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1 Introduction

In late 1970s and early 1980s a large variety of solution generating techniques for the four-

dimensional vacuum Einstein equations and Einstein-Maxwell equations were explored, for

an overview see [1]. It was later realized in the case of two commuting and hypersurface

orthogonal Killing vectors that all these approaches are nothing but different manifesta-

tions of the integrability of the corresponding effectively two-dimensional system that can

be exhibited by means of a linear system or Lax pair [2–5]. Several authors made efforts

to find interrelations between these different methods. Cosgrove [6, 7] took a compu-

tational approach whereas Breitenlohner and Maison [4] concentrated on unraveling the

group theoretical structure behind these techniques, taking up ideas of Geroch [8, 9] and
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Julia [10, 11]. Other relevant work includes [12–21]. In the present work, we revisit these

studies to further elucidate the interrelation between the various techniques.

The best developed technique for generating solutions is that of Belinski and Za-

kharov [2, 3, 5], henceforth BZ for short and often called the inverse scattering method. It

has been very successful in constructing novel solutions in both four- and five-dimensional

vacuum gravity. The method involves some rather special adjustments to certain quantities

before new physical solutions can be obtained. However, there are problems when applying

this method to different gravity-matter systems like those of interest in supergravity where

the implementation of the same adjustments fails and it is not guaranteed that an inverse

scattering transformation preserves all features required of a solution to the gravity-matter

equations [22]. In the group theoretical framework of Breitenlohner and Maison (BM) [4]

this problem does not arise since the solution generating transformations form the so-called

Geroch group (an affine group) and by the group property any transformation will generate

a new solution. The drawback of the BM method is that it is not as easy to implement and

does not always operate directly on the physical quantities. Despite these shortcomings, the

promise of the BM approach is that it can be applied to various general settings of interest.

In order to illustrate this point, we consider for concreteness D = 4 gravity with a

space-like and a time-like Killing vector such that the system is effectively two-dimensional

and we are in the realm of so-called stationary axisymmetric solutions. The infinite-

dimensional affine symmetry group can be viewed as the closure of two finite-dimensional

symmetry groups that act on the space of solutions [4, 8, 9]. The first one is typically called

the Matzner-Misner group SL(2,R)MM and consists of area preserving diffeomorphisms of

the orbit space of the two Killing vectors (the ‘torus’ that one reduced on, the Killing vector

orbits are not necessarily compact). The other group is called the Ehlers group SL(2,R)E
and is a hidden symmetry already of the three-dimensional model. The fields that it acts

on are partly formed from dualising a Kaluza-Klein vector field (in D = 3) to a scalar field;

therefore it does not act directly on the metric components. Combining SL(2,R)MM and

SL(2,R)E yields the infinite-dimensional affine Geroch group [4, 8, 9].

The linear systems of BZ and BM display the integrability of the D = 2 theory in

terms of generating functions that depend on spectral parameters besides the dependence

on the two-dimensional space(-time) coordinates xm. There are in principle four choices

for the linear system and generating functions at this point that can be summarized in the

following diagram:

Ehlers Matzner-Misner

BZ ΨE(λ, x) ←→ ΨMM(λ, x)

l l

BM VE(t, x) ←→ VMM(t, x)

The horizontal arrows in this diagram correspond to duality transformations between

some of the two-dimensional scalar fields. At the level of the Lie group this corresponds

to the action of an (outer) automorphism, now known as the Kramer-Neugebauer map-
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ping [4, 23, 24]. The vertical lines relate the two linear systems and are the main subject

of the present work. Note that the spectral parameters of the generating functions are

different in the two rows. The traditional inverse scattering method of BZ operates on

the physical variables and so is located in the Matzner-Misner column of the diagram. In

fact it uses a slight extension of the Matzner-Misner variables in that it also treats the

volume of the two-dimensional orbit space and so corresponds to GL(2,R)MM rather than

SL(2,R)MM. In our work, we will focus mainly on the left column where the group theo-

retical structures are a bit nicer, e.g., empty Minkowski space corresponds to the identity

function. We will always display the subscripts E and MM to avoid any confusion.

It follows from the work of BM that any gravity-coupled matter system in D = 3 with

symmetric space target GE/KE becomes integrable when an additional Killing symmetry

is present. Here, GE is the generalization of the Ehlers symmetry SL(2,R)E to other sys-

tems. The group of symmetry transformations form the (non-twisted) affine extension of

GE and we will restrict to simple GE for simplicity. Beyond this general fact, it is quite

hard to construct actual solutions explicitly using this method since one has to solve a

matrix valued Riemann-Hilbert problem [1, 4, 25], sometimes also referred to as Birkhoff

factorization. In the case analogous to the soliton transformations of BZ, however, the

problem reduces to a linear algebra system that can be solved as shown in [26] which we

will review below since the work is not published.

Our chief motivation to study the different formulations of integrability is to find

their interrelation and, by this, to make new methods available for generating solutions of

(super-)gravity beyond the cases that have been covered so far. Of particular interest are

cases when GE is an exceptional symmetry group and other cases that arise in string theory.

There are no known established systematic techniques for constructing non-supersymmetric

solutions that exploit the integrability structure of supergravity theories. With such tech-

niques at hand one can construct a variety of new solutions, in particular, new black hole

solutions generalizing [27–30] and new fuzzball solutions generalizing [31–33].

The structure of this article is as follows. In sections 2 and 3 we introduce the linear

systems of Breitenlohner-Maison and of Belinski-Zakharov in Ehlers form and elucidate

their interrelation. In section 4 we study meromorphic generating functions and solve the

related linear systems algebraically. Section 5 gives the explicit example of the Kerr-NUT

solution in both cases. We conclude in section 6. Certain technical computations have

been relegated to the appendices.

2 Breitenlohner-Maison linear system

In this section we review the linear system of Breitenlohner and Maison (BM) [4, 34–36].

This linear system arises from considering a D = 3 gravity-matter system with target be-

ing a symmetric space GE/KE where GE is the global symmetry group that we refer to as

Ehlers symmetry. Our conventions are such that the three-dimensional space has signature

+++ and we consider the space of solutions admitting an additional (axial) symmetry so

that the theory becomes effectively two-dimensional. This two-dimensional system can be

shown to be integrable.
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2.1 D = 3 model with GE/KE matter

Consider a three-dimensional Euclidean gravity-matter system with action

SE =

∫

d3x
√−g

(

R− 1

2
〈PE,µ|PE,ν〉gµν

)

, (2.1)

where 〈·|·〉 is the symmetric invariant bilinear form on the Lie algebra gE of the real Lie

group GE. The group KE is a subgroup of GE with dimension equal to that of the maximal

compact subgroup and the coset space GE/KE is a (pseudo-)Riemannian symmetric space.

The subgroup KE is fixed by some involutive automorphism τ on GE [37]. This induces

an involution θ on the Lie algebra (equal to the Cartan involution when KE is maximally

compact) which splits gE = kE⊕pE. Let VE ∈ GE/KE be a coset representative (e.g. in Borel

gauge according to the Iwasawa theorem in a patch where it applies); then we decompose

∂µVEV
−1
E = PE,µ +QE,µ (2.2)

with

QE,µ =
1

2

(

∂µVEV
−1
E − (∂µVEV

−1
E )#

)

, (2.3a)

PE,µ =
1

2

(

∂µVEV
−1
E + (∂µVEV

−1
E )#

)

, (2.3b)

where we have defined the ‘generalized transpose’ x# = −θ(x) on the Lie algebra. (For

sl(n,R) it is the standard transpose when k = so(n).) The two components in the split-

ting (2.3) satisfy

Q#
E = −QE, P#

E = PE. (2.4)

The map # is an anti-involution and its group version will be denoted by the same sym-

bol and is also an anti-involution: for g, h ∈ GE one has g# = τ(g−1) = τ(g)−1 and

(gh)# = h#g#.

The symmetry transformations acting on VE are

VE(x)→ kE(x)VE(x)gE (2.5)

with constant gE ∈ GE (global transformations) and varying kE ∈ KE (gauge transfor-

mations). Under these transformations, the Lie algebra valued quantities transform as

QE,µ → kEQE,µk
−1
E + ∂µkEk

−1
E , (2.6a)

PE,µ → kEQE,µk
−1
E , (2.6b)

i.e., QE as a KE-connection and PE transforms KE-covariantly.

A useful quantity associated with VE ∈ GE/KE is the ‘monodromy matrix’

ME = V #
E VE (2.7)

that transforms as ME → g#EMEgE under (2.5) since k#E kE = 11. It is hence insensitive to

the KE-gauge chosen for the coset representative VE and only transforms under the global

GE transformation.
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The D = 3 equations of motion derived from (2.1) are

Rµν −
1

2
〈PE,µ|PE,ν〉 = 0, (2.8a)

∂µ
(√−ggµνPE,ν

)

−√−ggµν [QE,µ, PE,ν ] = 0. (2.8b)

For convenience, we introduce the KE-covariant derivative

DE,µ = ∂µ − [QE,µ, ·] (2.9)

in terms of which (2.8b) becomes

DE,µ(
√−gPµE ) = 0. (2.10)

2.2 Reduction to D = 2

If the system admits an axial isometry ∂φ we reduce the metric according to

ds23 = f2Eds
2
2 + ρ2dφ2. (2.11)

The function fE will be referred to as the conformal factor of the effective two-dimensional

metric. We label the two-dimensional coordinates as xm. The two-dimensional metric ds22
is assumed to be flat by appropriate choice of coordinates. Note that there is no Kaluza-

Klein vector Am of the type (dφ+Amdx
m)2 in (2.11) since it carries no degrees of freedom

and can be set to zero without loss of generality.

With this ansatz, the equations of motion (2.8) then imply

�ρ = 0, (2.12)

which we solve by choosing Weyl canonical coordinates xm = (ρ, z) on the flat two-

dimensional space so that ds22 = dρ2 + dz2. We let z be the conjugate variable to ρ

such that ∂ρ = ǫρz∂z = ⋆2∂z. It is often useful to combine the two real variables into a

single complex variable (and its complex conjugate) which we denote by

x± =
1

2
(z ∓ iρ) (2.13)

in analogy with light-cone coordinates that would arise if the two-dimensional base was

Minkowskian as for colliding plane wave solutions. Note that (2.13) implies ∂±ρ = ±i and
⋆2∂± = ±i∂±.

With this choice the remaining equations are equivalent to

±if−1
E ∂±fE =

ρ

2
〈PE,±|PE,±〉, (2.14a)

Dm(ρP
m
E ) = 0. (2.14b)

The first equation is a constraint and yields the conformal factor by a single integration

and is therefore of secondary interest. The main equation of interest in this paper is the

last equation (2.14b). A key result of [4] is that this equation is integrable and has an

underlying symmetry structure associated with the affine extension of GE.
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2.3 BM linear system in general

Consider the generalization of VE ∈ GE/KE to also depend on some spectral parameter t

(we suppress the space-time dependence) VE −→ VE(t), where

VE(t) = V
(0)
E + tV

(1)
E +

1

2
t2V

(2)
E + . . . . (2.15)

importantly is regular in t around t = 0 and the limit t→ 0 gives back the original VE:

lim
t→0
VE(t) = VE(0) = V

(0)
E := VE. (2.16)

Consider the linear system [4, 36]

∂±VEV−1
E =

1∓ it
1± itPE,± +QE,±, (2.17)

where QE and PE are independent of the spectral parameter t and are defined in terms of

the t-independent VE as in (2.3).1 The integrability condition for (2.17) is equivalent to the

equation of motion (2.14b) if and only if the spectral parameter t satisfies the differential

equation

t−1∂±t =
1∓ it
1± itρ

−1∂±ρ. (2.18)

This differential equation can be integrated [4] to an equation for t which we write in the

more conventional form in terms of the Weyl coordinates (ρ, z) (cf. (2.13))

t2 − 2t

ρ
(z − w)− 1 = 0, (2.19)

where w is an integration constant. This quadratic equation has two solution branches

t± =
1

ρ

[

(z − w)±
√

(z − w)2 + ρ2
]

. (2.20)

Equation (2.19) defines a two-sheeted Riemann surface over the two-dimensional flat base.

We take the solution with the + sign to be the physical sheet and when we write t we

always mean t+ unless indicated otherwise. We will refer to t as the space-time dependent

spectral parameter and to w as the constant spectral parameter.2

We will refer to (2.17) as the BM linear system (in Ehlers form) and we have just

reviewed how its integrability condition gives rise to the equations of motion of the D = 3

gravity-matter system (2.1) in the presence of a Killing isometry. This establishes the

1In a general coordinate system, the linear system takes the form

∂mVEV−1
E = QE,m +

1− t2

1 + t2
PE,m − 2t

1 + t2
ǫmnP

n
E .

2When written in terms of the ‘light-cone’ coordinates (2.13), equation (2.20) becomes

t± = −i
[
√
w − 2x+ ∓

√
w − 2x−√

w − 2x+ ±
√
w − 2x−

]

.

– 6 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
1

integrability of the equation (2.14b); the conformal factor fE can then be obtained by

integrating (2.14a) [4]. The linear system (2.17) is vastly underdetermined since it rep-

resents two differential equations for a function of three variables. There is an infinity of

integration constants associated with this system.

Besides giving the integrability of (2.14b) the BM linear system also serves to unveil the

group theory underlying the system. The original t-independent VE ∈ GE/KE transformed

under global Ehlers transformations gE ∈ GE as VE → kEVEgE (cf. (2.5)), where kE ∈ KE is

the usual local compensator required to restore a chosen gauge for the coset representative.

The presence of the spectral parameter now suggests to enlarge the set of global symmetry

transformations by allowing gE to depend on the constant spectral parameter w:

VE(t)→ kE(t)VE(t)gE(w). (2.21)

As indicated, the compensator is now also t-dependent as it has to be chosen such that the

transformed VE(t) is regular around t = 0 as in (2.15). This enlarged set of global trans-

formations consists therefore of functions gE(w), i.e., maps of the type C→ GE, where we

impose that gE(w) admits an expansion around w = ∞ in order to remain expandable as

in (2.15). These maps include transformations from S1 ⊂ C into GE and (under additional

regularity assumptions) will lead to the loop group ĜE associated with the Ehlers group GE.

Therefore the group underlying the integrability in D = 2 includes the infinite-dimensional

loop group; in fact the extension to the full affine group is active [4, 10, 11] where the cen-

tral extension acts on the conformal factor fE (see below). We note that besides the affine

group one can also define the action of the (centerless) Virasoro algebra which arises from

arbitrary reparametrisations of the constant spectral parameter [34, 38, 39]. Together with

the infinitesimal affine transformations one obtains a semi-direct product in the standard

way. We will not use the Virasoro symmetry in this paper.

The involution # extends to functions VE(t) by

(VE(t))# = V#E
(

−1

t

)

. (2.22)

One can use # to split the loop algebra into an invariant and an anti-invariant part (gen-

eralizing pE and kE above). Now, it is important that the right hand side of (2.17) is anti-

invariant under (the Lie algebra version of) # and therefore belongs to the ‘compact’ sub-

algebra of the affine algebra based on gE. This anti-invariance implies that ((VE(t))#)−1 is

a solution to the linear system if VE(t) is a solution. In general, the two solutions related by

this involutive mapping will be different. The mapping implies that the monodromy matrix

ME =ME(w) = (VE(t))# VE(t) = V#E
(

−1

t

)

VE(t) (2.23)

is independent of the space-time coordinates xm and therefore a function of w alone. The

matrix ME(w) is invariant under the application of # and simultaneously exchanging

t→ −1/t. We note that this is evident from (2.19) which implies that w(t, x) is invariant

under t→ −1/t.
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Constructing new solutions of the linear system by means of the Geroch symmetry

proceeds along the following chain of steps3

VE → VE(t)→ME(w)→Mg
E(w)→ V

g
E(t)→ V g

E , (2.24)

where we introduced the notation

ME(w)→Mg
E(w) := g#E (w)ME(w)gE(w) (2.25)

for the transformed solution. The individual steps in (2.24) starting from a given seed

solution VE are: (i) find a corresponding generating function VE(t) that solves the linear

system (2.17), (ii) compute the associated monodromy, (iii) transform the monodromy

under a global transformation g(w) as in (2.25), (iv) factorize the new monodromy into a

new generating function VgE(t) and (v) take the limit t→ 0 to find the new solution.

For practical purposes, the main difficulty resides in step (iv) in factorizing the trans-

formedMg
E(w) as

Mg
E(w) = (VgE(t))#V

g
E(t) (2.26)

with the new VgE(t) having an expansion as in (2.15). This is a Riemann-Hilbert prob-

lem [4] whose solution is in general hard to obtain. In the particular case of meromorphic

Mg
E(w) with single poles in w of certain simple type one can reduce the problem to a set

of linear algebraic equations. This is the case of soliton charging transformations that will

be discussed further in section 4. Once the new VgE(t) has been obtained, one can recover

the solution to the gravity-matter system (2.14) by taking the limit t → 0 and obtain

V g
E ∈ GE/KE that characterises the physical fields.

Besides the knowledge of the coset ‘scalars’ V g
E ∈ GE/KE one also requires the new

conformal factor fgE in (2.14). This can be obtained from a simple integration of (2.14a)

but it also follows from group theoretic properties using the central extension. This is

discussed in detail in [4] to which we refer for the general expression. In section 4 we will

present the formula in the case of soliton transformations.

We note that a trivial solution of the equations (2.17) and (2.14a) is given by

VE(t) = 11 and fE = 1. (2.27)

This solution will be referred to as flat space as it corresponds to the Minkowski vacuum

in the four-dimensional case.

3 Belinski-Zakharov linear system

In this section we present the linear system used by Belinski and Zakharov (BZ) [2, 3, 5].

We will not present it in the standard form which uses what was called the Matzner-Misner

formulation in the introduction. Rather, we will use the Ehlers description to make contact

with the discussion in the preceding section. (The Matzner-Misner version and its relation

to BM is discussed in appendix B.)

3We present here the solution generating method based on the monodromy matrixME(w). Alternatively,

one could work at the level of the generating function VE(t) and the transformation (2.21); however, the

step of finding the compensator kE(t) in (2.21) is typically very hard.
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3.1 BZ Ehlers linear system

Equation (2.14b) for the GE/KE coset fields admits an alternative Lax pair that can be

written as

D1ΨE =
ρV − λU
λ2 + ρ2

ΨE, D2ΨE =
ρU + λV

λ2 + ρ2
ΨE, (3.1)

where λ is the (space-time independent) spectral parameter of BZ and ΨE(λ, ρ, z) is the

generating function such that the matrix ME = V #
E VE of (2.7) is recovered for λ = 0:

ME(ρ, z) = ΨE(0, ρ, z). (3.2)

The matrices U, V are defined as U = ρ∂ρMEM
−1
E , V = ρ∂zMEM

−1
E , and the differential

operators D1, D2 are

D1 = ∂z −
2λ2

λ2 + ρ2
∂λ, D2 = ∂ρ +

2λρ

λ2 + ρ2
∂λ. (3.3)

The operators D1 and D2 commute and the associated integrability condition of the linear

system (3.1) is equivalent to the desired non-linear equation (2.14b).

Solutions of the BZ linear system (3.1) are constructed using the inverse scattering

method [2, 3]. One starts from a ‘seed’ ΨE,0, that is ‘dressed’ to obtain a new solution ΨE

through

ΨE(λ) = χ(λ)ΨE,0(λ) (3.4)

where χ is called the dressing matrix and it depends on the spectral parameter λ. The seed

ΨE,0 corresponds to a solution of (3.1) for a seed solution ME,0. We can take it to be the

identity matrix ΨE,0 = 11, which corresponds to taking the seed solution to be flat space.4

In order for the ‘dressed’ ΨE to also solve the linear system (3.1) the dressing matrix has

to satisfy its own linear system

D1χ =
ρV − λU
λ2 + ρ2

χ− χρV0 − λU0

λ2 + ρ2
, D2χ =

ρU + λV

λ2 + ρ2
χ− χρU0 + λV0

λ2 + ρ2
. (3.5)

In addition, the matrix χ must satisfy further constraints in order to ensure that the new

solution ME(ρ, z) = Ψ(0, ρ, z) is real, satisfies M#
E = ME and is a representative of the

coset GE/KE [2, 3, 22, 40].

3.2 Relation between the two linear systems

Compared to the discussion of the BM linear system, the differential operators D1 and D2

of (3.3) can be demystified by thinking of λ as space-time dependent, so that [4]

D1 = ∂z = ∂z|λ fixed + ∂zλ∂λ, D2 = ∂ρ = ∂ρ|λ fixed + ∂ρλ∂λ. (3.6)

If the spacetime dependence of the spectral parameter λ is given by

∂zλ = − 2λ2

λ2 + ρ2
, ∂ρλ =

2λρ

λ2 + ρ2
(3.7)

4Note that this differs from the more common (and complicated) expression for flat space in the Matzner-

Misner form [2, 3, 5].
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one recovers (3.3). The solution to (3.7) is given by

λ(ρ, z) = (w − z)∓
√

(z − w)2 + ρ2, (3.8)

where w is an integration constant. Comparing to (2.20), it follows that from this viewpoint

the relation of the BZ spectral parameter λ to t in the BM approach [4, 22] is5

λ(ρ, z) = −ρt(ρ, z). (3.9)

The relation between the two generating functions VE of (2.17) and ΨE of (3.1) is given

by

ΨE(λ, x) = V #
E (x)VE(t, x) (3.10)

where one also has to use (3.9). Note that on the right-hand side we have once the spectral

parameter independent VE(x) = VE(0, x) and once the full VE(t, x). This obscures the

action (2.21) of the full affine Geroch group since the transformation of VE(x) under affine

elements is complicated.

In the following we restrict to GE = SL(n,R) for concreteness. In that case ME has

to be a symmetric matrix. For other groups, there will be different conditions on some of

the quantities introduced below.

If the matrices ME and ME,0 obtained by the λ → 0 limits of ΨE and ΨE,0 are sym-

metric, then

χ′(λ) =MEχ
T−1

(

−ρ
2

λ

)

M−1
E,0, (3.11)

solves exactly the same linear system (3.5) as χ [2, 3]. Given this observation, one has that

χ′(λ) is related to χ(λ) through some arbitrary matrix C(w) via

χ′(λ)ΨE,0 = χ(λ)ΨE,0C(w). (3.12)

This reflects the fact that the linear system (3.5) is underdetermined and C(w) corresponds

to a gauge freedom of (3.1). However, Belinski and Zakharov demand

χ′(λ) = χ(λ), (3.13)

which corresponds to fixing the gauge freedom of (3.12). In addition, they do not require

χ(λ) to satisfy the coset constraint detχ(λ) = 1. Since detχ 6= 1 one has that the new

matrix ME does not have unit determinant and so does not represent a physical configura-

tion. To obtain the ‘physical’ matrix M
(phys)
E that fullfills the determinant condition, one

rescales the matrix ME appropriately.

Condition (3.13) automatically ensures that the final ME is symmetric, but it is a

rather strong assumption. Relation (3.13) is a central equation in the BZ inverse scattering

framework and it fixes an infinite ambiguity in the dressing matrix that corresponds roughly

to the Borel part of the Geroch group. In other words, demanding (3.13) in the BM

framework amounts to choosing finely tuned integration constants for all the dual potentials

5The sign in this relation in [4] appears incorrect.
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V
(n)
E with n ≥ 1 introduced through (2.15). The transformation (3.11) is similar to the

one discussed below (2.22) in the BM framework. There one normally does not fix this

freedom and so there is no direct analogue of (3.13) in the BM approach.

Due to the complications of detχ 6= 1 and the issues mentioned around (3.10), it is

impractical to find a satisfactory embedding of the full BZ solution generating technique

in the Geroch group.6 The best one can do is to find a representative relation between

the BZ-generating function ΨE(λ) and the group-theoretic BM generating function VE(t).
This relation is precisely equation (3.10) for the Ehlers coset and is obtained in appendix B

for the Matzner-Misner coset, see (B.13).

3.3 Solitonic solutions

So-called solitonic solutions for the matrix ME correspond to a dressing matrix χ(λ) with

simple poles in the complex λ-plane. The general N -soliton solution is obtained by dressing

the seed solution with a matrix χ of the form

χ = 11 +
N
∑

k=1

Rk
λ− µk

. (3.14)

The matrices Rk and the pole trajectories µk are functions of ρ, z only. For each soliton,

there exist two possible solutions for the pole trajectory µk

µk = − (z − wk)±
√

(z − wk)2 + ρ2, (3.15)

where the parameters wk may generally be complex but for the examples considered here

we will take them to be real. The pole trajectories with a “+” sign are referred to as

solitons and the ones with a “−” sign as antisolitons.

In order to construct the N -soliton dressing matrix, one needs to parametrise the

residue matrices Rk. Here, one has the freedom of introducing certain arbitrary constant

parameters m
(k)
0b (with b = 1, . . . , n when Ψ is represented as an n × n-matrix) for each

soliton µk as follows.7 Defining

m(k)
a = m

(k)
0b

[

Ψ−1
E,0(µk, ρ, z)

]

ba
, (3.16)

and the symmetric matrix ΓBZ as

(ΓBZ)kl =
m

(k)
a (ME,0)abm

(l)
b

ρ2 + µkµl
, (3.17)

6Naively one might conclude from (3.12)–(3.13) that it simply corresponds to taking C(w) = 11 from

the Geroch group point of view. However, this interpretation is not correct. This is because the dressed

BZ matrix ΨE(λ) = χ(λ)ΨE,0 does not directly give the physical matrix M
(phys)
E . In order to have an

interpretation of C(w) in the Geroch group, one first needs to construct χ(phys)(λ). A procedure to do this

was suggested in [6, 7]. Requiring something like χ(phys)′(λ) = χ(phys)(λ) will indeed be more amenable to

the group theoretic interpretation, but it is not the BZ technique.
7The normalization of each of the vectors m

(k)
0b is arbitrary. Rescaling them by arbitrary constants does

not change any of the final expressions.
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the elements of the residue matrices Rk are given by

(Rk)ab = m(k)
a

N
∑

l=1

(

Γ−1
BZ

)

lk
m

(l)
c (ME,0)cb
µl

. (3.18)

The new matrix ME(ρ, z) = χ(0, ρ, z)ΨE,0(0, ρ, z) now reads

(ME)ab = (ME,0)ab −
N
∑

k,l=1

(ME,0)acm
(k)
c

(

Γ−1
BZ

)

kl
m

(l)
d (ME,0)db

µkµl
. (3.19)

The symmetry of this expression is ensured by (3.13). A problem that arises at this stage is

that possibly the new matrixME does not satisfy the coset constraint detME = 1, i.e. is not

an element of the group SL(n,R)E. In fact the determinant of the new matrix is given by

detME = (−1)Nρ2N
(

N
∏

k=1

µ−2
k

)

detME,0. (3.20)

In order to obtain an N -soliton solution that remains in the group SL(n,R)E, the new

matrix ME must be multiplied by an overall factor8

M
(phys)
E = ±

(

1

±detME

) 1
n

ME. (3.21)

The overall sign in this expression should be chosen in order to ensure the right metric

signature. Thus obtained M
(phys)
E fulfils the constraint detM

(phys)
E = 1. Finally, following

the discussion in [2, 3], the conformal factor for the dressed solution can also be obtained.

We find for SL(2,R)E

(f
(phys)
E )2 = kBZ · ρN−N2

2 ·
(

N
∏

k=1

µk

)N

·





N
∏

k,l=1, k>l

(µk − µl)2




−1

· detΓBZ · f2E,0, (3.22)

where kBZ is an arbitrary numerical constant. For SL(n,R)E a similar but more compli-

cated expression can also be written [5]. However, note that for n > 2 the rescaling (3.21)

introduces fractional powers of ρ from (3.20) that typically lead to singular solutions. For

this reason it is more useful to employ the so-called Pomeransky trick [41] for n > 2. In this

approach one can write a general expression for the conformal factor valid for n ≥ 2 [22, 41].

4 BM soliton transformations

In this section we present an algebraic method of generating new solutions of the BM linear

system (2.17) from a given seed solution. Our discussion closely follows that of [26], see

also [42].

8This formula differs slightly from the standard expression in [2, 3] since we are working in the Ehlers

description.
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The method makes use of the constant group element gE(w) of the Geroch group. We

take the seed solution to be flat space (2.27) since it is believed that the Geroch group action

is transitive on the space of solutions and all solutions are related to flat space [4, 20, 25].

As mentioned around (2.26), the action of the Geroch group generally leads to a matrix

valued Riemann-Hilbert problem. In the case when the matrix functions to be factorized

are meromorphic in the spectral parameter w, the problem can be solved algebraically.

This is the case that we focus on and we term it the solitonic case. There are a number

of (formal) similarities and at the same time a number of differences (in details) with the

procedure of Belinski and Zakharov [2, 3] that we briefly reviewed in section 3.3. In this

section we also restrict ourselves to the Ehlers SL(n,R)E of D = 2+ n vacuum gravity. In

this case the generalized transpose # (at the group level) simply becomes the usual matrix

transpose and we work in the fundamental representation of SL(n,R)E.

4.1 Riemann-Hilbert problem

In section 2 we presented the construction ofME(w) starting with VE(x). We start with

VE(x), solve the linear system (2.17) to find VE(t, x), and then constructME(w). We now

ask, following the steps of (2.24), if we can reverse the process and reconstruct VE(x) from

ME(w), i.e., we solve the Riemann-Hilbert problem to factorize ME(w) as in (2.23). It

is not guaranteed that for a general ME(w) such a factorization exists. In fact, one can

construct explicit examples where it does not exist. This is however a technical problem

that will not concern us here. Certain aspects of this have been studied in the literature,

see e.g. [25]. We only work with those matrices ME(w) for which the Riemann-Hilbert

problem admits a solution.

Let us start with a real symmetric unit determinant matrixME(w) assuming suitable

analyticity properties. In particular we assumeME(∞) = 11. We wish to factorize it as

ME(w) = AT−(t, x)ME(x)A+(t, x), (4.1)

with A−(t, x) = A+

(

−1
t
, x
)

and ME(x) symmetric and real. Moreover, we require

detA±(t, x) = 1. (4.2)

Next, we factorizeME(x) asME(x) = V T
E (x)VE(x) with a triangular matrix VE(x) to obtain

VE(t, x) = VE(x)A+(t, x). (4.3)

The factorization problem (4.1) can be viewed in two different ways. (i) We start with

an appropriate ME(w) and solve for VE(t, x), (ii) we start with a seed VE(t, x) and act

with an element gE(w) and attempt to determine the transformed VgE(t, x). We take the

first viewpoint in what follows.9 It is, however, convenient to have the second viewpoint

in the back of one’s mind and relate it to the first one by taking the seed to be flat space.

At the level of equations this means

VgE(t, x) = Zg+(t, x)VE(t, x) = Zg+(t, x) · 11 = Zg+(t, x), (4.4)

9The second viewpoint was taken in [26], however, some of their assumptions about pole structures seem

too restrictive to make that method directly applicable to interesting solutions.
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where Zg+(t, x) is a triangular ‘dressing’ matrix in the sense of (2.15) that is determined by

the Geroch group element gE(w). In terms of the monodromy matrix one similarly has

Mg
E(w) = VTE

(

−1

t
, x

)[

Zg+

(

−1

t
, x

)]T

Zg+(t, x)VE(t, x). (4.5)

Introducing

Zg(t, x) =
[

Zg+

(

−1

t
, x

)]T

Zg+(t, x), (4.6)

one also has

Zg(t, x) =
[

VTE
(

−1

t
, x

)]−1

Mg
E(w) [VE(t, x)]

−1 (4.7)

= 11 · Mg
E(w) · 11 =Mg(w). (4.8)

When VE(t, x) 6= 11 one should take Zg(t, x) in (4.7) to be the left hand side of equa-

tion (4.1) and solve the corresponding factorization problem. In this paper we always work

with flat space (2.27) as seed solution. Consequently, for notational simplicity we drop the

superscript g from now on and just think of being given a monodromyME(w) that needs

to be factorized as in (4.1).

4.2 Multisoliton solutions

The factorization problem can be solved algebraically when the matrix functions to be fac-

torized are meromorphic. We now present this factorization explicitly by adapting [26]. We

assume thatME(w) has simple poles with residues of rank one. Since detME(w) = 1 and

ME(∞) = 11 the inverse matrix M−1
E (w) also has poles at the same points with residues

of rank one. If we have N poles at points wk with k = 1, 2, . . . , N we can expressME(w)

andM−1
E (w) in the form

ME(w) = 11 +
N
∑

k=1

Ak
w − wk

, (4.9a)

M−1
E (w) = 11−

N
∑

k=1

Bk
w − wk

, (4.9b)

with symmetric (sinceME is symmetric) and constant residue matrices Ak and Bk of rank

one. This means that we can factorize these matrices as the outer product of vectors

Ak = akαka
T
k , Bk = bkβkb

T
k . (4.10)

One could absorb αk and βk in the definition of the constant vectors ak and bk respectively

but we leave them explicit on purpose. They play a very important role: for a given set

of ak and bk we can tune the αk and βk appropriately to ensure that the matricesME(w)

andM−1
E (w) have unit determinant. Despite this, there is an ambiguity in the factoriza-

tion (4.10) related to the normalization of the vectors ak and bk. Nothing must depend

on this choice of normalization. This will indeed be the case as will be apparent shortly.
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At this stage we just remark that the constant vectors ak are the analog of the constant

vectors m
(k)
0 of (3.16) in the BZ method. The ambiguity related to the factorization of

rank one matrices in vectors is directly related to the ambiguity in the normalization of

the vectors m
(k)
0 in the BZ method (cf. footnote 7). As is well known in the BZ method,

nothing depends on the overall normalization of those vectors.

In order to factorizeME(w) as in (4.1) we have to change from the constant spectral

parameter w to the space-time dependent parameter t through (2.20), which implies

1

w − wk
= νk

(

tk
t− tk

+
1

1 + ttk

)

, (4.11)

where the moving poles tk are determined by (2.20) evaluated at wk with the plus sign and

νk = −
2tk

ρ
(

1 + t2k
) . (4.12)

As a function of t, ME(t, x) has a total of 2N poles: N poles at t = tk and N poles at

t = −1/tk. These have to be distributed among the factors A+ and A− in (4.1). The

analytic properties of the Riemann-Hilbert problem are such that the poles at t = −1/tk
come from A+(t) and those at t = tk from A−. One therefore makes the ansätze [26]

A+(t) = 11−
N
∑

k=1

ckta
T
k

1 + ttk
, (4.13a)

A−1
+ (t) = 11 +

N
∑

k=1

bktd
T
k

1 + ttk
, (4.13b)

where the second equation arises in the factorization of M−1
E (w). These two equations

introduce two new sets of vectors that we call ck and dk.

The vectors ak, bk, ck and dk are not all independent and determining their relation

amounts to solving the Riemann-Hilbert problem. We first note that the constant matrices

Ak and Bk are not independent since the two matricesME(w) andM−1
E (w) are inverses

of each other. This determines the vectors bk from the ak up to scaling, a freedom that is

reflected in the βk in (4.9b).

We can use the pole structure ofME(t, x)M−1
E (t, x) to deduce some properties of the

ak and bk. To start with, the absence of double poles at t = −1/tk in the product implies

that the vectors ak and bk are orthogonal:

aTk bk = 0 for each k. (4.14)

From the absence of single poles at t = −1/tk in the product ME(t, x)M−1
E (t, x) one

deduces the relations

akαka
T
kAk = AkbkβkbTk , (4.15)

with the definitions

Ak =
[

M−1
E (t, x) +

bkνkβkb
T
k

1 + ttk

]

t=− 1
tk

, Ak =
[

ME(t, x)−
akνkαka

T
k

1 + ttk

]

t=− 1
tk

. (4.16)
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Equation (4.15) is satisfied if there exist γk such that

aTkAk = γkνkβkb
T
k and Akbk = γkαkνkak. (4.17)

Then both sides of (4.15) are equal to αkνkβkγk(akb
T
k ). We note that the γk defined

uniquely by (4.17) depend on space-time.

The next non-trivial step is to determine the vectors ck. With the ansatz (4.13a) for

A+(t), the requirement that A+(t)M−1
E (t, x) have no poles at t = −1/tk gives the vector

equation

ckΓkl = bl, (4.18)

where Γkl is an N ×N matrix with elements

Γkl =

{

γk
tk

for k = l
1

tk−tl
aTk bl for k 6= l.

(4.19)

Solving equation (4.18) for the ck we obtain the matrix A+(t). A similar argument is used

to construct A−1
+ (t) in (4.13b). One finds the equation for the vectors dk to be Γkldl = ak.

Solving this equation for the dk we can readily construct the monodromy matrix ME by

taking the limit t→∞ in (4.1) and using thatME(∞) = A+(∞) = 11. The result is

ME = A−1
+ (∞) = 11 +

N
∑

k,l=1

bkt
−1
k (Γ−1)kla

T
l . (4.20)

Finally we factorize ME = V T
E VE and obtain the space-time fields. If needed, we can also

construct explicitly the generating function VE(t, x) from equation (4.3).

At this stage it is instructive to investigate how the final answers (4.13a) (in conjunc-

tion with (4.18)) and (4.20) are insensitive to the ambiguity related to the rescaling of the

vectors. Note that if we rescale the vectors ak to rkak and bk to skbk, then we must rescale

αk and βk as r−2
k αk and s−2

k βk respectively in order to preserve the products (4.10). This

then means that the γk scale as rkskγk. It then immediately follows that the matrix Γkl
scales as rkslΓkl. The inverse matrix (Γ−1)kl naturally scales with the inverse factor r−1

k s−1
l

and hence we see that the final answers (4.13a) (in conjunction with (4.18)) and (4.20) are

insensitive to such rescalings.

4.3 Conformal factor

For solitonic solutions of the previous subsection the conformal factor fE can also be ob-

tained in a closed form. The final result is

f2E = kBM ·
N
∏

k=1

(tkνk) · det Γ, (4.21)

where kBM is an arbitrary numerical constant. This constant needs to be chosen appropri-

ately in order to ensure certain physical properties (say, asymptotic flatness) of the final

space-time. A derivation of expression (4.21) is given in appendix A.
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5 Example: Kerr-NUT solution

In this section we present a concrete implementation of the method of section 4 by con-

structing the Kerr-NUT metric. The construction illustrates all the steps of the BM soli-

tonic method. More complicated examples are certainly doable; we leave such a line of

investigation for the future.

5.1 Construction of general 2-soliton solution

The main difficulty in constructing the general multi-soliton solutions using the BM group

theoretic approach lies in finding meromorphic matricesME(w) that satisfy the coset con-

straints. The analog of this problem does not arise in the approach of BZ because they

relax this constraint and consequently have to renormalize the resulting matrices. This

works well for SL(2,R) but already for SL(3,R) it gives spacetimes that do not represent

black holes. A clever solution of this problem in the BZ approach was found by Pomeran-

sky [41]. In this respect the BZ method supplemented with the Pomeransky trick remains

the most effective and powerful method for constructing solutions of vacuum four- and

five-dimensional gravity. For a concise review and further references see [43]. The Pomer-

ansky trick works well for SL(n,R) but has no known analog for other coset models. As

mentioned in the introduction, despite the initial complications, the promise of the BM

method lies in its generality; it can be taken over to other coset models.

It turns out that for SL(n,R)E monodromy matrices with a maximum of two poles, it

is rather straightforward to take into account the coset constraints explicitly. When more

poles are present one can perhaps set up a recursive algorithm for finding the appropriate

meromorphic matrices. We have not attempted this and leave this line of investigation

for the future. Here we present a discussion of a two soliton SL(2,R)E matrix. The most

general such configuration describes the Kerr-NUT solution as we show now.

We start with the general form ofME(w) (compare (4.9a)),

ME(w) = 11 +
a1α1a

T
1

w − c +
a2α2a

T
2

w + c
, (5.1)

where a1 and a2 are two-dimensional column vectors. The poles can be chosen in this way

by a shift of axis, see (2.19). Given the constant 2 × 2 matrix a = (a1, a2) and the 2 × 2

matrix ξ = aTa we must choose

α =
2c

det ξ

(

ξ22 0

0 −ξ11

)

, α = diag{α1, α2}, (5.2)

in order to satisfy the constraint detME(w) = 1. The matrixME(w) is symmetric and is

of determinant one, hence it is in the coset SL(2,R)E/SO(2)E. For the parametrization of

the inverseME(w)
−1 we can choose b = aξ−1ǫ and β = −α det ξ with

ǫ =

(

0 −1
1 0

)

. (5.3)
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Due to the scaling freedom for the vectors, we can choose without any loss of generality

a1 =

(

1

ζ1

)

, a2 =

(

ζ2

1

)

. (5.4)

Thus

ξ =

(

1 + ζ21 ζ1 + ζ2

ζ1 + ζ2 1 + ζ22

)

, (5.5)

and

α1 =
2c(1 + ζ22 )

(1− ζ1ζ2)2
α2 = −

2c(1 + ζ21 )

(1− ζ1ζ2)2
. (5.6)

For the bk vectors we have

b1 =
1

1− ζ1ζ2

(

−ζ1
1

)

, b2 =
1

1− ζ1ζ2

(

−1
ζ2

)

, (5.7)

and for βk
β1 = −2c(1 + ζ22 ), β2 = 2c(1 + ζ21 ). (5.8)

From the above expressions we see that aT1 b1 = 0 = aT2 b2, as expected. Furthermore we

have aT2 b1 = −aT1 b2 = 1. With the above choices we find

Γ =
1

t2 − t1





ξ12
ξ22

t2(t1+t
−1
1 )

1+t1t2
1

1 ξ12
ξ11

t1(t2+t
−1
2 )

1+t1t2



 . (5.9)

From Γ we obtain the ck vectors by (4.18) and from there by looking at the limiting value

of the A−1
+ (t) at t =∞, cf. equation (4.20), we obtain ME(x). We find

ME(x) = 11 + a(ΓTǫ−1ξ)−1aT , where T = diag {t1, t2}. (5.10)

We also observe that

ΓTǫ−1ξ = (αν)−1 − t1t2
1 + t1t2

ξ, where (αν) = diag {α1ν1, α2ν2}. (5.11)

From ME(x) one can read off the physical fields. The conformal factor, given by (4.21), is

f2E = kBM
t1ν1t2ν2
(t2 − t1)2

[

ξ212
ξ11ξ22

(1 + t21)(1 + t22)

(1 + t1t2)2
− 1

]

. (5.12)

5.2 Interpretation as Kerr-NUT metric

For four-dimensional vacuum gravity with SL(2,R)E symmetry we can parametrise the

monodromy ME as [4]

ME = V T
E VE =

(

∆+∆−1ψ̃2 ∆−1ψ̃

∆−1ψ̃ ∆−1

)

. (5.13)
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Here, ψ̃ is dual to the metric function ψ by the duality relation10

⋆2 dψ̃ = −∆2

ρ
dψ. (5.14)

The D = 4 metric is given by

ds24 = −∆(dt+ ψdφ)2 +∆−1(f2E
(

dρ2 + dz2
)

+ ρ2dφ2). (5.15)

(The form of the conformal factor is due to the change from Ehlers to Matzner-Misner

variables to describe the physical space-time.)

To write explicit expressions for the scalars it is convenient to introduce prolate

spheroidal coordinates (u, v)

z = uv, ρ =
√

(u2 − c2)(1− v2), c ≤ u <∞, −1 ≤ v ≤ 1. (5.16)

These coordinates allow us to write the pole trajectories t1 and t2 as

t1 =
(u− c)(1 + v)

√

(u2 − c2)(1− v2)
, t2 =

(u+ c)(1 + v)
√

(u2 − c2)(1− v2)
. (5.17)

The inverse relations are

t1
t2

=
u− c
u+ c

, t1t2 =
1 + v

1− v . (5.18)

In these new coordinates we have

∆ =
1

D

[

v2c2(ζ1 + ζ2)
2 + u2(1− ζ1ζ2)2 − c2(1 + ζ21 )(1 + ζ22 )

]

(5.19)

and

ψ̃ =
1

D

[

2cu(ζ2 − ζ1)(1− ζ1ζ2)− 2c2v(ζ1 + ζ2)(1 + ζ1ζ2)
]

, (5.20)

where the common denominator of these expressions is

D = v2c2(ζ1+ζ2)
2+2vc2(ζ22−ζ21 )+u2(1−ζ1ζ2)2+c2(1+ζ21 )(1+ζ22 )+2cu(1−ζ21ζ22 ). (5.21)

By applying the duality relation (5.14) one can write an expression for ψ.11 It is slightly

more complicated

ψ =
Nψ

(1− ζ1ζ2)Dψ
, (5.22a)

Dψ = u2(1− ζ1ζ2)2 − c2(1 + ζ21 )(1 + ζ22 )− c2v2(ζ1 + ζ2)
2, (5.22b)

10From the point of view of the Geroch group, this duality with its non-linear prefactor is at the heart

of the infinite-dimensional symmetry and integrability of the system: ψ̃ is the first in an infinite set of

so-called dual potentials on which the infinite symmetry acts.
11Alternatively, one could construct the generating function VE(t) and apply the algebraic Kramer-

Neugebauer transformation (relating the Ehlers and Matzner-Misner description) to obtain VMM(t) that

directly contains ψ [4].
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Nψ = −4c3ζ1(1 + ζ21 )(1 + ζ22 )− 2c2(ζ1 + ζ2)(1− ζ21ζ22 )u+ 2c(ζ1 − ζ2)(1− ζ1ζ2)2u2

− 2c3(ζ1 − ζ2)(1− ζ1ζ2)2v + 2c(ζ1 − ζ2)(1− ζ1ζ2)2u2v
+ 2c3(ζ1 + ζ2)(1 + 2ζ21 + ζ21ζ

2
2 )v

2 + 2c2(ζ1 + ζ2)(1− ζ21ζ22 )uv2. (5.22c)

These expressions look somewhat cumbersome. To compare them with the corresponding

expressions for the Kerr-NUT metric in the standard Boyer-Lindquist coordinates, let us

recall that the latter takes the form (see e.g. [5])

ds2 = − 1

Σ

(

Ξ− a2 sin2 θ
)

dt2 +
Σ

Ξ
dr2 +Σdθ2 +

1

Σ

(

(Σ + aχ)2 sin2 θ − χ2Ξ
)

dφ2

+
2

Σ

(

χΞ− a(Σ + aχ) sin2 θ
)

dtdφ, (5.23)

with

Σ = r2 + (n+ a cos θ)2 (5.24a)

Ξ = r2 − 2mr − n2 + a2 (5.24b)

χ = a sin2 θ − 2n(1 + cos θ). (5.24c)

The Boyer-Lindquist coordinates (r, θ) are related to the prolate spheroidal coordinates

(see e.g. appendix G of [44]) simply as,

u = r −m, v = cos θ. (5.25)

We find that with the identifications

ζ1 =
c−m
a+ n

, ζ2 = −
a+ n

c+m
, c =

√

m2 + n2 − a2, (5.26)

the tt, tφ, and φφ part of the metric matches with corresponding expressions obtained

through (5.19), (5.20) and (5.22). Relations (5.26) can be inverted to read

a = −m ζ1 + ζ2
1 + ζ1ζ2

, n = m
ζ1 − ζ2
1 + ζ1ζ2

, m = c
1 + ζ1ζ2
1− ζ1ζ2

. (5.27)

When ζ1 = ζ2 we obtain the Kerr solution and the corresponding expressions match those

of [35] and [26] (when certain minor typos and misprints are fixed in those references).

When ζ1 = ζ2 = 0 we obtain the Schwarzschild solution as in [35, 42].

The conformal factor can also be easily computed using the formula (4.21). We find

f2E = −kBM
u2 −m2 − n2 + a2v2

4(m2 + n2)(u2 − c2v2) . (5.28)

Choosing the constant kBM to be −4(m2 + n2) so that fE → 1 as r →∞, we have

f2E =
u2 −m2 − n2 + a2v2

(u2 − c2v2) , (5.29)

which in the MM coset allows us to match directly with the metric (5.23)

∆−1f2E =
(m+ u)2 + (n+ av)2

u2 − c2v2 . (5.30)

– 20 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
1

For completeness, we record the form of the (Ehlers) monodromy matrixME(w) ex-

pressed in terms of the physical quantities

ME(w) =
1

w2 − c2

(

(m+ w)2 + (n+ a)2 2(am− nw)
2(am− nw) (w −m)2 + (a− n)2

)

(5.31)

with c as in (5.26).

5.3 BZ Ehlers construction

The Kerr-NUT metric has been reconstructed by several authors in the context of the stan-

dard BZ method, see e.g. [5, 43]. In this section we revisit this computation and perform

it using the Ehlers generating function ΨE(λ). To the best of our knowledge this has not

been presented before.

The Killing part of the metric of flat space translates into ME being the identity ma-

trix. This implies that the seed ΨE(λ, x) is also identity. Now we add solitons at λ = µ1
with BZ vectors m

(1)
0 = (A1, A2) and at λ = µ2 with BZ vectors m

(2)
0 = (B1, B2). The ΓBZ

matrix is found to be

ΓBZ =





A2
1+A

2
2

µ21+ρ
2

A1B1+A2B2
ρ2+µ1µ2

A1B1+A2B2
ρ2+µ1µ2

B2
1+B

2
2

µ22+ρ
2



 (5.32)

and we need to rescale the resulting ME by −µ1µ2
ρ2

[2, 3, 5] to ensure the determinant

condition. With the choice of parameters w1 = −c and w2 = +c for the pole locations

µ1 and µ2 in (3.15), and (A1, A2) = (−ζ1, 1) and (B1, B2) = (1,−ζ2) for the BZ vectors,

the final expression for the rescaled ME matches precisely with the ME obtained from the

BM method in section 5. The conformal factor obtained via equation (3.22) also matches

with the one obtained in section 5, with the constant kBZ in (3.22) being kBZ = 4(m+ c)2.

It is intriguing to note that up to overall normalizations the BZ vectors are precisely the

vectors b1 and b2 of the BM construction above.

6 Conclusions

In this paper we studied the integrability of two-dimensional gravity-matter systems with

matter related to a symmetric space GE/KE. The integrability of these set-ups can be ex-

hibited either using the Belinski-Zakharov (BZ) linear system or through the Breitenlohner-

Maison (BM) linear system. As emphasized, the approach of Breitenlohner-Maison makes

the group structure of the Geroch group manifest. We analysed the relation between the

BZ and the BM linear systems and presented explicit relations between the generating

functions appearing in these two linear systems.

An embedding of the Belinski-Zakharov solution generating technique in the Geroch

group was also studied in general. We pointed out that it is impractical to find a

satisfactory general embedding of the full BZ solution generating technique in the Geroch

group. Relation (3.10) provides in principle the link between the generating functions.

However, one must keep in mind that the left hand side of (3.10) must be a ‘physical’

generating function ΨE(λ). Here, by a ‘physical’ generating function we mean a generating
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function that gives a representative of the coset GE/KE upon taking the limit λ → 0.

This does not happen automatically in the BZ technique where the dressing matrix χ(λ)

is considered in a more general context.

On the other hand, following the unpublished work of Breitenlohner and Maison [26],

we exhibited a novel solution generating method where the group theoretical interpre-

tation is clear from the beginning to the end. In our approach we solve the requisite

Riemann-Hilbert problem algebraically. Since only algebraic manipulations are involved,

our technique is akin to the BZ technique. As a novel example, we constructed the

Kerr-NUT solution in this approach.

Our main interest in performing the analysis of integrability in these gravity-matter

systems is to make the means for constructing new solutions available in situations where

the standard inverse scattering method of BZ is not applicable. This is typically the

case for extended supergravity theories that have a string theory origin. For minimal

D = 5 supergravity with exceptional Ehlers symmetry GE = G2(2) this problem was

pointed out in [22] and also arises for the STU model [45] with GE = SO(4, 4) or maximal

supergravity with GE = E8(8) [46]. The method explained in section 4 is still applicable

in those cases as long as one finds a way to parametrise the GE valued monodromy

ME(w) in a way similar to (5.1) and (5.2). There are several ways in which this could be

achieved: (i) One could use global elements k ∈ KE ⊂ GE ⊂ (Geroch group) to rotate the

vectors inM(w) in (5.1) into canonical positions. In the example of section 5 this would

correspond to setting ζ1 = ζ2. The solution for canonical vectors can then be generalised

by applying conventional KE charging transformations. These charging transformations

use only a very small subset of the full power of the Geroch group. (ii) One could embed

GE in GL(n,R) for n large enough and then solve the constraints on the vectors for the

embedding explicitly. We expect a combination of these two techniques to be the most

promising line of attack. Alternatively to (i) and (ii), one could perhaps hope to develop

some general algorithms to find the appropriate monodromy matrices by combining ideas

from uniqueness proofs for black holes, see e.g. [47], and the fact that the monodromy

matrices are closely related to the behavior of solutions on the z-axis, see e.g. section 4

of [4]. In future work we plan to explore these sets of ideas. See also [40] for a slightly

different but related viewpoint on this problem. It will be very interesting to see if the

algebraic Riemann-Hilbert factorization approach can be used to construct new black hole

solutions generalizing [27–30] and new fuzzball solutions generalizing [31–33].

Another interesting aspect of the integrable structure in two-dimensional models is

their possible relation to the recently studied infinite-dimensional symmetries of string

and M-theory [48, 49]. These symmetry groups are extensions of the Geroch group and

are conjectured to be symmetries of the unreduced theory. First steps in investigating this

relation were undertaken in [50] in the restricted case of polarized Gowdy space-times.

The relation (2.18) between a spectral parameter and a space-time coordinate suggests

that a mapping between Lie algebraic and geometric data might be possible. If taken

seriously, this approach would allow the treatment of space-time as a concept that fully

emerges from symmetry considerations.
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A Computation of the BM conformal factor

In this appendix we present a derivation of equation (4.21) for meromorphic monodromy

matrices following [26]. Using the light cone coordinates (2.13) with the property ⋆2∂± =

±i∂± we can write the differential equations for the conformal factor fE as

∂± ln ρ ∂± ln fE =
1

2
Tr(PE,±PE,±). (A.1)

Next we wish to write Tr(PE,±PE,±) in terms of the matrix A+(t) introduced in (4.3)

in section 4. To this end we evaluate the residue of the poles at t = ±i in the Lax

equation (2.17). For evaluating the residue on the l.h.s. of (2.17) we use the relation

∂±VE(t, x) = ∂±VE(t, x)|t + (∂±t)V̇E(t, x), (A.2)

where V̇E(t, x) = ∂VE(t,x)
∂t

. These relations together with (2.18) give

± i∂± ln ρ V̇E(±i) = PE,±VE(±i). (A.3)

Now replacing (4.3) in (A.3) we obtain an expression for PE,± in terms of A+(±i) and

Ȧ+(±i). Substituting that expression in (A.1) we obtain

∂± ln fE = −1

2
(∂± ln ρ)Tr

(

A−1
+ (±i)Ȧ+(±i)

)2
. (A.4)

Using the explicit form of A+(t) from equation (4.13a) together with (4.18) and the identity

aTk bk = Γkl(tk − tl) we get,

A−1
+ (t)Ȧ+(t) = −b

11

11 + tT
Γ−1 11

11 + tT
aT . (A.5)

In writing this equation we have used a convenient matrix notation, where T is a diagonal

matrix with entries tk. Differentiating for k 6= l the identity (cf. (4.19))

aTk bl = Γkl(tk − tl), (A.6)

with respect to the light cone coordinates we obtain the components with k 6= l of the

equation

∂±Γ = −(∂± ln ρ)
11

11± iT [Γ∓ iTΓ∓ iΓT + TΓT ]
11

11± iT . (A.7)

Looking at the definition of the diagonal components Γkk in (4.19), we note that we

need ∂±γk in order to obtain the corresponding expression for the diagonal components

of Γ. We hence differentiate the relation Akbk = γkαkνkak from (4.17). An important

– 23 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
1

intermediate result for this is that Akbk is constant. From this it is easy to deduce

that (A.7) holds as well for the diagonal components.

Using these formulas, we first substitute (A.5) into (A.4) and then manipulate the

new r.h.s. to bring out terms that are total derivatives using (A.7). As a result, we can

rewrite equation (A.4) in the form

∂± ln fE =
1

2
Tr
(

Γ−1∂±Γ
)

+
1

2
Tr
(

(Tν)−1∂±(Tν)
)

, (A.8)

where (Tν) is the diagonal matrix with entries tkνk. Equation (A.8) can now be readily

integrated to give the final result (4.21)

f2E = kBM ·
N
∏

k=1

(tkνk) · det Γ, (A.9)

with kBM an integration constant. (More generally, the conformal factor is related to a

cocycle calculation in the affine group [4].)

B BZ Matzner-Misner

The Belinski-Zakharov (BZ) approach is a well established solution generating technique

for vacuum gravity. The method is applicable in any dimension, though only in four and

five dimensions can the generated solutions be asymptotically flat [43]. In this appendix

we focus on D = 4. We assume that the space-time admits two commuting Killing vectors,

one spacelike (angular) and one timelike. In this case the four-dimensional metric admits

the following form in the Weyl canonical coordinates (cf. (5.15))

ds2 = e2ν
(

dρ2 + dz2
)

+ gabdx
adxb, (B.1)

where the indices a, b run over the Killing coordinates φ and t. The vacuum Einstein

equations can be used to choose without any loss of generality the coordinates such that [44]

det g = −ρ2. (B.2)

For this class of metrics, the Einstein equations divide in two groups: one for the

Killing part g of the metric

∂ρU + ∂zV = 0, with U = ρ(∂ρg)g
−1 and V = ρ(∂zg)g

−1 (B.3)

and the second group for the conformal factor ν. From the discussion in the main text of

the paper it is clear that equation (B.3) are the equations for a GL(2,R) integrable sigma

model. The equations for the conformal factor ν read

∂ρν = − 1

2ρ
+

1

8ρ
Tr(U2 − V 2), ∂zν =

1

4ρ
Tr(UV ). (B.4)

Note that the equations for g do not contain the function ν. Once one obtains a solution

of (B.3), ν can be obtained by a line integral.

– 24 –



J
H
E
P
0
2
(
2
0
1
3
)
0
1
1

The Belinski-Zakharov spectral equations for the above GL(2,R) model (B.3)

are [2, 3]12

D1Ψ =
ρV − λU
λ2 + ρ2

Ψ, D2Ψ =
ρU + λV

λ2 + ρ2
Ψ, (B.5)

where λ is the spectral parameter and D1 and D2 are the two commuting differential

operators of (3.3).13 The generating matrix Ψ(λ, ρ, z) is such that in the limit λ → 0

it gives the volumeful metric g. Using the above linear system (B.5) one can construct

an infinite class of new solutions by dressing seed solutions. This procedure has been

reviewed at several places, see e.g. [5, 43].

The matrix g can also be written in terms of the SL(2,R)MM unimodular matrixMMM

g = ρMMM, (B.6)

where the subscripts MM stand for Matzner-Misner. In terms of the coset variables it

takes the form MMM = V T
MMηVMM, where VMM is the Matzner-Misner coset representative

of the quotient SL(2,R)MM/SO(1, 1)MM and η is the SO(1, 1)MM invariant metric η =

diag{1,−1}. Following [4] we take the parameterization for MMM to be

MMM = V T
MMηVMM =

(

ρ
∆ − ∆

ρ
ψ2 −∆

ρ
ψ

−∆
ρ
ψ −∆

ρ

)

with η =

(

1 0

0 −1

)

, (B.7)

where we emphasize that in our conventions the second index denotes the time component.

We use this (non-standard) convention to facilitate comparison with [4].

Equations (B.3) and (B.4) can now be brought to the form

∂m
(

ρM−1
MM∂

mMMM

)

= 0, (B.8)

and

ξ−1∂ρξ =
ρ

8

(

Tr
(

M−1
MM∂ρMMM

)2 − Tr
(

M−1
MM∂zMMM

)2
)

, (B.9)

ξ−1∂zξ =
ρ

4
Tr
(

M−1
MM∂ρMMMM

−1
MM∂zMMM

)

, (B.10)

where we have used �ρ = 0 and ξ(ρ, z) is defined as ξ = eνρ
1
4 . Defining as before

PMM,m =
1

2

(

∂mVMMV
−1
MM +

(

∂mVMMV
−1
MM

)T
)

, (B.11)

we can rewrite the above equations in the coordinates x± of (2.13) as

±iξ−1∂±ξ =
ρ

2
Tr (PMM,±PMM,±) , (B.12a)

Dm(ρP
m
MM) = 0. (B.12b)

12Note that there is neither an Ehlers nor a Matzner-Misner subscript on this generating function Ψ

since it agrees with neither. It is, however, closely related to the Matzner-Misner version as will become

clear in the sequel.
13In ‘light-cone’ coordinates the spectral equations read

D±Ψ =
±iρ (∂±g) g−1

λ± iρ
Ψ, with D± = ∂± − 2λ

λ± iρ
∂λ.
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Equations (B.12a) and (B.12b) are formally identical to equations (2.14a) and (2.14b). The

BZ Lax pair can be written for these equations [22] as well.

If one wants to relate the BZ-generating function Ψ(λ) to the group-theoretic

BM-generating function VMM(t) additional care has to be taken because of the factor of

ρ in (B.6). A convenient choice is

Ψ(λ, x) =
√

2ρtwV T
MM(x)ηVMM(t, x). (B.13)

(Note that this differs from what was given in [4]; their choice does not map the linear

systems into each other away from t = λ = 0.)
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