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Abstract. The discovery of the various thermodynamical aspects of classical gravity has led to
a picture in which Einstein equations might be seen as an equation of state, relating the dynamics
of null hypersurfaces to thermodynamic relations for a system at or close to equilibrium. The
explanation of such a fact is expected to come from a complete theory of quantum gravity. In
absence of it, I will use a pregeometric model of emergent gravity to discuss the role of Wheeler’s
boundary of a boundary principle in this specific problem. The goal is to show the relevance
of the equilibration of the microscopic degrees of freedom in establishing the thermodynamical
status of the semiclassical gravity limit, and how the equilibration of the system might lead to
additional physical effects. The role of phase transitions (conjectured in certain combinatorial
models proposed to define a quantum theory of gravity, namely tensor models and group field
theories) will be also considered in this light, showing how criticality and deviations from it
relate to these ideas.

One of the most striking facts is that Einstein’s equations can be derived starting from a
thermodynamic point of view, associating thermodynamical nature to local acceleration horizons
and to their dynamics as a result of the stress energy tensor of matter fields [1].

The objective of this contribution is to discuss horizon thermodynamics in a class of models
designed to give the metric tensor as a composite field of some other microscopic, pregeometric
degrees of freedom. We will further stress the necessity of an equilibration condition in order
for the thermodynamical interpretation to make sense. While many ideas are certainly not new,
the objective is to make them as explicit as possible in a concrete case.

The models that we are considering have been dubbed “Pregeometry” [2]. We briefly sketch
the idea underlying the models, referring to the literature for a detailed discussion [3]. Reduced
to the bone, they are the quantization of the Polyakov action of a bosonic or fermionic membrane
of assigned dimension (for us it will be 4) embedded in a flat (pseudo-)Riemannian manifold of
equal or higher dimension. The general idea is that the metric tensor as we know it is just a
sort of meson field, i.e. a composite operator. We will work within a field theory model, and
we will denote as ¥4 (A = 1,...N) the field operators associated to the microscopic degrees of
freedom, where A is a label denoting collectively possible further fine grained details of the field
(internal symmetries)

Using the Lagrange multipliers v and the auxiliary fields ¢,,, the partition function for the
system can be written as

2= [Dovypvess (- [ {{@et 0,2 + Vi 0y~ 1 O0a00m } ) (1)
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and, following standard techniques, one can associate to it a generating functional for the metric
as a composite operator, such that
10Z[K]
Juv = — . (2)
Z 0K |,

Given the quadratic dependence of the bare action of the fields v, we can easily integrate them
away to get an explicit effective action for the composite metric tensor.

These models are not complete since they are nonrenormalizable. Indeed, standard QFT
calculations show that the effective action for the composite metric will indeed be given in terms
of the divergent contributions (which are cutoff regulated) of the heat kernel expansion of the
one loop effective action. We can also evaluate transition amplitudes between assigned states of
the fields ¥4 at two spacelike boundaries of the spacetime manifold.

By construction, in such a model we obtain effective quantum equations of motion of the
form

g}ft/ (gaﬁ> - 8WG0T5V7 (3)

with a conserved stress energy tensor for the matter fields, coupled only to the metric degrees of
freedom, Gy a coupling constant, and ¢ a covariantly conserved rank two tensor obtained from
the effective action of the composite metric tensor. The action will depend on the boundary
conditions imposed on the functional integral (or, better, the boundary states), collectively
labeled by k.

The thermodynamical behavior of such models can be easily inferred by means of a
generalization of Cartan’s moment of rotation and the formalization of the field equation in
terms of the boundary of a boundary principle advocated by Wheeler (see [5] for an extensive
discussion). We construct the vector valued 3-forms:

g(k)feu * dz”, Tle, « dz"”, (4)

where * is the Hodge star operator, and we integrate the equations on a portion H of a cylindrical
horizon between an initial and a final slice, once we have projeted the vector valued forms onto
the generator of the null surface,

/H%(“)jgu * dr” = 871G () /HT#@L * dx” . (5)

The RHS is just proportional to the heat flow that enters the thermodynamic reasoning of
[1]. The analysis of the LHS should lead to the identification of the entropy function as it is
coming from the microscopic theory, by means of the Hodge decomposition theorem of a generic
differential form into an exact, coexact and harmonic components

Yy (§) = %(k)ffu * dx” = dextar + 95 + 7. (6)

When ¢ is a Killing vector field, the coexact part of this form is zero and the heat flow is
associated to the difference of a certain state function between the initial and final slices:

/ arl€) + / (6800 (€) + 00 (€))  6Q. (7)
OH H

This relation, which is understood, after [1], as a Clausius-like relation connecting heat fluxes
with what can be interpreted as changes of gravitational entropy of horizons (in the case of black
holes, for instance), suggests to identify the equilibrium entropy terms as

Su(01:€) o / o (©), (8)
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the proportionality factor to be determined once the temperature is identified. Notice that this
treatment has the same root of the analysis of Wald [6]. The advantage is that now we are able
to highlight the source of the nonequilibrium terms, and the general structure, in order to be
able to treat more general models.

These models easily support a (non-equilibrium [7]) thermodynamical interpretation and can
predict the various terms appearing in a Clausius-like relation, including the internal entropy
production terms, which are related to the coexact part of ¥,(§). This interpretation is
ultimately possible because the effective equations for the metric can be put in a form that
naturally conforms to Wheeler’s boundary of a boundary principle.

This thermodynamical reading of the effective dynamics of the composite metric tensor
is rather formal: the effective action for the metric fully depends on the assigned boundary
data. This will become manifest from the fact that states with the same boundary
metrics will evolve differently, since the latter do not exhaust the information encoded in
the label k. Furthermore, no semiclassical limit has ever been invoked in the discussion:
the thermodynamical interpretation seems to hold even in the deep quantum regime. An
equilibration condition, possibly in the form of an H-theorem, is then required.

Equilibrium is deeply related to a notion of time, a delicate subject to be discussed in theories
with reparametrization invariance. We will assume the existence of a clock, such that it is
possible to define the condition of equilibrium as a condition of stationarity of macroscopic
variables under Hamiltonian evolution. We will then assume to work with a Schrédinger equation
for the full density matrix of the deparametrized system,

o

where ¢ is the time associated to the clock and H is the resulting Hamiltonian.

Decoherence will be the key to equilibration, leading to an equilibrium density matrix uniquely
controlled by macroscopic geometrical data. The ideas that we are going to discuss here go along
the lines of the attempts made to establish thermalization in quantum statistical mechanics [8].

The full Hilbert space will be decomposed in the tensor product of three Hilbert spaces,

t%’%ot = %micro & c%ﬂgraw & f%ﬂmattera (10)

where Jiero is associated to the invisible microscopic configurations, 5.y is associated to the
degrees of freedom giving the metric (for which we will use greek indices «a, 3,7), and, finally,
Hnatter 18 associated to the matter degrees of freedom used to probe geometry.

Given the full density matrix for a bipartite system, we split its density matrix as follows:

ol = PR (AP} (B) + pij(ent), ()

where p(A) and p(B) are the reduced density matrices and p(ent) encodes the entanglement
between the two subsystems. Using successive splittings as in (11) for our tripartite system, we
can compute the effective equations for the gravitational and matter degrees of freedom, once
the microscopic ones are traced away,

.0 (o4 [ Nte
zhapﬁ(grav) = [Heﬁ(grav),p(grav)]g + ihZ5(grav), (12)

where Z is associated to the effect of the entanglement, while the one for matter fields is similar in
structure. As expected, decoherence is appearing in both gravity and matter sectors. However,
the strength of the decoherence effects might be different in the two cases, since it ultimately
depends on the entanglement with the microscopic degrees of freedom, to which matter degrees
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of freedom are decoupled, as we have assumed'. In order to equilibration to take place we need
that Z(grav) has a large effect on the matrix p(grav).

In the interaction picture, we might expect that the density matrix pi(grav) approaches an
asymptotic equilibrium configuration, po(grav):

t
pint(grav) = pint(grav)(t = 0) + / dt'Zing (grav) — po(grav)(t). (13)

Whether this happens or not strongly depends on the underlying dynamics, which influences
also the kind of information about the initial state that is lost and the one that is preserved. If
we want that the equilibration preserves the initial assignement of the spatial metric tensor g;;
(and, analogously, for the extrinsic curvature), we need

995 _ O 1y (5(grav)iig) ~ 0, (14)

Agiy = Deg=5m = 7

so that the metric data do not change much during equilibration. It is only when this condition
is met that the metric can be treated realistically as a thermodynamic variable, given that it
really specifies uniquely the equilibrium density matrix at fixed macroscopic conditions. It is
not unreasonable to expect that the equilibration time has to be of the order of the Planck time,
for gravity. This is far from obvious and exceeds the limits of the present discussion [9)].

Let us stress that equilibration is not the only path to the understanding of gravitational
thermodynamics. Group field theories [10] promise to generate combinatorially the path integral
for the gravitational field in terms of the Feynman diagrams for certain quantum/statistical
systems, possessing an interpretation in terms of discrete geometries. To recover GR the
continuum and semiclassical limit, phase transitions for the GF'T partition functions are required
(despite the lack of conclusive results, this is supported by various evidences).

A partial analysis [11] suggests that part of the geometrical data (e.g. a global scale factor),
their dynamics and the associated density matrix for the microscopic and macroscopic degrees
of freedom should depend only on the way in which the phase transition is approached, i.e. on
its universality class. While this is certainly an attractive alternative to equilibration, it is not
clear if it is the correct way, even though it might lead to a solution of old naturalness problems
[12].
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! Obviously, decoupling does not imply absence of entanglement.





