations have
been considered in a different context [38, 39], but are not employed within this
work.

3.4.1 Monopolar (parametric) excitation and squeezing

The monopolar or parametric excitation is the lowest order excitation possible in a
Penning trap. As the name suggests, the parameter of the (axial) oscillation, C2, is
modulated:

z̈ = −
(
ω2
z + Arf cos(ωrft+ ϕrf)

)
z. (3.53)

This modulation can be introduced by application of a radiofrequency drive to any
electrode of the trap. The resulting driven system features a strong resonance at
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the double eigenfrequency 2ωz and the respective even harmonics. Naively, the
resonance can be understood by assuming a slowly varying axial amplitude:

z(t) ≃ z0(t) cos(ωzt+ ϕz). (3.54)

In this approximation and further neglecting higher frequency non-secular terms,
the equation of motion (3.53) reads:

z̈ = −ω2
zz − 1

2
Arfz0(t) cos

(
(ωrf − ωz) t+ ϕrf − ϕz

)
. (3.55)

By choosing ωrf = 2 · ωz, the requirement for resonant excitation can be read:

ϕz =
1
2
(ϕrf +

π
2
). (3.56)

As expected from symmetry considerations, this condition can be met by two distinct
values of ϕz, separated by 180◦. This symmetry can lead to bifurcation and chaotic
behavior. It can be exploited for measuring the axial phase in multiples of π for
arbitrarily small amplitudes that are far below the detection limit of the image-
current detection. The excited motion will lock with the phase closer to its original
phase before excitation.
If the ion is driven to sufficiently large amplitudes such that the quartic potential
contribution (C4z

4) becomes significant while being in contact with the resonator,
the trapped ion is a close-to-ideal representation of the Duffing oscillator [40]. The
measurement of the well-understood bi-stable resonance allows the determination of
the higher-order field contributions [41].
If the ion is resonantly excited at ωrf = 2 · ωz for a period τrf short compared to the
axial cooling time constant, the resulting distribution can be described in terms of
the in-phase and quadrature component of the motion [42]:

z(t, τrf) = C(τrf) · cos(ωzt) + S(τrf) · sin(ωzt), (3.57)

where

C(τrf) = C0 · e
Arfωzτrf

4 (3.58)

S(τrf) = S0 · e
−Arfωzτrf

4 . (3.59)

After resistive cooling the initial distribution is circular in the C-S phasespace. The
parametric excitation can now be used to squeeze the distribution to the needs
of the experiment. For the advanced cyclotron frequency measurement technique
PnA [13], developed within this work, which will be introduced in chapter 5.5, it
is advantageous to squeeze the phase distribution at the expense of the amplitude
distribution. Since the dominant energy dependent systematic shifts all scale lin-
early with the cyclotron energy and thus quadratically with the cyclotron radius
(see equations (3.14) and (3.26)), the resulting mean cyclotron frequency shift after
excitation can be calculated by averaging over the distribution of initial energies and
phases. The possibility to squeeze the ion phase-space distribution was originally
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introduced by V. Natarjan et al. [42]. However, the application to the phase defi-
nition is new to this work. Figure 3.6 shows the energy necessary for defining the
cyclotron phase for a squeezed distribution and a circular distribution offset by a
dipolar excitation. Obviously the parametric excitation is superior for all energies.
For further information see chapter 5.5.
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Figure 3.6: Two possibilities for defining a phase for an initially resistively cooled,
circular phase-space distribution (left). Obviously the mean radius for achieving
a similar phase uncertainty is significantly smaller for the parametrically excited
squeezed distribution (light grey) compared to the dipolar excited (dark grey). The
relative energy increase necessary to define a phase for an initially resistively cooled
distribution for the parametric excitation (red, dashed) and the dipolar excitation
(black) is shown on the right.

3.4.2 Dipolar excitation

The dipolar excitation, generated by a position independent radiofrequency force,

Fdip,x,z = q Arf cos(ωrft+ ϕrf) (3.60)

is very simple to treat in the quadrature phase-space, as it only produces a vectorial
offset in the in-phase component, as shown in figure 3.6. This configuration can
resonantly drive all eigenfrequencies of the ion in the trap, provided that a suitable
electrode is used. For excitation of the axial motion the drive can be applied to the
correction electrode or the endcap, for radial excitation a laterally split correction
electrode is used. The dipolar excitation is used for defining a starting phase for the
phase-sensitive measurement methods discussed in chapter 5.5 and for bringing the
ion to deliberately large mode radii, enabling peak detection for mass spectra or for
cleaning the trap from contaminating ions (see chapter 5.3).

3.4.3 Quadrupolar excitation and radiofrequency coupling

The quadrupole excitation is the most versatile of the excitation configurations used
in the g-factor trap. It is the lowest order configuration that is able to couple two
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otherwise independent modes and to transfer energy quanta between these. The
application of the radiofrequency drive with amplitude Arf to the split correction
electrode produces a tilted field configuration in the x-z plane:

Fquad = q Arf

z0
x

 cos(ωrft+ ϕrf). (3.61)

The eom of the ideal Penning trap in the presence of a quadrupolar excitation read
[43]:

z̈ = −ω2
zz +Re

(
q
m
Arf e

ıωrf t
)
x (3.62)

ü =
ω2
z

2
u+ ıωcu̇+Re

(
q
m
Arf e

ıωrf t
)
z, (3.63)

where the abbreviation u ≡ x + ıy was used for simplicity. Inserting the obvious
general solutions

z(t) = Re
(
ζ(t)eıωzt

)
(3.64)

u(t) = κ+(t)e
ıω+t + κ−(t)e

ıω−t, (3.65)

allows to identify several frequency combinations, called sidebands, that can poten-
tially show a secular effect on the respective eigenmotions because the effective force
features a component at the respective eigenfrequency:

ω1,2 = ω+ ± ωz (3.66)

ω3,4 = ωz ± ω−. (3.67)

When choosing a radiofrequency close to any of these sidebands, the evolution of
the slowly varying mode amplitudes can be extracted by neglecting the non-resonant
higher-frequency terms that do not have any secular effect (rotating wave approxi-
mation). After some algebra the eom for the complex amplitudes can be identified:

ζ̇ =
1

ωz

{
Γκ∗+e

ıδt, forωrf = ω1 + δ

−Γ∗κ+e
−ıδt, forωrf = ω2 + δ

(3.68)

κ̇+ =
1

ω+ − ω−

{
Γ ζ∗ eıδt, forωrf = ω1 + δ

Γ ζ eıδt, forωrf = ω2 + δ
(3.69)

where ∗ denotes complex conjugate and Γ ≡ qArf

4mı
. These eom can be combined in

order to find the evolution of the motional amplitudes:

ζ̈ = −Ω2
1,2 ζ − ıδζ̇ (3.70)

κ̈+ = −Ω2
1,2 κ+ + ıδκ̇+, (3.71)
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where

Ω2
1,2 = ∓ ΓΓ∗

ωz(ω+ − ω−)
. (3.72)

The possible detuning to the sidebands, δ, is taken into account by defining modified
frequencies

Ωl
1,2 =

√
4Ω2

1,2 + δ2 − δ

2
(3.73)

Ωr
1,2 =

√
4Ω2

1,2 + δ2 + δ

2
. (3.74)

The final general solution for the complex amplitudes is of identical form for all
sidebands:

ζ(t) = ζ1 e
ıΩr

1,2 t + ζ2 e
−ıΩl

1,2 t (3.75)

κ+(t) = κ1 e
ıΩr

1,2 t + κ2 e
−ıΩl

1,2 t. (3.76)

For the lower sideband ω2 this solution describes a cyclic phase dependent modula-
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Figure 3.7: Exemplarily evolution of the mode radii with resonant excitation at the
lower cyclotron sideband ω2. The behavior is a classical analog to Rabi oscillations
between the two coupled modes.

tion of the motional amplitudes due to exchange of the classical action
∮
pdq between

the two respective modes (see figure 3.7). On the other hand, the excitation of the
upper cyclotron sideband ω1 leads to an exponential growth of the motional ampli-
tudes in both modes involved. In contrast to the dipolar excitation, now the excited
mode phases depend strongly on the initial phases in all modes. This finding enabled
the development of the advanced phase sensitive measurement method PnA, which
will be described in chapter 5.5.
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The lower sideband plays an important role in the measurement of the radial eigen-
frequencies and in the cooling of these modes to the effective thermal equilibrium
with the axial tank circuit. The effective evolution in dependence of the initial
conditions κ0 ≡ κ+(0) and ζ0 ≡ ζ(0) can now be found by inserting the general
solution (3.76) into the eom:

ζδ=0
1,2 =

ζ0
2
± Γ∗

2ωzΩ2

κ0 (3.77)

κδ=0
1,2 =

κ0
2

± Γ∗

2(ω+ − ω−)Ω2

ζ0. (3.78)

If the sideband is driven continuously, the time-averaged energy in the respective
modes takes a constant ratio [29]:

⟨E+⟩ =
ω2
+ + ω2

z

ωzω+

⟨Ez⟩ ≃
ω+

ωz

⟨Ez⟩ . (3.79)

The solution for the magnetron sidebands, ω3,4, is analogous, keeping in mind that
the magnetron energy is negative due to the contribution of the electrostatic poten-
tial. As a result, the two sidebands change role compared to the cyclotron sidebands
and the energy ratio becomes:

⟨E−⟩ ≃ −ω−

ωz

⟨Ez⟩ . (3.80)

This close coupling of two eigenmodes is used extensively to selectively couple the
otherwise undetected radial modes to the axial detector.

3.5 g-factor measurement principle

The hitherto presented techniques lay the basis for the high-precision measurement
of the free cyclotron frequency ν ionc of the ion that can be used, together with the
knowledge of the ion mass, as a probe for the magnetic field at the position of the
bound electron. If simultaneously the Larmor frequency of the electron

νeL =
g

2
νec =

g

2
ν ionc

e

qion

mion

me

(3.81)

can be determined with comparable precision, the g-factor of the bound electron can
be extracted:

g = 2
νeL
ν ionc

qion
e

me

mion

≡ Γ0
qion
e

me

mion

, (3.82)

with Γ0 ≡ νeL/ν
ion
c . The Larmor frequency again can be determined by probing the

transition between the two discrete spin-states of the electron. The transition prob-
ability will be maximized for an excitation at the instantaneous Larmor frequency
(under idealized conditions, compare chapter 6.1.4).
The measurement principle thus makes use of the possibility to determine the spin
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state of the single bound electron unambiguously with the continuous Stern-Gerlach
effect [9]: In the precision trap, where the energy dependent frequency shifts are
minimal due to the extremely homogeneous magnetic field, a microwave excitation
is applied close to the Larmor frequency and simultaneously the cyclotron frequency
of the ion is measured. Afterwards, the ion is transported to the analysis trap,
where the spin-state is determined and compared to its previous value. By repeat-
ing this process several hundred times and varying the microwave frequency around
νL, the fractional spinflip rate can be plotted as function of the time-independent
ratio Γi =

νmw

νionc
. Finally the g-factor can be determined with equation (3.82) after

extracting the ratio Γ0 from this resonance using a fit with a well-known line shape
(see chapter 6.1.3.6). The experimental realization of the fundamental steps for this
measurement algorithm

� Precision cyclotron frequency measurement

� Microwave excitation

� Adiabatic ion transport between AT and PT

� Spin state detection

are discussed in chapter 5.



4. The g-factor apparatus

“The larger the island of knowledge, the longer
the shoreline of wonder.”

Ralph W. Sockman

The design of the g-factor apparatus is based on the apparatus built by Stefan Stahl,
Wolfgang Quint, Nikolaus Hermanspahn, Manfred Tönges, Hans-Jürgen Kluge and
Günter Werth for the first measurements of the g-factor of the bound electron in
light ions [44]. The measurements with hydrogenlike carbon (12C5+) and later oxygen
(16O7+),were carried out by N. Hermanspahn [45] and H. Häffner [10] and J. Verdú
[11], respectively. The first direct determination of the g-factor of 12C5+ was achieved
by N. Hermanspahn in 1998.
After these measurements the apparatus was redesigned to meet the requirements
of the creation of heavier highly charged ions. The additional dedicated miniature
electron beam ion source and trap (EBIS/T) allows the creation of hydrogenlike
ions up to calcium [46] and several adjustments of the trap layout allows for even
smaller field errors. Large parts of the new setup, including the electronics have
been developed in the framework of this thesis and provide the basis for significant
precision improvements.
This chapter gives an introduction to the trap system and the associated electronics.
Further details can be found in the Ph.D. thesis of Birgit Schabinger [46].

4.1 Overview

The apparatus consists of the following basic components:

� The superconducting 3.7 T magnet
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� A combined liquid nitrogen and liquid helium cryostat used to cool the trap
and electronics to 4 Kelvin

� A temperature stabilization system for the surrounding of the magnet, includ-
ing the room temperature electronics

� A pressure stabilization system for the LHe dewars

� The triple cylindrical Penning trap setup with the EBIS/T

� Self-developed cryogenic electronics for the detection and manipulation of the
ion motion

� Further electronics modules operated at room temperature, e.g. an ultra stable
voltage source

� Miscellaneous function generators referenced to a rubidium atomic clock

� A dedicated FFT analyzer

� A microwave system supplying the W-band1 excitation at the Larmor fre-
quency of the electron

� A PC with LabView to control the measurement

Figure 4.1 shows a cut through the magnet with the experimental section opened.
The superconducting magnet, manufactured by Oxford Instruments for NMR mea-
surements, has a room-temperature bore with 127 mm diameter and provides the
3.764 Telsa homogenous magnetic field. Within its bore a second cryostat is inserted,
featuring concentric heat radiation baffles at 77K, coupled to a liquid nitrogen bath
and at 20K, in thermal contact with the evaporating liquid helium. The final tem-
perature of the inner experimental setup (4K stage) is provided by the liquid helium
bath. The only direct thermal contact from the 4K stage to room-temperature is
through the constantan and steel wires for the electronics and a thin steel tube that
allows the refilling of liquid helium and simultaneously serves for suspension of the
setup. The isolation vacuum is maintained by the cryopumping effect, making elec-
tronically noisy pumps unnecessary during operation.
The precision electronics is located close to the traps within the magnetic field

at 4K temperature. Since most commercial electronics fail under these conditions,
specialized electronics was developed in the course of this thesis, including cryogenic
transimpedance amplifiers with extremely low input related noise and matching su-
perconducting resonators for the detection of single ions (see chapter 4.3.3). The
massive closed metal enclosure of the experimental setup provided by the magnet and
the cryostat in combination with a sophisticated electronic radiofrequency shielding
concept allows the detection of the tiny signals of the stored ion and safeguards the
ion from unwanted radiofrequency disturbances.

1The frequency band of millimeter waves, ranging from 75 GHz to 110 GHz.
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Figure 4.1: Artistic sketch of the main experimental setup, including the supercon-
ducting NMR magnet, the cryogenic dewar vessels for the cryostat, the trap setup
in the sealed vacuum chamber and the cryogenic electronics.

The magnetic field strength of the magnet fixes the Larmor frequency of the elec-
tron to approximately 105 GHz, a frequency in the W-band microwave range. The
excitation is produced externally by a commercial synthesizer and frequency multi-
plication system and transported to the trap with waveguides (see chapter 4.4). The
trap setup is located in a vacuum chamber that separates the UHV2 isolation vac-
uum, which is in contact with the room-temperature components, from the XHV3

trapping vacuum. After pumping the vacuum chamber to UHV with a turbo molec-
ular pump a thin OFHC4 copper tube is pinched off, forming a cold-welded seal

2UHV: Ultra High Vacuum, 10−12 mbar < p < 10−7 mbar.
3XHV: eXtremely High Vacuum, p < 10−12 mbar.
4Oxygen Free High Conductivity
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for the vacuum chamber. After cooling to 4K the rest gas freezes and adsorbs at
the walls of the vacuum chamber which brings the vacuum into XHV. The vacuum
was estimated (see chapter 5.3) to be p < 10−17 mbar, which basically eliminates
any disrupting interaction between the stored ion and the rest gas and allows the
storage of the ion for virtually infinite time. In practice a storage time of 6 months
was demonstrated for a highly charged hydrogenlike silicon ion, limited by technical
problems rather than interactions with the rest gas [46].
The signals taken by the cryogenic detection system are further amplified at the
room-temperature stage by self-developed low-noise amplifiers, quadrature mixed
to lower frequencies and finally recorded by a dedicated FFT5. For ion manipula-
tion a bunch of DDS6 function generators (Agilent AG33250 and Stanford Research
DS345) are synchronized with the 10 MHz signal of a rubidium atomic clock (Stan-
ford Research FS725).
Finally a PC with National Instruments LabView is connected via GPIB7, USB8,
RS232 and Ethernet to the devices and controls the experimental cycle.

4.2 The triple-trap setup

{ { { { {

Electron
gun

EBIS/T AT PTTransport
section

Target Reflector Ferromagnetic
ring

Figure 4.2: Artistic sketch of the triple-trap assembly, including the EBIS/T for
creation of the highly charged ions , the Analysis Trap (AT) with the ferromagnetic
ring and the Precision Trap (PT).

The heart of the apparatus is a setup of three Penning traps, the creation trap
(CT), serving as EBIS/T for the creation of the highly charged ions, and the two
geometrically identical traps for the detection of the spin-state (AT) and the precision
frequency measurements (PT), completed by several electrodes dedicated to the
transport of the ions between the traps. All electrodes except for the ring electrode

5Fast Fourier Transformer
6Direct Digital Synthesis
7General Purpose Interface Bus, IEEE-488
8Universal Serial Bus
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of the AT are precision manufactured from OFHC copper and galvanically gold
plated with a silver layer preventing the gold to form an alloy with the copper base
material. The ring electrode of the AT, which provides the magnetic bottle field
for spin-state detection, is made from gold plated nickel. Sapphire rings and balls
provide both mechanical fixation and electric isolation. Undercuts in the electrodes
inhibit electric field errors from charged isolators. The high voltage electrodes of the
CT are isolated with MACOR rings.
With this electrode assembly it is possible to produce highly charged ions, to isolate
a single ion of arbitrary species and charge-state and to measure the g-factor of the
electron bound to this ion.

4.2.1 Creation trap

The Creation trap is used as an EBIS/T [46]. The electron beam emitted from
the field emission point (FEP) of the electron gun is accelerated to energies up to
8 keV and follows the magnetic field lines until it is reflected from the high-voltage
reflector. Since the electrons have lost fractions of their kinetic energy to radial
motion and synchrotron radiation, the beam is trapped between the FEP and the
reflector electrode, until sufficient space charge has built up to allow the fringe of the
beam to impinge on the target anode. The electrons then evaporate atoms from the
material of the target surface. These atoms freely travel through the CT volume,
until they are hit by another electron of the beam, creating a singly charged positive
ion. If this process happens in the trapping region of the CT, the ion is localized
close to the center of the EBIT, where the electron beam can repeatedly impinge and
successively remove the remaining electrons of the ion. If both the current density
and the energy of the electron beam are sufficient, after some time the CT will be
filled with a cloud of ions of different species and charge states. For the creation of
hydrogenlike silicon the necessary charge-breeding time is on the order of 5 seconds.
Heavier ions like calcium will need longer creation time and energy [47, 48, 46].
Since the electron beam is continuously supplying energy to the ion cloud, ions will
be lost from the ensemble. The detailed analysis of the function of the EBIT, which
goes beyond the scope of this thesis, shows that preferably light ions are boiled off
in this process. This suggests that for the creation of higher charge states of heavy
ions also light ions should be present in the target material.
The CT is an anharmonic three-pole trap that does not allow further selection of
charge states. After the end of the creation process the high voltage is switched
off and the unmodified cloud of ions is transported with adiabatic9 changes of the
potentials at the electrodes via the reflector to the precision trap.

4.2.2 Precision trap

After creation of the ions in the CT, the preparation of the ion to be measured
is done in the PT. In contrast to the CT, the PT is a five-pole compensated and

9Adiabatic here refers to the rate of change of the potentials compared to the respective eigenfre-
quencies. If theses changes are sufficiently slow and additionally the trap is always kept at similar
depth, the ion will experience negligible energy changes during the transport.



40 4. The g-factor apparatus

orthogonal trap (see figure 4.3), placed in the most homogeneous region of the super-
conducting magnet. The potential of the PT can be analyzed with a finite elements

Endcap

Split correction electrode

Ring

Correction electrode

Endcap

Figure 4.3: Close-up view of the Precision Trap of the g-factor setup (left). One
of the correction electrodes is laterally split to allow radial excitation and image-
current detection. (Right) Gold-plated electrodes with electrical connection before
assembly and sapphire rings for the electrical insulation.

numerical solution of the Laplace equation with Dirichlet boundary conditions using
e.g. COMSOL. By exploiting the superposition principle of the Laplace equation,
the potential generated by any arbitrary electrode voltage set (0,Vc,V,Vc,0) can be
constructed from a linear combination of the orthogonal solutions with a unit voltage
applied to the electrodes:

Φ(z)(0,Vc,V,Vc,0) = V Φ(z)(0,0,1,0,0) + Vc Φ(z)(0,1,0,1,0). (4.1)

From a polynomial fit to the hereby obtained potential distribution, the field coeffi-
cients Cn can be deduced. Figure 4.4 visualizes this process. The result shows com-
pensation of the quartic potential contribution C4 at the tuning ratio T ≃ 0.86668,
but at this value C6 does not vanish completely. The contribution of C6 to the
potential δΦ/Φ = 6 · 10−13 at typical thermal amplitudes (see table 3.1) is negligi-
ble. However, at higher energies as required for peak phase detection, the higher
order contributions can cause unwanted phase jitter and poses a practical limit for
the achievable phase resolution. An improved trap design should account for this
limitation by altering the ring length such that C4 and C6 can be compensated
simultaneously at the same tuning ratio.

4.2.2.1 Tuning-ratio optimization

In practice, the optimal tuning ratio is expected to deviate from the calculated value
due to finite machining precision and charged dielectric patch potentials. It is there-
fore necessary to optimize the trap potential experimentally by applying suitable
correction voltages. By applying a burst excitation at the magnetron frequency ω−
to a previously thermally cooled ion it is possible to set a defined magnetron energy.
Equation (3.14) predicts a linear dependence of the subsequent axial frequency shift
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Figure 4.4: (Left) The potential of the electrode set can be calculated from the
weighted superposition of the orthogonal potentials obtained with COMSOL. For
details see text. (Right) A fit to the potential allows the determination of the
potential coefficients Cn.

on the current value of C4. Measuring the axial frequency shift between the cold
and hot ion as function of the applied tuning ratio reveals the correct tuning ratio,
where the frequency shift vanishes, provided that additional frequency shifts arising
e.g. from the magnetic inhomogeneities are negligible. Figure 4.5 shows the result
of such a measurement.
After optimization of the voltages applied to the correction electrodes, the result-
ing electrostatic potential is sufficiently harmonic for small amplitudes to not limit
measuring accuracy even for the highest precisions achieved in this work.

4.2.2.2 Effective electrode distance

In chapter 3.3 it was assumed that the charge induced into the electrode set is
similar to the one induced into an equivalent parallel plate capacitor with a plate
distance of D. For the true electrode configuration this effective plate distance
can be determined from the potential distribution of the electrodes, calculated with
COMSOL. A parallel plate capacitor charged to a voltage V would generate an
electric field at the position of the ion:

Epp
z = V

D
. (4.2)

If the image current is tapped at one of the correction electrodes, the effective elec-
trode distance can be determined by extracting the electric field of the correction
electrode at the position of the ion, Eel

z , from the numerical solution of the potential.
In combination with equation (4.2) the value of D can be extracted:

D =
V

Eel
z

= 7.38mm. (4.3)
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Figure 4.5: Optimization of the tuning ratio with the magnetron burst technique.
The linear dependence of the frequency shift between hot and cold ions is clearly
visible. The tuning ratio can be deduced with a linear regression, yielding Topt =
0.879330(6).

4.2.3 Analysis Trap

The AT is dedicated to the detection of the spin-state of the ion using the contin-
uous Stern-Gerlach effect described in chapter 3.2.2.2. In order to resolve the tiny
frequency shift caused by the spin of the single electron, the axial frequency has to
be extremely stable. However, in the strong magnetic bottle field of the AT, the
magnetic moments of all modes cause frequency shifts on the axial frequency. It is
therefore of utmost importance to avoid any undesired coupling between the eigen-
modes that would easily inhibit successful spin-state detection. For this reason the
AT has at least the same requirements on the harmonicity as the PT. In fact the
AT is identical to the PT except for the material of the ring, which is gold-plated
ferromagnetic nickel with a saturation magnetization of roughly 0.645 T. Again, the
magnetic bottle field can be determined with a finite-elements solver (see figure 4.6).
As expected, the ring is nearly completely magnetized in the homogeneous field of
3.76 T. In the center of the ring, the additional field is counteracting the homoge-
nous field, lowering the homogenous contribution by ≃ 1.5%. A parabolic fit to
the numerical field solution yields a magnetic bottle strength of B2 = 10.0(5) mT

mm2
10,

sufficient for making the bound electron spin to cause a frequency shift of ±120 mHz

10The uncertainty given here reflects a conservative estimate of the uncertainty of the tabulated
saturation magnetization of nickel at cryogenic temperatures.
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depending on its alignment. However, when the first ions were transported to the

Figure 4.6: The magnetic field contribution (magnetic bottle) generated by the
ferromagnetic ring electrode in the AT can be calculated with the Finite Elements
Method (FEM). The diagram shows the axial component of the magnetic field.

AT, axial frequency fluctuations as large as 100 Hz made the prospect of reliable
detection of the 240 mHz frequency change due to spinflips look rather unrealistic.
It took a long time and cumbersome data analysis to identify and rule out the major
sources of these fluctuations. These can be subdivided into two parts:

� Electrostatic field errors

� Radiofrequency disturbances.

Although the mechanical trap design is identical to the PT, surface patch poten-
tials on the electrodes cause additional fields that are not covered by the Laplace
relaxation. These potentials originate on the one hand from inhomogeneous sur-
face coverage with gold, exposing copper and silver, which feature different work
functions11. On the other hand, the surface can generally feature regions that are
electrically isolating, e.g. as result of frozen rest gas. These regions can trap charges
from ions lost in the creation process, especially at cryogenic temperatures, where
neither rest gas nor diffusion can help to deplete the charge patches. In the AT a
large amount of singly charged ions that are unstable in the strong trapping field of
the original reflector design12 were impinging on the electrodes. This problem was
solved with the combination of a revised reflector electrode design that features a
smoother radial drop of the potential and an additional distance electrode between

11The work functions depend even on the crystal structure.
12The original design of the experiment envisaged a hyperbolically shaped reflector electrode.
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the reflector and the AT that absorbs large parts of the remaining ion losses. Ad-
ditionally new electrodes for the AT were manufactured, which were fine-polished
before gold-plating. The combination of these efforts resulted in a dramatically im-
proved electrostatic field quality. For details of this optimization see the Ph.D. thesis
of Anke Wagner.
Similarly troublesome is the influence of tiny radiofrequency disturbances that can
cause incoherent excitation and coupling of the eigenmodes. Although the setup is
extensively shielded from external influences, spurious signals can enter e.g. through
magnetic and ground loops created by the excitation lines and subsequently ap-
pear at the split correction electrodes, influencing the cyclotron motion. These dis-
turbances have been eliminated by introducing cryogenic solid-state switches that
short-out the excitation lines in normal operation close to the trap while they are not
needed (see chapter 4.3.3.4). The result of these efforts is a axial frequency stability
that is no longer limited by magnetic moment changes but solely by the stability of
the precision voltage source [49].

4.2.4 Adiabatic ion transport

Since the spin-state detection with the continuous Stern-Gerlach effect in the AT
and the precision frequency measurements in the PT have been spatially separated,
the ion has to be transported between these two traps multiple times during the
g-factor measurement. This transport is realized with adiabatic potential changes,
slowly moving the potential minimum from one trap to the other [37]. Since the
changes are adiabatic compared to all eigenfrequencies, the energy changes in the
eigenmodes during the transport is predictable and the final ion energy is similar to
the original if a similar potential strength is chosen. Furthermore, there should be
virtually no influence on the particle spin from these smooth transports, which is a
crucial requirement for the g-factor measurement. Indeed, test measurements have
not shown a single spontaneous or transport induced spinflip over several hundred
transports, as expected.
However, the adiabatic transport shows an dodgy pitfall that inhibited successful
ion transport for a long time. Since in the adiabatic limit the ion follows the elec-
trostatic center of the trap rather than the magnetic field lines, it is important to
keep the electrostatic center close to the mechanical center of the trap during the
transport. This is especially hard to guarantee for electrodes that are considerably
longer than wide. In the center of these electrodes the external electric field van-
ishes almost completely. Any surface patch potential will now shift the electrostatic
center to arbitrarily large radial positions, possibly leading to ion loss at the sur-
face of the electrode during passage. This problem was solved by using exclusively
short electrodes in the transport section that feature a strong externally controllable
electrostatic center.

4.3 Electronic non-destructive ion detection

In the course of this thesis a cryogenic ion detection system was developed that is able
to detect a single stored ion with previously unachievable SNR [44]. Simultaneously,
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great care was dedicated to guarantee negligible parasitic retroaction of the detector
on the ion, allowing the application of advanced noise feedback temperature control,
as described in chapter 4.3.3.2. The system consists basically of two main building
blocks, the superconducting resonator that is responsible for the transimpedance
amplification of the ion signal, and the ultra low-noise cryogenic solid state amplifier,
which serves for picking up the tiny signals of the ion and transporting them to the
room-temperature stage for further analysis. All information on the ion is deduced
from the signal of these amplifiers and large parts of the experiment are directly
depending on their performance, demonstrating the importance of an optimized
detection system. Figure 4.7 shows a simplified equivalent circuit diagram of the
detection system.

Cryogenic amplifier

iion ien
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Figure 4.7: Equivalent circuit of the cryogenic detection system. The induced ion
current iion is converted to a measurable voltage drop across the superconducting
tank circuit, which is detected by the solid-state cryogenic amplifier. The amplifier
can be in first approximation modeled using an ideal amplifier with input related
voltage-noise density uen and current-noise density ien.

4.3.1 Detection electronics

In order to detect the induced image current of a single trapped ion cooled to thermal
temperatures with good SNR, it is mandatory to produce a large impedance at the
frequency of the ion, so that the tiny induced current is transformed into a measur-
able voltage drop. At the frequencies of the axial motion (≃MHz), the impedance of
the trap system will be limited by the parasitic capacitance of the electrodes and the
vacuum feedthroughs for the signal lines. However, by adding a parallel inductance
to the system that compensates the capacitance, large impedances can be achieved
at the resonance frequency of the resonator. The requirements on the parameters
of the detection system depend on the method of detection. For the detection of a
coherently excited ion as a peak in the recorded spectrum, the SNR can be defined as
the ratio of signal induced onto the resonator and the noise originating mainly from
the thermal Johnson voltage-noise density of the resonator [50], the input related
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voltage-noise density of the amplifier and the current-noise density of the amplifier
flowing to the resonator and measured for a time span τm:

SNRpeak ≡ IionRpκ
√
τm√

(ujκ)
2+u2

en+(ienRpκ2)2

=
qωzκRp

√
τm

D
√

2(4kBTRpκ2+u2
en+(ienRpκ2)2)

zrms, (4.4)

where κ ≡ L1/L (see figure 4.7) denotes the amplifier noise matching ratio. Typi-
cally both noise contributions of the cryogenic amplifier can be neglected for peak
detection, giving the simple approximation:

SNRpeak ≃
qωz

√
Rpτm

D
√
8kBT

zrms. (4.5)

From this relation it seems obvious that a larger parallel resistance Rp or equiva-
lently a higher quality factor Q and a lower temperature T is desirable. However,
considering that the ion is cooled exponentially with a time constant τcool ∼ 1/Rp

while it is in contact with the resonator, the measurement time τm is limited to
approximately τm ≤ 2 · τcool. Without further measures, the achievable SNR will
thus not scale at all with the quality factor (provided that it is sufficiently high to
support equation (4.5)), however feedback cooling can remove this limitation.
The detection of the ion with the dip method (see chapter 3.3.1) imposes even
stronger demands on the performance of the detection system. Since in this detec-
tion mode there is no distinctive signal above the noise floor of the thermal noise
anymore but rather the signature is the absence of the thermal noise at the frequency
of the ion, the SNR is defined as the ratio of the thermal noise and the remaining
noise floor at the frequency of the ion, caused by the electronic noise contribution
of the amplifier:

SNRdip =

√
4kBTRpκ2 + (ienRpκ2)

2

uen
, (4.6)

Interestingly, the temperature and the current-noise contribution now both appear in
the nominator of the SNR, showing that dip detection becomes simpler with higher
temperature of the detection system. However, the increased SNR comes at the
expense of an increased ion temperature in equilibrium, generating highly undesired
systematic frequency errors. The most reasonable method for increasing the SNR is
the optimization of the voltage-noise contribution of the cryogenic amplifier, together
with an optimization of the tank circuit quality factor as well as the detector coupling
κ.

4.3.2 Axial tank circuit

For an ideal parallel resonator, the impedance approaches infinity at the resonance
frequency

νR =
1

2π
√
LC

. (4.7)
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In reality, the parallel resistance of a tank circuit is limited by ohmic losses in the
conductors and dielectric losses in the isolation of the conductors and the surrounding
of the coil. The parallel resistance Rp of the tank circuit is connected to its quality
factor Q and inductance L by [51]

Rp = QωL. (4.8)

The quality factor is defined as the inverse relative spectral width of the resonator:
Q = νR

δν
, or

Q = νRτ, (4.9)

where τ denotes the exponential rate of energy loss. As expected, the quality factor
increases if the rate of energy loss is decreased or if the time scale of the oscillation
is shortened.
Since the trap electrodes are surrounded by vacuum, the energy loss of the para-
sitic trap capacitance is almost negligible. The main loss mechanisms are resistive
heating from the ion current and dielectric heating in the wire insulation, typically
FORMVAR. Both processes obviously scale linearly with the wire length lw, while
the stored energy scales with the inductance L:

Emag = L · I2, (4.10)

leading to the conclusion that the inductance per wire length should be maximized
in order to minimize losses. Simultaneously, the capacitance should be minimized
such that the resonator frequency increases (compare equation (4.9)). The helical
resonator geometry is a good choice for this figure of merit. For a long helical coil
with diameter Dcoil and length l the inductance can be roughly estimated by:

L ≃ N2D
2
coil

l
nH. (4.11)

The wire length is lw ≃ NπD, so that it is possible to express the figure of merit as:

Q ∼ L

lw
≃ Dcoil

πd
, (4.12)

for densely wound coils with wire diameter d. Equation (4.12) tells that the qual-
ity factor depends linearly on the coil diameter. Since in reality available space
is limited, especially in the cryogenic region of the experiment, the quality factor
achievable has to be additionally optimized by directly lowering the losses. This is
possible by using superconducting wire, which shows essentially negligible resistive
losses for frequencies below ∼1 MHz. All materials within the high-field region of
the coil, including wire insulation material, coil core and fixation material, should
feature low dielectric loss tangents. In this work, PTFE13 was chosen.
The experiment needs two resonators, one for each of the two main traps. The res-
onator for the AT is significantly larger than the one for the PT and accordingly

13PTFE: Polytetrafluoroethylene or colloquially Teflon.



48 4. The g-factor apparatus

Analysis Trap Precision Trap

Resonance Frequency (kHz) 412 711
Inductance (mH) 5.36 1.5
Quality factor 3100 950
Parallel resistance (MΩ) 43 6.8

Table 4.1: Parameters for the AT and PT axial resonators in the final setup.

shows a larger quality factor. The parameters of the two resonators are compiled in
table 4.1.

4.3.3 Ultra low-noise amplifier

The second key component of the detection system is the solid state amplifier in the
cryogenic region that samples the voltage induced by the ion and the thermal noise of
the tank circuit. In order to limit the capacitance of the tank circuit and the dielectric
loss angle of the overall system, it is absolutely necessary to place the amplifier as
close as possible to the resonator, directly in the cryogenic region. This again means,
that the amplifier has to cope with both the low temperature and the magnetic field
of ∼ 3 T. The magnetic field inhibits the use of any ferromagnetic components, which
would not only degrade the homogeneity of the magnetic field but also would be
completely magnetized, discontinuing proper function in most cases. Furthermore,
most integrated electronics based on silicon semiconductor material will suffer from
carrier freeze-out at the temperature of 4.2 K [52]. Since for silicon the typical donor
and acceptor activation energy for doping with group 3/5 elements is around 50 meV,
at 4.2 K only a small fraction (< 1%) of the majority carrier states are activated,
inhibiting the function as semiconductor. Luckily other compound semiconductors
as Gallium-Arsenide (GaAs) allow doping with elements that generate carrier states
with significantly lower activation energy around 6 meV (at least for the donor
levels). Still, the special conditions of the g-factor experiment require the design
of specialized, discretely14 built electronics. In the course of this thesis a novel
amplifier system was developed that surpasses the performance of the previously
used amplifiers by far in all fundamental requirements:

� Low voltage-noise density around the axial frequency of the ion

� Low power consumption

� High input resistance

� Negligible parasitic feedback

14Discrete here means that only basic passive, reactive and active elements are used, e.g. tran-
sistors, without the use of complex integrated circuits as operation amplifiers.
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� Low current-noise density.

The requirements of high input resistance and low current-noise density, emerging
from the demand of a high SNR (see chapter 4.3.1), make the use of field effect
transistors (FET), configured in common source topology (see figure 4.8), preferable.
Most commercially available GaAs based FETs are configured as MESFET15, where

Z load

n-channel
FET

Vdd

ug1

uout

Z load

n-channel
FET

Vdd

ug1

uout

Z degen

Figure 4.8: A n-channel FET configured in classical common source topology with
reactive load (left). The direct grounding of the source electrode allows for maximum
transconductivity and thus minimum thermal voltage-noise, however the reactive de-
generation of the source with current feedback through a reactive component (right)
can decrease shot noise considerably by establishing correlation for the conducting
electron gas.

the gate electrode is a backwards biased diode, quite similar to a JFET16, but instead
of using a p-n semiconductor junction, the gate is a Schottky-type metal contact
directly grown on the semiconductor substrate. Owing to the comparably high
carrier mobility in GaAs, these transistors are commonly used for high-frequency
components operating at frequencies in excess of 10 GHz. The optimization of the
MESFETs for these frequencies causes drawbacks if they are used for measurements
at the comparably low axial frequency of approximately 1 MHz. These drawbacks
have been directly addressed in the design of the amplifier. In the future, the design
of a specialized transistor for cryogenic low frequency measurements could give even
more room for optimization, however until now the high prize for the production of a
custom transistor forbid this option. Comparing the MESFET with other transistor
types which potentially work at liquid helium temperature, shows that the MESFET
is by far the most reliable and simple to use type. Transistors based on silicon-
germanium heterostructures (SiGe) promise extremely low input related voltage-
noise, in the order of less than 100 pV/

√
Hz [53]. However, since these devices until

now are only available as bipolar transistors, the current-noise density will undo this
advantage if the amplifier is connected to the tank circuit, although these transistors

15MESFET stands for MEtal on Semiconductor Field Effect Transistor.
16JFET: Junction Field Effect Transistor
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can be very advantageous when used for broadband detection [54] where the input
impedance is lower. Silicon based JFETs will mostly not work at 4.2 K, however, by
proper thermal isolation, these transistors can be heated with the power dissipated in
the channel to higher temperatures. Due to the lower carrier mobility of the silicon
bulk material, these transistors can be advantageous for low frequency detection,
but again current-noise density has to be considered. Additionally the handling of
these devices would be quite complicated, as the transistor properties will depend
strongly on the die17 temperature. The MESFET features an extremely low current-
noise density, since the gate leakage current decreases exponentially towards lower
temperatures, reaching a typical level of less than 1 fA/

√
Hz at 4.2 K. The voltage-

noise density of these devices also decreases with the temperature, however low
frequency noise will generally dominate at the frequencies considered here. For a
decent noise optimization the origin of the noise contributions has to be analyzed.

4.3.3.1 Noise sources for the cryogenic MESFET

Several contributions to the noise of a MESFET based transistor amplifier can be
differentiated [55]. The conducting drain-source channel has an effective resistance
rds that causes Johnson-type thermal noise

u21 = 4kBTrds, (4.13)

which decreases with the channel temperature. Since this noise contribution is fre-
quency independent, it is called white noise. For frequencies in excess of 10 MHz the
channel thermal noise is the dominant noise contribution. In general, the channel
noise will couple to the gate electrode via the Drain-Gate capacitance Cgd, possibly
causing a considerable excess noise at the resonance frequency of the tank circuit.
The thermal noise contribution can be derived from the static properties of the tran-
sistor and can be optimized by choosing a proper operating point for the transistor.
Shot noise of the drain current can potentially add a white noise contribution, but is
generally of little importance due to the relatively large drain currents used. Source
degeneration can cancel large parts of the shot noise if extremely low drain cur-
rents have to be used. The frequency dependent noise contributions can be more
troublesome. In the frequency range of interest for the g-factor experiment most
contributions fall with 1/f or faster. The frequency where the 1/f or flicker noise be-
comes comparable to the white thermal noise background is referred to as the flicker
noise corner. It is highly desirable to push this corner to frequencies lower than the
axial frequency. Flicker noise (sometimes referred to as pink noise due to the large
fraction of low frequency noise) is caused by processes related to impurities within
the semiconductor material. The dominant effects are generation and recombination
(g-r) noise and mobility fluctuations due to scattering at impurities [56], making the
1/f noise strongly dependent on the production process. As a result, flicker noise will
vary between different transistors of the same type and especially between different
production batches. G-r noise, which typically dominates at room temperature, is

17Die: the piece of semiconductor, i.e. the active part of the transistor.



4.3. Electronic non-destructive ion detection 51

p-substrate

Bulk contact

Gate 1Source

n+

n

Gate
depletion

L

Gate 2

n+

Drain

1 L2

Rload

T2

T1

Vdd

Vg2

ug1

Figure 4.9: (Left) Sketch of the structure of lateral dual gate GaAs MESFETs.
The two distinct depletion region beneath the two gates merge in order to form a
single long channel if the two gates are shorted. The bulk (or back-gate) contact is
typically connected to the source internally. (Right) Simplified equivalent circuit of
the cascoded common source amplifier.

caused by the random thermal creation and trapping of carriers at impurities mainly
in the depletion region of the gate. Since the depletion area scales with the device
size W ·L, g-r noise can be influenced with transistor design only weakly and at the
expense of the gate capacitance. Fortunately, g-r noise decreases dramatically with
device temperature, since the trapped charges will not be activated at sufficiently
low temperature [56]. At these temperatures the fluctuation of the carrier mobility
due to random scattering at impurities dominates the flicker noise. This process can
be described by the empirical Hooge equation [57]:

u22 = αL
I2dsrds

2

NL
, (4.14)

where αL is an empirical parameter dependent on the fabrication process, Ids is the
dc drain current, rds the effective drain resistance, N the number of free charges in
the channel and L the channel length. Assuming that the transistor is operated in
the strong inversion regime, the drain current can be expressed as [58]:

Ids = kn
W

L

(
(Vgs − VT )Vds −

V 2
ds

2

)
, (4.15)
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where kn is a proportionality constant depending on several semiconductor param-
eters, and VT denotes the threshold voltage of the drain-source channel. These
equations can be combined to find an expression for the flicker noise density:

u22 ∼
1

L2f
. (4.16)

Interestingly, the voltage-noise density caused by the mobility fluctuation scales
strongly with the channel length. This is because the number of available carriers
increases with the channel length, while the drain current decreases with L. For
low frequency appliances as the axial amplifier, this paves the way for a significant
reduction of the effective electronic noise by choosing or designing a transistor with
a long channel. Unfortunately, almost all GaAs-MESFETs are short channel de-
vices, optimized for high-frequency operation where flicker noise is of no concern.
Hence, for the cryogenic amplifier an artifice is exploited: many of the commercially
available transistors are dual-gate devices, that incorporate basically two transistors
in series that share one degenerate electrode, meant for the implementation of cas-
coded amplifiers. By shorting the two gates of such devices, the channel will extend
from the source of the lower device all the way to the drain of the upper transistor.
The effective channel length is thus approximately the sum of the length of both
transistors. If both devices have comparable gate length, the resulting flicker noise
contribution will be lower by a factor of 4, while the input capacitance only increases
by a factor of 2. Additionally, all incoherent noise contributions can be cut down by
a factor of 1/

√
N by paralleling N identical transistors.

In order to inhibit parasitic feedback of the amplified signal through the gate-drain

g
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Figure 4.10: Simplified equivalent circuit of the detection system including noise
contributions from the amplifier and one exemplary parasitic feedback path.

Miller [59] capacitance, radiofrequency shielding with conducting sheets can be em-
ployed. A more elegant measure is, however, the spatial isolation of the primary
gate from the hot end of the amplifier, which becomes possible through the imple-
mentation of a dedicated discrete cascode stage. To this end, a further transistor
with fixed gate voltage is connected in series to the primary transistor, acting as
a low impedance load or voltage source for the primary transistor while forming a
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high parallel impedance for the resistive load Rload (see figure 4.9). This way, the
small-signal current through the first transistor T1 is given by

ids = gm1ug1, (4.17)

where gm1 is the small signal transconductance of the primary transistor T1. Since
the voltage at the gate of the second transistor is held fixed, the voltage at the drain
of T1 is given by:

ud1 = −gm1

gm2
ug1. (4.18)

If the transconductance of the second transistor is similar or larger than that of the
first transistor, the voltage appearing across the miller capacitance of T1 is only 2ug1,
far less than the voltage between the hot end and the input. Furthermore, since the
load is almost purely resistive, the phase of the feedback signal is well defined and
exactly 180◦. At the drain of T2, the current ids creates the amplified voltage across
the load resistance RL:

uout = −idsRL ∥ rds = −ug1gm1
RLrds
RL + rds

≡ −Aug1. (4.19)

Together with proper definition of ground planes and suitable choice of PCB18 mate-
rial (laminated TEFLON sandwich), these measures ensure negligible back action on
the tank circuit, even for very high quality factors where the resonator acts as very
effective signal pickup. The compound discrete cascode amplifier is thus well suited
as voltage amplification stage for the cryogenic amplifier. In order to transport the
signal to the room temperature stage via long coaxial cable without imposing a
strong capacitive load for the primary stage, a third transistor configured as source
follower is added. The input of this stage is highly resistive, while the output can
be adjusted to the 50 Ω impedance of the transmission line. The voltage follower
provides no further voltage amplification (in fact the voltage amplification is always
slightly lower than unity), but can deliver the current necessary in order to drive
the transmission line and furthermore serves for decoupling the room temperature
stage from the cryogenic tank circuit. This helps in preventing reflections in the
long cables, which could cause oscillations. The actual implementation of the am-
plifier furthermore adds filters for decoupling the gate and drain biasing from the
radiofrequency signals. The gate voltages of T1 and T2 are controlled from the room
temperature stage in order to adjust the operating point of the transistors. Since the
amplifier is not self-biassing, the optimal gate bias voltages are strongly dependent
on the production process, such that paralleled devices should be roughly selected
for similar characteristics.
The input related voltage-noise density of 400 pV/

√
Hz for frequencies in excess

of 400 kHz (see figure 4.12) in combination with the extremely low current-noise
density of ∼1 fA/

√
Hz, the negligible back-action, the low power consumption and

the static input capacitance of only 4 pF makes this cryogenic amplifier unique and
interesting for a number of experiments. Accordingly, the design was adopted for the

18PCB: Printed Circuit Board
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Figure 4.11: (Left) Final schematic of the cryogenic section of the ultra low-noise
amplifier. (Right) Photograph of the cryogenic amplifier.

broad-band detection system of the TRIGATRAP [60] experiment, at the cryogenic
storage ring CSR in Heidelberg [61], and will also be used in the upcoming ultra
high-precision mass measurement setup PENTATRAP [62].

4.3.3.2 Electronic feedback

Considerable effort was dedicated in order to minimize the parasitic back action of
the novel cryogenic amplifier. Simultaneously, the voltage-noise background of the
amplifier has dropped far below the Johnson noise density of the resonator. This
fact can be expressed by considering the noise temperature of the amplifier, which is
defined as the equivalent temperature of the source Ts that would make the Johnson
noise power of the source equivalent to the voltage-noise of the shorted amplifier
input [63]:

4kBTsRp = u2en ⇒ Ts =
κu2en
4kBRp

≃ 23mK. (4.20)

This remarkable number already suggests that the new amplifier can be used for
advanced control over the physical tank circuit parameters as electron gas temper-
ature and quality factor by allowing for a well controlled feedback of the measured
noise onto the resonator [64]. Figure 4.14 shows the connection diagram used for
implementing noise feedback control. For simplicity the small current-noise contri-
bution will be neglected in the analysis. If the feedback is switched off (u0 = 0),
the small capacitance CFB ≃ 0.3 pF only adds to the parallel capacitance of the
tank circuit CT . The effect of non-vanishing amplification depends on the phase and
amplitude of the generalized complex amplification A = a+ ıb, which contracts the
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Figure 4.12: Voltage-noise density of the cryogenic amplifier, measured with shorted
input at liquid helium temperature. The flicker noise corner is at roughly 350 kHz,
below the lowest detected frequency in the current experiment.

coupling constant κ, the feedback free amplification Ac and the transfer function of
the phase shifter and the attenuator. Two orthogonal cases can be distinguished
that are termed 90◦ and 180◦ feedback, respectively. If the feedback gain is exactly
180◦, the effective impedance of the feedback capacitor becomes:

ZFB,eff =
u1

u1 − u0

1

ıωCFB

=
1

ıω(1− A)CFB

. (4.21)

This result shows that it is possible to alter the effective parallel capacitance of the
resonator by applying 180◦ feedback. In principle it is possible to shift the resonance
of the axial resonator to any arbitrary frequency. However, the additional noise and
the difficulty to maintain exactly 180◦ in the feedback phase for all frequencies limits
the tuning range with this method to typically a few linewidths of the resonator.
This is sufficient to increase e.g. the cooling time constant considerably, which is
extensively used during the phase sensitive axial frequency detection in the analysis
trap (see chapter 5.7).
Fundamentally different is the effect of 90◦ feedback. At the resonance frequency of
the tank circuit, parts of the Johnson thermal noise of the effective parallel resistance
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Figure 4.13: Normalized amplifier gain (filled squares) and the resultant tank circuit
quality factor (triangles) for two different bias settings of the cascode gate (Gate2)
for the novel cryogenic amplifier. The voltage at Gate2 has only very little influence
on the amplification. If the cascode is well set-up (open triangles), the Q-value (or
parallel resistance) is virtually independent of the amplifier gain, which demonstrates
the negligible back-action even for very high quality factors.

Rp is coherently reinjected through the feedback capacitor CFB. The excess current
through the tank circuit due to feedback is:

IFB = u0ıωCFB. (4.22)

The feedback thus acts to make the voltage across the tank circuit u1:

u1 =
1

1− ıωRpCFBA
uJ ≡ γuJ . (4.23)

Simultaneously the effective parallel resistance of the tank circuit, as seen by the
trapped ion, is also altered by the feedback loop:

Reff ≡ ∂u1
∂iion

= γRp (4.24)
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Figure 4.14: Connection diagram for the electronic feedback control. The amplifier
is assumed to be free of parasitic feedback. The signal recorded by the cryogenic
amplifier is phase shifted at room temperature, the amplitude is adjusted by a con-
trollable attenuator and fed back to the tank circuit via a feedback capacitance
located in the cryogenic region.

Combining equations (4.23), (4.24) and (3.50) reveals that the resonator with closed
loop 90◦ noise feedback can be modeled as a passive resonator with effective param-
eters:

Teff = γT (4.25)

Reff = γRp. (4.26)

This result opens the possibility to actively control the temperature and Q-value
of the tank circuit, allowing either the detection with arbitrarily high SNR or the
cooling of the ion below the equilibrium temperature of the tank circuit lattice.
Although the feedback parameter γ is unbound, the finite electronic excess noise of
the cryogenic amplifier acts to limit the lowest achievable temperature. Again, the
excess current due to the electronic voltage-noise uen (equation (4.22)), amplified in
the closed feedback loop, generates a voltage drop

uen1 = ıωCFBRp (4.27)

across the tank circuit’s parallel resistance Rp. This yields a closed loop electronic
noise contribution of

uen1 = (γ − 1)
uen
κ
. (4.28)

Assuming that the Johnson noise and the electronic noise of the amplifier are un-
correlated, the final noise amplitude at the resonator is:

ufull1 =

√
(γuJ)

2 +
(
(γ − 1)

uen
κ

)2
. (4.29)
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Figure 4.15: Normalized temperature of the ion in thermal equilibrium with the tank
circuit with negative electronic feedback. The temperature decreases monotonically
with increasing feedback gain, until a minimum value, depending only on the initial
SNR, is reached. If the feedback is increased beyond that point only electronic noise
is added and the temperature rises.

In combination with the still valid expression Reff = γRp, it is possible to derive the
closed loop temperature of the tank circuit including the electronic noise contribu-
tion:

T en
eff = T

(
γ +

(γ − 1)2

γ

1

SNR2

)
. (4.30)

The minimum achievable temperature thus depends only on the lattice temperature
of the tank circuit and the SNR of the detector. For SNRs in the order of 26 dB
as in the g-factor experiment of the work presented here, the minimum temperature
can be reasonably well approximated by

Tmin ≃ T ·
(

1

19.159 + 0.99275(SNR− 20)

)
≃ 248mK. (4.31)

Figure 4.15 shows the achieved closed loop temperature as function of the normal-
ized feedback gain. Evidently it is counterproductive to increase the feedback gain
beyond the optimal value since the additional electronic voltage-noise will increase
the particle temperature excessively. However, the temperature increase is not as
sharp as equation (4.30) suggests since in the experimental realization the loop am-
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Figure 4.16: Thermal noise of the AT resonator with various strengths of the feed-
back gain. The narrow feature superimposed to the resonance is the axial dip signal
of a single ion.

plification A, rather than the parameter γ, is varied linearly.
If positive feedback is applied, the Q-value of the tank circuit can be increased arbi-
trarily, simplifying the rapid detection of ions with low charge. However, excessively
increasing the positive feedback gain beyond the divergence γ → ∞ will cause spon-
taneous oscillation of the tank circuit, possibly leading to ion loss.
For precision measurements it is very important to avoid parts of the feedback to
be parasitically applied directly to other electrodes, since this feedback (which will
generally have an unpredictable phase) will lead to systematic frequency shifts by
detuning the series resonator equivalent circuit of the ion. If the feedback is applied
directly to the resonator, the extremely low amplitudes are typically negligible.

4.3.3.3 Development of a self-excited single ion oscillator (SEO)

Even with negative feedback on the tank circuit the measurement time available
for coherent frequency or phase determination is limited since the ion is cooled
during data taking. Infinite measurement time can be achieved by applying negative
feedback deliberately to one of the trap electrodes. The force exerted on the ion
will now depend only on the difference of the voltage at the electrodes u1 − u0
(possibly weighted by a dimensionless factor if different electrodes are used). If the
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ion is excited to large amplitudes so that Johnson noise and electronic noise can be
neglected in first order, the effective voltage can be calculated:

du ≡ u1 − u0 = u1(1− A). (4.32)

Equivalently, the effective cooling time constant τeff can be expressed as:

τeff =
τ

1− A
. (4.33)

Obviously the cooling time diverges at A = 1, since at this setting there is no ef-
fective dissipative force acting on the ion [64]. The ion will in principle remain on
any amplitude that it is excited to and allow for very accurate determination of
the motional parameters. However, any mistuning or unintentional change of the
amplification A will lead either to an exponentially changing amplitude. In order to
make the direct feedback usable, the feedback amplitude A has to be regulated in
realtime, keeping the amplitude determined from a floating time window DFT19 con-
stant. This has been implemented in the course of this thesis on basis of a dedicated
DSP20 board equipped with self developed analog circuitry that allows a regulation
of the feedback gain from within the DSP firmware. In the beginning, when the ion
is cooled to thermal equilibrium, the feedback amplitude is maximized, leading to
self-oscillation that increases the thermal oscillation until the desired particle am-
plitude is reached. Hereafter, the ion amplitude is regulated to a fixed value with a
simple PID21 regulator implemented in the DSP firmware. Simultaneously the ion
frequency is determined from the phase evolution of the detected DFT signal. With
this setup, the detection of the axial frequency to within the information theoretical
Cramér-Rao bounds [65] is possible. Since the ion is continuously monitored, the
frequency resolution scales proportional to 1/

√
T 3
meas. However, it is necessary to

cancel the parasitic feedback appearing on the resonator by applying suitably scaled
feedback amplitudes to different electrodes [66]. This way it is possible to null the
effective feedback on the resonator, while keeping a finite force acting on the particle.
In practice this method is exceedingly laborious, considering that a much simpler
method (see chapter 5.4.1) is giving satisfactory results.
In the future, the SEO can be applied for the spin-state detection of heavier ions,
where the axial frequency difference due to spin flips is getting exceedingly small.

4.3.3.4 Cryogenic switches

As mentioned in chapter 4.2.3, radiofrequency noise introduced into the cryogenic
region of the experiment either through coupling to magnetic loops formed, e.g., by
the ground returns or by imperfect shielding properties of the coaxial excitation lines
can cause highly undesirable parasitic influence on the motional energies of the ion,

19DFT: Discrete Fourier Transform. Within the DSP, a DFT rather than a FFT is implemented,
since the DFT can determine the Fourier series of a running time sample more effectively by reusing
the overlapping data.

20DSP: Digital Signal Processor
21PID: Proportional, Integrating, Differential
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Figure 4.17: Diagram of the realization of the self-excited oscillator.

possibly inhibiting successful spin-state detection. Over and above the elaborate
shielding of external noise, a major breakthrough was achieved by introducing solid-
state analog switches in the cryogenic region. These switches allow to shortcut the
excitation lines while they are unused. Despite the conceptional simplicity of the
switches (see figure 4.18), the effect on the experiment was both surprising and
resounding. For successful spin-sate detection it is absolutely necessary to keep the
switches closed. A similar effect might be achieved by a stronger decoupling of the
excitation lines, however this would call for larger excitation amplitudes.

4.4 The microwave system for spin-state excita-

tion

For the determination of the g-factor, the electron spin has to be excited at its Larmor
frequency, which amounts to approximately 105 GHz at the magnetic field of 3.76 T.
The fundamental frequency is derived from the 10MHz reference, generated by the
rubidium reference cell (SRS FS725), with a DDS22 synthesizer (Anritsu MG3692B).

22Direct Digital Synthesis
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Figure 4.18: Implementation of the cryogenic solid state switches that short-out
residual radiofrequency disturbances acting on the trap electrodes. The switches are
based 4 SW239 integrated GaAs transistors connected in parallel to minimize the
residual on-resistance.

The fundamental frequency of approximately 17.5 GHz is multiplied with an active
nonlinear millimeter wave multiplier (OML S10MS) by a factor of 6. The active
multiplier offers a maximum output power of 3 mW without degrading the relative
frequency stability. After this multiplication the signal can only be transported by
suitable (W-band) waveguides. The waveguides within the magnet bore are made
from stainless steel in order to minimize the thermal conductivity from the 4 K to
the room temperature region. Since stainless steel gives rise to severe power losses,
it might be advantageous in the future to use waveguides coated with a thin gold
layer23. With the present setup, the Rabi frequency for the incoherently driven spin-
flip transition is about 30 s in the AT, which contributes considerably to the overall
measurement duration. Since the spin-flip detection has been accelerated compared
to predecessor experiments [34], the amount of data collected within a certain time
could be easily improved by increasing the microwave power in the trap.

23Due to the skin effect, a few µm of gold at the surface suffices to reduce the losses considerably.
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After introducing the theoretical foundation of the g-factor determination and the
apparatus built for this measurement, the following chapter will focus on experi-
mental methods and results that are important for the experiment. Many of the
methods are common to precision Penning-trap experiments, however, in the course
of this thesis a couple of novel ideas have been developed and implemented, which
allowed the improvement of the measurement accuracy by more than an order of
magnitude.

5.1 Creation and charge-breeding of ions

Since the triple trap setup is enclosed in a hermetically sealed vacuum chamber,
the ions under investigation have to be created in the setup. As mentioned in
chapter 4.2.1, a dedicated mini-EBIT setup [46] is available for this purpose. After
charge-breeding with an electron current of typically several 100 nA for a couple
of seconds, the CT is filled with a mixture of ions of different elements originating
from the surface of the target electrode. Furthermore, all elements exist in different
charge-states. Due to the electron energy of up to 8 keV in the current setup elements
up to calcium can potentially be charge-bred to hydrogenlike ions [46]. For the
g-factor determinations, mainly those nuclei without nuclear spin are interesting1.
Furthermore, the mass of the ion has to be known with the same or preferably better
precision than the g-factor experiment. Since it is envisaged to test the isotopic
effect of the g-factor directly, the element should have at least two stable isotopes
with significantly different mass. Combining these requirements, only a few elements
remain. Among those is the element measured in the course of this thesis, 28Si13+ and
30Si13+, which will be addressed soon, 24,26Mg11+, and 40,48Ca19+. After the successful
measurement of 28Si13+, Mg became less interesting as candidate for a direct check

1It is planned to extend the g-factor experiment to ions with nuclear spin in order to determine
high-precision nuclear magnetic moments. However, the appropriate experimental technique is not
completely developed and goes beyond the scope of this thesis.
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of the BS-QED. However, unlike 30Si, the masses of both Mg isotopes have been
measured by the SMILETRAP collaboration as hydrogenlike ions to good precision
[67], enabling the direct determination of the isotopic effect with these elements.
Calcium again is the element with the strongest binding field effect (among the
available ions), promising the most stringent BS-QED test, provided that theoretical
calculations can cope with the challenge of the requested accuracy [68], and features
a 20% mass difference between different stable isotopes, which allows to test the
isotope effect of the g-factor.
The already measured 12C5+ is a very promising candidate for the determination of
an improved value of the electron mass and will be remeasured with the improved
precision obtained in this work.

5.2 Mass spectrum

After the charge-breeding process, the cloud of ions is adiabatically transported
to the PT. Here, for the first time it is possible to take a meaningful glance at
the composition of the cloud. Since the non-destructive image current detection
as introduced in chapter 4.3 is the only possibility to detect ions in the g-factor
experiment, also the creation of mass spectra relies on this technique. In order to
be able to detect ions despite the strong space-charge interaction and distinguish
between different ion species, the peak detection method for the axial frequency is
used [37]. All ions are excited with a dipolar excitation and brought successively
into resonance with the axial tank circuit by ramping the trapping voltage. Since
the axial frequency is depending on the charge-to-mass ratio q/m, the voltage where
the ion comes in resonance with the tank circuit is characteristic for the ion species,
though there are ambiguities for isobars with very similar q/m ratios due to the very
limited resolution of the mass spectrum.
For the creation of a mass spectrum the integrated power of the tank circuit is
recorded with a custom-made detection amplifier, while the trapping voltage is
ramped continuously from high voltages down to a minimum voltage. By apply-
ing a continuous axial dipolar excitation at a frequency slightly higher than the tank
circuit, the ions coming into resonance have a high kinetic energy that is dumped
onto the resonator. The spectrum is recorded by a digital oscilloscope which can be
read out via GPIB. Figure 5.1 shows two exemplary mass spectra. The axial mass
spectrum technique is a very simple and straightforward concept that nevertheless
allows for the detection of large ion clouds as well as single ions within a short time.
This allows the characterization of the charge-breeding process.

5.3 Preparation of single ions

After the creation of an ion cloud in the EBIS, the mass spectrum shows a large
amount of ions of different species and charge states. Since for the final measurement
only a single isolated ion should remain in the trap, it is necessary to implement an
effective cleaning method that allows the selection of the ion of interest from a large
number of contaminant ions. Different methods are used for this purpose and only
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Figure 5.1: Exemplary mass spectra, recorded with the technique presented in the
text. The spectrum on the left shows a large ion cloud, causing the individual peaks
of different species to merge due to imperfect trapping potential and space-charge
interaction. On the right side of the spectrum, harmonics of the signals of a large
amount of lowly-charged ions is visible. The right spectrum shows the signal of a
single ion after cleaning the trap (see chapter 5.3.1).

the two most effective ones are presented here. The preparation of single ions starts
with the isolation of a single q/m range. For this purpose, all ions with charge-to-
mass ratios other than the desired one are ejected from the trap. Two methods have
proved their worth during the experiment.

5.3.1 SWIFT cleaning

The simplest method is the axial excitation of all ions until the unwanted ones get
lost. Here, all ions except for the wanted ones are excited and reach accordingly
large axial amplitudes. After a certain time the excitation is switched off and the
trap voltage is lowered non-adiabatically to a minimum value. Ions with large axial
energies are not bound anymore and leave the trap. For this purpose, an excitation
signal originating from the inverse Fourier transform of white noise with notches at
the magnetron and axial frequency of the wanted ion species is applied [69]. Addi-
tionally it turned out that the parametric excitation at the double axial frequency
has to be avoided. This signal is stored in the RAM of a suitable signal generator
(SRS DS345) and played back continuously. During the excitation, the wanted ions
are brought into resonance with the tank circuit in order to dump excess energy
from collisions with excited contaminant ions. After several iterations, only ions of
the desired species remain in the trap. The SWIFT2 cleaning is conceptually very
simple. However, it has a fundamental drawback if a small amount of desired ions
has to be extracted from a large ion cloud. Since the excited ions continuously os-
cillate through the cloud of selected ions, the energy transfer can be rather strong,
especially if the amount of ions in the cloud is large enough such that space-charge
effects dominate. Furthermore, the axial frequency is strongly dependent on the

2Stored Waveform Inverse Fourier Transform
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motional radii. For this reason this method is virtually unusable for the selection of
ions with very small abundances.

5.3.2 Selective magnetic trapping

For the unfortunate situation mentioned in the section above, a more advanced
method was developed in the course of this thesis. It relies on the excitation of
the cyclotron mode rather than the axial mode. Since the radial motion is two-
dimensional, this has the advantage to decouple the motion of the excited and cold
ions virtually entirely, which inhibits unwanted energy transfer to the wanted ions.
Furthermore, the cyclotron frequency is far less sensitive to mode radii and space-
charge than the axial frequency. An arbitrary number of species is selected by several
chirped dipolar excitations in the PT, bringing these ions on large cyclotron radii.
The cloud of ions is then transported to the AT. When the ions have arrived within
the magnetic bottle of the AT and the axial energy is reduced via contact to the
axial resonator, the electrostatic potential is switched off, leading to instantaneous
axial loss of almost all ions. Only those ions that are on sufficiently large radii are
still bound due to the magnetic moment of the cyclotron motion:

Emb ≃ µcycl
z B2z

2
max = q

ω+

2
r2+B2z

2
max. (5.1)

The minimal cyclotron orbit necessary for successful magnetic trapping is given
by the axial energy. For 28Si13+ ions in thermal equilibrium the minimum radius
evaluates to

r+ ≥

√
2kBTz

qω+B2z2max

= 10µm, (5.2)

when demanding a maximum axial amplitude of 1 mm, smaller than the typical
dimension of the magnetic bottle. The selected ions can thereafter be transported
back to the PT, where the cyclotron energy is dissipated via resonant sideband
coupling to the axial resonator. This method allows a very effective selection of an
ion species, especially in the presence of a large amount of contaminant ions.

5.4 Bolometric detection

5.4.1 Axial frequency detection and stability

As described in chapter 4.3, the detection of the eigenfrequencies is based on the
detection of a dip in the thermal noise of the axial tank circuit. The determinability
of the dip frequency is therefore of extraordinary importance for the success of the
experiment. The line-splitting accuracy is dependent on the SNR of the detection
system as well as the linewidth of the dip. For this reason, Monte Carlo simulations
[70] were performed in order to determine the optimal averaging time for the specific
setup. The variance of the fits to the Monte-Carlo data gives a model-free estimate
for the performance of the line-splitting at these particular settings. As naively
expected, the standard deviation of the determined frequency decreases with the
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inverse square root of the averaging time and the SNR, and increases roughly linearly
with the dip linewidth. The imperfect stability of both the trapping voltage and the
magnetic field renders excessively long averaging durations, i.e. longer than about
100 s, undesirable. For this reason there are basically two possiblilies to optimize the
final precision. Artificially increasing the temperature of the tank circuit with either
externally applied white noise or a coherent SWIFT signal immediately increases the
SNR of the detector with the square root of the effective temperature and accordingly
also the precision of the frequency determination, as long as the particle motion
stays sufficiently harmonic at the accordingly increased axial amplitude. However,
the increased particle temperature leads to highly undesired systematic effects in
the final g-factor determination such that there is a natural limit to the applicability
of this technique, as outlined in chapter 6.1.4. When applying noise feedback to
the resonator, the SNR increases linearly with the temperature, because also the
effective resistance is scaled. This allows to reach the same SNR at a much lower
temperature than possible with the excitation of the tank circuit. As a disadvantage
the linewidth of the dip also scales with the feedback gain, strongly degrading the
improvement due to the increased SNR. Figure 5.2 demonstrates that the most
effective precision improvements are obtained by increasing the SNR with a less
noisy amplifier and decreasing the linewidth by decoupling the ion from the tank
circuit via a larger effective electrode distance. However, the latter possibility can
have severe disadvantages when employing coherent detection methods that rely on
the detection of a peak signal.
For this work an averaging duration of 90s was chosen to optimize the precision of
the final free space cyclotron frequency. For the planned measurements with other
species, this value should be adjusted accounting for the different linewidth due to
the charge of these ions.
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Figure 5.2: Standard deviation of the frequency value determined by a fit to artifi-
cially generated Monte Carlo spectra using typical parameters of a 28Si13+ ion in the
PT. The determinability improves with 1√

T
(left) and directly reflects the entropy

of the incoherent signal. For averaging durations up to 60 s this line-splitting de-
termines entirely the axial frequency resolution. The precision can be improved by
decreasing the linewidth of the dip (right) for example via decoupling the ion from
the tank circuit.
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Figure 5.3: The linesplitting performance is roughly independent of the feedback
gain, as the increase in the SNR is mostly canceled by the simultaneously increasing
linewidth. This demonstrates that the particle can be cooled with noise feedback
without sacrificing linesplitting precision.

5.4.2 Radial mode detection

The detection of the noise dip allows the determination of the axial eigenfrequency.
The radial modes do not couple directly to the axial resonator and have to be
detected with the sideband coupling method introduced in chapter 3.4.3. If the
coupling between one of the radial eigenmodes and the axial motion is mediated
by a suitable continuous wave (cw) quadrupolar radiofrequency drive at the side-
band frequencies ωrf = ω+ − ωz or ωrf = ωz + ω−, the sought-after eigenfrequency
can be deduced from the dressed state frequencies [34] introduced in chapter 3.4.3.
As a result of the periodic energy transfer between the modes, the amplitude of
both modes is modulated with a beat frequency analogue to the Rabi frequency in
quantum mechanical dressed states and the noise dip of the axial motion splits into
two dips (see figure 3.7). This allows to extract the frequency information from the
measurement of only the axial motion with a single detection system.
In general, the spectrum of the dressed state features two distinct noise dips at the
frequencies

ωr,l = ωz ± Ωr,l
2 (see equation (3.76)). (5.3)

If the resonance criterium is not exactly met by the sideband coupling drive, the
resulting double dip spectrum will not be perfectly symmetric about the original
axial frequency but reproduce the classical analogon of the avoided crossing [34].
The difference of the modified dressed spectrum Rabi frequencies Ωr

1,2 − Ωl
1,2 = δ

reproduces the detuning δ of the coupling drive. If the uncoupled eigenfrequency ωz

is measured independently, the sideband eigenfrequency can be deduced from the
double dip frequency and the well-known coupling drive frequency ωrf:

ω+ = ωr + ωl − ωz + ωrf. (5.4)
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Since the modulation of the axial motion is complete, the axial frequency informa-
tion cannot be deduced simultaneously from the same spectrum. If an adequate
frequency stability can be assumed for the axial frequency, it is sufficient to measure
the axial frequency before and after the double-dip spectrum. The linear inter-
polation between these frequencies yields a linear drift free measure of the axial
frequency during the sideband measurement. This is very important since the im-
portant reduced cyclotron frequency is measured as an offset to the inherently less
stable axial frequency. This is one the most severe disadvantages of the double-dip
technique. When determining the cyclotron frequency, the final uncertainty for a
90 s measurement3 can be estimated as:

δν+ ≃
√
δν2r + δν2l + δν2z . (5.5)

Assuming that the frequency error on all frequencies is of purely statistical origin
and independent, the uncertainty of the right and left dips is identical. Due to
the smaller width of the double dip4, the uncertainty of the two double dips (see
figure 5.2) is accordingly lower than the one of the single dip. However, since two
single dip spectra are recorded and the average of both determined frequencies is
used, the final uncertainty of the calculated cyclotron frequency can be estimated
as:

δν+ ≃
√
2 (0.8 δν)2 + δν2/2 ≃ 1.3 δνz. (5.6)

This relation shows quite plainly the dependence of the attainable cyclotron fre-
quency resolution on the resolution of the axial frequency. The corresponding statis-
tical uncertainty in the free space cyclotron frequency determined with the invariance
theorem can now be calculated:

δνc =

√(
ν+
νc

1.3 δνz

)2

+

(
νz
νc
δνz

)2

+

(
ν−
νc

1.3 δνz

)2

. (5.7)

When compared to the cyclotron frequency, the relative statistical precision of a
single measurement is approximately

δν+
ν+

≃ 42mHz
26.16MHz

≃ 1.6 · 10−9. (5.8)

This is the lower bound for the achievable single shot precision with a 90 s measure-
ment. On top of this the magnetic field wander during the measurements degrades
the achievable precision slightly. The final precision of the experiment gains about
an order of magnitude from the fit to repeated measurements, allowing to extract
the g-factor with a statistical precision of about δg

g
≃ 2 · 10−10 (see chapter 6.1).

5.4.3 Mode cooling and temperature measurement

The sideband coupling to the radial modes holds the possibility to transfer energy
between the modes and with it to cool the radial modes into thermal equilibrium

3In fact, the complete measurement, including the two single dip spectra, takes 3·90 s.
4The occupation probability of the two states is approximately 50% each.
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with the axial tank circuit. The temperature of the particle during the measurement
determines many of the systematic errors in the frequency measurement as discussed
in chapter 6.2.6 and is thus of prime importance for the g-factor experiment. Ex-
tensive optimization has been devoted to the task of reaching the lowest possible
equilibrium temperature with the setup. The newly developed axial detection sys-
tem has brought significant advances in this field and for the first time allowed to
reach thermal equilibrium between the experiment lattice temperature set to∼ 4.2 K
by the contact to the liquid helium bath and the ion temperature. Since the ion is
in thermal equilibrium with the effective electron gas temperature, this means that
there is no noticeable additional noise source acting on the resonator, leading to
(almost) identical lattice and electron temperature. The large SNR of the detection
system allows to further reduce this basis temperature below the equilibrium tem-
perature. The significance of this development becomes evident in the calculation
of the error budget of the experiment in chapter 6.2.6.
If the axial frequency is in resonance with the tank circuit, the axial energy will
fluctuate on the time-scale defined by the cooling time constant τ . The expectation
value of the axial energy will take a value

⟨Ez⟩ = kB Ttc, (5.9)

where Ttc denotes the temperature of the electron gas of the tank circuit. This
expectation value can be interpreted as a temperature of the particle, in terms of
the ergodic hypothesis. Although there is only one ion in the trap, the fluctuating
energy will follow the Boltzmann distribution at the temperature Ttc, as long as the
ion is in thermal contact with the resonator. In the instant the particle is decoupled
from the tank circuit, the axial energy will stay at its instantaneous value. Repeated
measurements of the energy will thus reflect a thermal distribution:

p(Ez) =
1

kB Tz
e
− Ez

kB Tz dEz (5.10)

By additionally coupling the axial and reduced cyclotron mode with a suitable cw
quadrupolar drive at the sideband frequency, the cyclotron mode will experience
a net cooling according to equation (3.79). Analogous to the axial motion, the
cyclotron energy will take a random value after a finite coupling time, reproducing
the thermal distribution of energies of the axial mode, transformed by the ratio ν+

ν−
.

If the process is repeated, the energy in the cyclotron mode will also reproduce a
Boltzmann distribution with the scaled temperature T+ = ν+

νz
Tz:

p(E+) =
νz

kB ν+ Tz
e
− E+ νz

kB ν+ Tz dE+. (5.11)
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In general the cyclotron mode will thus be hotter than the axial mode after sideband
cooling, in the special case of the 28Si13+ ion the ratio is approximately 40. For the
magnetron motion, the equilibrium temperature is accordingly lower:

T− = Tz
ν−
νz

≃ 64mK. (5.12)

The large magnetic bottle of the AT offers the unique possibility to measure the
energy in the radial modes very accurately making use of the well-defined dependence
of the axial frequency on the radial mode amplitudes given by equation (3.26). The
resolution in axial temperature, assuming a typical axial frequency readout jitter of
21 mHz (see chapter 5.4.1) is hence 6 mK or 0.6 µeV. By repeatedly coupling the
axial and cyclotron mode and measuring the axial frequency, it is possible to plot the
Boltzmann distribution of the axial and cyclotron energy. This opens the possibility
to accurately measure the temperature of the axial mode in terms of the ergodic
hypothesis. Given that the cyclotron energy remains constant during the adiabatic
transport, it is even possible to monitor the temperature of the PT resonator, by
sideband coupling in the PT and successive transport into the magnetic bottle.
Figure 5.4 shows the result of this measurement. The determined temperature of
TPT
z = 4.8(0.3) K is in good agreement with the lattice temperature of 4.2(1.0) K5,

which demonstrates the negligible back-action effect of the amplifier.

5.4.4 Information entropy cooling of the cyclotron mode

Without active sideband cooling, the cyclotron energy stays virtually constant,
meaning that the measuring process which determines the current cyclotron energy
extracts entropy from the particle. By simply stopping the coupling process when
the energy is minimal, the cyclotron energy can be minimized far below thermal
equilibrium with the axial motion. The attainable temperature is only limited by
the available time (since the process is statistical) and the residual entropy arising
from the contribution of the electrostatic field to the axial frequency stability. This
technique is routinely used to limit the cyclotron energy to a maximum value in the
AT prior to spin detection in order to minimize mode coupling dependent frequency
shifts (see figure 5.5). If the trap electrode geometry allowed efficient coupling of the
cyclotron and magnetron modes, the coherent oscillations between these uncooled
modes would speed up this process significantly and thus allow for further cooling.

5.5 Novel cyclotron frequency measurement method

(PnA)

When the new amplifier was constructed and tested and rendered measurements at
far lower temperature than before possible, it became apparent that the statistical

5The temperature of the experiment is only directly measured close to the liquid helium dewar,
the temperature at the position of the PT axial tank circuit will be slightly higher, but is only
estimated from rough heat transport calculations.



72 5. Experimental results

411770 411780 411790 411800 411810 411820
0

20

40

60

80

 

 

E
ve

nt
s 

(1
)

Axial Frequency (Hz)

TPT
z =4.8±0.3 K

Figure 5.4: Temperature measurement of the axial mode in the PT using the mag-
netic bottle in the AT. For this measurement the cyclotron and axial modes are
coupled. After switching off the coupling drive, the cyclotron energy reflects one
fixed sample of the Boltzmann distribution of the axial energy. This energy is sub-
sequently measured in the magnetic bottle of the AT. The fit to the histogram of
repeated measurements allows to extract the energy of the axial mode in thermal
equilibrium with the axial tank circuit, a crucial ingredient for the error budget
calculation of the g-factor experiment. The axial temperature of the freely running
axial tank circuit is determined to be 4.8± 0.3 K.

precision obtained with the double-dip technique would not suffice to fully exploit
advantages of the decreased systematic uncertainties.
The development of a completely novel measurement technique within the course of
this thesis [13] allowed improvement in the statistical precision, which is equivalent
to a reduction of the necessary measurement time by a factor of roughly 450, while
at the same time maintaining the same or better energy dependent systematic shifts.
This development has culminated in the measurement of the g-factor of 28Si13+ to
an accuracy of δg

g
= 410−11 (see chapter 6.2). If combined with novel and advanced

cooling methods that have been developed in this thesis (see chapter 7.1.2) this
method sets the stage for intriguing experiments directly exploiting the quantum
properties of these ultra cold ions and breaking the ppt accuracy barrier [71] for
Penning-trap spectroscopy.
As discussed in chapter 5.4.1, the statistical precision of the cyclotron frequency
determination is limited by the rather large linewidth of the dip that cannot be
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Figure 5.5: Energy distribution measurement of the axial mode in the AT after
selecting low temperature ions. The distribution is clearly non-thermal, and the
expectation value of the cyclotron energy is far below the equilibrium value. This
procedure ensures a cyclotron energy below a defined cutoff value to allow efficient
spin-state detection.

reduced arbitrarily without other inconveniences. The inherently long measurement
time moreover increases the impact of magnetic field fluctuations on the measure-
ment. Furthermore, the detection of the cyclotron frequency as an offset to the
axial frequency significantly decreases the rejection of voltage fluctuations on the
determined value of the free space cyclotron frequency. All these issues make the
double-dip detection technique look unalluring for measurements with significantly
improved precision. The next generation detection method should allow an excep-
tionally rapid frequency determination, while working at extraordinarily low tem-
perature in order to minimize energy dependent systematic shifts.

5.5.1 Coherent detection

The relatively low information content of the dip line shape originates from the in-
coherent motion of the particle, driven by the likewise incoherent thermal noise of
the tank circuit. Hence, not the ion motion itself, but rather the signature it leaves
in the amplitude of the noise is regarded as the detected signal. In order to obtain
a good estimate of this noise amplitude, it is necessary to average over extended
time periods. The averaging procedure sums the uncorrelated noise and thus the
SNR only increases with

√
T . The linewidth of the dip is defined by the cooling
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time constant and does not decrease for longer observation times. In combination
with the finite amplifier noise, the dip detection needs averaging times typically far
beyond the Fourier detection limit.
This scaling behavior can be improved by detecting a coherent signal. For a co-
herent harmonic motion the amplitude and frequency are orthogonal informations
and the linear evolution of the phase with time obviously allows to reconstruct the
frequency. The phase-sensitive peak detection introduced within this thesis relies on
the determination of the phase evolution of the particle motion within a well-defined
time span. For this purpose an initial phase ϕin is imprinted on the particle mo-
tion by a suitable excitation. After a phase evolution time Tevolv, during which the
particle is detached from the detection electronics, the final phase ϕout is extracted
from the spectrum of the detected particle motion. If appropriate phase unwrapping
can be applied6, the frequency of the particle within the phase evolution period can
be expressed as ν = ∆ϕ/∆T . Assuming approximately normally distributed phase
uncertainties7, the statistical uncertainty of the frequency is given by:

δν =
1

Tevolv

√
δϕ2

in + δϕ2
out. (5.13)

Obviously the coherent detection shows a very favorable scaling behavior with re-
spect to the measurement duration when compared with the noise dip detection
technique. The frequency uncertainty has contributions from both the phase defini-
tion (δϕin) and the phase readout (δϕout). Depending on the implementation of the
phase initialization and determination, the statistical uncertainty of such measure-
ments can approach very low values.

5.5.2 Previous state of the art: PnP

Phase sensitive cyclotron frequency measurements have already been shown with
the well-established PnP8 technique, introduced by Eric Cornell et al. [72] at the
Massachusetts Institute of Technology. Here, the cyclotron motion is brought to
a defined amplitude and phase by a short resonant dipolar rf excitation. After a
well-defined period, allowing the cyclotron phase to freely evolve according to to the
particle’s eigenfrequency, the classical action of the cyclotron and the axial mode
are exchanged by a suitable π-pulse and a peak appearing on the axial resonator is
recorded. From the spectrum of the detected signal the cyclotron phase after the
evolution period can be deduced (see figure 5.6).
However this method relies on the excitation of the cyclotron mode to quite large
energy, sufficient for the ion signal to overcome the Johnson noise of the axial tank

6The phase can only be read out ambiguously within the interval [0, 2π]. For successful fre-
quency determination this ambiguity has to be removed by appropriate additional measurements.
This process is commonly called phase unwrapping.

7A more careful analysis later will show that this assumption is strictly speaking not true, but
for practical cases sufficiently good.

8The abbreviation stands for Pulse ’N’ Phase, a graphic paraphrase of the method.
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circuit (after appropriate transfer of the phase and amplitude information from the
cyclotron mode to the axial mode via the π-pulse). This imposes a severe funda-
mental limitation to the attainable accuracy [72], as the cyclotron energy during the
measurement period gives rise to systematic frequency shifts that can be corrected
for only partially. Furthermore, due to the limited reproducibility of the cyclotron
amplitude, this frequency shift will jitter between successive measurements, severely
limiting the statistical precision. Still, the statistical precision obtained with the
PnP technique is impressive and makes phase sensitive measurements an attractive
prospect, provided that a method is found that allows to use significantly lower
cyclotron amplitudes during the measurement period while still enabling a phase
readout with sufficient precision.

Figure 5.6: Pulse diagram for the PnP cyclotron frequency detection technique. The
phase is defined with a resonant pulse on the eigenfrequency of the previously cooled
ion and the phase is read out by swapping the information coherently into the axial
mode after a well-defined phase evolution period. The initial cyclotron amplitude
has to be sufficiently large to allow the resulting axial signal to overcome the thermal
noise of the detection system.

5.5.3 Low energy coherent detection: PnA

The novel measurement method, called PnA9 in the following, allows to read out
the phase of the particle motion in the dark, i.e. without the need to detect the

9In analogy to the PnP technique, this acronym stands for Pulse ’N’ Amplify.
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motion. This allows to keep the cyclotron amplitude arbitrarily small during the
measurement, a key improvement over previous techniques. Instead of directly de-
tecting the motion, the amplitude is amplified by an arbitrary factor while retaining
the phase information. With the amplification process the SNR of the signal can be
set to arbitrary values. The phase determination precision δϕout is then not limited
anymore by the detection system but solely by the amplification process, allowing
to detect the phase of the cyclotron motion at far lower amplitudes (see figure 5.7).
With this readout technique, the amplitude during the phase evolution time can be
chosen independently of the detection system. In fact, the amplitude has to be only
large enough to guarantee that the jitter of the initial phase is sufficiently low. The
two methods used in this experiment to define the initial phase are the direct dipolar
excitation and the squeezing of the initial thermal distribution, both discussed in
chapter 3.4. Although the squeezing technique shows superior performance, both
methods rely on an initially cold ion. By cooling the ion to the quantum mechanical
motional ground-state, the first excited levels suffice to define the phase. The PnA
method then allows to coherently read out the phase of this state. In chapter 7.1
some of the exciting prospects of this technique are discussed.

Figure 5.7: Pulse diagram for the PnA cyclotron frequency detection technique.
The phase is determined by coupling the motion of two modes, in this case the axial
and cyclotron mode, with a pulse on the blue cyclotron sideband. This causes both
coupled mode radii to increase exponentially, encoding the initial cyclotron phase
in the axial motion. After the amplification pulse, the axial signal can be read out
with an arbitrary SNR.
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5.5.3.1 Implementation of the PnA method

For the first proof-of-principle measurement, the cyclotron motion was cooled by
sideband-coupling to the axial detector. By using negative feedback for the axial
detector, a cyclotron temperature of roughly 74 K is achievable in the current ap-
paratus.
After cooling the ion, the cyclotron phase is defined with a resonant radiofrequency
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Figure 5.8: The setup used in this work for the implementation of the PnA method.
The cycle is synchronized to the 1 pps pulse of the atomic clock, and all frequencies
are derived from its 10 MHz output. The excitation signal is continuously produced,
and fast switches apply the excitation pulses to the trap.

pulse at the expected reduced cyclotron frequency (νdip), applied to the split cor-
rection electrode. This pulse is generated by an Agilent 33250A arbitrary function
generator (AFG). After a well-defined waiting period the amplification pulse at the
blue cyclotron sideband (νquad) is introduced from a second AFG and finally the SR1
Spectrum Analyzer is triggered and starts recording the resultant axial signal.
All generated frequencies and pulses are referenced to a commercial rubidium cell
atomic reference clock from Stanford Research Instruments (FS725), which generates
a 10 MHz synchronization signal and additionally provides an output with exactly
1 pulse per second (1pps). This is particularly important for the phase sensitive
detection, since any tiny time base difference between the function generators would
cause the relative phase between the excitation signals to diverge unacceptably. The
pulses and triggers are derived from this reference signal by a BNC555 pulse delay
generator.
The phase stability of the excitation pulses is absolutely critical for the finally achiev-
able precision. Unfortunately, the jitter of the delay between a TTL trigger pulse
from the BNC555 and the start of a signal burst from the AFG (specified to 1 nsrms
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in the 33250A datasheet) would cause excess phase noise, significantly compromising
the achievable phase stability of the measurement:

δϕ ≥
√
2 · 360◦ · ν+ · 1ns ≃ 13◦. (5.14)

For this reason, the AFG run continuously and the pulses are generated by self
developed fast analog switches after the AFG [73]. All excitation frequencies are
rounded off to 1 Hz steps and the measurement process is triggered by the 1 pps
pulse from the atomic clock. This way, at the beginning of each measurement cycle
the phases of the excitation signals are constant. The jitter of the pulse length
and timing now only affects the frequency difference between the excitation pulses
(νquad − νdip ≃ νz). The resulting technical phase jitter is negligible at the current
measurement precision. The SR1 function generator is also locked to the 10 MHz
reference10 and is thus able to determine the signal phase in the same reference
frame. As a disadvantage of this method the excitation frequencies are continuously
generated, even in the free phase evolution period. This causes unwanted excitation
especially for the ν+ excitation if the ion’s reduced cyclotron frequency happens to
be in close resonance with the excitation. Great care has been taken in the design
of the electronic analog switches and the connection to the trap system to prevent
the signal to enter the trap. This is a surprisingly complicated task, since the signal
generator causes measurable excitation of the ion once it is switched on, even if it is
not connected to the trap at all.
A complete measurement with this method typically consists of several such cycles,
each with different evolution periods. From the slope of the measured and unwrapped
phases the eigenfrequency can finally be determined. In fact, only the shortest
and longest evolution periods are used for the frequency determination, the other
measurements are only used for the phase unwrapping procedure. The shortest
period is almost insensitive to the ion frequency and is measured repeatedly to
decrease the statistic noise. The frequency information is thus extracted entirely
from the longest measurement period. Hence, the microwave excitation that probes
the spin transition can be applied exactly simultaneously to the phase evolution, such
that the cyclotron frequency and the Larmor frequency are determined at exactly the
same time. To simplify the phase unwrapping procedure, a double dip is measured
before the PnA process is started to provide a decent initial guess of the current
cyclotron frequency. The maximum evolution period is bounded by the stability of
the magnetic field. In order to unambiguously determine the phase, the phase jitter
between successive measurements should be sufficiently small to make 2 π jumps
adequately unlikely. In the current setup, a phase evolution up to 10 s typically still
shows sufficiently low error rate.

5.5.3.2 Frequency uncertainty of the PnA method

In order to discuss the performance of the PnA method, it is necessary to distinguish
between technical readout noise, generated by the measurement process, and jitter

10This is a rather unusual feature for FFT analyzers and was in fact one of the main reasons for
choosing this device.
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Figure 5.9: Unwrapping procedure for the PnA method. The phase of the cyclotron
frequency is measured at different times, starting with short evolution times and
advancing the step size as the frequency prediction precision increases. Finally
the phase of the longest measurement can be unambiguously unwrapped and the
frequency can be determined from the slope of the unwrapped phase.

of the measured eigenfrequency that is not related to the measurement method
but given by the stability of the trapping fields, mainly the magnetic field. For
reasonable settings the technical noise of the PnA method is dominated by the
jitter of the initial phase. The repeatability of the phase definition is limited by
the ratio of excited to cooled ion energy, as shown in figure 3.6. By increasing
the excited energy level, the phase definition jitter decreases, but the unwanted
systematic shift of the eigenfrequency due to the magnetic inhomogeneity and the
relativistic mass increase finally sets a limit to the available energy. Decreasing the
initial temperature is a more appealing option. For the current setup, not using the
advantageous cooling with the cyclotron resonator11, figure 5.12 shows the attainable
phase stability. When choosing an excitation energy equivalent to a 3 ·10−11 relative
relativistic mass shift, a phase stability of roughly 14◦ can be achieved, resulting in
a relative frequency jitter for a 28Si13+ ion of

δν+
ν+

=
δϕ

360◦ν+Tevolv
≃ 1.5 · 10−9 s

Tevolv
, (5.15)

11At the time of the measurement the cyclotron resonator was detuned from the cyclotron fre-
quency of 28Si13+ by several linewidths due to technical reasons.
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or 1.5 · 10−10 for a 10 s measurement. This can be compared to the technical jitter
of the double-dip technique that can be estimated to

δν+
ν+

=≃ 1.5 · 10−8

√
s

T
, (5.16)

or 4.8 · 10−9 for a 10 s measurement12. For longer measurement times the advantage
of the PnA method increases, and for a 90 s measurement the frequency deter-
minability is a factor of 95 better than with the double-dip technique. Figure 5.10
shows a measurement of the achieved frequency stability, demonstrating an order
of magnitude improvement compared to the traditional double-dip technique. On
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Figure 5.10: Frequency deviation of successive measurements with the traditional
double dip method and 60 s averaging time (A) and the novel PnA method with
5s evolution time (B). The frequency determinability shows an improvement by an
order of magnitude, while simultaneously the necessary measurement time decreases
by another order of magnitude.

top of the technical frequency readout jitter the magnetic field changes during the
measurement time and between two successive measurements. This magnetic field
drifts cannot be improved with the measurement method, but the necessary detec-
tion time can be decreased, allowing the measurement in a more favorable interval.
Figure 5.11 shows the measured time averaged Allan standard deviation [74] of the
magnetic field measured with the PnA method. However, the Allan deviation plot
is somewhat misleading, since it only gives an indication of the stability of the
mean cyclotron frequency. The Larmor frequency determination employed in this
experiment however shows a nonlinear averaging behavior, leading to imperfect can-
cellation of the magnetic field wander during one measurement. This effect makes
shorter measurement periods, which are inaccessible by the double-dip technique,
even more preferable.

12In fact a 10 s measurement does not allow to reliably fit the double dip.
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Figure 5.11: Overlapping time averaged Allan standard deviation for the magnetic
field measured with the PnA method. For comparison the predicted line-splitting
accuracy of the double-dip technique is added. The PnA shows superior performance
over the complete span of measurement periods.

5.6 Magnetic field measurement

The two main observables of the experiment, the Larmor frequency of the electron
and the cyclotron frequency of the ion are defined both by the externally applied
magnetic field of the superconducting magnet. It is hence of great importance to keep
this field virtually perfectly stable over the measurement period and to know at least
the leading order corrections to the homogeneity of the magnetic field. Fortunately,
it is conveniently possible to measure both quantities with the trapped ion.

5.6.1 Measurement of the field inhomogeneities

Since the magnetic field is tuned to be almost perfectly homogeneous and the ion
is cooled to very small radii during the measurement, the first two orders of the
series expansion, B1 and B2, are sufficient for the accurate determination of the
systematic shifts arising from the magnetic field inhomogeneities in the PT. In the
AT, the knowledge of the strength of the magnetic bottle contribution furthermore
enables the accurate energy calibration and measurement as shown in chapter 5.4.3.
Here, the B2 contribution is dominated entirely by the effect of the ferromagnetic
ring electrode. For this reason, the strength of the magnetic bottle can be accu-
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Figure 5.12: Jitter of the determined cyclotron phase as a function of the excita-
tion energy in units of the relativistic mass increase for a 28Si13+ ion with typical
parameters of the current apparatus, cooled only by sideband coupling to the axial
tank circuit. The available SNR due to the finite higher order electrostatic field
components Cn≥6 sets a limit to the determinability of the phase at roughly 6◦. This
value could be improved significantly with an improved trap design.

rately predicted, limited only by the knowledge of the material parameters13 and
machining precision (see figure 5.13). In the PT however, the residual contribution
of the ferromagnetic ring is very small compared to inhomogeneities caused by other
magnetic materials in the magnet bore and the initial homogeneity of the magnet.
In both traps the field inhomogeneity can be determined by displacing the trapped
ion along the axial direction with help of the electrostatic trapping potential [37].
The electrostatic potential contributions of the electrodes can be extracted e.g. from
the numerical solution of the trapping field as introduced in chapter 4.2.2. Small
offset voltages that are asymmetric with respect to the ring electrode allow to shift
the mean axial ion position with nm resolution. By measuring the free cyclotron
frequency at each position, the magnetic field shape can be scanned around the
equilibrium position of the ion. With a simple polynomial fit the field contributions
can finally be determined. Figure 5.14 shows such a measurement for the magnetic
field in the PT, a similar measurement can be found in the Ph.D. thesis of Birgit
Schabinger [46] for the strength of the magnetic bottle. The precision of the deter-
mination is limited however by the inevitable temporal variations of the magnetic
field between successive measurement steps. In chapter 6.2.6 a more precise method
for the determination of the B2 component is presented, giving congruent results
with smaller uncertainty. However, the direct measurement of the axial magnetic
field has the advantage of being model-free.

13The saturation magnetization of nickel of 0.645 T was taken from [44].
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Figure 5.13: Contribution of the ferromagnetic ring to the axial component of the
magnetic field, determined by a numerical solution with COMSOL. The contribu-
tion of the magnetic bottle to the inhomogeneity in the PT is very small, allowing
sufficient measurement precision.

5.7 Spin-state detection

The g-factor determination technique employed in the experiment crucially requires
the ability to unambiguously detect the spin state of the electron bound to the
trapped ion. Within the magnetic bottle field of the analysis trap, the spin state
manifests as a change of the axial frequency by 240 mHz (see chapter 3.2.2.2), a
relative difference of only 6 · 10−7. For an unambiguous detection of the spin state
with an error rate of less than 5%, a stability of the determined axial frequency of
better than δνz ≤ 58 mHz is required, corresponding to a relative frequency jitter
of only 1.4 · 10−7. This requirement proved to be hard to meet, since it requires the
cyclotron mode amplitude to remain extremely stable over the timescale of the axial
frequency measurement and the microwave excitation. In the course of this thesis the
two main sources of instability could finally be identified and eliminated, allowing the
successful detection of spin flips in 28Si13+. The electrostatic field errors have been
diminished by more careful surface preparation of the electrodes, combined with a
high-voltage reflector with improved geometry which reduced the amount of charges
impinging on the electrodes, as discussed in chapter 4.2.3. Over and above, cryogenic
solid state switches drastically reduced the amount of radiofrequency disturbances
which would cause highly undesired cyclotron energy fluctuations.
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Figure 5.14: Measured magnetic field along the axial direction in the PT. A poly-
nomial fit yields low values for both the linear and the quadratic field contribution.
The error bars represent the measurement uncertainty in each point, not accounting
for magnetic field wander between successive measurements. However, the mea-
surements have been taken in random order to exclude linear temporal drifts. The
linear B1 component is unpleasantly large, which is fortunately not of concern for
the g-factor measurement.

With these developments, combined with the phase-sensitive detection technique,
the way towards successful spin-state detection was finally cleared.

5.7.1 Phase sensitive axial frequency measurement

For the detection of the spin state, it is necessary to resolve tiny frequency differ-
ences, rather than provide an accurate measurement of the absolute axial frequency.
The frequency determination via the noise-dip technique is thus not ideally suited
for this purpose, as it pays for the low systematic shifts with a poor SNR, resulting
in the necessity of long averaging times. The axial frequency is hence monitored
with a phase sensitive technique, as originally proposed by S. Stahl [75] for this pur-
pose, which provides a far superior performance for the detection of small frequency
differences.
For the phase-sensitive technique the ion is initially excited to rather large ampli-
tudes with a pulsed dipolar excitation at roughly the axial eigenfrequency. Sub-
sequently the axial resonator is shifted out of resonance with the ion with a 180◦

electronic feedback loop, resulting in a negligible axial damping. This allows to
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let the axial motion and phase evolve from its initial value, according to the true
eigenfrequency for about a second. The final phase after a well-defined evolution
time is eventually determined from the FFT spectrum recorded by switching the
axial resonator back to the original frequency. The peak appearing superimposed
onto the Johnson noise of the resonator contains the coherent phase information of
the ion motion and thus allows to determine the axial frequency. This procedure is
outlined in figure 5.15. Assuming a SNR of 20 dB, which is simple to achieve with
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Figure 5.15: Phase sensitive measurement technique for the axial frequency in the
analysis trap. After a pulsed resonant excitation at the axial eigenfrequency which
defines the initial phase, the ion is allowed to evolve freely. After a well-defined
period, the final phase is detected from the FFT spectrum, revealing the slight
difference in the frequency of an ion with spin state up or down.

highly charged ions, the determinability of the axial phase is roughly

δϕ ≃ 1√
2 SNR

. (5.17)

Since the systematic shift of the axial frequency is of minor concern, the phase
definition uncertainty is typically negligible due to high excitation energies. For a
typical 800 ms measurement period, the frequency resolution with the phase sensitive
technique can be calculated:

δνz =
1√

2 SNR2π Tmeas

≃ 25mHz. (5.18)
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Comparing this to the typically 90 s averaging time necessary to achieve a similar
frequency uncertainty with the noise dip gives a good impression of the performance
gain of a coherent frequency measurement. If the cryogenic amplifier features suf-
ficiently low input noise, as in this experiment, the peak can be monitored online
during the phase evolution period, while the resonator is detuned. Since the SNR
scales with the available measurement time as the bin width of the FFT decreases,
this allows the ultimate frequency determination performance, limited only by the
Cramér-Rao information bounds [65]. This means there is no better method for
the estimation of the frequency possible at this specific SNR. The SNR itself can
however not be increased arbitrarily, since the increasing axial amplitude introduces
excessive systematic frequency shifts and jitter, as the ion leaves the harmonic region
of the trap. By deliberately introducing finite C4 and C6 components of the elec-
trostatic field, a specific large amplitude can be found where the frequency becomes
independent of the amplitude to first order. In this region the frequency jitter is
small, while the SNR can be very large. This method might be advantageous for
lowly charged particles, however, it was not routinely applied in this experiment due
to the excessive setup complexity.
Figure 5.16 shows the attainable frequency stability in the analysis trap and a se-
ries of clearly visible spin quantum jumps of the electron bound to the trapped ion.
With this frequency stability, spinflips that are induced with resonant microwave
excitation can be readily identified.
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Figure 5.16: Quantum jumps detected with the phase sensitive detection technique
in the AT (left). The jitter of successive frequency measurements is sufficiently low
to enable unambiguous non destructive spin state detection (right).

5.7.2 Larmor-resonance in the magnetic bottle

The detection of the spin state made possible by the advanced design of the AT
instantly enables a first rough determination of the g-factor in the AT. By scanning
the microwave excitation frequency across the Larmor resonance, and detecting the
rate of induced spinflips as a function of the microwave frequency and the measured
cyclotron frequency, a spinflip resonance can be mapped out within about 12 hours.
Due to the large magnetic field inhomogeneity in the AT, the Larmor frequency of
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the trapped ion becomes strongly dependent on the mode radii of the ion. Consid-
ering the typical values of the mode amplitudes (see table 3.1) it is obvious that
the axial amplitude dominates the shift of the magnetic field. As the axial energy
changes on the timescale of the cooling time constant τz ≪ 1s, the Larmor frequency
takes momentary values according to the Boltzmann distribution of the axial energy.
Since the transition between the Zeemann sublevels is driven incoherently14 on the
timescale of several seconds, the spinflip resonance represents the statistical average
of the axial energy during the microwave excitation, causing the spinflip resonance
to reflect the broad and asymmetric thermal Boltzmann distribution. However, with
the current apparatus, employing negative electronic feedback to cool the axial mo-
tion, it is already possible to reach a precision of roughly 5 · 10−8 in the adverse
conditions of the AT.
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Figure 5.17: Resonance of the spin transition recorded in the strong magnetic bottle
of the analysis trap. The red line is the theoretical prediction according to the line-
shape model taken from the Ph.D. thesis of J. Verdú [34], with only the microwave
power and the centroid as free parameters. The asymmetry due to the Boltzmann
distribution of axial energies in the magnetic bottle is clearly visible, yielding a
fractional linewidth of roughly 1 ppm. In combination with feedback cooling and
appropriate cyclotron frequency detection a measurement of the g-factor directly in
the AT with a fractional uncertainty of roughly 10 ppb becomes possible.

14The magnetic field and with it the momentary Larmor frequency is modulated by the axial
motion on the ppm scale. For a coherent excitation at 105 GHz over the duration of 30 s, the
magnetic field stability should however be roughly 1 ppt.
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5.7.3 Detection of spinflips in the precision trap

In order to reach the precision aimed for, it is necessary to probe the Zeeman transi-
tion in the homogeneous magnetic field of the PT. In order to detect the spin state,
the ion has to be transported back to the AT. If spontaneous spinflips during the
transport can be excluded, it becomes possible to detect spinflips occuring in the
PT by comparing the spin states detected in the AT before and after the microwave
excitation in the PT. This spatial separation of the spin detection and frequency
measurement enables a leap in the precision attainable in the g-factor measurement
[45].
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Figure 5.18: Spin state detection in the AT with intermittent transports to the PT,
where the narrow spin transition is probed with a microwave excitation. Spinflips
can be detected by observing the spin state before and after the stay in the PT. The
random frequency offset between successive AT measurements originates from the
Boltzmann distribution of cyclotron energies after sideband cooling.



6. The g-factor of 28Si13+

“However beautiful the strategy, you should
occasionally look at the results.”

Winston Churchill

With the techniques introduced in the previous chapter, the foundation for the
measurement of the g-factor is established. In the course of this thesis two inde-
pendent measurements of the g-factor of 28Si13+ have been performed, one with the
well-known double-dip technique, and a second measurement with the novel PnA
method, providing an order of magnitude improvement in the final accuracy. The
agreement of both results creates confidence in the understanding of the apparatus
and the physics governing the properties of the trapped ion.

6.1 Results with the double-dip technique
The first measurement was done with the double-dip mode coupling technique [34].
Although this technique implies a significant limitation for the attainable precision
compared to the PnA method, the result is still more accurate than any other bound
electron g-factor measured to date and surpasses the theoretical prediction. The
comparison to the g-factor predicted by BS-QED calculations provided the most
stringent test of the BS-QED in strong fields to date, as becomes apparent below,
and was published in Physical Review Letters [12]. Furthermore, the measurement
provides a valuable possibility to verify the error budget of both techniques.

6.1.1 Measurement procedure

After a single ion has been created and prepared in the PT as described in chap-
ters 5.1 and 5.3, the computer automated g-factor measurement starts with the ion
in the AT.
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1. Automatic resistive sideband cooling of the axial and magnetron motion to
thermal equilibrium.

2. Sideband coupling of the cyclotron and axial mode

3. Measurement of the momentary cyclotron energy, repeat step 2 until the energy
is below a threshold value

4. 8 successive phase sensitive measurements of the axial frequency

5. Strong microwave excitation at the Larmor frequency for 30 seconds to induce
spinflips

6. Loop to step 4 until at least 1 spinflip is detected

7. Adiabatic transport to the PT

8. Sideband cooling of all eigenmodes

9. Wait for 30 seconds to let the trapping voltage settle

10. Open cryogenic switches1

11. Detection of a single-dip spectrum for 90 seconds

12. Detection of a double-dip spectrum with a quadrupolar coupling at νcoup for
90 seconds and simultaneous microwave excitation at a random frequency νmw

around the predicted Larmor frequency

13. Detection of a second single dip spectrum

14. Close cryogenic switches

15. Adiabatic transport to the AT

16. Loop to first step

During this fully automated process the computer control records all necessary infor-
mation. The process described above takes approximately 15 minutes, depending on
the time necessary to induce a spinflip in the AT, and has to be repeated numerous
times in order to obtain a g-factor resonance. The measurement process typically
runs continuously for several days, and measurements during and after disturbances
are discarded in the data evaluation process. After typically one week, a g-factor
resonance has collected sufficient statistics and a new resonance is started with one
or more parameters changed. A single resonance contains typically 300 individual
measurement steps, with different frequency ratios νmw/νc each. The final g-factor

1The switches are opened for each excitation, but are left open during the precision measurement
to prevent a possible systematic influence.
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is determined from all resonances after careful checks for systematic effects. Alto-
gether, 6 resonances were recorded, equivalent to approximately 1.5 months of data
taking. Further collection of statistics would be unprofitable, since a further splitting
of the resonance appears too venturous.

6.1.2 g-factor resonances

The linewidth in the improved setup is entirely dominated by the measurement noise
of the dip detection technique as discussed in chapter 5.4.1. Since the determined free
cyclotron frequency shows a normally distributed measurement error, the g-factor
lineshape is likewise expected to be predominately Gaussian. For the determination
of the g-factor the measured resonance is thus fitted to a Gaussian line and the error
introduced by this simplification will be discussed in chapter 6.1.3.6.

6.1.2.1 Maximum likelihood fit

The resonance consists of two sets of frequency ratios of microwave and cyclotron
frequency, one for successful and one for failed spinflip attempts. These sets can
be binned into appropriate intervals in order to yield a visual representation of
the resonance line. However, the binning procedure introduces several inaccuracies.
The bin width can be chosen arbitrarily within certain limits and the determined
value can depend on the specific choice of this parameter, especially for resonances
with low statistics [37]. Furthermore, the error assigned to the binned data points
is determined by the binomial probability distribution and is strongly asymmetric
especially for bins with low spinflip probability. However, the nonlinear regression
based on the least squares method implicitly assumes normally distributed errors.
This can introduce significant bias into the fit result especially if the statistical error
is asymmetric about the resonance line and generally produces excessively optimistic
parameter error estimates.
Contrary to previous experiments a maximum likelihood fit is used to determine the
g-factor in this thesis. The maximum likelihood method considers the statistical
probability of the complete set of measured ratios as a function of a set of lineshape
parameters. The likelihood function L [76] of the experiment is defined as the
uncorrelated probability of the realization of the set of measurements:

L =
∏
i

pi ({P}) . (6.1)

The result of the global maximization of the likelihood function provides an unbiased
estimator of the parameter set {P}. The individual probabilities pi can be deter-
mined trivially from the lineshape, without the need of any binning. Furthermore,
the binomial error of the process is consistently integrated in this method, allowing
to extract accurate parameter error estimates.
In practice, the logarithm of the likelihood function is maximized, which is equivalent
to the aforementioned procedure, but is numerically more effective as the logarithm
can be decomposed into a sum, which eliminates the product of very small numbers
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that potentially causes numerical problems in the calculation of the goal function in
the minimization process:

logL =
∑
i

log pi ({P}). (6.2)

The fitted resonance (see figure 6.1) has a linewidth which is indeed in good agree-
ment with the linewidth of the cyclotron frequency noise. This clearly demonstrates
that the origin of the statistical noise is well understood. The remeasurement of the
g-factor with the PnA method furthermore proves the anticipated reduction of the
linewidth due to the improved cyclotron frequency measurement precision.

6.1.2.2 Determination of the g-factor

From the result of this fitting procedure, it is possible to determine the ratio Γ0 ≡ vL
νc
,

which in turn allows to calculate the g-factor:

g = 2Γ0
me 13

mion

. (6.3)

The final result is obtained from a weighted average of all 6 recorded resonances.
Figure 6.1 shows an exemplary resonance. In the visualization, data points from
a binning procedure are displayed, however these points do not affect the fitting
procedure.

6.1.3 Error budget and technical parameters

The frequencies measured in a Penning trap are subject to some obvious and a num-
ber of subtle systematic shifts. Before the final g-factor value can be determined,
these effects have to be thoroughly analyzed and corrected. It is possible to distin-
guish between mode energy dependent shifts and static shifts. The improvements
of the new apparatus and the measurement techniques acts to cut down the effect
of most of the energy dependent shifts considerably, but the improved precision
requires to consider previously neglected effects.

6.1.3.1 Magnetic field homogeneity

Although the homogeneity of the magnetic field in the PT has been considerably
improved, magnetic field inhomogeneities can still generate significant shifts of the
eigenfrequencies. The influence of the shift of the eigenfrequencies on the value of
the determined free cyclotron frequency depends on the measurement method or
more specifically on the mode energies during the measurement of the individual
frequencies.
If all frequencies are determined with the axial double-dip technique, the result-
ing frequency shift is extremely small. The energy in the radial modes is directly
connected to the thermal energy expectation value of the axial mode:

⟨E+⟩ = ω+

ωz
⟨Ez⟩

⟨E−⟩ = −ω−
ωz

⟨Ez⟩ .
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Figure 6.1: One of the 6 recorded resonances with the double-dip detection technique.
Compared to previous g-factor experiments the linewidth is significantly smaller
and the resonance shows no asymmetry. The relative precision obtainable from this
resonance is about δg/g = 0.4 ppb. Corrections for systematic shifts arising from
the interaction with the cavity are not included in the resonance. The dark gray
area represents the 1-σ prediction band for the measurements, while the dark gray
region displays the confidence band of the fit with respect to the centroid parameter.
The data points are merely plotted for visualization and do not enter the fitting
procedure.

With equation (3.26) it is thus possible to calculate the resulting shift of the free
cyclotron frequency. The dominant contribution in this configuration originates from
the shift of the cyclotron frequency due to the finite axial radius:

δν+ = ⟨Ez⟩
B2

B0m (2πνz)2
ν+

(
1− νz

ν+

)
. (6.4)
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The leading order contributions of the cyclotron energy on the axial- and cyclotron
frequency cancel and the contribution of the magnetron energy and frequency are
negligible:

ν̄c ≃
√
(ν+ + δν+)2 + (νz + δνz)2 + (ν− + δν−)2 (6.5)

≃
√
ν2c + 2ν+δν+ + 2νzδνz + 2ν−δν− (6.6)

≃ νc

(
1 + ⟨Ez⟩ B2

B0 m (2πνz)2

)
. (6.7)

The expected relative shift of the free cyclotron frequency during the double-dip
measurement at 4.8 K is thus:

δνc
νc

≃ 2 · 10−11, (6.8)

highlighting once again the exceptional importance of a low axial energy during the
measurement process.
However, in a g-factor measurement, where the Larmor frequency is measured si-
multaneously, the leading order contributions of the magnetic field cancel and the
residual contributions are suppressed by a factor of νz

ν+
. On the level of accuracy

reached in the double-dip measurement, the contribution of the magnetic field shift
is thus negligible.

6.1.3.2 Relativistic shift

As a result of the reduced magnetic inhomogeneity and the improved precision, the
frequency shifts arising from special relativity can become substantial in this exper-
iment. However, in the case of the sideband cooled cyclotron mode this shift is very
small, as there is almost no contribution from the slow axial motion. The relativistic
shift of the free cyclotron frequency is predominantly given by the relativistic mass
increase of the ion:

δνc
νc

≃ − ν+
νzmc2

⟨Ez⟩ ≃ −6 · 10−13. (6.9)

The relativistic shift of the Larmor frequency is even smaller by a factor of νc
νL
:

δνL
νL

≃ δνc
νc

νc
νL

≃ −1.5 · 10−16. (6.10)

6.1.3.3 Anharmonic electrostatic potential

The electrostatic potential can be tuned very precisely, leaving only very small resid-
ual anharmonicities. The tuning ratio can be easily determined to better than 10
ppm, resulting in a residual C4 term of roughly 2.55 · 105V/m4. Following equa-
tion (3.14) the cyclotron frequency shift from the electrostatic field anharmonicity
can be deduced:

δνc
νc

≃ 3C4 ν
2
z

2 q C2
2 ν

2
c

⟨Ez⟩ ≃ −1.8 · 10−13. (6.11)
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There is no respective shift of the Larmor frequency, hence the influence of the
trapping potential is negligible in the double-dip measurement.

6.1.3.4 Drift of the electrostatic field

Since the axial frequency is not measured simultaneously to the double-dip spectrum,
in principle a drift of the trapping potential could produce a shift of the determined
cyclotron frequency. By measuring single dip spectra immediately before and after
the double dip, linear drifts are canceled by taking the average axial frequency of
both measurements. The comparison of the two single-dip measurements reveals a
slight residual drift resulting from the drift of the trapping voltage that is changed
when the ion arrives in the PT. The waiting time introduced in the measurement
process decreases this drift to approximately 7 mHz (see figure 6.2). The error
introduced onto the cyclotron frequency should thus be well below 0.1 ppb.
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Figure 6.2: The drift of the axial frequency between the single dip measurements
before and after the double-dip spectrum. The systematic shift is 7 mHz, giving less
than 0.1 ppb contribution to the cyclotron frequency.

6.1.3.5 Tilt of the electrostatic potential

The solution of the equations of motion of the Penning trap implicitly assumes a
perfectly aligned magnetic and electric field. In reality, despite great efforts to reach
the highest possible manufacturing precision, there will always be a residual tilt
of the electric trap axis with respect to the magnetic field lines, causing systematic
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shifts of the eigenfrequencies compared to the ideal trap. Fortunately, the invariance
theorem allows to cancel the effect of both the tilt of the trap axis and a possible
first order deviation from the cylindrical symmetry, which can be parametrized as
an effective ellipticity.
The difference between the cyclotron frequency determined with the invariance the-
orem, which depends on the absolute value of the magnetic field, and with the sum
frequency ω̄c = ω+ +ω−, which measures the axial component of the magnetic field,
can be used to estimate the value of the mechanical tilt θ:

θ2 − 2

9
ϵ2 =

4 δωc

9ω−
. (6.12)

By neglecting the influence of the ellipticity it is possible to extract an estimation
of the tilt:

θ ≃ (0.11± 0.05)◦, (6.13)

which confirms the precision of the mechanical setup.

6.1.3.6 Lineshape of the g-factor resonance

Most of the previously discussed effects act to shift both the cyclotron and Larmor
frequency. However, while the cyclotron frequency is determined at each measure-
ment, the Larmor frequency can only be extracted from the complete set of mea-
surements. The lineshape of the spinflip resonance thus depends on the distribution
of mode energies during the measurement. In the case of the double-dip technique,
primarily the relatively large axial amplitude acts to sample the increasing magnetic
field according to the Boltzmann distribution of the energy:

δB

B0

≃ B2

B0

z2rms ≤ 3.8 · 10−11, (6.14)

for axial temperatures Tz ≤ 4.8K2, equivalent to amplitudes zrms ≤ 11µm. This
manifests as an asymmetric tail on the right-hand side of the spinflip resonance.
The accurate derivation of the lineshape function was carried out in the Ph.D. thesis
of J. Verdú [34] in order to describe the spinflip resonance of the oxygen g-factor
experiment, with the assumption that the lineshape is predominantly given by the
contribution of the magnetic field inhomogeneity. However, technical advances in
both the magnetic field homogeneity and ion temperature have decreased the inho-
mogeneity shifts by almost 3 orders of magnitude, leaving the cyclotron frequency
uncertainty as the dominant contribution to the linewidth. The jitter of the cy-
clotron frequency readout is clearly normally distributed, with a linewidth that is
typically orders of magnitude larger than the inhomogeneity shifts, especially for
the double-dip measurement (see figure 5.10). The resulting lineshape is predomi-
nantly Gaussian, with a very slight asymmetry. In fact the thorough analysis of the
lineshape following the discussion in the Ph.D. thesis of J. Verdú (see figure 6.3)

2Depending on the applied feedback.
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confirms that a Gaussian fit to the measured resonance introduces an error signifi-
cantly below δg/g ≤ 5 · 10−11 without negative feedback and δg/g ≤ 1 · 10−11 with
appropriate negative feedback as used during the PnA measurement.
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Figure 6.3: Simulated lineshape of the spinflip resonance following J. Verdú for
conservative experimental parameters of the current apparatus. The slight asymme-
try, arising from the Boltzmann distribution of the axial energy, cannot introduce
noticeable systematic deviations to the determined g-factor on the current level of
accuracy. When applying negative feedback to further cool the axial temperature,
which was done during the PnA measurement (see chapter 6.2), the asymmetry
further decreases.

6.1.3.7 Image current shift

Both the axial and cyclotron mode are weakly coupled to tank circuits that exert
some back action on the particle. As discussed in chapter 3.3, the ion experiences a
force due to the voltage induced onto the resonator by its own motion:

Fd(ẋ(t)) =
q2

D2
Z(ω) ẋ(t), (6.15)

where Z(ω) denotes the in general complex impedance of the tank circuit. The
respective equation of motion is analogue to a harmonic oscillator with complex
damping:

ẍ(t) = −ω2
+ x(t)− 2 δ ẋ(t), (6.16)
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where δ ≡ q2

2mD2Z(ω+) denotes the complex damping constant. The solutions to
this effective eom are given by:

x(t) = x1,20 e∓δ t±
√

ω2
+−δ2t. (6.17)

The real part of the impedance causes an exponential damping of the motion with
the cooling time constant τ , as already discussed, but has only a marginal influence
on the eigenfrequency. However, the imaginary part of the impedance features a
more subtle effect [77] that can potentially have significant influence on the measured
frequency: The effective back action on the ion is in phase with the particle position,
giving rise to an effective electrostatic potential, similar to the image charge field
discussed in chapter 6.1.3.8, but originating from the phase shifted ion current rather
than the static ion charge. Neglecting the insignificant contribution of the damping,
the effective eigenfrequency of the ion thus becomes:

ω̃+ ≃ ω+ − Im δ(ω+). (6.18)

Assuming a purely capacitive impedance of 10 pF, the frequency shift becomes rather
small:

δω+

ω+

≃ 4 · 10−13. (6.19)

However, if the imaginary impedance is enhanced close to the resonance of the tank
circuit, this frequency error can become significant:

δω+

ω+

= − Im(δ(ω+))
ω+

= − 1
τ+ Rω+

I (Z(ω+))

≃ − Q
τ+

∆ω
ω2
++4Q2 ∆ω2 , (6.20)

where ωR denotes the resonance frequency of the tank circuit, τ+ is the cooling time
constant of the cyclotron mode in resonance and ∆ω ≡ ωR−ω+ denotes the detuning
of the ion with respect to the tank circuit. Figure 6.4 shows the dependence of the
frequency shift from the detuning of the ion. The shift can be controlled by either
bringing the ion exactly in resonance with the tank circuit, where the impedance
is completely real, or by shifting the resonator sufficiently far away from the ion.
Since the detection and control of the absolute resonance center to better than 1%
is a rather adventurous task, in practice it is simpler to shift the tank circuit with
controllable parallel capacitances. Far away from resonance, the shift is sufficiently
insensitive to detuning in order to allow accurate correction for the residual shift.
The relatively low parallel resistance of the cyclotron tank circuit results in a negli-
gible frequency shift on the precision level of the double-dip measurement. For the
higher precision measurement with the PnA method, this shift however has to be
considered.
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Figure 6.4: Frequency shift due to the interaction of the ion with the in-phase
component of its induced voltage in the presence of the cyclotron tank circuit.

6.1.3.8 Image charge shift

Even at rest, the electrode structure has influence on the eigenfrequencies of the ion,
independent of the tank circuit. The charge of the ion induces image charges in the
electrodes, which again generate an additional electrostatic field [37, 78]. Similar to
the previously mentioned image current shift, the back action of the induced charges
on the ion can be divided into in-phase and out-of-phase components. The out-of-
phase component is caused by the portion of the image charge field that arrives
time-retarded due to the finite speed of light. However, considering the radius of the
trap and the wavelength of the cyclotron frequency

r0
λ+

=
c r0
ν+

≃ 0.04, (6.21)

this contribution can be safely neglected compared to the in-phase component3.
The in-phase component causes an additional effective electrostatic potential in the
rest frame of the ion. As this potential is caused by the presence of the charge in
the trap region, it does not fulfill the Laplace equation and thus causes a frequency
shift that is in first order not canceled by the invariance theorem4.
The image charge potential can be approximated by neglecting the slits between

3In the Ph.D. thesis of H. Häffner this effect is estimated to be smaller than 0.01 ppt.
4The invariance theorem accounts for electrostatic potentials and magnetic inhomogeneities in

quadratic order as explained in chapter 3.2.5
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the electrodes and assuming the electrode set to form an infinite cylinder. In this
approximation the potential has been evaluated by H. Häffner, yielding

Φic =
q

8π ϵ0 r30
ρ2. (6.22)

Since the image charge potential is mediated by the conducting electrodes, indepen-
dent of the trapping field, the center of the pseudo-potential is referenced to the
geometrical center of the trap, rather than the electrostatic center. Since the poten-
tial is quadratic in good approximation, it can be added to the quadratic trapping
potential even if both are spatially displaced due to patch potentials.
Due to the inherent axial symmetry, the force of the image charge has only a ra-
dial component. In the radial plane, the quadratic potential adds to the trapping
potential and yields in first order a harmonic shift of the magnetron and cyclotron
frequency:

∆ω± ≃ ∓ q2

4π ϵ0mr30 ωc

≃ ∓18.4mHz. (6.23)

Although the magnetron and cyclotron frequencies shift both by the same amount
but with opposite sign, if the invariance theorem is used to calculate the free cy-
clotron frequency, the resulting relative shift is very significant on the current level
of accuracy:

∆ωc

ωc

≃ −6.86 · 10−10. (6.24)

This is the dominant systematic frequency error of the experiment. Just like the
image current shift, the image charge shift increases strongly with the charge of the
ion:

∆ω+ ∼ q2

m
, (6.25)

making the image charge shift increasingly problematic for the measurement of heav-
ier ions. However, the strong dependence on the trap radius r0,

∆ω+ ∼ 1

r30
, (6.26)

allows to reduce the effect by making the trap accordingly larger. The development
of the PnA method allows to increase the trap size without sacrificing signal strength.
For the current trap, the manufacturing accuracy of the electrodes causes a relative
uncertainty of the correction of roughly 1%. Since the influence of the slits between
the individual electrodes is not yet evaluated, a conservative uncertainty of 5% is
attributed to the correction. This allows to correct the free cyclotron frequency to
3.3 · 10−11.

6.1.3.9 Time reference

The experiment is based on the determination of the ratio of two frequencies, such
that fluctuations of the absolute time reference are canceled to a large extend. How-
ever, the averaging properties of the spin transition are in general non-linear, so
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that excessive fluctuations of the absolute microwave frequency, comparable with
the linewidth of the g-factor resonance, cause an undesired broadening of the reso-
nance. For this reason, all frequency generators and the FFT analyzer are referenced
to a commercial 10 MHz rubidium clock. The residual fluctuations and inaccuracies
are negligible on the current level of accuracy.

6.1.3.10 Dip line shape

The double-dip detection relies on the extraction of the eigenfrequencies from a
fit with a known lineshape. However, the dip linewidth is large compared to the
required precision. The determination of the g-factor with the double-dip technique
to a relative precision of 0.1 ppb corresponds to splitting the dip line to roughly 1�,
a rather precarious intend, provided that any nonlinearity of the detection system
transfer function5 can potentially cause systematic shifts of the mean determined
frequency. Although no significant deviations from the theoretical lineshape can be
detected even in excessively long averaged dip spectra, a rather conservative line
shape uncertainty of 3 mHz is assumed.

6.1.4 Final result

In total, six g-factor resonances were recorded with the double-dip technique, each
containing roughly 300 cycles. Although the theoretical estimations of the energy
dependent shifts with the improved setup are clearly negligible compared to the
static shifts and the uncertainty of the electron mass [79, 80], the axial temperature
and the microwave power were varied between the measurements, in order to check
the validity of the calculations. From the fits to the individual resonances, the
preliminary uncorrected frequency ratio Γ′

0 = 3912.866066(1) is extracted. Before
the g-factor can be calculated, the previously presented corrections to systematic
shifts have to be applied, which are summarized in tables 6.1, 6.2 and 6.3. The

Effect relative size (ppt) uncertainty of final result
(ppt)

Magnetic field inhomogeneity6 20 < 1
Special relativity 0.6 0.6
Electrostatic potential 0.2 0.2
g-factor lineshape < 10 < 10
Sum (quadratic) < 23 < 10

Table 6.1: Energy dependent systematic shifts

error budget of the measured frequency ratio Γ0 is thus dominated by the static shifts,

5Note that the lineshape used in the data evaluation takes linear transfer functions into account
6Shift of the cyclotron frequency. With the presented method magnetic inhomogeneity does not

produce systematic shifts of the g-factor in leading order.
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Effect relative size (ppt) uncertainty of final result (ppt)

Image current 20 10
Image charge 686 34
Dip lineshape 100 100
Timebase < 10 < 10
Sum (quadratic) 694 108

Table 6.2: Static systematic shifts

Constant relative uncertainty (ppt)

Electron mass in u 400
Ion mass in u 35
Sum 402

Table 6.3: External constants uncertainty

originating predominantly from the interaction of the ion with its own image charge
and the dip lineshape uncertainty. Subsequently, the g-factor can be calculated:

g = 2Γ0
13me

mion

. (6.27)

The required electron mass is taken from the current (2010) CODATA compilation:

me = 5.485 799 0946(22) · 10−4 u, (6.28)

and the ion mass can be calculated from the atomic mass measured by Redshaw
et al.

M(28Si) = 27.976 926 535 0(6)u, (6.29)

corrected by the masses of 13 electrons and their respective binding energies, taken
from [81]:

M(28Si13+) = 27.969 800 594 9(7)u. (6.30)

The final value of the g-factor is deduced from the weighted average of the individ-
ually corrected values of the 6 resonances, summarized in figure 6.5:

gexp = 1.995 348 958 66(50)(30)(80). (6.31)

The first uncertainty represents the statistical precision of the determination of Γ0

from the recorded resonances, the second one denotes the systematic uncertainty
and the last one represents the uncertainty of the electron mass. This value can now
be compared with the prediction from state-of-the-art BS-QED calculations [12]:

gtheo = 1.995 348 9580(17). (6.32)
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Figure 6.5: The corrected g-factor values determined from the six individual res-
onances. The gray band represents the statistical uncertainty of the experimental
value, while the hatched area is the uncertainty of the theoretical prediction. Obvi-
ously, both are in perfect agreement.

Both values agree perfectly, however the experimental result is significantly more
accurate, despite the limitation from the electron mass value. The presented mea-
surement is the result of one month of data taking, after roughly seven years of
preparation. The result is the most accurate determination of an atomic g-factor
ever performed.
With the experimental result it becomes possible to verify the validity of the BS-QED
theory in extreme situations by comparing the determined value with the theoretical
prediction. Indeed, even at this level of accuracy and sophistication, QED once more
is in perfect agreement with the experimental observation.
The achieved accuracy, even including the temporary limitation due to the uncer-
tainty of the CODATA value of the electron mass, allows to validate all contributions
to the theoretical g-factor considered in chapter 2, for the first time including vac-
uum polarization and nuclear size effects as well as higher order contributions of the
two loop theory.

6.1.5 The nuclear charge radius of 28Si13+

For the g-factor of 28Si13+, the contribution of the finite nuclear size is for the first
time significant. This contribution can be calculated by using independent values
for the charge radius of the nucleus. On the other hand, the measurement can be



104 6. The g-factor of 28Si13+

used to determine the charge radius by comparing the predicted g-factor as function
of the charge radius with the experimentally determined value. If all other input
parameters are known to sufficient precision, the charge radius is the value that
satisfies the relation

gexp = gtheo

(√⟨
r228Si

⟩)
. (6.33)

With the afore-mentioned g-factor values the charge radius is√⟨
r228Si

⟩
= 3.18(15)fm, (6.34)

in perfect agreement with the literature value of 3.1223(24) fm [82], but significantly
less precise. The precision of the charge radius extraction is predominantly limited by
the theoretical knowledge of the higher order QED contributions and the uncertainty
of the electron mass. Nevertheless, this method to determine nuclear charge radii
can become interesting in the future. If the precision of the QED calculation can
be increased, the achieved experimental accuracy with the PnA method (see next
chapter) is principally sufficient to provide competitive values already for 28Si. As
the nuclear size contribution increases strongly in heavier systems, it is conceivable
to determine extremely accurate charge radii for these systems.

6.1.6 Comparison with other QED tests

The large number of relevant contributions, in combination with the accuracy of the
comparison and the magnitude of the electric field strength in the 28Si13+ ion, render
this measurement the most stringent test of the BS-QED to date.
The previous bound-state g-factor measurements on hydrogenlike carbon and oxygen
are far less sensitive, owing to the lower experimental accuracy of 4 ppb and the
drastically lower electric field in the lighter systems. However, the determination
of the electron mass from the result of the carbon experiment is the basis of the
accuracy of this result.
The measurement of the free electron anomaly with a relative accuracy of 0.4 ppb
by Gabrielse can be used as a test of low-field QED, if an independent value of
the finestructure constant is available. Currently, the most accurate independent
value comes from atomic recoil measurements, yielding a precision of 0.8 ppb for the
comparison. These two measurements together constitute the most stringent QED
test in the low field regime.
In order to form conclusive tests of bound-state QED, it is necessary to identify
systems where observable or combinations of observables are available that allow
both accurate calculation and experimental determination and which are sensitive
to QED effects. Some of the most prominent examples include the determination
of the hyperfine splitting (HFS) in different electronic states of light atoms and
ions [83]. Although high-precision measurements are available for a number of light
species, the strong dependence of the HFS on the structure of the nucleus renders
the extraction of a precision test of BS-QED in these systems impossible. However,
by comparing the HFS in two different electronic states, it is possible to construct
observables that cancel the nuclear structure effect while still featuring significant
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sensitivity to QED. The most successful test comes from the comparison of the HFS
of the 1s and 2s states of 3He+ ions [84, 85]. Experiment and theory show reasonable
agreement, allowing to test QED on the level of roughly 1 ppm. However, the field
strength in these light systems is still very small, which brings many effects of the
BS-QED out of reach of this test.
In the high field regime, most tests suffer from the extremely strong influence of
the nuclear structure (NS) on all observables. For the HFS of hydrogenlike Pb,
the NS contribution prevents the conclusive extraction of BS-QED contributions
[86]. Nevertheless, the determination of the Lamb shift in hydrogenlike uranium at
the GSI ESR, despite the low accuracy of the experimental value of only 1%, gives
access to QED contributions, since the Lamb shift in itself is a QED effect. In this
regime of extremely strong fields, this experiment is still the only source of conclusive
information [8].
In order to validate BS-QED in all regimes, all of the mentioned experiments have
to contribute. However, the bound-state g-factor determination clearly covers the
largest regime of all tests.

6.2 Results with the PnA method

The analysis of the data from the double-dip technique has shown that the experi-
ment has surpassed the precision of the theoretical prediction. On the other hand,
the error budget shows that the dominant uncertainty contributions originate from
the double-dip technique. Specifically, the cyclotron frequency determination jitter
prevents to fully exploit the extremely low systematic errors in the improved setup.
The PnA measurement thus opens exciting prospects for ultra precision determina-
tion of g-factors. Obviously the determination of a bound-state g-factor on a level
below 0.1 ppb further challenges the progress of theoretical calculations, which will
in the future allow even more stringent BS-QED verifications. Furthermore, the
g-factors of light species are already presently known to sufficient accuracy, allowing
the extraction of fundamental constants.
The determination of the g-factor of 28Si13+ with the PnA method thus paves the
way to intriguing measurements in the near future.

6.2.1 Measurement procedure

The measurement procedure is basically similar to the previously described tech-
nique. Primarily the PnA measurement is added to the existing procedure. The
cyclotron frequency measurement consists of a set of phase measurements with dif-
ferent evolution times in order to allow the unwrapping of the cyclotron phase. The
shortest evolution period (10 ms) is repeatedly measured to yield a precise starting
phase. A previously measured double-dip spectrum serves to provide an initial guess
of the cyclotron frequency for the unwrapping procedure. The typical jitter of the
double-dip measurement of roughly 100 mHz allows to reliably predict the phase up
to two seconds evolution time7. Since the double dip is recorded additionally to the

7Two seconds evolution correspond of 500 mHz unambiguous phase-jump free range.
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PnA cycle, the complete measurement cycle is effectively longer than during the first
g-factor measurement, although the PnA cycle alone is intrinsically faster than the
double-dip cycle.
The longest evolution period, 5 seconds in this case, is repeated twice. The first
determination serves for accurately predicting the Larmor frequency at the time of
the actual measurement. Finally, coincidently with the second 5 second measure-
ment, a microwave excitation at a random frequency close to the estimated Larmor
frequency is introduced. For the calculation of the cyclotron frequency, only the
magnetic field during the longest measurement is critical, the sensitivity of the short
measurement is suppressed by the ratio of the evolution times t1

t2
. This allows the

simultaneous measurement of the Larmor- and cyclotron frequency. Although the
short measurements are essentially invariant, they are recorded in each cycle in order
to exclude accidental shifts of the starting phase8.
The axial frequency is determined in the same way as before, once before and once
after the PnA measurement. However, since the PnA technique implements a direct
determination of the cyclotron frequency, rather than an offset to the axial frequency
as in the double-dip technique, the contribution of the axial frequency to the free
cyclotron frequency value is now suppressed by a further factor of ωz

ω+
≃ 1

37
, which

significantly relaxes the requirements for the precision.
The complete measurement procedure is very similar to the double-dip measurement:

1. Automatic resistive sideband cooling of the axial and magnetron motion to
thermal equilibrium.

2. Sideband coupling of the cyclotron and axial mode

3. Measurement of the momentary cyclotron energy, repeat step 2 until the energy
is below a threshold value

4. Eight successive phase sensitive measurements of the axial frequency

5. Strong microwave excitation at the Larmor frequency for 30 seconds to induce
spinflips

6. Loop to step 4 until at least 1 spinflip is detected

7. Adiabatic transport to the PT

8. Sideband cooling of all eigenmodes

9. Wait for 30 seconds to let the trapping voltage settle

10. Open cryogenic switches9

8Although such a shift was never observed during the measurement, any change in the parameter
of the detection system could potentially contribute.

9The switches are opened for each excitation, but are left open during the precision measurement
to prevent a possible systematic influence.
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11. Detection of a double-dip spectrum with a quadrupolar coupling at νcoup to
provide a cyclotron frequency estimate for the phase unwrapping

12. Detection of a single dip spectrum for 90 seconds

13. Activate negative feedback

14. Measurement of 6 PnA cycles with 10 ms evolution time to fix the initial phase,
with sideband cooling after each measurement

15. Measurement of 4 PnA cycles with intermediate evolution times, with sideband
cooling after each measurement (not used for evaluation)

16. Measurement of 1 PnA cycle with 5 s evolution time to provide an accurate
estimate of the Larmor frequency

17. Measurement of 1 PnA cycle with 5 s evolution time with simultaneous mi-
crowave excitation at a random frequency close to the Larmor frequency esti-
mate

18. Deactivate negative feedback

19. Detection of a second single dip spectrum

20. Close cryogenic switches

21. Adiabatic transport to the AT

22. Loop to first step

6.2.2 Achievable linewidth

Before each PnA cycle, the cyclotron mode has to be cooled. Since the cyclotron
tank circuit was not available during the measurement due to accidental detuning,
the cyclotron mode was only sideband cooled via the axial tank circuit. In order
to achieve the lowest possible temperature, negative feedback was applied to the
resonator during the cooling time as well as during the measurement.
Nevertheless, the elevated basis temperature imposes a limit on the achievable phase
definition jitter. In order to avoid significant systematic frequency shifts, the cy-
clotron excitation energy is limited. According to figure 5.12, a phase definition
jitter of δϕin ≃ 15◦ is achievable with a resulting acceptable systematic shift of 70
ppt. For a 5 second measurement this translates into an achievable minimum jitter
of the cyclotron frequency readout of

δν+
ν+

≤ 15◦

360◦ 5s ν+

√
1
6
+ 1 ≃ 3.3 · 10−10 ⇒ FWHM ≥ 7.8 · 10−10. (6.35)

The cyclotron frequency readout jitter causes a broadening of the recorded spinflip
resonance of the same magnitude. Indeed, the corresponding g-factor resonance has
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almost exactly the predicted linewidth, demonstrating that the cyclotron frequency
readout precision is still the limiting factor, while true magnetic field fluctuations
play a secondary role even on this improved level of precision.

6.2.3 Energy calibration

For the determination of the systematic frequency shifts the absolute cyclotron en-
ergy resulting from a certain excitation pulse strength has to be known. The simplest
method to obtain this information is to measure the cyclotron frequency shift as a
function of the pulse power. Since the cyclotron frequency shift, arising from the
magnetic bottle and the relativistic mass increase, is proportional to the square of
the cyclotron radius r2+, a linear relation to the pulse power is expected10. How-
ever, the statistical fluctuations due to magnetic field wander are larger than the
expected systematic shifts. By repeatedly measuring the cyclotron frequency differ-
ence between successive measurements with randomly chosen excitation energies it
is possible to beat the statistical fluctuations of the magnetic field and map out the
frequency shift directly. Figure 6.6 shows the result of such a measurement. The
frequency shift is clearly linear in the excitation power as expected, confirming the
validity of the theory. From a fit to the measured data the parameter κ can be
extracted which relates the excitation power with the cyclotron frequency shift in
this specific setup:

δν+
ν+

= κV 2
exc. (6.36)

By using an independently obtained value of the magnetic bottle strength in the
PT, B2, it is thus possible to establish a relation between the excitation amplitude
and the true cyclotron radius via equations (3.26) and (3.36):

r+ ≃
√

κ
ω2
+

2 c2
+ B2

2B0

Vexc ≃ 57(22)
µm

V
Vexc. (6.37)

The precision of the determined radius suffers from the limited knowledge of the
magnetic bottle strength in the PT.

6.2.4 g-factor resonances

A total of eight resonances with varying cyclotron energies were recorded for the
determination of the g-factor of 28Si13+ with the PnA method. The resonances with
the lowest energies almost entirely determine the g-factor value due to the amount
of statistics. The high energy resonances mainly serve for the validation of the
theoretically predicted scaling behavior. The energy dependence of the resonance
centroids results mainly from the different relativistic scaling of the Larmor- and
cyclotron frequency (see chapter 3.2.3) and is in perfect agreement with the theo-
retical prediction. This difference can be exploited by combining the fitted slope

10The cyclotron radius depends linearly on the pulse amplitude and the pulse power is quadratic
in the amplitude.
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Figure 6.6: Relative systematic frequency shift as a function of the excitation power.
This measurement establishes the connection between the applied excitation power
and the resulting ion radius.

of the energy dependent centroids with the cyclotron frequency shift measurement
in figure 6.6 to determine a significantly more precise value of the magnetic bottle
strength B2 (see next chapter). As predicted, the resonances show no observable
asymmetry, a result of the low axial energy due to the improved detection system
in combination with the electronic feedback, and the small residual magnetic in-
homogeneity compared to previous experiments11. The linewidth of 0.8 ppb is in
perfect agreement with the expectation from the phase definition jitter of 0.78 ppb,
discussed in chapter 6.2.2. This demonstrates on the one hand the drastic improve-
ment due to the phase sensitive detection, on the other hand it substantiates the
advantage of improved cooling techniques, which would allow lower phase definition
jitter. For coming experiments, the direct cooling with a cyclotron tank circuit will
allow reaching an order of magnitude lower temperatures, allowing to fully exploit
the possibilities of the PnA technique.
Similarly to the double-dip measurement, the final result is determined from a

weighted fit to the corrected centroids of the individual resonances.

11The distance between AT and PT was increased compared to the original apparatus in order
to reduce the influence of the ferromagnetic ring in the PT.
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Figure 6.7: One of the eight recorded resonances with the PnA measurement tech-
nique. The resonance demonstrates the order of magnitude improved linewidth
owing to the more precise cyclotron frequency determination. The dark gray area
represents the 1-σ prediction band for the measurements, while the dark gray re-
gion displays the confidence band of the fit with respect to the centroid parameter.
The data points are obtained by binning the measured ratios and are included for
visualization purposes only and do not enter the fitting procedure.

6.2.5 Result and error budget

Although the individual effects contributing to the systematic uncertainty of the
measurement are conceptually similar to the double-dip measurement, the different
values of the experimental parameters change the error budget of the experiment.
Although the PnA measurement principally allows the detection of small cyclotron
amplitudes, the unavailability of the direct cyclotron tank circuit cooling during the
measurement enforces the use of comparably large cyclotron energies. Simultane-
ously, the use of negative feedback during the PnA detection decreases the axial
amplitude and thus the asymmetry and linewidth of the g-factor resonance. Below,
only the most important systematic shifts are once more discussed, and the error
budget with all contributions is presented.
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Figure 6.8: Individual g-factor values determined from the centroids of the eight
recorded resonances. For centroids with identical excitation energy, the weighted
average value is plotted.

6.2.6 Energy dependent shifts

Since the PnA measurement implements a direct detection of the cyclotron fre-
quency, the contribution of the axial and magnetron frequency to the determined
free cyclotron frequency is significantly reduced. However, the eigenfrequencies are
now detected at different energies. The magnetron frequency is still deduced from
a double-dip spectrum by sideband coupling to the axial mode. The temperature
of the magnetron mode upon detection is thus very low: |T−| = ω−

ωz
Tz ≃ 63mK.

Furthermore, the invariance theorem suppresses the contribution of the magnetron
frequency so far that the determined value can safely be regarded as the ideal mag-
netron frequency. The axial frequency is determined from a single dip spectrum at
4.8 K, but this temperature is still low enough to neglect any systematic shift on
the cyclotron frequency. This was already true for the double-dip measurement at
roughly 0.2 ppt, and this effect is now suppressed by an additional factor ωz

ω+
≃ 1/40

due to the direct measurement12. However, the uncertainty of the dip line splitting
imposes a more severe limit for the determination of the cyclotron frequency. Using
the same relative uncertainty as for the double-dip measurement, the accuracy of the

12The cyclotron frequency during the dip measurement shifts slightly due to the finite axial tem-
perature, however this has no influence on the axial frequency, which is merely an input parameter
to the invariance theorem which yields the cyclotron frequency at the time of the PnA cycle, not
the axial frequency measurement.
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PnA measurement in the current setup is bounded at 0.1 ppb · ωz

ω+
≃ 3 ppt. While

this is a severe relaxation compared to the double-dip technique, the axial frequency
determination should be reviewed if the precision of the experiment is further im-
proved in the future.
The energy dependence of the free cyclotron frequency determined with the PnA
method originates almost entirely from the reduced cyclotron frequency:

δνc
νc

=

(
ν+
νc

)2
δν+
ν+

≃ (1− 0.7�) δν+. (6.38)

The energy scaling of the determined free cyclotron frequency thus reflects almost
perfectly the inhomogeneity of the magnetic field, which also defines the scaling
of the Larmor frequency. This is an important conceptual advantage of measuring
the axial frequency independently at low cyclotron energy. Otherwise, the magnetic
moment associated to the cyclotron motion would alter the axial frequency, canceling
the scaling of the cyclotron frequency due to the magnetic inhomogeneity (almost)
entirely:

ν̄c =
√
ν̄2+ + ν̄2z + ν2− =

√
(ν+ + δν+)2 + (νz +

ν+
νz
δν+)2 + ν2− ≃ νc. (6.39)

Here, ν̄+ and ν̄z denote the respective eigenfrequencies measured at an elevated cy-
clotron temperature T+. The disadvantage of this cancellation is that the ratio of
Larmor and cyclotron frequency is now not anymore invariant with respect to the
energy in the residual magnetic bottle. While the resulting systematic shift can be
corrected, the jitter due to slightly different excitation energies between successive
measurements would inevitably cause a clearly undesired broadening of the g-factor
resonance.
Similar to the double-dip measurement, the largest contribution to the cyclotron
frequency shift in the magnetic inhomogeneity comes from the finite axial energy
rather than the cyclotron energy. However, due to the negative feedback applied
during the measurement, this contribution is smaller (9 ppt) than in the previous
measurement. In any case, the axial energy induced magnetic field shift does not
find expression in the frequency ratio, as it affects both the Larmor and cyclotron
frequency in a similar way.
Ultimately, only the relativistic mass increase causes a systematic shift of the fre-
quency ratio Γ, because it causes dissimilar effects on the two frequencies. Although
the systematic shift at the lowest excitation energy is only 14 ppt, by using exces-
sively strong excitations it is possible to provoke significant systematic shifts (see
figure 6.8). The slope of the determined g-factor values can be used to determine
the cyclotron radius without the need to know B2 explicitly:

r+ =

√
c2

2π2 ν2+

δg(Vexc)

g
. (6.40)
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In combination with equation (6.37), it is possible to deduce a very precise value of
the magnetic bottle strength B2:

BPT
2 = 0.52(16)

µT

mm2
. (6.41)

This value is in perfect agreement with the independently obtained value presented
in chapter 5.6.1, but is an order of magnitude more precise. The validity of the B2

determination once again confirms the validity of the systematic shift calculation.

6.2.6.1 Static shifts

On top of the very low systematic shifts, the determined frequencies, especially the
cyclotron frequency, is subject to the same static shifts that have been considered for
the double-dip measurement. The two dominant contributions come from of the self-
interaction of the ion with its charge and current via the trap electrodes. The image
current shift becomes almost significant, due to the higher precision of the mea-
surement, and is corrected for. The image charge shift, which is unchanged by the
measurement method, is now the dominant source of uncertainty for the frequency
ratio Γ. The limited knowledge of the position of the ion in the trap, especially
in the axial direction, enforces a very conservative 5% uncertainty estimate of this
contribution, corresponding to a contribution of 34 ppt to the final error budget.
For future measurements this uncertainty has to be decreased by either increasing
the trap radius or by very careful theoretical and experimental examination of this
shift [87].
The tables 6.4, 6.5 and 6.6 summarize the considered systematic shifts and uncer-
tainties. The error budget of the frequency ratio Γ0 is obviously still dominated by

Effect relative size (ppt) uncertainty of final result
(ppt)

Magnetic field inhomogeneity13 9 < 1
Special relativity 15 3
Electrostatic potential ≪ 1 ≪ 1
g-factor lineshape < 10 < 10
Sum (quadratic) < 20 < 11

Table 6.4: Energy dependent systematic shifts

the static shifts, although the statistical uncertainty has been lowered by an order
of magnitude. Similar to the double-dip result, the g-factor can be calculated from
the corrected Γ0 value. The result,

gPnAexp = 1.995 348 959 04(7)(7)(80)14, (6.42)

13Shift of the cyclotron frequency. With the presented method magnetic inhomogeneity does not
produce systematic shifts of the g-factor in leading order.
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Effect relative size (ppt) uncertainty of final result (ppt)

Image current 20 10
Image charge 686 34
Dip lineshape < 2.6 2.6
Timebase < 10 < 10
Sum (quadratic) 686 < 37

Table 6.5: Static systematic shifts

Constant relative uncertainty (ppt)

Electron mass in u 400
Ion mass in u 35
Sum 402

Table 6.6: External constants uncertainty

is again in perfect agreement with both the theoretical prediction and the double-
dip result. However, it is entirely limited by the knowledge of the electron mass in
atomic mass units. For this reason, the frequency ratio Γ0, which is a direct result of
the experiment and not subject to the uncertainty of external constants, is regarded
as the true result of the experiment:

ΓPnA
0 = 3912.866 064 88(13)(13), (6.43)

where the errors indicate the statistic and systematic uncertainty, respectively. As
soon as the electron mass is independently measured to higher precision, this value
can be transformed to an ultra high-precision g-factor.

6.2.7 Comparison with double-dip method

The above results clearly demonstrate that the PnA is superior to the double-dip
method in all relevant concerns. Both results agree perfectly with each other as well
as the theoretical prediction. If the temperature of the ion can be cooled better,
e.g. with direct cyclotron cooling, the cyclotron temperature can be lower than
in the double-dip case, which basically removes all energy dependent systematic
shifts. Apart from the higher precision achievable with the PnA, it also removes
the limitation due to the line splitting of the dip. This might be one of the most
welcome improvements of the novel method, as it makes the cyclotron frequency
determination basically independent from model-based lineshapes.

14The errors indicate the complete statistic and systematic experimental error of the PnA mea-
surement and the external constant uncertainty, respectively.
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6.2.7.1 Limitations and opportunities

The precision of the PnA measurement is limited by the amount of statistics collected
during the data-taking, partly due to the limited amount of time, but also due to the
low spin transition rate chosen. In further measurements, it might be advantageous
to increase the microwave excitation power to increase the rate of detected spinflips.
As long as the transition probability stays clear of the saturation limit around 50%,
the resulting broadening of the line is negligible. In the current measurement, the
transition rate was around 20% for all resonances, so that increasing the microwave
power holds promise to increase the statistical precision by at least a factor of

√
2.

Alternatively, the cyclotron frequency measurement precision can be increased by
lowering the phase definition jitter, which is easily possible by decreasing the cy-
clotron temperature before the PnA cycle by direct cooling via the cyclotron res-
onator. The lower cyclotron temperature allows to decrease the phase definition
jitter by a factor of 5 without increasing the systematic shifts. By increasing the
measurement time, the statistical precision can in principal be arbitrarily increased,
however the phase ambiguities caused by magnetic field fluctuations during the mea-
surement period prevents the use of arbitrarily long measurement times. By stabi-
lizing the magnetic field, as suggested in the outlook, longer measurement times will
soon become accessible allowing a further increase of the already fascinating preci-
sion of the experiment.
If the cyclotron frequency precision can be increased, the precision of the axial fre-
quency measurement via the dip spectrum will impose a limit in the low ppt regime.
By applying the PnA method for the axial phase, rather than the cyclotron phase,
it is possible to perform a phase sensitive measurement of the axial frequency. This
will allow to beat the limit of the axial frequency, provided that the trapping voltage
during the measurement is sufficiently stable to prevent excessive jitter.
Finally, the limit of the g-factor measurement will be given by the static frequency
shifts, primarily the image charge shift. While this effect is only a weak limit for
ions with low charge as e.g. 12C5+, for highly charged ions the image charge effect
will have to be controlled by either a direct measurement or an increase of the trap
size. In any case, the PnA method offers plenty of room for further improvements.
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7. Conclusions and Outlook

In the course of this thesis the g-factor of the electron bound in hydrogenlike silicon
28Si13+ was determined to a previously inconceivable accuracy:

g
28Si13+

exp = 1.995 348 959 04(7)(7)(80). (7.1)

The errors originate from the statistic and systematic uncertainties of the measured
frequency ratio and the uncertainty of the tabulated electron mass, respectively. The
excellent agreement with the value predicted by state of the art BS-QED calculations,

g
28Si13+

theo = 1.995 348 9580(17). (7.2)

constitutes the most stringent test of BS-QED in strong electric fields [12]. The
combination of theoretical prediction and experimental observation allows to verify
the QED contributions to the electron g-factor with a precision of 0.8 ppm. If those
contributions that have been already thoroughly tested by other experiments are left
aside, the explicit BS-QED contributions are still tested to a level of 0.4�.
The accuracy of the measurement was made possible by the development of a sig-
nificantly improved Penning trap system and cryogenic precision electronics at the
edge of feasibility on the one hand [88], and the invention and application of a novel
frequency measurement technique, termed PnA [13], which enables to beat the pre-
vious precision limits by orders of magnitude on the other hand. This measurement
constitutes the most accurate measurement of any atomic g-factor to date.
The order of magnitude improved precision of the experiment features prospects for
fascinating future measurements, some of which will be discussed in the following.
The dominant limitation of the experimental precision by the uncertainty of the tab-
ulated electron mass leads to the first and most obvious application, the extraction
of the electron mass from an improved determination of the g-factor of 12C5+. By
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solving equation (6.27) for the electron mass, a simple relation between the measured
frequency ratio Γ0 and the theoretical g-factor prediction is established [89]:

me =
gtheo
2 Γ0

m12C

q
. (7.3)

Already with the present setup, an improvement of the tabulated electron mass
value by more than an order of magnitude seems plausible. Further improvements
that have been already initiated (see chapter 7.1), will probably extend the reach
of the experiment even further. Furthermore, the measurement of other ions will
allow even more stringent BS-QED tests. The extension to higher charge states gives
access to stronger binding potentials, with possibly more pronounced consequences
of hypothetical nonlinearities of QED with respect to the field tensor F µν . The
current setup is designed to allow charge-breeding of hydrogenlike calcium, where
the expectation value of the electric field strength in the 1s state is significantly
higher. Moreover, the measurement of the g-factor of multi electron systems, for
example in lithium like ions, allows the investigation of interelectronic interaction
and correlation.
Finally, g-factor determinations also allow the determination of nuclear masses. This
is particularly interesting since the use of the Larmor frequency as a probe of the
local magnetic field eliminates systematic shifts arising from dissimilar equilibrium
positions of different ions which are a troubling source of uncertainty for ultra high
precision mass comparisons.

7.1 Future improvements

This chapter will introduce some of the technical improvements that will enable
further refinement of the measurements. The analysis of the PnA measurement has
clearly revealed the major sources of limitation for the measurement precision. Apart
from the image charge shift, which can be easily reduced by increasing the radius
of the PT1, the magnetic field wander during and between successive measurements
in combination with the finite base temperature of the ion before excitation restrict
the further decrease of the g-factor linewidth.
For both sources of limitation, appropriate solution approaches have been driven
forth within this thesis.

7.1.1 Magnetic field self-stabilization coil

The random fluctuations of the magnetic field first and foremost yield an upper
bound for the usable evolution time Tevol of the PnA cycle, since the fluctuations

1Only the inner PT electrodes have to be enlarged, which helps to keep the length of the trap
tower within reasonable limits.
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themselves cancel to first order in the ratio Γ. If the typical fluctuations of the deter-
mined phase, which depend linearly on the evolution time, become comparable to π,
the unambiguous phase unwrapping becomes impossible. The maximum achievable
frequency readout precision then reads:

δν+
ν+

≥ δϕin

2π Tevol ν+
. (7.4)

Obviously, for a certain initial phase resolution, given by the amount of accepted
systematic frequency shift and the base temperature, the resolution only depends on
the available measurement time. By increasing the stability of the magnetic field,
longer evolution periods become accessible.
The magnetic field fluctuations at the location of the ion can be composed of fluc-
tuations of the external magnetic field, originating from changes of the local earth
magnetic field, motion of nearby macroscopic ferromagnetic objects and magnetic
disturbances from electronic devices, and fluctuations of the internal magnetic field,
caused by changes of the operating parameters of the superconducting magnet [90].
For one thing, the magnetic flux trapped by the superconducting solenoids can
change due to the Flux-Creep effect [91]. However, this contribution is typically
displaced by the consequences of changes in the temperature and pressure of the
cryogenic liquids in the dewars of the experiment. The fluctuating pressure in the
cryogenic dewars causes susceptibility changes of materials in the bore of the magnet,
and changes of the geometric dimensions of the solenoids. Furthermore, the pressure
change can induce excessive boiling of the cryogenic liquids, which can generate a
change of the geometrical position of the setup in the magnetic field of the solenoid
due to thermal contraction of the mechanical supports of the setup.
By adding a self-contained superconducting solenoid of suitable geometry which
traps the magnetic flux in the region around the trap, the magnetic field at one
specific location can be made invariant under changes of the external field. This
technique was proposed and employed by G. Gabrielse for shielding complete mag-
nets against external disturbances [92]. However, by winding of the coil directly
around the trap chamber, the magnetic field at the ion’s location becomes not only
shielded against external fluctuations but also against all fluctuations inside the
magnet bore2 and even against the result of translations along the magnetic field
lines. Furthermore, because the magnetic field inside the coil is very similar to the
surrounding field, the diffusion of flux quanta is strongly suppressed.
First tests of the shielding coil suggest a successful shielding of external fluctuations
by more than 2 orders of magnitude. The characterization of the shielding coil and
its consequences for the experiment is part of the Ph.D. thesis of A. Wagner.

2Provided that these can be considered sufficiently homogeneous across the spatial extent of the
shielding coil.
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7.1.2 Direct cyclotron mode cooling

Additional to the stabilization of the magnetic field, the initial phase jitter can be
lowered by decreasing the base temperature of the ion in the cyclotron mode. A
straightforward possibility to achieve a lower temperature is to couple the cyclotron
mode directly to a tank circuit. This way, the cyclotron mode can be brought into
thermal equilibrium with the physical temperature of the setup, which amounts
to 4.2 K [37]. This corresponds to a reduction of the cyclotron temperature by
at least a factor 20, or even more if negative feedback is applied to the cyclotron
resonator. Considering that the systematic shifts of the cyclotron frequency scales
linearly with the mode energy, this holds promise for a drastic improvement in
the achievable precision. Furthermore, a cryogenic switch was introduced into the
setup which allows to shift the resonance frequency of the axial tank circuit by a
large amount. Doing so, the axial mode is practically decoupled from the thermal
bath and can be brought into thermal equilibrium with the cyclotron mode via
radiofrequency sideband coupling. The achievable axial temperature in this case
amounts to Tz = νz

νc
T+ ≃ 52 mK, which holds promise for eventually breaking the

ppt barrier.

7.1.3 Beating the phase definition jitter:

Non-classical motion

If the base temperature of the ion is further reduced, the PnA method, combined
with the magnetic bottle, opens a fascinating window into the quantum world. Cool-
ing into the motional ground state [93], which seems on the long term possible via
e.g. sympathetic resolved sideband laser cooling, allows to prepare well-defined ini-
tial states, which become essentially independent of the base temperature in this
limit. While the initial phase uncertainty due to the thermal motion vanishes, quan-
tum effects start limiting the jitter of the measured phase. This is not surprising
considering that the (spatial) phase operator of quantum mechanics [94] is only con-
sistently defined for classical, coherent states. While the state that is measured,
after application of the amplification pulse of PnA, can be clearly represented as
a coherent state, the initial state can be potentially non-classical. In particular, it
might be possible to prepare a squeezed vacuum state from the ground state3, which
allows to achieve phase resolutions better than the quantum limit for the coherent
state, roughly given by the number-phase uncertainty relation [95]:

∆ϕ ∼ 90◦

π
√
N
. (7.5)

However, already the quantum limited coherent states allow to achieve a similar
phase resolution as the current experiment at a fractional relativistic shift of only

3Conceptually this state preparation is very similar to the classical quadrature squeezing which
is already currently employed for purely classical states (see chapter 3.4.1).
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3.3 · 10−17, or a 1◦ resolution at only 3.3 · 10−15, giving an idea of the prospects for
precision measurements. However, the possibilities of the PnA method seem to reach
even further. The ability to transfer the quantum mechanical state information onto
classical coherent states might allow quantum state tomography [96] of the initial
correlated state. The initial state can potentially entangle N arbitrary number
states. A weak interaction of these states might be controllably introduced by the
induced image charge. Finally, the addition of a magnetic inhomogeneity, which
is already existing in the AT, can possibly provoke the initial state to (partially)
collapse towards a Fock number state, which might be temporally resolved by the
state tomography and allows to get detailed insight into the transition from the
quantum world to classical mechanics. Of course, there might and will be other
limits, however, they first have to come.
This likewise speculative and highly fascinating perspective concludes this thesis.
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[11] J. Verdú et al. Electronic g Factor of Hydrogenlike Oxygen 16O7+. Phys. Rev.
Lett. 92(9), 093002 (2004).



124 References

[12] S. Sturm et al. g Factor of Hydrogenlike 28Si13+. Phys. Rev. Lett. 107, 023002
(2011).

[13] S. Sturm, A. Wagner, B. Schabinger, and K. Blaum. Phase-Sensitive Cyclotron
Frequency Measurements at Ultralow Energies. Phys. Rev. Lett. 107, 143003
(2011).

[14] P. A. M. Dirac. The Quantum Theory of the Emission and Absorption of Radi-
ation. Proceedings of the Royal Society of London. Series A 114(767), 243–265
(1927).

[15] W. Lamb and R. Retherford. Fine structure of the hydrogen atom by a mi-
crowave method. Phys. Rev. 72(3), 241–243 (1947).

[16] G. Ross. Grand unified theories. Westview Press (1984).

[17] R. Bouchendira et al. New Determination of the Fine Structure Constant and
Test of the Quantum Electrodynamics. Phys. Rev. Lett. 106, 080801 (2011).

[18] M. Acciarri et al. Tests of QED at LEP energies using e+ e− → γγ(γ) and e+

e− → l+l−γγ. Phys. Lett. B 353(1), 136–144 (1995).

[19] P. Kusch and H. Foley. The magnetic moment of the electron. Phys. Rev. 74(3),
250 (1948).

[20] T. Kinoshita. Theory of the Anomalous Magnetic Moment of the Electron-
Numerical Approach. Quantum Electrodynamics 218–321 (1990).

[21] J. Miller, E. De Rafael, and B. Lee Roberts. Muon (g- 2): experiment and
theory. Rep. Prog. Phys. 70, 795 (2007).

[22] T. Beier. The gj factor of a bound electron and the hyperfine structure splitting
in hydrogenlike ions. Phys. Rep. 339(2), 79–213 (2000).

[23] G. Breit. The magnetic moment of the electron. Nature 122(3078), 649–649
(1928).

[24] V. Shabaev and V. Yerokhin. Recoil Correction to the Bound-Electron g Factor
in H-like Atoms to All orders in αZ. Phys. Rev. Lett. 88(9), 91801 (2002).

[25] J. Zatorski, N. Oreshkina, C. Keitel, and Z. Harman. Nuclear Shape Effect on
the g Factor of Hydrogenlike Ions. Arxiv preprint arXiv:1110.3330 (2011).

[26] A. Nefiodov, G. Plunien, and G. Soff. Nuclear-polarization correction to the
bound-electron g factor in heavy hydrogenlike ions. Phys. Rev. Lett. 89(8),
81802 (2002).

[27] J. Zatorski, Z. Harman, and C. H. Keitel. private communication (2010).



References 125

[28] L. Brown and G. Gabrielse. Precision spectroscopy of a charged particle in an
imperfect Penning trap. Phys. Rev. A 25(4), 2423 (1982).

[29] L. Brown and G. Gabrielse. Geonium theory: Physics of a single electron or
ion in a Penning trap. Rev. Mod. Phys. 58(1), 233 (1986).

[30] G. Gabrielse. Why Is Sideband Mass Spectrometry Possible with Ions in a
Penning Trap? Phys. Rev. Lett. 102, 172501 (2009).

[31] J. Tan and G. Gabrielse. One electron in an orthogonalized cylindrical Penning
trap. Appl. Phys. Lett. 55(20), 2144–2146 (1989).

[32] H. Bateman. The transformation of the electrodynamical equations. Proceedings
of the London Mathematical Society 2(1), 223–264 (1910).

[33] W. Gerlach and O. Stern. Der Experimentelle Nachweis der Richtungsquan-
telung im Magnetfeld. Zeitschrift für Physik A Hadrons and Nuclei 9(1), 349–
352 (1922).
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2001 bis 2007 Physik Studium an der Ruprecht-Karl-Universität

Heidelberg
Juli/August 2005 Sommerstudent am CERN/Genf
April 2006 bis April 2007 Diplomarbeit in Experimentalphysik
Juni 2007 bis Dezember 2010 Wissenschaftlicher Mitarbeiter am Institut für

Physik der Johannes Gutenberg-Universität Mainz
Januar 2010 bis Dezember 2011 Wissenschaftlicher Mitarbeiter am Max-Planck-

Institut für Kernphysik, Heidelberg

Hochschulprüfungen
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meine teilweise verrückten Ideen umzusetzen, und schaffst dabei mit Deinem Opti-
mismus und Deiner bedingungslosen Unterstützung die besten Vorraussetzungen für
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