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Abstract

We analyze the perturbative massive open string spectrum of even-dimensional superstring compactifi-
cations with four, eight and sixteen supercharges. In each of such cases, we focus on universal states that
exist independently on the internal geometry and other compatification details. We analytically compute
refined partition functions that count these states at each mass level. Such refined partition functions are
written in a super-Poincaré covariant form, providing information on how supermultiplets transform under
the little group and the R symmetry. Various asymptotic limits of the partition functions and their associated
quantities, such as the leading and subleading Regge trajectories, are studied empirically and analytically.
In the phenomenologically relevant case of four supercharges, the partition function can be cast into the
most compact form and the asymptotic formula in the large spin limit is derived explicitly.
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Fig. 1. Classes of superstring compactifications for which we will discuss the universal particle content. The arrows
within the columns represent dimensional reduction on a T2 torus.

1. Introduction

The purpose of this article is to compute the super-Poincaré covariant perturbative open su-
perstring spectrum which is completely universal to all compactifications to 4, 6 or 8 spacetime
dimensions with 4, 8 or 16 supercharges. The number of such models is, of course, enormous
and generic representatives have their own characteristic spectrum. Nevertheless, for each given
number of supersymmetries (SUSYs), one can identify a set of physical states that exist inde-
pendently on the internal geometry and any other compatification details. In this sense, one of
the main aims of this work is to focus on universal statements about the spectrum in scenarios
with various (even) numbers of spacetime dimensions and supercharges. The basic quantity we
compute in different contexts is the number of model independent super-Poincaré multiplets of
given Lorentz- and R-symmetry quantum numbers on each mass level of the superstring.

The existence of 4, 8 and 16 supercharges is compatible with various spacetime dimensions.
Theories with a fixed number of supercharges are related to each other through dimensional re-
duction. Note that the minimum number of supercharges existing in 4, 6 and 10 dimensions is
4, 8 and 16, labeled by Ny = 1, Ngg = (1,0) and Nygq = 1 respectively. From each of such
theories, one can therefore obtain theories with the same amount of SUSYSs in lower dimensions
via toroidal compactifications which preserve all the SUSYs [1]. In this paper, Kaluza—Klein and
winding modes are neglected, as these depend on compactification details. Thus, determining
the lower-dimensional spectra becomes a group theoretical problem of branching the associated
Lorentz- and R-symmetry groups. The following Fig. 1 gives an overview of the supersymmet-
ric theories for which we will work out the model independent subset of the open superstring
spectrum.

In this paper we are providing for the first time a complete investigation of the universal
massive open string states of higher spin within supersymmetric compactifications of the open
Type I superstring. In particular, we will compute the partition functions of the universal open
string spectra for all type I compactifications with 4, 8 and 16 preserved supercharges. Spectra of
the associated Type ITA/B closed superstring theories with twice as many preserved supercharges
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can be easily inferred from our open string results through a double copy of the open string
Hilbert space, that is why they will not be explicitly addressed in this paper.'

Four-dimensional superstrings subject to N4z = 1 super-Poincaré invariance are especially
worth to be studied, since N1z = 1 compactifications with broken supersymmetry are expected
to provide phenomenologically interesting string solutions at low energies with the spectrum of
certain extensions of the supersymmetric Standard Model (see e.g. [2] for a stable low energy
open string vacuum, the Standard Model*™* with two Higgs fields). In addition to the light states,
the knowledge of the universal massive string spectrum is also important in order to compute
string scattering amplitudes of massive open string states in Ny = 1 string compactifications
[3]. This task is particularly relevant, if the string scale is low compared to the Planck mass,
as it is true in compactifications with large extra dimensions [4]: Both the exchange and the
production of the lightest string resonances will leave measurable signatures at the LHC if the
string scale is sufficiently close to the TeV range [5,6].

Apart from the phenomenological motivation, there are formal reasons to investigate scatter-
ing amplitudes among massive states: Unitarity allows to boil down the complete S-matrix of
string theory down to cubic tree vertices involving any triplet of states, so it is particularly de-
sirable to compactly represent them and to efficiently sew them together. For this programme
to work in practice, the appropriate language still needs to be found, e.g. a generalization of
the generating function techniques of [7] beyond the leading Regge trajectory. As an essential
prerequisite, we need to get a handle on the Lorentz- and R-symmetry quantum numbers of the
spectrum and make supersymmetry — the helping hand in various perturbative calculations —
manifest.

The refined partition functions in lower-dimensional scenarios presented in this work have the
potential to contribute to such technical progress. They provide a toy laboratory with fewer states
at each mass level compared to the full ten-dimensional problem of string interactions, where e.g.
four-dimensional spinor helicity techniques might prove helpful in manipulating massive string
amplitudes.

1.1. Refined partition functions

A convenient way to study the spectrum of string states is to compute a partition function that
counts such states with respect to their mass levels. Since the string states transform under rep-
resentations of super-Poincaré algebra, such a counting can be done in a representation theoretic
way, namely the partition function can be written in terms of an infinite power series such that
each power keeps track of the mass level and the coefficient of each term in the series comprises
irreducible characters of the super-Poincaré algebra. In this way, the symmetry of the problem is
manifest in the partition function and the characters contain information on how a supermultiplet
transform under the little group and the R symmetry. Moreover, knowing a partition function is
equivalent to knowing how many times a given representation appears at each mass level — also
known as the multiplicity. Hence, given a representation of super-Poincaré algebra, our aim is to
compute its multiplicity generating function, a power series such that each power keeps track of
the mass level and each coefficient are the multiplicity of this particular representation.

1 For the case of heterotic string compactifications, the charged matter fields originate from closed strings, and hence
a priori one expects a different pattern of massive string states. In order to match the heterotic—type I massive string
spectrum via heterotic—Type I string duality also non-perturbative states are needed.
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Such a way of counting of string states was already performed explicitly in [8,9] for the case
of uncompactified (ten-dimensional) string theories. It has also been extensively applied to the
study of moduli spaces of supersymmetric gauge theories [ 10—18]; in such a context the partition
function is also known as the Hilbert series.

One can also view the partition function we are considering as a trace over the space of
physical states. In the trace, we grade the states according to their mass levels and global charges,
but not their spacetime fermion numbers. The variables used in keeping track of these levels
and charges are called fugacities. The fugacities for the global charges are indeed the ones that
appear in the character of a representation of the super-Poincaré algebra. In general, the partition
function is therefore a multivariate function. We call the insertion of global fugacities into the
trace so as to make the global symmetry manifest a refinement, and we refer to the corresponding
partition function as a refined partition function. On the other hand, in order to compute the
total number of states at each mass level, one can set the fugacities in the characters to unity.
This amounts to computing the dimension of the corresponding representation, and we call the
resulting partition function an unrefined one.

The term ‘refinement’ as for the insertion of the aforementioned types of fugacities has also
been used recently in various papers on elliptic genera and loop amplitudes. There are various
‘synonyms’ that have been adopted in the literature, e.g. McKay—Thompson series [19], twining
characters [20,21] and twisted elliptic genera [22-24]. We emphasize that, on the contrary to
elliptic genera or other types of characters that are used in loop amplitude computations, the
states that we trace over are not graded with a minus sign for spacetime fermions.” As a result, the
partition functions we are considering in this paper do not exhibit a modular invariant property.”

Open string states also carry Chan—Paton factors. The massless states and their massive exci-
tations that arise from open strings with both endpoints attached to a stack of D branes transform
in the adjoint representation of the Chan—Paton gauge group. Their character can therefore be
obtained by multiplying the character discussed here by the character of the adjoint representa-
tion.* The massive states corresponding to unoriented strings, on the other hand, transform in
various representations according to the gauge symmetry (see e.g. p. 294 of [25] for further de-
tails), and the character can be computed by multiplying an appropriate character of the gauge
group to our existing character at a given mass level. All partition functions computed in this
paper allow for a straightforward inclusion of the Chan—Paton contributions; hence, we shall not
discuss Chan—Paton factors in the subsequent.

2 To illustrate this point, let us look at the first mass level for a 10d theory with 16 supercharges, there are 256 states in
total (see Table 1). This number comes from (a) 44 spin two degrees of freedom and 84 three-form degrees of freedom
constituting the spacetime bosonic states, and (b) 128 spin 3/2 degrees of freedom constituting the spacetime fermonic
states. If we had included the grading with a minus sign for spacetime fermions into the trace, we would have a zero here.

3 To illustrate this point, we compare the unrefined partition functions presented in (5.3.37) of [25] and (9.1.14),
(9.1.15) of [26]. The former is the partition function we are interested in and it is clear that such a partition function does
not possess a modular invariant property. On the other hand, observe in the latter that if the grading with a minus sign for
spacetime fermions is introduced in the trace, the contributions from the fermionic and bosonic excited states precisely
cancel in the unrefined partition function, as exemplified in the preceding footnote.

4 Furthermore, compactifications with intersecting D branes give rise to model dependent excitations of open strings
that end on different stacks of D branes [27]. These non-universal states beyond the scope of this work transform in the
bifundamental representation.



Table 1

D. Liist et al. / Nuclear Physics B 876 (2013) 55-146

59

The number of model independent open string states in compactifications with 4, 8 and 16 supercharges, respectively, up

to mass level &/m? =9.

o'm? # states for 4 supercharges # states for 8 supercharges # states for 16 supercharges
0 4 8 16
1 24 80 256
2 104 512 2304
3 384 2576 15360
4 1240 11008 84224
5 3648 41792 400896
6 9992 144784 1711104
7 25792 465856 6690816
8 63392 1409792 24332544
9 149464 4050112 83219712
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Fig. 2. The logarithmic plot of the number of states N, against the mass level m for the case of 4 and 16 supercharges.

The values of N, are taken from the asymptotic formulae (4.17), (5.12) and (6.10), which work well for large m.

1.2. The number of universal open string states

To give a first idea of the orders of magnitude governing the number of universal open string
states at individual mass levels, the following Table 1 summarizes their numbers at low levels
< 9 in scenarios with 4, 8 and 16 supercharges, respectively. They are obtained by expanding the
associated unrefined partition functions. For the cases of 4, 8 and 16 supercharges, the exact gen-
erating functions are respectively given by (4.8), (5.5), (6.6) and their asymptotics at large mass
levels are respectively given by (4.17), (5.12), (6.10). Roughly speaking, the number of states
increases exponentially with respect to the square root of the mass level. The plot is depicted in

Fig. 2.
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1.3. Stable patterns and Regge trajectories

For any number of dimensions and supercharges, we can examine the multiplicities of a
supermultiplet transforming under a given super-Poincaré representation. In four spacetime di-
mensions, such a representation contains an SO(3) spin quantum number; this is half of the
SO(3) Dynkin label. For dimensions d > 4, we refer to the first SO(d — 1) Dynkin label as ‘spin’
in slight abuse of terminology. This allows for the generalized notion of spin in higher dimen-
sions. It is interesting to study the multiplicities associated with large spin quantum numbers, i.e.
a large spin limit.

There are certain crucial asymptotic patterns that universally appear for families of supermul-
tiplets, regardless of the number of dimensions and supercharges. In particular, there are certain
sets of numbers that repeatedly appear at various mass levels when spins are sufficiently large
(and other quantum numbers are kept fixed). As an example, it is convenient to consider Table 3
where such numbers are written in red. Since this set of numbers stabilizes in the large spin limit,
we refer to it as a stable pattern. In fact, such a pattern appears not only in superstring spectra we
are considering, it also does so in spectra of the bosonic and various other types of string theories
as pointed out in [8]; there, the stable pattern is referred to as the leading Regge trajectory. We
shall henceforth use these two terms interchangably.

Let us explore the stable pattern in more details. For a fixed sufficiently large mass level M, the
stable pattern for a certain supermultiplet family starts appearing when the spin j increases and
reaches a certain value jnin(M). It then extends up to some maximum value jmax (M) where the
multiplicity becomes zero for spins j > jmax(M). As an empirical speculation, we observe that
for a sufficiently large M, the stable pattern appearing in the spin range jmin(M) < j < jmax (M)
occupies approximately half of the spin range 0 < j < jmax(M) of all non-zero multiplicities.
As an example, such a phenomenon is highlighted in red in each row of Table 3.

Stated differently, for a given super-Poincaré representation, the highest spin with non-zero
multiplicity approximately scales linearly jymax(M) ~ (M — My) for large M where My is the
mass level at which the first non-zero red number appears. The onset of the stable pattern, on the
other hand, roughly follows a linear scaling, jmin(M) =~ %(M — Mj). The region of validity for

the stable pattern is therefore bounded by two straight lines whose slopes have the ratio % In this
sense, the stable pattern gives control over the essential part of the spectrum.

In addition to the stable pattern or the leading trajectory, there is also a notion of subleading
trajectories bounded by linear spin-mass relations with approximate slopes %, %, .... We shall
not go over any detail here and postpone the quantitative discussions to subsequent sections.

1.4. Outlines and key results

This article can be roughly divided into two parts. The first part develops the SCFT founda-
tions for refined superstring partition functions, using conventions from Appendix A. Section 2
introduces SO(d — 1) covariant characters for the degrees of freedom due to the superstring oscil-
lators from the spacetime SCFT. In order to describe compactification scenarios, the spacetime
sector has to be supplemented by SCFTs describing the internal dimensions. The SCFTs dis-
cussed in Section 3 capture the universal states present in any compactification that preserves
four and eight supercharges, respectively. A novel bookkeeping of internal quantum numbers is
introduced to adapt the characters from the literature to the R symmetry of the spectrum.

Starting from Section 4, we proceed to the second part of this work where spacetime and in-
ternal characters are combined to super-Poincaré covariant partition functions. Universal states
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of four-dimensional ANyy = 1 supersymmetric string compactifications are thoroughly investi-
gated in Section 4: We analytically derive the stable pattern for supermultiplet multiplicities, in
manifest agreement with the tabulated particle content up to mass level 25. Similarly, Section 5
is devoted to scenarios with eight supercharges — in both six and four spacetime dimensions. Fi-
nally, spectra of maximally supersymmetric open superstring theories are discussed in Section 6,
a chain of dimensional reductions encompasses d = 10, 8, 6 and d = 4 compactifications.

The analysis of universal Ay = 1 supermultiplets in Section 4 enjoys the highest phenomeno-
logical relevance and provides the most compact results. Hence, the reader might want to skip
Sections 2.4, 2.5 and 3.2 on higher-dimensional generalizations upon the first reading.

Let us summarize the key results in this paper below.

e The exact unrefined partition functions and asymptotic expressions for the number of states
at each large mass level are given in (4.8)—(4.17), (5.5)—(5.12) and (6.6)—(6.10) for theories
with four, eight and sixteen supercharges respectively. The graphs of these numbers versus
the mass level are depicted in Fig. 2.

e The exact multiplicity generating functions for theories of four, eight and sixteen super-
charges are respectively given in (4.61)—(4.62), (5.41) and (6.33).

e The asymptotic expressions for the multiplicity generating functions for the theory with four
supercharges are presented in (4.63) and (4.64).

Even though the tools for expanding the refined partition function to any mass level are pre-
sented for all the scenarios, exact formulae for multiplicities of particular multiplets generically
involve nested infinite sums. In particular, the bookkeeping of SO(d — 1) quantum numbers
becomes increasingly difficult in d > 4 spacetime dimensions. That is why we elaborate the phe-
nomenologically relevant and mathematically most accessible Nay = 1 case in particular depth.

2. The spacetime CFT in various dimensions

This section reviews the construction of a refined partition function for the oscillator modes of
the worldsheet fields d X*, ¢/# and fixes our notation. The worldsheet supermultiplet {d X", {*}
is associated with the d directions of Minkowski spacetime and carries an SO(1,d — 1) vector
index u =0,1,...,d — 1. In the framework of lightcone quantization the physical spectrum is
obtained from transverse oscillators § X'=23-~d=1 yi=2.3,.d=1 which carry charges with re-
spect to the %(d — 2) Cartan generators of SO(1,d — 1) outside the lightcone directions. We
assign a separate fugacity yj to each pair of X', ' components (say (3 X%, dX?k*1)) such
that the fugacity subscript lies in the range 1 < k < %(d — 2). Since massive particles with
d-dimensional timelike momentum form representations of the little group SO(d — 1), the depen-
dence on Lorentz fugacities yx necessarily arranges into characters of the massive little group.

It is instructive to first of all study the simplest non-trivial example d = 4 with one spacetime
fugacity. The first three subsections are devoted to the SO(3) covariant partition function of the
four-dimensional spacetime SCFT. As we will explain in later subsections, higher-dimensional
cases follow by combining several copies of d = 4 building blocks.

2.1. Bosonic partition function in d = 4

The contribution of the lightcone bosons to the refined partition function is
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The representation [2], — 1 = y% + y~2 in the plethystic exponential corresponds to the two
q

components X+, 3 X~ perpendicular to the lightcone. The geometric series = =4+ q* +

g> + ---, on the other hand, represents the infinite tower of positive frequency modes of 3 X*
which act as creation operators.

Explicitly, the first few terms in the power series of x 30(3) (g, y) can be written in terms of
SO(3) characters [k], as

21, — 1) +¢°[4]y + ¢* (121, + [6],)

4(101y + 2141y +[81y)

2[2]y + [41y +2[6]y + [10]y)

2[0]y + [2]y + 3[4]y + 2[6], + 2[8], + [12],)

+q (41215 + 3(4]y + 4[6]y + 2[8]y +2[10]y + [14]y) +---. (2.3)

SO@3
XB“(q,y):lJrq

+ q
+ 61
From such a power series, we are motivated to rewrite (2.1) as an infinite sum of the form

k=0

for some function f;(q) which depends only on ¢ and not on y. The use of this form of the
partition function will become clear later.
In order to do so, we rewrite (2.1) using the g-binomial theorem® as

x5 (g y) = ZZ

m=0n=0

2(m n)

"= W S 25
(q: q>m(q (@ D (@5 D kgo[ 1y fi(@) 2.5)

Before proceeding further, let us state an identity that we are going to use many times later. From
(A.5) and the residue theorem, we find that

Soun form =0,
d mpo1 - |90 2.6
/ mso@ (M)y"lnly { S Bmin — Smint2) form #0, 20

where the Haar measure of SO(3) is given by (A.9). It is clear from the absence of odd y powers
in (2.5) that only integer spin representations of SO(3) occur. We therefore have f>r41(g) =0
for all k, and the non-trivial coefficients to compute are®

o) "

1 _ _z
@ @oo — —n=0({g;9)o0
6 In intermediate steps, we are making use of identities like Zf’;o g" TP (G ) oo = (43 P oo @ TP @)oo

5 The version we use states that
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() = / disos 7P (g, y)[2K1,
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Z 1—g— qn+ + )
rd O q)n(q Dn+h+1
= (q; q)oo Z( ™ 1 n)2 nk+2n(n 1) Q2.7)
We obtain an SO(3) character expansion of the bosonic partition function:
o0 ) 0 |
S0@3 - — Lon—
x5 D@ ) = @2 Y (D" (1 —g") Y gDk, (2.8)
n=1 k=0

Note that the pattern Y o, (—1)"~1g"*[2k] ... (where the ... ellipsis does not depend on y
and k) is described in Section 6 of [8] as an alternating sequence of additive and subtractive
Regge trajectories of slope % This is the source of stable patterns as described in the introduction
in bosonic string theory. We will rediscover these patterns in the counting of SUSY multiplets
later on.

2.1.1. Multiplicities of representations [2m] and their asymptotics
Let us determine the multiplicity of irreducible SO(3) representations [2m] at each mass level.
Recall the orthogonality of characters with respect to the Haar measure:

/ duso@3)(y) [mly[nly = dmn. (2.9)

From (2.8), we find that the generating function of the multiplicity of [2m] is

M(x3’?, [2m); q) = / duso () 2mly 32 (g, y)
= (@ ) Z( D" (1 = g") gD g, (2.10)

Asymptotics as m — 00

The expression (2.10) found for multiplicity generating functions greatly simplifies in the limit
m — oo of large spin and mass level. In order to compute an asymptotic formula in this regime,
we apply Laplace’s method (see e.g. Section 6.7 of [28]) to our question. Since 0 < g < 1, the
terms in the series peak sharply near the n = 1 term as m — oo. Therefore, it is expected that for
any € >0

1+€]
— — 2 Lum—
M(xp" P 2mlq) ~ (@:)xd Y- (D" (1=¢") g2 Vg™ m oo (2.11)

n=1

Now let us write n = 1 + ¢, where ¢ is small compared with 1. Note that

1
q%”(”*l) =1+ E(logq)t + O(IZ), (2.12)

Substituting the leading term of this power series into the right-hand side of (2.11) and extending

the region of summation to co, we find that the leading behavior of M ( XS0(3) [2m]; q) is given
by
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M(Xg0(3)a[2m] (q q)oo Z( 1) l+1)2 m(t+1)

q"(1—¢)*(1—q"*)
(1+g™ (A + gt (1 +g>tm)
= ( z,q)—zq’"(l -q")
> 1 /oo (1+ qm)S ’
The higher order corrections can be computed by taking into account the subleading terms of
(2.12). Note that the next to leading term of (2.13) is of order O (g*"logq). Thus, asymptotic
formula (2.13) reproduces the exact result up to O(q2’"_1).

= (D2

m — 0. (2.13)

Interpretation and stable pattern
We can extract some information about bosonic string states from (2.13).

e The representation [2m] appears first time in the bosonic partition function X;_;OG) (g,y) at
mass level g™
e The multiplicities of [2m] at levels qm”, for 0 < € < m — 1, are independent of m. We
refer to a set of these numbers as a stable pattern for bosonic string theory. The generating
function for such a stable pattern can be determined by taking a formal limit m — oo in
(2.13):
2 M 2
S S03) N (2 N2 oy~
lim g™ M (5" [2m):q) = (¢%0) =[] (1-4") (2.14)
k=2
=142¢% +2¢° +5¢* +6¢° +13¢° 4+ 169" + 304 + 40¢° + 664'° + 904"
+ 142" +192¢" + 2904 + 3969 " + 5754 +782¢"7 + 11124
+ 1500 " +2092¢%° + 2808¢*" + 3848¢% + 5132¢% + 0(¢**). (2.15)

Note that terms with low orders in this power series are in agreement with the data presented
in Table 6b of [8].

2.2. The NS sectorind =4

Under NS boundary conditions, the worldsheet superpartners ' of the lightcone bosons con-
tribute

1
Ans(@: y) =PEF[([2]y —1) 1" }

—q

=1_[(1_|_y2 n— 1/2)(1+y—2 n— 1/2) (216)
n=1

:q%% (2.17)

to the spacetime partition functions. We shall rewrite this function as an infinite sum by means
of Jacobi’s triple product identity (see, e.g., Subsection 19.8 of [29]):

o0

[T =) +x> ") (1 + 22127 Z X (2.18)

n=1 m=—00
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Applying identity (2.18) with x = ¢'/? and z = y? to (2.16), we obtain

Ins(q, ) = (q; Z Y (2.19)
=@ D% Zq%”ﬂ(l — ¢ 1) [2m],, (2.20)
m=0

where (2.20) can be obtained by applying (2.6) and the orthogonality of the characters to (2.19)
as follows:

00 -1
— 2 2
/dusoe)(y)st(q, NIR2Ky = (g [ D q" Pomi— Y. 4" /28—m,k+li|

m=0 m=—00
_ 1,2 1
=(q; g2 (1 -4 7). (2.21)

Let us combine the bosonic partition function with the NS sector contribution. Using (2.1),
(2.20) and the multiplication rule [2m] - [2k] = Z;"‘TZ m‘ , we find that

00) _ 500 Sy — 3! 930, 9)
s @) = x3" Vg, y) ns(g. y) = (v )—1}1 o2 q) (2.22)
k+m
— ZZ( 1) 1_ )( C[”) Tn@—1)+1m? ank Z [20].
(6] q) m=0n=1 k=0 t=|k—m|
(2.23)

The expression in the curly brackets {- - -} can be rewritten as Z,fio Jimn (q@)[2k], for some func-
tion fxmn(q)- In order to determine this function, we use the orthogonality of characters:

0o p K +m qn|k—m\ _ qn(k+in+1)
frmn(@) = / duson () Y g™ Y [20],(2k], = - (2.24)
K=0  t=|k'—m| I—q
Therefore, we obtain
e 1 2
X[f]g(?))(qv y) — (Q7 ‘])0_03 Z Z(_l)n—l m+2)(1 —q )qj[n(n—1)+m ]
m=0n=1
o0
X Z(qn|k—m| _ qn(k+m+1))[2k] (225)
k=0

We emphasize that the SO(3) irreducible representations with odd Dynkin labels do not appear
in the partition function Xl‘fgm (q,y).
In terms of a power series in g, this can be written as
e (g y) =1+ q"2((21 = 1) + q12] + ¢*/* (101 + [4])
g (1014 2[41) + ¢°/* (2121 + [4] + [6])
+q> (3121 + [4] + 2[6]) + ¢"/*(2[0] + 2[2] + 4[4] + [6] + [8])
+¢*(3[01 + 3[21 + 5[4 + 2[6] + 2[8])
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+ %2 (101 + 7121 + 4[4] + 6[6] + [8] + [10])

qs([O] + 9[2] + 7[4] + 7[6] + 2[8] 4 2[10]) + - - -. (2.26)
Setting y = 1, we obtain the unrefined partition function
0 — 2
| 4q" 12
SO@3 SO@3
s gy =1=x3""(g, ) fxs(g, ) = H(W
n=1
_ —18931,9)
=@ L0, ) =g P (2.27)
= n(q)?

2.2.1. Multiplicities of representations [2j] and their asymptotics
Similarly to the bosonic partition function, we can read off the generating function for the
multiplicities of the representations [2 /] at different mass levels of the NS superstring

MO 12/1.0) = @ @2 Y (1 —¢"2)g> 3 (=1~} (1 - ¢")q "D

m=0 n=1

_ gnutmED). (2.28)

nlj—ml

x (q

Asymptotics as j — 00

In this limit, we have |j —m| ~ j —m for a finite m. Furthermore, the summand as a function
of n is sharply peaked near n = 1, and so we can determine the leading behavior of the sum over
n using Laplace’s method as follows (where € > 0):

Z( l)n 1 ) 2n(n 1)(qn(jfm)_qn(j+m+l))

1+ €]
~(1—-gq) Z [q"(j_m) — q"(j+m+1)] fore >0

o
~(1—q) Z[q(t+l)(1—m) _ q(t+1)(]+m+1)]
t=0

=q’ " (1= q)

1— q2m+1

(=g (1 =gl

(2.29)

Therefore, we find that

Ny > w2 (1= g1 — g2 tm)
M(xRs ) [2)1.) ~ (q;q)ofq’(l—q)[zc] — —
A — P RD D)

o0
~ (4 D d’ (11—_% [Z g2m=1’=3 (11— (1 - q5+m)}
m=0

= (¢ Doq’™ (—

T ]> U3(1. q). (2.30)

Note that asymptotic formula (2.30) reproduces the exact result up to the order ¢/ =3, We em-
phasize that the representation [2] appears first time at mass level g/ -3,
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In [8], the individual » summands of (2.28) are interpreted as an alternating sequence of ad-
ditive and subtractive Regge trajectories of slope % In the notation of Eq. (6.2) of that reference,

the M(XSO(3) [2/], g) are expanded as

. . . .
M2, 121, 9) =/ T (@) — 4Y N (@) + ¢V NS (g) —

=Y =D""'g" (@), (2.31)

=1

Setting |j — m| = j — m in (2.28) leads to the following asymptotic expressions for the ‘L’NS.

S@) = aq” Z 1m0 _ gmEa) (1 — g2, (2.32)

We will later on rediscover this trajectory structure in the counting of SUSY multiplets.

The stable pattern
The generating function of the stable pattern can be determined by projecting the sum in (2.31)
to the first term (or, equivalently, by taking the limit j — 00):

Jim g M (s 1271.9) =7 @) = (@ a0 = 00300) (2.33)
= (2+2¢ +8¢* + 14¢> + 344" + 58¢° + 1204°
+204q" +378¢% + 632¢° + 10964 '° + 17864 !

1
+2968¢" + ) + — (1 + ¢ + 6¢% +9¢° + 244"

Va
+424° + 88¢° + 151¢7 +287¢% + 4804°
+ 84640 4+ 1388¢"! +2326¢'% + - ). (2.34)

Note that terms with low orders in the power series (2.34) are in agreement with the data pre-
sented in Table 6¢ of [8].

2.3. The R sectorind =4

The R sector of the worldsheet superpartners ¥ of the lightcone bosons contributes
frg,y)=(y+ y‘l)PEF[([Z]y — 1)%]

o0
(y+y~ ]_[ +y%q")(1+y7%q") (2.35)

Lﬁz()’ q)
=q 27

n(q)

to the spacetime partition function. Again, it will turn out to be beneficial to rewrite this function
as an infinite sum. We proceed as follows. Replacing z by xz in (2.18), we obtain

(2.36)
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o “+00
H(l_x )(l—i-x )(1+x2n 2 71 Z xm2+mzm. (2.37)
n=1 m=—00
Using the identity
o

12

[T+ = (1+271)

n=1 n

(1+x*z7"), (2.38)

Il
-

we arrive at

o] 5 X +o00 xm2+mzm+]/2
1 1 ") = =R . 2.39
1:[ +x22) (14 x )= NENTEED) (2.39)

Applying identity (2.39) to (2.35) with x = ¢!/ and z = y?, we have

+00
fr(@, ) =(@:9)% Z y2mtl gm(m+1)/2

m=—0oQ

= (@D Zqz’”(’"“) — ") 2m + 11,

—q_”g(q;q)go1 > g (1—g" ) m,, (2.40)

1
m EZ;()-‘r 3

where the second equality follows from (2.6) and the orthogonality of the characters.
Let us combine the contribution from the R sector with the bosonic part. Using (2.1) and
(2.35), we find that
— 1) 192 ()’2 ’ Q)
91(y% q)

= @ % Z Z( D' (1= g7 ) (1= g2

m€Z>0+2 n=1

V@ =0 @ (g, N =iy -y (241)

o0
% Z nlk—m| _ n(k+m+2))[2k+ 11. (2.42)
k=0

This resembles (2.25) up to a shift in the summations over m, k by j:%. We emphasize that
SO(3) irreducible representation with even Dynkin labels do not appear in the R-sector partition

function XR 06 (q,y).
In terms of a power series, this partition function can be written as

22D (q, y) = 11142131 + 2(111+ [31 + [51)g? + (4[11 + 4[3] + 4[5] +2[71)¢°
+ (6[11+ 10[3] + 8[5] + 4[71 + 2[91)¢*
+ (12[11 + 18[3] + 16[5] + 10[7] + 4[9] + 2[111)¢°
+ (22011 + 32[3] + 30[5] + 22[7] + 10[9] + 4[11] + 2[13])g°
+ (36[1] + 58[3] + 56[5] + 40[7] + 24[9]
+ 10[11]+4[13] +2[151)g” +---. (2.43)
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Setting y = 1, we obtain the unrefined partition function

OO 1+g" (1,
gO(S)(47y: 1)221_[(1 _Zn) =q S(q Q)oo Hh(l,q) = 2 C])' (2.44)
n=1

n(g)3

2.3.1. Multiplicities of representations [2j + 1] and their asymptotics
The generating function for the multiplicities of the representations [2j + 1] at different mass
levels are

M3, 12) + 11, q)

L n—
PRI Z it PRl Z( D" (1 —g")g2" Y

n=1

n(]+m+2)) (245)

in close analogy to (2.28). In fact, one can obtain the above formula by shifting m — m + % and

n|j—m|

x (q —q

j—>Jj+ % in (2.28) and multiply by an overall factor q_é.

Asymptotics as ] — 00
Similarly to the NS sector, we find that the leading behavior of M ( XR0(3) [2j+11,9)is

M09 12j +11,9)

_1 3 i
~q 8(61;61)00361’+2 qJ)z[Z

N\
N\'—‘

S

. 1—g\?
=(q;q)53q"§<1+ q]> 92(1,9). (2.46)

Note that the representation [2j + 1] appears first time at mass level ¢/ and the asymptotic
formula reproduces the exact result up to the order g2/~

Also the multiplicity generating functions of the Ramond sector are suitable for an expansion
in terms of Regge trajectories:

M"YV, 12) + 11.9) =4/ tR(@) — g% R(@) + ¢ R g) — -

= Z(—n“‘q” 2(q). (2.47)

=1

The |j —m| = j — m asymptotics yield the following expressions for the £’th Ramond trajectory
R
L7

R@) =@ ) 0q F(1—g%) Y g2 (1 — g 2) (1 — g, (2.48)

M2

Il
o=

m

The stable pattern
The generating function of the stable pattern can be determined by taking the limit j — oo:
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Jlim n g~/ M(xx 0 2j+11,9) =R@) = (¢: D2q 0 = 9)*02(1, ) (2.49)

=2+44q + 10g% + 24¢> + 48¢™ +96¢° + 1844¢° + 3364’
+600g® + 1048¢° + 178440 + 29844 + 49124'% + 7952413
+ 12704 " +20048¢ "> +312564'° + 0(¢"7). (2.50)

Note that terms with low orders in the power series (2.50) are in agreement with the data pre-
sented in Table 6d of [8].

2.4. Bosonic partition function in d > 4

The bosonic partition function in d = 2n + 2 spacetime dimensions can be written as

X§0(2n+1)(q’ y) = PE[([I, 0...., 0]50(2n+1) _ 1)%], (2.51)

where y = (y1, ..., yn) and the character of the vector representation [1, 0, ..., 0] of SO2n + 1)
is given by (A.6). The 2n =d — 2 summands in [1, 0, .. O]SOQH]) 1=Y0_ 07+ y,?z) re-
flect the 3 X’ components outside the lightcone. Using (A.S), we see that this choice of character
allows us to write

P C PE[% > (21 - 1)}

k=1

n
5033
=[x’ 0w. (2.52)
A=1
Observe that the (2n + 2)-dimensional partition function is simply a product of n copies of the
four-dimensional partition function. From (2.8), we have

SO©2 1
X% g, )

=@ ) ) H( 1AL (1 — gna) grakatinata=Dog, ], (2.53)

nell} keZ20A 1

with Z denoting the set of positive integers and Z>¢ = Z U {0}. For our purpose of resolving
the SO(2n + 1) content of the partition function, the aim is to rewrite (2.53) in the form

2n+1 502 1
1 g y= > Gae )y G g, (2.54)
A]}'“>)‘n>o

where the summations run over highest weight vectors A := (A1,..., ;) € Z" subject to in-
equalities A1 > --- > A, > 0, see Appendix A for the conversion rule to Dynkin label notation
[a1,...,a,]. Since (2.51) involves only the vector representation and the plethystic exponential
generates symmetrizations of the representation, there is no spinor representation of SO(2n + 1)

appearing in XB 0@+ (4 y); therefore,

BSO(Z”*” L@ =0, A eZ. (2.55)
A1+

In general, G, B, S0(2"+1)(q) can be 1nterpreted as a generating function for the multiplicities of

.....

the SO(2n + 1) representatlon (A1, ..., Ap) in the bosonic string partition function.
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2.4.1. Some useful relations between SO(2n + 1) and SO(3) representations

In order to obtain compact formulae for the multiplicity generating functions G,
we have to convert the SO(3) character products in (2.53) into a basis of (A1,...,A,)y, i.e. we
have to find the A coefficients in the basis transformation

B, S0(2n+])( ),

.....

n

[T02kalya= D> AGu.. di 2kns o 2k) (A Ay (2.56)
A=l =20 20

In general, according to (5.10) of [8], it can be shown that the coefficients in this basis transfor-
mation are given by

n
A()"]y"'ykn;Zkl’"’?zkn) :=/dﬂSO(2n+1)(y)()\l,--',)&n)y n[zkA]yA
A=1

1 - 2n+ip—A—02(A)
-l > senoo) [T A0 orca)
01,00€S), A=1

! 24
= > det (6 X‘+B| B ka(a))’ A4 B=1 (2.57)
‘oes,

where the function 6! (k) is defined as

1 ifm<k<n,

o (k) = 2.58
n (&) { 0 otherwise. ( )
Note that for spinorial representations (A1 + %, R %), (2.57) vanishes identically:
1 1
A )\.1+§,...,)\,n+§;2k],...,2kn :0,
VieZ and Ay >--- =1, >0. (2.599)

Thus, Eq. (2.57) implies the following expansion rule for SO(3) character products in terms of
SO(2n + 1) characters in Dynkin label notation:

H [2kaly,

Z [Z],...,anl,zgn]yA(zk],.'.,2kn;£] +£2+"'+£n,g2+"'+£n,~~,£n)'
(EZ>O

(2.60)

The inverse decomposition formula for an integer spin representation follows from the
SO(2n + 1) Haar measure (A.10):

[Ela"' n— 1725 ]y

ZHZkAyAA(£1+£2+ el la Ly s 2K, 2k,

'O(y) keZ”/ A=l

2.61)



72 D. Liist et al. / Nuclear Physics B 876 (2013) 55-146

where p(y) is defined as in (A.11) and £ = (¢4, ..., ¢,) € ZX
Similarly, one can convert spinorial SO(3) character products to SO(2n + 1) characters via

A, oo A 2k 1,0 2k + 1)

n
=/dM50(2n+1)(y)(/\1,---,kn)y ]_[[ZkA + 11y,
A=1

l n
- — Z de t< T B(ka(A) + 5)) . (2.62)

s, A,B=1
For integer spin representations of SO(2n 4 1), (2.62) vanishes identically:
Ay oA 2k +1,...,2k, + 1) =0, VAeZ"andA; >--->= 2, 20. (2.63)

We thus have the following decomposition for products of spinorial SO(3) characters

n

[[2ka+ 10y = D [lr, s bu, 26, + 1],

A=1 (eZ’;O
1
><A<2k1+1,.--,2kn+l;€1+€2+-~-+§€n,€2+~--
1 1
5l 5 ), (2.64)
with inverse
(€1, e, 260 + 1 > H[ZkA+l]y
p(y) ke,

1 1
><A(El+€2+--~+€,,+§,£2+--~+€n+5,...,€n

1
+§;2k1+1,...,2k,,+1>. (2.65)

2.4.2. Generating function for the multiplicities
According to (2.53), the bosonic spacetime partition function in 2n + 2 dimensions depends
on Lorentz fugacities through the factor

D A A 2k, 2k )g R

Kok 20
2n+A ki +ngky
= Z det(6];,” 2+B| (kA))A g T
K1k =0
241 "
_det( Y optaa” (kA)q”AkA> : (2.66)
kA>0 A,B:l

Let us apply this to (2.53) to compute GB SO(Z"H)( ).For A1 = --- > X, > n—1, the argu-

.....

ment in the absolute value is non-negative and SO



D. Liist et al. / Nuclear Physics B 876 (2013) 55-146 73

Z AL, o dn; 2k1, ., 2ky)g Ttk

klyeoskn >0
n
— 1_[ an()»AfA+]) 1_[ (q"c —q”B)(l _qnc+n3)
A=1 1<B<C<n
foray > >x, >n— L. (2.67)

It is pointed out by [8] and can be checked directly that the contribution from A, <n — 1 to the
bosonic string partition function is zero. Therefore, we have

n
B,SO(2n+1 — 2 — 1 _
G}Ll (ﬂ+ )( )_(q q) —2n § | |(_1)nA ](l_an) an()\.A A+1)+2nA(nA 1)
nezl A=1

< 1 e g —gem), o)
1<B<C<n

forall \y,..., A, €Zand Ay = --- > A, = 0.
2.5. The contributions from the NS and R sectors in d > 4

The contribution from the NS sector can be obtained by taking a product of n copies of (2.25):

SOQn+1
XNS( i )(CI,J’)

n
SO0@3
= ]_[ XNS( )(q; ya)
A=1

= (qu) Z Z 1_[( 1)"A+1 mA+ )(1 _q"A)q%[”A("A*I)erE\]

mezgoneZ A=1
o0 n
x Z 1_[ (an\kA—mAl _ q”A(kA+mA+1))[2kA]yA. (2.69)
kel A=1
Similarly for the contribution from the R sector, the product of n copies of (2.42):

SO(2n+1
X’ Vg, y)

n
NYE)
=[] x (g1 y)

A=1

=S @GOS" Y Y. 1_[( D1 = gt (1= g"4)g =D r At

meZ>OneZ A=1

n
% Z 1_[ (an‘kA*mA| _ an(kA+mA+2))[2kA + 11y,- (2.70)
keZ">0 A=l

The unrefined partition functions can be written as
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internal Nog =2 SCFT @ ¢ =9
spacetime SCFT |  femm i e e ]
XSO(3) XSO(B) & ¢ =1 sector ¢ = 8 sector
NS v AR with U(1); with U(1),

Fig. 3. Universal SCFT ingredients of Ny = 1 scenarios.

_as V31, q)"
xﬁg(z"“)(q, {yi= 1}) =q WSW @71)
SO(2n+1 (1, g)"
XR et )(CI, {vi= 1}) = W @272)

3. Internal SCFTs

The SCFT description of four- and six-dimensional string compactifications with AVyy =1,
Nag =2 or Ngg = (1, 0) spacetime SUSY comprises universal sectors with enhanced N3y =2, 4
worldsheet SUSY [30-33]. The purpose of this section is to collect the associated charged char-
acters, starting from the expressions given in [34,35] but adapting the dependence on fugacities
s, x and z of the internal symmetries to the R symmetries of the spectrum.

3.1. Nag =2 worldsheet superconformal algebra at c =9

The internal SCFT universal to any four-dimensional string compactification with AVyy = 1
spacetime SUSY enjoys N, = 2 worldsheet SUSY. The resulting model independent partition
function receives contributions from characters of the N3y = 2 superconformal algebra with
central charge ¢ = 9. Its representations are characterized by the conformal weight 2 and the
U(1) charge ¢ of their highest weight state. The representations needed to describe Ny = 1
compactifications have (h, £) = (0,0) in the NS sector and (h, £) = (3, 3) in the R sector.

The N>g =2 SCFT at ¢ = 9 can be split into two decoupled sectors, each of which enjoys a
U (1) symmetry. The first one carries central charge ¢ = 1 and can be completely bosonized; let us
denote the U (1) occurring in this sector by U (1) and its 2 = 1 current by 7;. In addition, there
exists a second decoupled sector with ¢ = 8 which involves conformal primaries g* of weight
‘3—‘, see e.g. [33]. It enjoys an independent U (1), under which the g* have opposite charges. The
¢ =9 supercurrent can be split into two components Gijfn that carry opposite charges under both
U(1); and U (1), and factorize into conformal primaries of both sectors. The following Fig. 3
summarizes the decoupling SCFT ingredients.

Spacetime symmetries are generated by BRST invariant 2 = 1 SCFT operators, and it turns
out that only the current 71 + [J> associated with the diagonal subgroup S(U(1); x U(1)2)
is BRST closed. Hence, only S(U(1); x U(1)3) can take the role of the U(1)g symmetry of
the spectrum. Accordingly, we have to define the charged internal character with respect to the
diagonal current J; 4+ J> to see the U (1) at the level of the partition function.’

7 We cannot give a local representation of > in terms of the g* fields from the ¢ = 8 sector, but we can make
its existence plausible through an analogy: The currents of the SO(d) Lorentz symmetry schematically read y* " +
x5 xv] Even though X* itself is not a conformal field involved in the construction of the spectrum, the product
X5 x] is inevitable to form a BRST invariant completion of the & = 1 primary ¥*v". The addition of X[*3X"! for
the sake of BRST closure is the spacetime SCFT analogue of the 7> current.
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We denote the fugacity for charge under the S(U (1)1 x U(1)2) = U (1) subgroup by s. On
the level of the charged characters, this leads to a different fugacity dependence compared to
(3.15)% of [34] where the internal charge is defined through the 7| eigenvalue rather than the
J1 + J> eigenvalue.’ For instance, the supercurrent components are products of operators from
both sectors, so G, are charged under both U(1); and U (1), but neutral under the diagonal

int
subgroup S(U (1)1 x U(1)2). The le](s)’(g) factors in the following character formulae are due to
the oscillator modes of the stress energy tensor, the internal current and the supercurrents. U (1) g
neutrality of the latter forbids an s dependence at this point and sets the second argument of the

leg(é) characters to unity.

3.1.1. The NS sector
The internal character in this sector is given by

qp2+p—%32p

Nog=2,c=9 503
RS h=6=0@ ) = (1= Dxxg (@ DY — =
pez (L+gP7 )1 +4¢772)

qp2+p—%s2p

=(¢; (1 —q)03(1,q)
’ ,2(1+q1’—%)(1+q1’+%>

=1+q+Q+2)¢"7 + B +s¢° + 4+ 529" + (6 +25)g°
+ (10 4+ 4s2)g7" + (154 652)¢™ + (20 + 852)¢”/
+ (28 4 1252)g° + (42 4 1955 + 54)q'1/?
+ (59 + 2755 + 254)q% + (78 + 3657 + 254)q"*/?
+ (107 + 5152 + 3s4)q” + 0(¢"7?), (3.1)

where we have introduced the notation

s"+s™ n>0
Sy = ’ ’ 3.2
' {1, "0 32)

to compactly represent the fugacity dependence.
The unrefined internal character (i.e. setting s to unity) can be rewritten in terms of modular
functions as follows:

=0 P3(1,
Riso@s =1 :‘11/8%[03(1, ) —q'* (1. 4%)]. (33)

8 The R sector analogue of the NS character (3.15) is not explicitly displayed in [34] but must be inferred through
spectral flow.

9 The author of [34] denotes by z the fugacity of charge under U(1). For us, it makes sense to rescale the units of
internal charge by 3/2 which amounts to the correspondence s <> 23/2 (in addition to the aforementioned inclusion of
J>2). Moreover, the character in (3.15) of [34] is defined as the trace over qLO_C/24, with ¢ =9, instead of qLU. The
reason we consider the latter is because we are dealing with critical string theories, and so the total central charge of all
matter and (super) ghost sectors taken together vanishes; this explains the presence of q_g/ 24 factor in (3.15) of [34] but
notin (3.1).
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3.1.2. The R sector

The internal character in this sector is given by

qp2—1S2p—l

+g7) (1 +4g7)

Nag=2,c=9 50(3
KRS s n @D =0-x @ DY (1
PEZL

2_9

(1+¢P)(1+gP~h

= (x5 —)(l,q) Y

peZ
=51+ 2519 + 65197 + (253 + 1451)g” + (4s3 + 30s1)¢*
+ (1083 4 6251)q° + (2453 + 12251)g® + (5053 + 230s1)g”
+0(q®). (3.4)

The unrefined internal character can be rewritten in terms of modular functions as

Nog=2,c=9 —17a%2,q)
Xjhea/si=32 (@5 =1 =q 1/471)3[192(17 9*) —q"*03(1,4%)]. (3.5

3.1.3. Some features

Let us discuss some properties of the above internal characters.

e The units of U (1) charge are normalized such that all integer powers of s occur. Accord-

10

i
eijﬁmH

ing to the infinite sums within (3.1) and (3.4), even powers s, firstly occur along with

qp2+p_1/2, i.e. in the NS sector at mass level p> 4+ p — 1. Odd powers s2p—1 of the U(1)g

5/8, i.e. in the R sector at mass

fugacity, on the other hand, firstly show up at power q”2_
level p? —1.19

The unrefined internal R character (3.5) can be derived from the NS counterpart (3.3) by
exchanging 1, and 93 and multiplying by an overall factor g —3/8.

In contrast to their cousins in [34], the charged characters (3.1) and (3.4) of the NS and R
sector are not related by spectral flow because the internal fugacity s is defined through the
U (1) symmetry current J1 4+ J> and not through the bosonizable U (1) current J.

Both of the unrefined internal characters (3.3) and (3.5) are not modular invariant. This can

be seen from the modular transformation g — § = e~271/7,

¥ (1, g) = v4(1, g)vV —iT, n(q) =n(g)~v —ir,
93(1, ) = 93(1, ¢)v/—it. (3.6)

lm2+lm+const . : ‘gs . . .
The onset of the s;; at g power g4 2 might seem counterintuitive in view of the bosonized operators

3.2 .
(with H a free boson) which contribute s,,¢ 8™ to the character. The mismatch between the g exponents

}—‘mz + %m and %mz is caused by the fact that generic contributions to s;; at fixed U(1)g = S(U (1)1 x U(1),) charge
stem from composite fields with both U (1)1 and U (1), charges. The operator of lowest conformal weight along with
some s,, >3 is charged under both U (1) and U (1);. Since the internal fugacities in [34] only count U (1) charges and
are insensitive to U(1),, the leading g power associated with some sy, in the characters of the reference can be directly

traced back to the aforementioned operators e

N
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internal Nog =4 SCFT @Q ¢ =6
spacetime SCFT |  Fecoommmmmme e i me e

XSO(S) )(SO(5) & ¢ =1 sector ¢ =5 sector
NS AR with SU(2); | with SU(2),

Fig. 4. Universal SCFT ingredients of Ngg = (1, 0) scenarios.

3.2. Nag =4 worldsheet superconformal algebra at c = 6

The existence of eight supercharges in four or six-dimensional spacetime implies that the
universal part of the internal SCFT contains a sector with central charge ¢ = 6, enhanced Npy =
4 worldsheet SUSY and SU(2) Kac—-Moody symmetry at level 1. The ¢ = 6 representations
contributing to the NS sector and R sector of AVyy =2 and Mgy = (1, 0) spectra are characterized
by values (h, £) = (0,0) and (h, £) = (Alf, %), respectively, of the conformal weight / and the spin
£ with respect to the SU(2) Kac—Moody symmetry.

The ¢ = 6 SCFT is governed by N>y = 4 worldsheet SUSY and SU(2) Kac—Moody symme-
try at level kK = 1. In the notation of [33], the supercurrent components are built from two spin
fields A!-? of conformal weight % which form a doublet under the SU(2); Kac—-Moody currents
JA=1.2.3 and additional weight % fields g1 2 which decouple from the J A The g1,2 form a dou-
blet under another SU(2), which is embedded into the SCFT sector decoupling from [J4. Fig. 4
summarizes the mutually decoupling SCFT sectors involved in Ngg = (1, 0) compactifications:

We shall use charged characters in the following where the fugacity r is defined with respect to
the diagonal subgroup within the two decoupling SU(2)’s acting on the A!-? and g; » doublets. In
other words, the insertion into the character trace is the BRST invariant sum of the two SU(2)1 2
Cartan generators associated with the SU(2) g symmetry of the spectrum. This makes sure that
the diagonal component A'g; 4+ A?g> of the supercurrent is a singlet of the diagonal SU(2), as
required by the BRST invariance. The character formulae (21) and (22) in [35]'! are therefore
slightly modified in their » dependence.

3.2.1. The NS sector
The internal character in this sector is given by

1
m—y _ r—2

Nog=4,c=6 S0(3 im24d omd
KRS o @) = xng g 1) Y g Al
meZ 1+qm 2

3 = -0 =) 10,1
=(g: ) 93(1, q)g[zklr i baran
= [0, + [2]rg + (121, + [01,)¢*"* + (121 +2[0],)¢>

+ (2121, + 201,)¢>* + (4121, +2[0],)¢°

+ (141, + 5021, +4101,)¢"/% + (241, + 6[21, + 7[0],)¢*

+ (2141, + 10[2], +8[01,)¢”* + (3141, + 16[2], +9[0],)¢°

+ (6141, + 21121, + 15[01, )" /> + (9141, +27(2], + 23[0],)¢°

11" Note that the sign in the second pair of brackets in the numerator of Eq. (24) of [35] should be +-.



78 D. Liist et al. / Nuclear Physics B 876 (2013) 55-146

+ (1241, +39[2], +27(0],)¢ "3/

+ (6], + 17[4], + 56[2], + 33[0],)q” + O(g"*/?). 3.7)
The unrefined internal character for the NS sector can be written as
2
Nogmto=6 . 1893(1,q) s (1t
AIns o o@r=1D)=q " ———|1-2iqg " , T, (3.8)
NS,h=0,£=0 n(q)?, 2
where 4 (u, 7) is an Appell-Lerch sum defined in (A.20); for our purpose, we have'”
1.2 1
1+ i q2™ 8
u( 5 ,r)=—ﬁ(1 DD Eemn (3.9)
34 meZ 1+ q 2

where we have used the fact that 91 (e27/1+9/2 ¢) = ¢g=1/895(1, ¢).

3.2.2. The R sector
The internal character in this sector is given by

-2
Nog=d,e=6, .\ _ _SO@3) 14" =TT L2yl
Xehetbie=t @) = X (q’l)n%r T

S k+1
_1 3 =)0 =q"") 12,3,
=gq 38(q; (1, 2k + 1 22
a5 (q: )0 Da( q)é[ e sy ey

=11, +2[11,q + (2031, +4[11,)¢* + (4[31, + 10[11,)¢°
+ (10031, +20[11,)g* + (2[51, + 22[3], + 38[1], )¢’
+ (6151, + 4431, + 72[11,)¢° + (14[5], + 86[3], + 130[1],)g’
+0(q%). (3.10)

The unrefined internal character for the R sector can be written as

Noy=dic=6 92 (1,9) (4’"—1> Lin(m+1)
ir=1= 2
Xen=t.e=3 )= @y 2 T+q7 )7

mez

_ .9 |:<]_ 2 ) ;m(m+1):|
n(g)? ,EZ r+qm)?

o —1/8 (1, 4)2

=q¢ VB 11— 2ig"Bu(1/2, )], (3.11)
n(g)? [ ]
where we have!?
1
i qjm(m+1)
1/2,7)=— , 3.12
n(1/2,7) MWZ e (3.12)

mez

where we have used the fact that 91(—1, g) = v2(1, q).

12' This function is also closely related to the function /3(g) introduced in [35-37].
13 This function is also closely related to the function /7 (g) introduced in [35-37].
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Some features

e According to Appendix A, characters [n], of SU(2)r follow the same highest weight no-
tation as for SO(3), i.e. we have [1], = r + r~! for the fundamental representation and
[n], = Z;r:né 2n P ¥ in the general spin n/2 case. Again, the infinite sum representations
allow to read off the lowest level where individual SU(2)g representations contribute: In-
teger spin representations [2k], firstly occur at power qkz/ 2+k=1/2 "je. at mass level'*
|k?/2 4+ k — 1/2]. Spinorial representations [2k + 1], on the other hand, firstly show up
at gk’ /2+3k/12=1/4 i & at mass level k(k + 3)/2.1

e Observe that the unrefined internal characters in both NS and R sectors involve Appell-Lerch
sums, which are mock modular forms. Since the characters and are holomorphic in ¢, it is
immediate that they are not modular invariant. Also, as before in the N>y = 2 SCFT, the
relation between NS and R characters through spectral flow is absent due to the adaption of
the internal fugacity to the SU(2) g symmetry.

4. Spectrum in N3 = 1 supersymmetric compactifications

This section opens up the main body of this work where the SCFT ingredients introduced
so far are applied to counting universal super-Poincaré multiplets in the perturbative string
spectrum.'® We start with the phenomenologically relevant and mathematically most tractable
Nag = 1 supersymmetric scenario. Its SCFT description requires the internal sector with en-
hanced N,y = 2 worldsheet SUSY introduced in Section 3.1, independently on the compactifi-
cation details. The BRST invariant completion of the internal current takes the role of the U (1) g
symmetry generator. Lorentz quantum numbers enter through the partition functions (2.25) and
(2.42) of the spacetime SCFT for the d X* and {* oscillators, expressed in terms of characters
of the massive little group SO(3) in four dimension.

The universal part of the A4y = 1 spectrum is built from both spacetime oscillators and inter-
nal operators. On the level of its partition function XN4d =1 (g;y,s), this amounts to forming a
GSO projected product of NS and R characters from the spacetime- and internal SCFT, see (3.1)
and (3.4) for the latter. In a power series expansion in g, the coefficient of the n’th power g”
comprises characters for the A4y = 1 super-Poincaré multiplets occurring at the n’th mass level
with m? = n/a’. The aforementioned massive supercharacters are functions of SO(3) fugacity y
and U (1) g fugacity s.

The fundamental Ny, = 1 multiplet'” consists of 2 real bosonic degrees of freedom and a
Majorana fermion with 2 real fermonic on-shell degrees of freedom after taking the Dirac equa-
tion into account, see e.g. [38]. The two real bosonic degrees of freedom can be complexified

14" The floor function |- picks out the nearest integer smaller than or equal to its argument.

15 The lowest g power along with some SU(2) g representation [n], is generically caused by an operator charged under
both SU(2)1 and SU(2);. That is why one cannot identify these leading ¢ exponents with the conformal dimension of a
simple CFT operator such as an exponential eFi4H | see the footnote at the end of Section 3.1.

16 The methods within this work are adapted to the representatives of physical states in the canonical superghost pictures:
After stripping off the superghost contributions ¢9% from the h = 1 vertex operators (with ¢ = —1 and hle~®?] = % in
the NS sector as well as ¢ = —% and hle=%/2] = % in the R sector), this amounts to counting operators in the matter
part of the SCFTs with weight & = % in the NS sector and h = % in the R sector.

17 As we shall see below, the fundamental multiplet does not appear on its own in both massless and massive spectra.
Representations appearing in the massive spectrum arise from certain non-trivial products with the fundamental multiplet.
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to yield a complex scalar and its complex conjugate; they transform as a singlet under the little
group SO(3) and each of them carries opposite R-charges 41 and —1. On the other hand, the
two real fermonic degrees of freedom transform as a doublet under the little group SO(3) and
each of them carries zero R-charge. Thus, these 2 + 2 states yield the character

ZWNga =1 =[1ly+ (s +s7"). 4.1)

Any other massive representation of Nag = 1 super-Poincaré is specified by the little group SO(3)
quantum number n and the U (1)r charge Q of its highest weight state or Clifford vacuum. Its
SO(3) x U(1)g constituents follow from a tensor product:

[n. Q] :=ZWNaa = 1) - s2[nly = s2[nly ([1ly + (s +57'))
_ {SQ([H+1]+(S+S_1)[I’1]~|—[I’I—1]) forn > 1,
T sQq1 + s £s7HIo) forn = 0.

The super-Poincaré character [n, Q] corresponds to 4(n + 1) states of spin ”erl , 5 and (if n # 0)

4.2)

T that can be generated from a Clifford vacuum with spin n/2 and U(1)g charge Q + 1.'®
Note that Q is even whenever the maximum spin quantum number n + 1 is.
In this setting, we find the (GSO projected) Ny = 1 partition function

V=G v, 8) = 08 0 @ )+ ™ 50 @3 3 ), (4.3)
where GSO projection removes half odd integer mass levels o’m?* € Z— % from the NS sector and
interlocks spacetime chirality with U (1) g charges in the R sector. We can capture this projection
through':

Nag=1
xNs” |Gso(‘1)
I 1 3 N SO0(3 i Nog=2,6=9
=54 2[XNS( )(‘1 y)Xsti oe o(q ) — XNS( )( 2m‘1’y)Xstriz oCe 0( g s)]
N 1 3 Nag=2,c=9
e |GSO(Q) _XR ()(‘I )’)XR Zd:3/8c,g:3/2(‘]§s)- 4.4

In order to compactly represent the leading terms in a power series expansion of the partition
function XNM =1 let us introduce the shorthand

i [[n’+QH+[[n’_Q]]’ Q#O’
HmiQW_{Hm%, 0=0

which exploits that U(1)g charges =0 always appear on symmetric footing. The pairing of
supermultiplets with opposite (non-zero) U (1)g charges combines Majorana fermions as they

4.5)

18 In this terminology, the first label of [r, Q] refers to the average spin of the SO(3) irreducibles. We deviate from
the common practice that supermultiplets are referred to through the highest spin therein. The supercharacter [3, 0] =
[4]14 2]+ (s + s_l)[3], for instance, describes U (1) g neutral bosons of spin two and one, and two massive gravitinos
of opposite U (1) g charges.

19 The formula for the GSO projected R sector is reliable for positive powers q>1 only and inaccurate at the massless
level: The coefficient of qo in XQ/M:I lgso is %(y + y_l)(s +5~1) instead of the desired value ys + (ys)_l. One can
just add to the former % (y— y_l)(s —sHto compensate this mismatch. This artifact of the mismatch between massive
and massless little groups does not affect the main focus our analysis — the massive particle content. Indeed, the character

ys corresponds to the left-handed gaugino and the character (ys)_1 corresponds to the right-handed gaugino; they carry
opposite R-charge +1 and —1 and opposite helicities +1/2 and —1/2.
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Table 2

The content of the first eight Nyy = 1 levels.

o'm? Representations of NVgz = 1 super-Poincaré

1 [3,0] + [0, £1]

2 [5.0] +[3,0] +2[2, £1] +2[1,0]

3 [7,0] + [5,0] + 3[4, £1] +5[3, 0] + 22, £1] + [1, £2] + 5[1, 0] + 3[0, +1]

4 [9,0] + [7,0] + 3[6, £1] + 7[5, 0] + 4[4, £1] + 2[3, £2]
+12[3,0] + 11]2, £1] + 2[1, £2] + 12[1, 0] + 3]0, £1]

5 [11,0] + [9,0] + 3[8, £1] + 7[7,0] + 5[6, £1] + 2[5, £2] + 17[5,0] + 18[4, 1] + 6[3, £2]
+31[3,0] +20[2, £1] + 6[1, £2] +28(1, 0] + [0, £3] + 15[0, £1]

6 [13,0] + [11,0] 4+ 3[[10, £1] + 7[[9, 0] + 5[8, £1] + 2[7, £2] + 197, 0] + 21[6, £1] + 8[5, £2]
+45[5,0] +39[4, £1] + 15[3, £2] + 723, 0] + 3[2, £3] + 58[2, 1] + 17[1, £2] + 64[1, 0]
+21]0, £1]

7 [15,0] + [13,0] +3[12, 1] +7[11,0] + 5[10, 1] 4+ 2[9, 2] + 19[9, O] + 22[8, 1] + 8[7, 2]

+51[7,0] +49[6, 1] +22[5, 2] + 108[5, 0] + 4[4, 3] + 105[4, 1] +43[3, 2] + 166[3, 0]
+5[2,3] + 115[2, 1] +38[1, 2] + 136[1, 0] + 6[0, 3] + 66[0, 1]

8 [17.0] + [15.0] + 3[14, 1] + 7[13.0] + 5[12. 1] + 2[11. 2] + 1911, 0] +22[10. 1] + 8[9.2]
+53[9,0] + 52[8, 1] +24[7, 2] + 125[7,0] +4[6, 3] + 135[6, 1] + 625, 2] + 254[5, 0]
+ 104, 3] +223[4, 1] + 1013, 2] 4 357[3. 0] + 21[2. 3] +274[2. 1] + [1.4] + 89[1. 2]
+289[1,0] + 7[0, 3] + 112[0, 1]

appear in the fundamental multiplet (4.1) to Dirac fermions. The content of the first Nag = 1
levels reads

1
KNa=l sy, ) = (y2 +y72+ E(y +y ) (s +s—1)>qo+ ([3.0] + [0, £1])q

24 states at level 1
4 massless states

+ ([5,0] + [3,0] +2[2, £1] +2[1, 0])¢*
104 states at level 2
+ ([7.0] + [5,0] + 3[4, £1] + 5[3,0] + 2[2, 1]
+[1, £2] +5[1, 0] + 3[0, £1])¢* + O(¢*), (4.6)

subleading orders up to mass level eight are summarized in Table 2. The explicit form of the
vertex operators at mass level one”’ can be found in Section 5 of [33] (Egs. (5.3) to (5.6) for
bosons and Egs. (5.14) to (5.18) for fermions) in the RNS framework, and Refs. [39,40] provide
their superspace description.

Character multiplicities up to mass level a’m? = 25 are gathered in Table 3 and in the tables
of Appendix B.1.

20 et us discuss about the states at the first mass level. The 24 total states consist of the following multiplets:

(1) The massive spin 3/2 multiplet [3,0]: it contains a massive spin 2 field with 5 on-shell degrees of freedoms
(OSDOFs), a massive spin 1 field with 3 OSDOFs, a massive spin 3/2 field with 4 OSDOFs, and a Dirac fermion with 4
OSDOFs; so we have 8 + 8 real OSDOFs in total

(2) The massive spin O multiplet [0, £1]: the two constituents [0, 1] and [0, —1] of the massive scalar multiplet
correspond to two massless chiral fields, @ and @ (not complex conjugate to each other) at Q = 1. The opposite
Q-charges are necessary to form an invariant mass term @@ in the superpotential. This multiplet contains 4 + 4 real
OSDOFs coming from two complex scalars plus two Majorana fermions; the latter are equivalent to one massive Dirac
fermion. Note that the spin O multiplet is also referred to as two spin 1/2 multiplets in [33].
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4.1. The total number of states at a given mass level

In this subsection, we focus on the total number of states present at a given mass level and
derive the novel asymptotic formula (4.17). These numbers can indeed be obtained by adding up
the dimensions of representations presented in Table 2. Our aim here is to compute such numbers
analytically and asymptotically for large mass levels.

The starting point is the unrefined partition function obtained by setting the fugacities y and
s in (4.3) to unity. The total number of states N,, at the mass level m can be read off from the
coefficient of ¢g" in the power series of XN“d:I (g;y=1,s=1).

Supersymmetry implies that

= o @y =1s =1 = 2" | 4o @ y =1, s = 1. .7
which can, of course, be checked directly using (4.4), (2.27), (2.44), (3.3) and (3.5). Since the
formula for the R sector is simpler, we proceed from there.

= Nayj=
N gy =15 = 1) =204 g @iy = Ls =)
SO@3 Noy=2,c=9
= XR Vg, y= I)XR,;ZILIZ3/8L,15:3/2(Q; s=1)
_ 292(1,51)2
=g = e [92(1.4%) = a1 03 (1.4 “38)

Indeed, the power series of XN‘W =l(g;y=1,5 =1) in ¢ reproduces the numbers presented in
the first column of Table 1. We mention in passing that XN““’ =l(g; y=1,s = 1) is not a modular
form.

4.1.1. The number of states at each mass level and its asymptotics
The number of states at the mass level m can be computed from

1 [ d
N,, = q

=5 WXN4[1:1(CI;Y=1,S=1), 4.9)

where C is a contour around the origin.

Let us compute the number of states Ny, in the limit m — oo. Since the integrand of (4.9)
is sharply peaked near ¢ = 1, we need to examine the behavior of XN‘W:] (g;y=1,s=1) as
q — 17.The ¢ — 1~ regime in question is related to the easily accessible ¢ — 0 limit

n@~q' s~ 1 9l ~1 g0 (4.10)

through modular transformation g = ¢>*i7 > § = ¢~ 271/7;
1
da-function:  D4(1,§) = 92(1, @)v/—it ~ —(1 — ¢)'*92(1, q)
2
= hl,~V2r(l-¢)7'? g1, (4.11)
1
Ss-function:  93(1,§) = 03(1, g)v/—it ~ ——=(1 — ¢)"/?93(1, q)
N2

= 0L ~V2r(l—g)" "2 g1, (4.12)
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1
n-function:  1(§) = n(q)V—it ~ E(l —9)'"*n(q9)

2
= @) ~V2r(l—gq) Pexp[ —), g1
6logg

Hence, we have

92(1,¢%) ~03(1,6%) ~vV2r (1= ¢?)'?, q—17,
andsoasqg — 17,
XN““:l(q; y=1,s=1)
2
~Qm) (1 = )P (1= g (1 - g?) 7 exp(—L).

Hence, as m — o0,

_ 1 dg ~1/2
~ 32~ 1 _ 2 _ . 1/4 _ 2
Ny ~ (27) 2m.y§q(1 )’ (1—q"*)(1-q°)
C

72
X exp(—@ — mlogq).

83

4.13)

4.14)

(4.15)

(4.16)

Observe that the argument of the exponential function has a critical value at gy =
exp(—m/+/m); this is the saddle point. The direction of steepest descent at this point is the
imaginary direction in ¢g. We deform the contour C such that it passes through g = go and tan-
gent to this direction. The leading contribution comes from expansions around g = gq in the

steepest descent direction. Writing ¢ = goe'?, we have

N ~ @) "32(1 = g)* (1 — g4) (1 = g3) '

€
! fde 7’ (i + 102 q0) 0
X — X —_—— — m(l 0 . € >
2 P i0 +logqo g40
—€

~ @)1 = g (1 — g/ (1 - g2)

1 ; m3/2
><eznﬁ—/deexp<——92+0(93)), e>0
2m b
—€

oo
- ) 1 m
~ 0201 = g0 (1 - 45 *) (1 - ) /ez”ﬁg/deexp(—
—00

~ ;T—zm_2 exp(2w/m), m— oo.

4.2. The GSO projected NS and R sectors

4.17)

In what follows, we compute analytic expressions of the refined partition function

XN“d =l(g: y, s) and discuss its asymptotic behavior.
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4.2.1. The NS sector
Let us write the partition function XN

o0 o0
Xlil\éd 1|GSO(q;y,s)=Z Z [Zk]vSZPFNS(CI) (4.18)
k=0 p=—00

=!gso(q; v, 5), defined in (4.4), as

where the function Flylsj (g) follows from (2.25), (3.1) and (4.4):

o0

FYS @) = (@: )01 — )g" +7~ 1Z( )" (1—¢ Z (" —

n=1 =i

_ m+l m+,
émz|: I-q 12)193(1,61)l 4y (I+gq 12)15‘4(1561)l i| 4.19)
(1+¢P72)(1 4+ ¢"2) (1—gP72)(1 —¢P*2)

n(k+m+1))

1
X —
54
This expression can be simplified further in the asymptotic limit Kk — oo. In this limit,

g"k=ml ~ gnk=m) and the dominant contribution in the summation over n comes from n = 1.
The summation over n can be asymptotically evaluated as follows (assume that m is finite):

Z(_l)n-i-l(l _ qn)q(’zl) (qn\k—ml _ qn(k+m+l))

~ i(—l)”“(l — q")q”(k_’")(l _ qn(2m+1))

k 2k
¢a-oi-¢®, _,
irgr 10

The summation over m can be evaluated by considering

—g* . (4.20)

oo
D@ (1= g ) (1= ) =g (1~ 9)a(Lg), 21

3 (14 ") (1 g2 ) = g7 (1 - g)9a(L ). (4.22)

In such a limit, the function F, ,F; (g) becomes

NS 24+ +k77 1_q2k

Fep@~ 3 @R - g7 EYEE
§ [ 93(1,9)> B 94(1,9)° ]
(+a7 DU +g75) (1 -gPH(1 —g7*h)

2 _3
~—<q D1 —gq) qr ok

2 2
X[ Bl g ] koo, (423)
(I4+¢7"2)(1+¢7*7)  (1—gP )1 —¢P*2)
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4.2.2. The R sector
Similarly the partition function le{v“d =1 lgso(q; y, s), defined in (4.4), can be written as

o o
0 aso@ =3 3 2k + 11,77 R (), (4.24)
k=0 p=—00

where the function F,EP (g) follows from (2.42), (3.4) and (4.4):

"

(I4+gP)(1 +4gP~1)
ad ad 1 1y2

X Z(_l)l’l“rl (1 _ qn)q(z) Z qj(m*i’j) (1 _ qm+])(qn|k7m| _ qn(k+m+2))'
n=1 m=0

(4.25)

R 1 —6
Fip@ = 5@ 4)’'1 —q) 9 (1, q)

In the limit K — oo, this function can be simplified further. The summation over n can be asymp-
totically evaluated as follows (assume that m is finite):

00
Z(_l)n+l(1 _ qn)q(’zl) (qnlk—ml _ qn(k+m+2))
n=1

~ i(_l)n-‘rl(l _ qn)qn(k—m)(l _ qn(2m+2))

n=1

k 2k
0= =g _, 2m+2
~ 1—g" )}, 4.26
(1+ qk)4 { ( q )} ( )
and the summation over m can be computed as follows:

o]

Z q%(m+%)2—’”(1 _ qm+l)(1 _ q2m+2) =(1—¢q)t(1,q). “4.27)

m=0

Therefore, we have the following asymptotic formula:
24 p—3
6 ¢TI0 -9’ g%
(1L +gP)(1+qP~H(1 + 45
2153
q" i —g)?
(L+gP)(A+gP~1)

9 (1, 9)*

R 1
Fip@~ 5@ q)

1 _
~ (g 2 92(1,¢)%,  k — oo. (4.28)

2
4.2.3. Combining both sectors

Combining the NS and R contributions from the previous subsections gives rise to the follow-
ing SO(3) x U(1)p covariant partition function

Nl gy =30 3 (ks FNS @) + 2k + 11,5277 FR (@)

k=0 p=—00
o0 o o

= ![2/«] (FES'@ + Zszﬂiff;(g)) +12k+11)s2p1 Fﬁ,,(q)},
k=0 p=1 p=1

(4.29)
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where s, is defined by (3.2). Even though the F; le) and F; R functions are known, the represen-
tation (4.29) of the overall partition function does not make Niq =1 SUSY manifest to all mass
levels. In order to do so, we have to combine SO(3) x U (1) g representations to supermultiplets
(4.2) and rewrite (4.29) as?!

XNM:I(‘]; y, S) — Z Z[[n’ :bQ]]M(XMd:l, [[n’ Q]]’ q) (430)

n=0 Q=0

This introduces a multiplicity generating function M (xN4=1, [, O], g) for the supermultiplet
[n, Q] appearing in the partition function XN‘W =1 To lighten our notation in the subsequent
steps, we shall use the shorthand

Gno(@ :=M(x*=", [, 0], q). (4.31)
By comparing (4.29) with (4.30), it is immediate that

Gn20(q) = Gans12041(q) =0, foralln>0and Q > 0. (4.32)

4.2.4. Recurrence relations

In order to relate the supersymmetric multiplicity generating functions G, ¢ to their SO(3) x
U (1)g relatives F, NS and F Rp we use (4.2) to rewrite (4.30) in terms of characters of irreducible
SO(3) characters and the fugacity s as

o0
Na=l(g: y, 5) =1[0] |:(G1,o +2Go,1) + Z 520(Go20-1+ G120 + G0,2Q+1):|
0—1

o
+) 12 [(G%_l,o +2Gou.1 + Gars1.0)
k=1

+ Z $20(G2u—1,20 + Goap0-1+ G po+1 + G2k+l,2Q):|
0=1

oo oo
+ Z[Zk + 1] Z $20-1(G2k20-1 + Gak1,20-2
k=0 0=1

+ Gok+1.20 + Gok+2,20-1), (4.33)

where G, ¢ is a shorthand notation for G, g (q).
Comparing (4.29) with (4.33), we have the following relations:

2Go.1(9) + G1.0(q) = Fy (q), (4.34)
Gak-10(9) +2G21(q) + Gaur1.0(9) = Fro (@), k>1, (4.35)
G020-1(q) + Go20+41(@) + G120(@) = Fyg(q). Q>1, (4.36)
Go-120(@) + G2k20-1@) + G 2011(9) + Gars120(q) = F (@),

k,Q>1, (4.37)

21 The symmetry of (4.29) under s — 51 guarantees that M(XNM:l, [n, 0. ¢) = M(XNM:l, [n, =01, q), so we
shall henceforth assume that Q > 0.
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G2%,20-1(q) + Gort1,20-2(q) + G2u+1,20(q) + Got2,20-1(q9) = F;EQ(CI),
k=0, Q0=>1. (4.38)
These relations are useful for computing a multiplicity generating function for a representation
[odd, even] (or [even, odd]) when the one for opposite parity is known. However, the recursion is

not powerful enough to directly determine all the G, ¢ in terms of F, ,?Ii and F, ,Fp. The following
subsection follows an alternative approach to determine the G, ¢.

4.3. Multiplicities of representations in the Nag = 1 partition function

Our aim in this subsection is to factor out the fundamental N3, = 1 super-Poincaré character
ZWNga =1 =[], +s5+ s~! and to compute explicitly the multiplicity generating functions
Gy, 0(q) for [n, Q] in

Mgy, =" > 1, 01Gu0(@). (4.39)

n=0 Q=—o0

Using the second equality of (4.2) and orthogonality of SO(3) x U (1) representations, we have

Gn,Q(q) = M(XN4d217 [[i’l, Q]]’ Q)

Naa=1¢,,.
Q X (q1 y,S)
2m?§ /dusoe)(y)[n]vs 4[1]y+(s+s_1)’ (4.40)

where C is a contour in the complex s-plane enclosing the origin. In order to proceed, we use the
geometric series expansion of the inverse Z(Nyy = 1,22

[y

1 1 1 "
[1]y+(s+s71) _s—i—s*l 1+ _[,_1]11 mzo( D (S+S71)m+l
S5

(4.42)

In what follows, we consider the contributions from Xé\g“d:lmso(q; y,s) and

X{Q\/“d =1 lgso(q; y, s) separately and then add up these results to yield the overall multiplicity
generating function defined by (4.39),

M(xNe=" Tn, 0].q) = M(Xé\gd Yesor [ 01.a) + M (xx R osor In- 01.9).

(4.43)
where XN |GSO are given by (4.18) and (4.24).
22 Note that % can also be written in another way as follows:
[y +(s+s—T)
1 o0
=Y (=D"s"  my. (4.41)

[y +G+shH =

However, we shall not take this approach, since otherwise this would lead to tensor products in (4.46) and (4.47) which
are harder to evaluate in comparison with our current approach.
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4.3.1. Multiplicities in the NS sector
The series expansion of (Z(Nag = 1))~! leads to the following NS sector contribution to the
multiplicity generating function of the supermultiplet [n, O]

M(XI{I\QM Yesor [n- €1.4)
=1
mly XNs lgso(g; v, s)
sz /duso@)()’) [1]y+ (s +s1)

(oo ) (o8] 1
=20 ) GV @
m=0 k=0 p=—00 T

s §2p

yg _—/d/LSO(3)(y)[n]y[1];1[2k]y~ (4.44)
1-

S

s SQ(S +S—1)in+1

[s|=1—€

We shall henceforth take C to be a circle centred at the origin with the radius 1 — €, with
0 < € < 1. The quantities in the curly brackets can be computed as follows:

1 %‘ ds §2P
2mi s s9(s + s~ Lym+l

[s|=1—€

— { (—1)%(Q_m_zp_l)(%(Q+mm72pil)) fOI' Q —m Odd and Q —I—m 2 2]) + 1, (445)

0 otherwise,
and
1 . .
/dlLSO(s)(y)[2n]y[1]’;1[2k]y _ { Tony1(m, sm +n —k) %fm ?s even, (4.46)
if m is odd,
/dMS0(3)(Y)[2n + 1 [117 [2k]y
:{Tz,,+2(m,%m+n+%—k) if m is odd, 4.47)
0 if m is even, ’
where

m m
T, m. k) = (k) - (k_p>. (4.48)

Note that (4.45), (4.46) and (4.47) are in perfect agreement with the selection rule

M(XMFI’ [21,20], ) = M(XNMZI, [2n+1,20 + 1], q) =0. (4.49)

The non-zero multiplicities of [2n,20 + 1] and [2n + 1,2Q] receive the following NS sector
contributions:
Naa=1
M(xns"™ lgsor [27.20 + 1], q)

oo oo Q+m Q
=Y 3> DR )( p>T2n+1(2m,m+n—k), (4.50)

k=0m=0 p=—00
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Nag=1
M(XNS4d |GSO’ [2n +1,20], q)
oo oo Q+m (Q tm—

_ _1\Q—-m— NS
=22, 2 VIR @( Ty,

p)Tzn+2(2m +1lm+n+1-k).
k=0 m=0 p=—00

4.51)

4.3.2. Multiplicities in the R sector
Similarly to the NS sector, the generating function for the multiplicity of the representation

[, Q] in the function xé\/“‘l:l lgso(g; y, s) is given by

M (xg Q= ]|GSO’ [n, 0].49)

1
4" lgso(q; y,$)

s [n]y
55 ?/dusoﬁ)(y)s—g [1]y+(s+s_1)

[s|=1—€

o0

o0 o0 ” 1
=22 2 CD"F,@5

m=0 k=0 p=—00

ds g2r-1
x f Ty} / dso NInly (117 12k + 1], (4.52)
ls|=1—€

with0<e <1,
1 %}‘ ds §2r=1
i s s9(s s~ Hym 1
[s|l=1—€
1 1 _
_ (_1)7(Q—m—2p)(2(Q+’Z1 2p)) for Q —mevenand Q +m > 2p, (4.53)
0 otherwise,
and

/dusoo)(y) 2l [11712k + 11, { Tongi(m, sm+n—k—1) %fm is odd, 454)
0 if m is even,

l _ . .
/dM50(3>(y) [2n + l]y[l]T[2k +1], = { Topt2(m, 3m +n — k) %fm ?s even, 4.55)
0 if m is odd,

where T, (m, k) is defined as above and the zeros once again confirm the selection rule (4.49).
The multiplicities of [2n, 2Q + 1] are given by

M (xx pa= 1|GSO’ [27,20 +1]. q)

o oo Q+m

=20 2. CLOTTHE @)

k=0 m=0 p=—00
<Q +m—p+1
X

o1 >T2n+1(2m+l,m+n—k). (4.56)

The multiplicities of [2n + 1,2Q] are given by
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M (xx 2= 1|Gso’[[2”"'1 20].49)

oo oo Q+4m

=)D > DHE"IR@

k=0 m=0 p=—00
(Q +m—p
X

>T2n+2(2m, m-+n—k). 4.57)
2m

4.3.3. Combining the NS and R sectors
Now we can assemble the NS and R sector results to obtain the full multiplicities of the
re . . N4d=1 . . ..
presentation [[n Q]] in x (q; v, s). First, it is clear that
G2,20(q) = Gont1,20+1(q) =0. (4.58)
The non-zero multiplicities of [2rn,2Q + 1] and [2n + 1, 2Q] are most conveniently presented
in terms of the shorthands

Mpn,204170m, p.k; q)

= (—1)Q‘m"’[Fl?,‘§<q>(Q +2’:1_ P ) Tonr1@m,m+n —k)

Q+m—p+1
_FIF,p(‘I)< 2m+11) >T2n+1(2l’l’l+1,m+l’l—k)], (4.59)

Mpny1,2070m, pok; q)
= (—1)9—'"—1’[FNS< >(Q e ”>T2n+z(2m +lmtnt1—k)

2m+1
+m—
+ F5p<q)<Q o F ) Toni2(m,m+n — k)} (4.60)

for the contributions fm[[.’.]] (m, p, k; q) of individual terms in the m, p, k triple sum to the multi-
plicity generating function. The result for [2n, 2Q + 1] supermultiplets is

Gon20+1(9)

oo oo QO+m

= Z Z Z Mpn20+170m, p. k3 q)

k=0m=0 p=—00

o0 o o0
= Z Z |: Z Mpon 20417 —p — 1.k @) + My 20417 (m + p. p. ki @)}
k=0m=0L p=0

0-1
+ ZW[[zn,2Q+1]](m,m+p+Lk;q)} (4.61)
p=0

whereas the multiplicities of [2n 4 1, 2Q] are given by

Gont1,20(q)

oo oo Q+4m

= Z Z Z Mpnr1,2070m, P, ks q)

k=0m=0 p=—00
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Z[Z{m[[2n+l,2Q]] m,—p = 1,k; q) + Mput1.20](m + p, p. k; )}

0
k=0 m=0L p=0
0-1

+ Zm[[2n+1,2g]](m,m+p+ l,k;q)]- (4.62)
p=0

4.4. Asymptotic analysis for the multiplicities

This subsection is devoted to the multiplicity generating function G, o¢(g) in the limit
n — oo. We shall present analytic expressions for their n — 0o asymptotics whose derivation
is deferred to Appendix C. The method essentially relies on identifying the dominant contribu-
tion to the triple sums in (4.61) and (4.62). The end result for multiplicity generating functions
G, 0(q) reads

G @~ (4.63)
2n+1209) ™~ ——————¢7 s s n— 0o, .
20 2%

(1-q)%q"3

Goupo+1(@) ~ ————
n2ot 2(q; 981 +q)

2,1
[ gV —q)
(14+4¢9)(1+4q2+h
with the function F (g, Q) given by

F(q, Q)
=1, 9)*[¢" %ui1(vq. O+ (D21 - ) (vi(Vq. Q) + ¢ w1 (7, 0))]
+93(1,9)*[~¢' " 2u2(Vq. Q) + (=D2(1 — @) (12(V7, O) + ¢*w2 (7, O))]
+94(1,9)*[¢" ™ Qur(=/q, Q) — (D2 — @) (v2(—/7, Q) + ¢*wa(—/7, O))]-
(4.65)

92(1,9)° = F(q, Q) — Fq, Q+1)] (4.64)

The three pairs of functions u;, v; and w; correspond to the three summations in (4.61) and
(4.62):

o0
3,2
ui(q. Q)= q*"*?

p=0

o0

2

us(g, Q) =)y ¢*"*Y
p=0

1— q4p+4Q+6
(1 4¢P ) (1 +g2r T4y’

1— q4p+4Q+4
T+ g2 D(1 + g7+’

(4.66)

2 _1y2
(g Q)ZL%J P72 (A +g3? (0 oo (1+9)°
- 2p 3 pl/2.p+1  4q ’

2p—2 2
& A+ (T +g7)
2
10/2 (1+q)q2p2(]+q2)2p< 0 ) |:1,Q+1,2p+1Q.(1+CI)2i|
3 — |

v204. 0) = pz;) (1+¢2P~H(1 +g2rtH \2p +1 prlp+32 T 4q

(4.67)
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-1 2_ -
10 0) = i QX: (_1)p+lql+2(l+m+p) 2m (1 +q2)2m(Q 22’1 p)
HeE (1+ 2P (1 g2050) ’

m=0 p=0

0 0- 1( 1yp+! 2(m+p+3)2—2m 1 2\2m+1(Q—1-p
q (14+4g°)
wag. Q=g 3 Crian'). (4.68)

m=0 p=0

(14 q1+2m+2p)(1 + q3+2m+2p)
Note that the leading orders in the power series are

2
Gont120(@) ~q" 2P Gaunpii(g) ~g" LT 4 0, (4.69)

i.e. the supermultiplet [2n + 1,2Q] firstly occurs at mass level n + Q(Q + 2) whereas the
[2n,2Q + 1] multiplet firstly occurs at mass level n + Q% +3Q + 1.
For reference, we list the leading g powers for the G, _. ~, ¢ regime for some small values of
the U (1) g charge, obtained by expansion of (4.63) and (4.64): firstly for even values Q € 2N
Gant1,0(q) ~ q"(1+q +7¢* +19¢° + 53¢* + 133¢° + 328¢° + 7524
+1689¢® +3635¢° + 0(¢')),
Gant12(q) ~ "3 (2+ 8¢ + 249% + 73¢° + 187" + 467¢° + 1090¢°
+2457¢" +5314¢% + 0(¢°)),
Gant1.4(q) ~ q" (2 + 10g + 36¢% + 110¢> + 306¢* + 773¢° + 18614°
+4245¢7 + 93274 + 0(¢?)),
Gant1,6(q) ~ q"5(2 4 10g + 38¢% + 124¢° + 352¢* + 9284° + 2282¢°
+5335¢" + 0(q%)), (4.70)

and secondly for odd values Q € 2N — 1

Gan1(q) ~ "™ (34 5q +22¢% + 53¢° + 150" + 345¢° + 836¢°
+1824¢" +4011¢® + 0(g")),
Gan3(q) ~q" 3 (44 11g +46¢% + 117¢° + 331¢* + 7844°
+1876¢° + 413397 + 0(¢%)).
Gan,5(q) ~ q" ™ (4 + 12 + 55¢% + 150¢° + 437¢* + 10784°
+26404° + 595197 + 0(¢%)).
Gan7(q) ~ q" 1 (4 + 12q + 56¢% + 159¢° + 474¢* + 1197¢°
+29944° + 68827 + 0(q%)). @.71)
Note that the general formula greatly simplifies at U (1) g charges Q =0and Q =1,

n

7 q)6 { (1= )%q (1201, 9)°
— [u2(V@)93(1, ) — uz(—/q)94(1, 9)?])

1(1—¢g)3
4(1+q) PREDNGE q)} n — 00, (4.72)

Gont1,0(q) ~




D. Liist et al. / Nuclear Physics B 876 (2013) 55-146 93

(1—q)3q""'T _s 93(1, q)° da(l, ¢)?
G2n,l(‘])NW 2 1 . 1 1
43 9)3% (I+¢ (1 +q2) (—-g )1 —q?)
1 1
- Eq_?‘ﬁz(l,q)2 - q_% 1 J_rZ(m(«/E)ﬁz(l,q)2
— [u2(V/@)93(1, @) — ua(—/q) 041, q)z])} (4.73)

where u;(q) = u;(g; 0), see the first subsection of Appendix C.
4.5. Empirical approach to Nyg = 1 asymptotic patterns

In the previous subsection, we have derived the large spin asymptotics for multiplicity gener-
ating functions Gy, ¢ (q) of individual Nig = 1 multiplets (at finite Q while k — o0), the main
results being (4.63) and (4.64). The asymptotic formulae can be viewed as the supersymmetric
generalization of truncating the infinite sum expression (2.10) for the SO(3) multiplicity gener-
ating function in the d = 4 bosonic partition function to its n = 1 term. In [8], this n = 1 term is
interpreted as the leading (additive) Regge trajectory of unit slope, followed by an infinite tower
of sister trajectories of fractional slope and alternating sign.

Let us borrow some notation from Eq. (6.2) of [8] and expand the G, ¢ (¢) in an infinite series
of trajectories ty:

2 2 2
Gont120@) =4"1.%@) — 4" 5% @) + ¢ 5% q) — -
o0
— 2
=Y (=" ),
=1
2 1 2 1 2 1
Gon20+1(@) =4"1. (@) — 5% (@) + ¢3¢ (g) -

=S (=)0 ), @74)
=1

It is not obvious that the patterns observed in [8] for non-supersymmetric theories persist for the
counting of super-Poincaré multiplets, i.e. that the spacetime partition functions of the reference
preserve the nested structure in (4.74) after multiplication with the internal characters. At any
rate, all our AVyy = 1 data suggests that both of tL,z Q(q) and 152 QH(q) are power series in g
with non-negative coefficients. Our analytic results (4.63) and (4.64) identify the first coefficient

functions 71(gq) in (4.74):

1— )22
22(g) #m,gx @.75)
1—q)% 2
112Q+1(q)_ (1-9)7q

C2g; 9% (1 +q)
[ g1 — g)
(1+g2)(1 +g2+h

The methods presented in Appendix C and applied in the previous subsection are not suitable
to extract subleading Regge trajectories 7>2(q), i.e. Nag = 1 analogues of n > 2 terms in the
sum (2.10). Instead, we shall rely on an empirical approach, more specifically on explicit results

92(1,9)* = Flg, Q) — F(q, Q+1)]- (4.76)
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obtained from a supercharacter expansion of the partition function (4.4) up to the 25th mass
level.

As an illustrative example, let us first of all investigate the family of Q = 0 supermultiplets:
The following Table 3 gathers [2n + 1, 0] multiplicities in the first 25 levels. Numbers marked
in red directly correspond to the leading trajectory rlo (g) whereas those in blue are additionally
affected by the subleading trajectory 'L'g (g). Given the leading trajectories (4.75), our data from
Table 3 can be used to determine the following subleading behavior for Q = 0 multiplets:

Gant1.0() ~ q" (14 g +7q% + 19¢° + 53¢* + 133¢° + 3284°
+752¢"7 4+ 1689¢% + 3635¢° 4+ 7642¢'° + 15608¢'! + 3123542
+61115¢" +117513¢" +221927¢"5 + 41277846
4756372 "7 4+ 1367753¢' + 24418494 + 43091324
+7520092¢%" +12989357¢% 4 22216885¢>% + 376519709
+63252874¢% +---) — ¢*" (2 + 8¢ +26¢% + 784> + 2144 + 5484°
+ 1330¢° 4 3080g " + 6872¢% + 14832¢° + 31102¢'" + 635744 "
+127020g'% + 248590 % + 477 504¢ ™ + - )
+¢¥ (1 +4q + 19¢% + 61¢° + 187¢* +503¢° + 1294¢° 4 31134
+7217¢® 4+ 160364° +34584¢'0 + - .-
—q*"2(2 4 10g + 38¢% + 124> + 364¢* +978¢° +24764° + - - )
+ ¢ (1+4g +214° +72¢3 +-- )+, n— 0. (4.77)
The first term linear in g" simply reproduces (4.72) for r]Q:O(q) whereas higher powers of g"
allow to read off subleading T£Q>=20 (g) to certain order in ¢:

t270(q) = ¢ (2 + 8¢ + 2647 + 784> + 214" + 548¢° + 1330¢° + 3080¢ " + 6872¢°
+14832¢° +31102¢'° + 635744 + 12702042

+248590¢ '3 + 4775049 + - ). *478)
2270(q) = q(1 +4q + 19> + 61¢° + 1874* + 50347 + 1294¢° + 31134

+7217¢ +160364° + 3458440 +-..), (4.79)
©27%(q) = (2 + 10q + 38¢% + 124¢° + 364¢* + 978¢° +2476¢° + - -, (4.80)
W2 = > (14+49 + 214> + 7247 + ), (81

Determining higher order terms in the rZQ;;) (q) would require O(q2°) parts of (4.4), this is where
we stopped the explicit evaluation.

Similarly, the [2n + 1,2] and [2n, 1] multiplicities up to level ¢2° as tabulated in Ap-
pendix B.1 determine the associated 7;(g) coefficients to the following orders:

t272(q) = ¢* (2 + 11q +37¢% + 114¢> + 319¢* + 822¢° + 20004° + 46454
+10354¢® +22317¢° +46702¢"° +95210¢"" + 189656¢'% + - ),



Table 3
N4gq = 1 multiplets at U (1) g charge Q = 0.

a'm?  #[1,0] #3,0] #5,0] #7,0] #19,0] #[11,0] #1]13,0] #[15,0] #[17,0] #119,0] #[21,0]

1 0 1 0

2 2 1 1 0

3 5 5 1 1 0

4 12 12 7 1 1 0

5 28 31 17 7 1 1 0

6 64 72 45 19 7 1 1 0

7 136 166 108 51 19 7 1 1 0

8 289 357 254 125 53 19 7 1 1 0

9 588 757 557 302 131 53 19 7 1 1 0
10 1175 1548 1200 675 320 133 53 19 7 1 1
11 2293 3100 2482 1479 726 326 133 53 19 7 1
12 4399 6053 5028 3106 1611 744 328 133 53 19 7
13 8267 11620 9910 6373 3422 1663 750 328 133 53 19
14 15325 21855 19173 12713 7098 3557 1681 752 328 133 53
15 27949 40496 36322 24856 14297 7428 3609 1687 752 328 133
16 50306 73846 67720 47539 28216 15061 7564 3627 1689 752 328
17 89367 132860 124161 89401 54430 29909 15394 7616 3633 1689 752
18 156930 235871 224479 165210 103182 58054 30687 15530 7634 3635 1689
19 272424 413879 400257 300837 192109 110702 59786 31021 15582 7640 3635
20 468 130 717909 705032 539962 352279 207282 114437 60567 31157 15600 7642
21 796410 1232463 1227214 956883 636445 382179 215074 116183 60901 31209 15606
22 1342531 2094716 2113394 1674933 1134836 694090 398007 218848 116965 61037 31227
23 2243232 3527456 3602086 2899342 1997955 1243836 725457 405910 220597 117299 61089
24 3717405 5887668 6081317 4965411 3477396 2200438 1304682 741559 409698 221379 117435
25 6111615 9745995 10173766 8420331 5986079 3847540 2316123 1336712 749501 411448 221713

9PI—SS (£10T) 948 4 915Ky vajonN / v 32 3T "d

S6
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t272(q) = ¢* (2 + 8¢ + 33¢% + 104¢> + 310¢* + 826¢° + 2093¢° + 4991¢”
+11454¢% +--),

1272 (q) = (1 + 5¢ + 224 + 774 + 237¢* + 664¢° + - - ),

@) =g (34129 + 49" + ), (482)

27 (@) = 1 +49 +15¢7 +50q° + 143¢" + 379¢° + 947¢° + 2244¢” + 5103¢*
+11196¢° +23804¢'0 + 492524 4+ 99465¢'2 + 1965224 "
+380719¢" + - -,

t271(q) = 1 4+ 5¢ +22¢% + 704> + 212¢* + 568¢° + 1458¢° + 34964
+8093¢% +17936¢° + - -,

t27(q) = 1+ 6q +24¢% + 83¢> +252¢* + 698¢° + - -,

TSQ:l(q) —1469+25¢%+---. (4.83)

Note that the analytic result (4.63) for rlz(q), rll (g) was used as an extra input, in addition to
the explicit results for the first 25 mass level, to make a few more orders of the subleading

ré'>2(q) accessible. Some more leading and subleading t@Q for larger values of Q are given in
AUXILIARY FILE 2.

5. Spectra in compactifications with 8 supercharges

In six-dimensional Minkowski space, the minimal realization of SUSY involves eight super-
charges. They form two left-handed Weyl spinors of SO(6) which are related through an SU(2) r
R symmetry. Our notation for such minimally supersymmetric theories in d = 6 is Ngg = (1, 0).
Superstring compactification subject to Mgz = (1,0) SUSY are described by a universal SCFT
sector with ¢ = 6 and N>y = 4 SUSY on the worldsheet, see Section 3.2 for details. In ad-
dition, the SCFT introduces SO(5) quantum numbers for the massive string states through a
six-dimensional spacetime sector for which the methods of Sections 2.4 and 2.5 are applicable.

The fundamental multiplet of AVgy = (1, 0) theories consists of 8 + 8 states

Z(Nea = (1,0)) := 1,01 + [2]g + [11&[0, 1]. (5.1

where [p]g is the character of the (p 4 1)-dimensional representation of SU(2) g. Generic mul-
tiplets follow through the tensor product with some SO(5) x SU(2)r representation with little
group quantum numbers [n1, n2] and R-symmetry content [k]g. This leads to the general super-
character

[n1.n2; p]:= Z(Nea = (1,0)) - [plrln1, na). (5.2)

The partition function capturing the universal spectrum of six-dimensional Ngz = (1,0) com-
pactifications is obtained through a GSO projected product of internal X_/_\/?d =4¢=6(4: r) charac-
ters (with SU(2)r fugacity r) defined by (3.7) as well as (3.10) and SO(5) spacetime characters
(2.69) and (2.70). The GSO projection removes half odd integer mass leaves from the NS sector
and enforces the R spin field to be a left-handed SO(6) spinor, therefore:
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Table 4

Nga = (1, 0) multiplets occurring up to mass level 6.

o'm? representations of Ngg = (1, 0) super-Poincaré

1 [1,0;0]

2 [2,0;0] + [0,2; 0] + O, 1; 1]

3 [3,0; 0] +2[1,0; 0] + [0,0; 0] + [1,2; 0] + [0, 2; 0] + [0, 0; 2] +2[1, 1; 1] + [0, 1; 1]

4 [4,0; 0] + 3[2,0; 0] +2[1, 0; 0] + 2[0, 0; O] + [2,2; O] +2[1,2; 0] + 4]0, 2; 0] 4+ 2[1, 0; 2]
+[0,2; 2] +3[1,1; 1] +4[0, 1; 1] + 2[2, 1; 1]

5 [5,0;0] 4+ 3[3,0; 0] +4[2,0;0] +9[1,0; 0] + 3]0, 0; 0] + [3,2; 0] +2[2,2;0] +7[1,2; 0]
+6[0,2; 0] + [[0,4; 0] +3[2, 0; 2] + 3[1,0; 2] + 3]0, 0; 2] + [1, 2; 2] + 3]0, 2; 2] + 2[3, 1; 1]
+4[2, 1; 1] +9[1, 1; 1] + 8]0, 1; 1] + [[1,3; 1] + 4]0, 3; 1] + [0, 1; 3]

6 [6,0;0] + [4,2; 0] + 2[4, 1; 1] + 3[4, 0; O] + 2[3,2; 0] +4[3, 1; 1] + 3[3, 0; 2]

+5[3,0: 0] + [2.3: 1] + [2.2: 2] + 8[2.2: 0] + 12[2. 1; 1] + 4[2. 0 2] + 14[2.0: 0]
+[1,4;0] +5[1,3; 1] +6[1,2; 2] + 13[1,2; 0] +2[1, 1; 3] +23[1, I; 1] +9[1, 0; 2]
+12[1,0; 0] +4[0, 4; 0] +9[0, 3; 1] +9[0, 2; 2] + 190, 2; 0] +3[0, 1; 3]

+18[[0, 1; 1] +4[0, 0; 2] +8[0, 0; 0]

N0 gy 7y = = O)|Gso(q )+ a0 @iy,
1R8O |50 @i 3.1 = 5072 xne @ MR (ai )
lel(s)(S)( g )RS0 (¢ i )],
RO o 3. = 5000 @ ST . (53)

The power series expansion of (5.3) starts as>>

o Ne=00 g y, )

2
- o1
=(yf+y12+y§+y22+§[1rl_[y,+y, >q°+ [1,0;0]q
i=1 —

80 states at level 1

8 massless states
+ ([2.0: 0] + [0, 2; 0] + [0, 1: 1])g®+([3. 0: 0] +2[1, 0; 0] + [0, 0; 0]
512 states at level 2

+[1,2; 0] + [0, 2; 0] + [0, 0; 2] + 2[1, 15 1] + [0, 1; 1])¢* + O(g*). (5.4)

The ¢S coefficients are listed in Table 4, further information on the particle content up to level
25 is tabulated in Appendix B.2.

5.1. The total number of states at a given mass level

In this subsection, we compute the total number of states present at a given mass level through

the unrefined partition function, i.e. by setting the fugacities y;, y» and r in (5.4) to unity. The

S Again, there is a subtlety in applying (5.3) to the massless R sector, see the footnote before (4.4). However, this can

be fixed easily: one can simply add to it %(yl - yl_l)(yz - yz_l)(r —rHio get the correct massless character in R
sector.
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total number of states N, at the mass level m can be read off from the coefficient of g™ in the
power series of xVei=(1.0 (g: {y;, = 1,r = 1}).
We follow the analysis presented in Section 4.1. The unrefined partition function is given by

= =(1,0
xNE=0) (o = 1, = 1)) = 2o =10 y=1ls=1)

Gso(q;

SO(5 Nog=4,c=6
= XR ( )(q; {vi= ”)XR,}Zldzl/i’g:]/z(CI? r=1)

_ st
n(q)°

Indeed, the power series of XNW:(LO) (g; {yi = 1,r =1}) in q reproduces the numbers presented
in the second column of Table 1. Note that XNW:(I’O) (q; {yi = 1,r = 1}) is not a modular form,
since the Appell-Lerch sum is a mock modular form and it is not added by a suitable non-
holomorphic component to be modular.

[1-2ig"®u(1/2, D). (5.5)

5.1.1. The number of states at each mass level and its asymptotics
The number of states at the mass level m can also be computed from

1 49 Nea=1.0)( .
Nn= i @ g x = Vg i =1r=1)), (56)
c

where C is a contour around the origin.

Now let us compute an asymptotic formula for the number of states N,, at a mass level m
when m — co. We focus on the limit ¢ — 1~ and proceed in a similar way to Section 4.1.

Let us first examine the leading behavior of ¢ (1/2, 1) as g — 1~ or T — 0. Using the second
point of Proposition 1.5 of [41], we find that

1 1 1 . 1 1 5.7)
—ul —,—— - 7)== .
/it H 2t 1T H 2 2i
Let us consider ,u(%, —%) as ¢ — 17 or equivalently T = i€ as € — 0T. It follows from the
definition of Appell-Lerch sum that

1 1 e/ (27) e—inmz/r
(502 ) = 5 D T
T T (e 7i/(27) ¢ mi/T) s 1 — e—2mim/t+mi/T
m

en/(2e) —m /e . +
—WX(—QK ), T:lG,E—)O
3
=2i exp(——), (5.8)
4e
where in the second ‘equality’ only m = 0, 1 in the infinite sum contribute to the leading behavior
and we have used the fact that 4 (627”/(27), 6_2”’/7) = —je™) as t =ie, e — 01, Hence,

to the leading order, one can neglect the first term in (5.7) in comparison with 1/(2i) on the
right-hand side and so

1 1
= ~— 1. 5.
M(z,r> 5 47 (5.9
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Therefore it follows from (5.5) that,as ¢ — 17,

_ _1s2(1, )
xNo=0 (g gy =1, r =1)) ~¢ 1/8W(1—41/8)
_ 372
~@2m) (1 - q"®) (1 - g) P exp( - . (5.10)
2logg
where we have used (4.13) and (4.11). Hence, as m — oo,
1 d 32
Nm~(2n)—5/2—,?§—q(l—ql/g)(l—q)mexp - —mlogq ). (5.11)
27i | g 2logg

The saddle point is at go = exp(—m+/3/+/2m) and the steepest descent direction is the imaginary
direction in ¢. We proceed in a similar way to (4.17) by writing ¢ = goe'? and using Laplace’s
method to obtain

[e¢]
e 1 1 /2
2r 7V3
—00

9
~ 21—?/2’"75/2 exp(Tom), m— 0. (5.12)

5.2. The GSO projected NS and R sectors

5.2.1. The NS sector
From (6.50), the partition function of the GSO projected NS sector is

o0

Nea=(1,0
s’ aso@ v = D [2kily 2Kkl 291 B %, (@), (5.13)
ki,k2,p=0

where the function F ,?IIS) (g) is given by

NS
Fk] ,kz,p(Q)

_ L2,
= (¢: 9o (1 —q)g 277~
2
X Z Z l_[(_l)nA+1(1 _an)q%mi‘i’(nZA)(anlkA_mA‘ _qllA(kA+mA+l))

nezk meZéO A=1

[ a—=grtiyssa, 2
X_[ Ul GEILTUTINE » PRRPOREN
2L (4P ) A +qP+2) 4

147041, 2
N S Gl DL IGL D) [T +qm9)|. (5.14)
(1 —gP~2)(1 —qP*2) 45

Asymptotics
This expression can be simplified further in the asymptotic limit k1, k; — oo. Using (4.20),
we have
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2
Z l_[(_l)nA+l (1 . an)q(nzA)(anlkA*mAl _ an(kA+mA+]))

nezl A=l
2 kg g2ka+2
2 q (1 ) —ma 2ma+1
1-— A , 5.15
) l_[ (1+qkA)4 {q ( q )} ( )
and using (4.22) we have
2 1.2 1
Y [Ta2ma (=g *2)(1 =g ) =471 - )*93(1,9)°, (5.16)

mez2, A=

2
3 T 0" ag i ma (1 4qmat2) (1 — g4 =g~ (1 - 9)*94(1 )% (5.17)

meZiO A=1

FNS

Therefore we arrive at an asymptotic formula for (g) when ki, kp — oo:

ky.kz,p
1
1 _ 12 _ (1—gPt2)
B, p @) ~ (@ ) (1 = g)Pq 2 7 2[ . —03(1,q)°
(1 +gP~2) (1 +¢"*2)
1+gP+s
SOV L 194(1,q)3], k1, k2 — oc. (5.18)
(1—g"72)(1 —¢P*2)
The R sector
The partition function of the GSO projected R sector is
N oo
KT 0@y = > ki 10y 2k + Uy, 2p + 1LFR 4, (@), (5.19)
k1,ka, p=0

where F/&, k. p(q) is given by

R
Fkl,kzyp(q)

1.(1=¢g" v, q)
2(14gP)(1+gPt?)

% Z Z 1—[( 1™ (1—g")q? 5ma+5)2+('f )(an\kAfmu_an<kA+mA+2>)

neZi me72 , A=l

_ 1,2,3, 3
= (q;q)oog(] —q)q2P TIPS

x (1—gmth). (5.20)

FNS

Similarly to the NS sector, an asymptotic formula for k. p(‘I) when ki1, ko — oo is given by

(1—gPth
(1+¢P)(1+qP*2)

1 _ 1,23 _3
Fi o p @) ~ 5 (g3 )30 (1 = g)%q2P Harhtas 9(lg)P. (5.21)
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5.3. Multiplicities of representations in the Ngg = (1, 0) partition function
Combining the contributions from the NS and R sectors, we have

1,0 Nea=(1,0
KN =10 gy 1) = e =0 o @ 3. ) + = g0 @ v 1)
o

= Y (12kly[2k) 1291 P, (@)
k1,k2, p=0

+ [kt + 11y, k2 + 113,29 + 1L ER 4, (@) (5.22)

Making SUSY manifest amounts to rewriting the partition function as

o0
)Mo= gy = 3 Y [0 n2; pIGynp (@), (5:23)

ny,n220 p=0

and the aim is to compute explicitly a multiplicity generating function G, n,,p(q).
Before proceeding further, we observe the selection rule

Gn1,2n2,2p+l(CI) = 01 Gn1,2n2+1,2p(Q) =0. (524)

It follows from (5.22) that [k1]y, [k2]y,[p]- with odd (respectively even) values of p only en-
ter with a product of two representations with both odd (resp. even) k; and k;. According
to (2.60) and (2.64), the product [ki]y,[k2]y, with both odd (resp. even) k; and k, decom-
poses into only spin (resp. non-spin) representations of SO(5). In other words, a spin (resp.
non-spin) representation only comes with an odd (resp. even) value of p, and hence (5.24) fol-
lows.

The multiplicity of [n], ny; p] appearing in XNﬁd =0 (4: y, r) can be determined as follows:

Nea=(10(q; y, r)
Y Z(Noa = (1,0)(y,7)’
=G @ +GY L, @), (5.25)

ny,n2,p

Gnynyp(q) =/dMSU(z)(r)[P]r/dMSO(S)(y)[nl,nzl

where

Gy® (@) =/dMSU(z)(V)[p]r/d/LSO(S)(y)[nl,nz]y

Z [2k1]y1 [2k2]y2 [ZP/]r NS

, 5.26
b5 ZWNea = (1,0) (. 1) Pl @ (20

G nyp@ —fdMSU(z)(V)[p]r/dlLSO(S)(y)[nl,nz]y

Z [2k1 + 11y, [2k2 + 1]y, [2p" + 11,
Z(Nga = (1,0))(y,r)

Fk1 k. p,(q) 5.27)
ki,ka,p' 20

and the inverse of the character of the fundamental multipletin (5.1) can be written as a geometric
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series?*similar to (4.42)

r2

= r B2} [B2)
I+ 550+ 5HA+ 52 +ry1y2)

— Z (_1)m1+m2+m3+m4r2+m|+m2+m3+m4

[Z(Noa = (1,0)) (. ]

my,...,nm4 >0

—mi+my—m3+myg _—m|—my+mz—+my
X ¥ ¥y . (5.29)

5.3.1. Some useful identities
Before we proceed further, let us derive some useful identities for the elementary building
blocks of Gy, u,,p. The first one follows from (2.6):

To(w; p1, p2) ::/dﬂ50(3)(r)rw[l71]r[p2]r

{ Sp1.p2 forw =0,

= 1

=) 1 —z2(P1+p2=Ip1—p2D)

32 p=0 Bwl.2p+1p1—pal = Ojwl.2p+2+1p1—pal)  for w #0.
(5.30)

Next, we are interested in the following integral:

Z(w; k;n) :=/dM50(5>(y)yiuly§”2[k1]y1 [k2]y, [n1, n2ly. (5.31)

There are four cases to be considered. Each of them can be computed using the decomposition
formula (2.61) or (2.65), together with (5.30). In what follows, we assume that k, n € Zéo and

w e 72
T(w; 2ky, 2ko; ny, 2ny)
2
= Z A(m +n2,n2;2ki,2k/2) HIO(wA;ZkA,Zk;‘), (5.32)

K€z, A=l
Z(w; 2k1 + 1, 2ky + 1511, 2n2)

o [N

= Y A(n+ng. g 2k}, 2k)
K'ezZ, A
Z(w; 2k, 2ko; ny, 2n2 + 1)

To(was 2ka + 1,2K}), (5.33)
1

2

1 1

- Z A(nl+n2+§,n2+§;2ki+1,2k/2+1)HIO(wA;2kA,2k;1+1), (5.34)
KeZl, A=l

24 Note that this can also be rewritten as
[Z(Nea = (1,0)(y, 1] " =r2PE[510, 11y] withs =—r

o0
= (=)™ 20, mly. (5.28)

m=0
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Z(w; 2k + 1,2k + 1511, 2n2 4+ 1)
2

1 1
= Z A<n1 tnat gyt o 2k] + 1,2k, + 1) HIO(wA; 2ka +1,2k, + 1),
k’eZ;O =

(5.35)
where from (2.57) and (2.62)
1

Ak, 22: 2k, 2k) = 5 3 det(B A E Ko a))s g (5.36)

(TGSQ
1 2
A, 02k + 1,2k + 1) = = Zdet( 4“AA+B|B<1<(,(A)+ 5)) . (5.37)
A,B=1

O'ESZ

5.3.2. Multiplicity generating function
The NS and R sector contributions to the multiplicity generating function for the representa-
tion [n1, np; p] can be rewritten as

NS, =Y DAY To(Wim), p,2p)

mi,....mq >0 p'=0

x Y I(Walm); 2ki, 2o ny,na) F, (@), (5.38)
k1,kr >0

4 .
GR oo @= Y (=DX=" Y Ty(Wim), p,2p +1)

mi,...,maq 20 p'>0

x Y I(Walm): 2k + 1,2ky + Liny,na) FE o (q), (5.39)
k1,kr =0

where we define
Wi(m) =2+ my +my +m3 + my,
Wo(m) = (—my +my —m3 +my, —m| —my +m3 + my). (5.40)

As stated in (5.25), the multiplicity of the representation [n], ny; p] in the Ngg = (1, 0) par-
tition function is given by

G"] ny, p(CI)
=G\ @+ Gy @)

= Y pEamy [IO(Wl (m); p,21)

mi,..., myg >0 p' >0
. . NS
x> I(Wam); 2ki, 2k ni.na) F, (@)
k1,k2 20

+Zo(Wim). p.2p" +1) Y T(Wo(m): 2k + 1,2ky + Liny, nz)F,E,kz,p/(q)}.
k1,ka=0
(5.41)
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5.4. Empirical approach to Ngg = (1, 0) asymptotic patterns

In this subsection, we follow the lines of Section 4.5 and investigate the large spin asymp-
totics of multiplicity generating functions G, x, ,(¢) for universal Nsa = (1, 0) supermultiplets
[, k; p]. Similar to the Nay = 1 strategy, the G, . »(gq) are expanded in powers of ¢g” where n

denotes the first Dynkin label that we loosely identify with the spin. The coefficients r,f "P(q) of

(g™ turn out to be power series with non-negative coefficients which enter with alternating sign
(=D

k, k, k,
Gk p(@) =4"1,"" (@) —¢*"1, " (@) +¢7" 3" (q) — -

=Y (=g P (). (5.42)
=1

In spacetime dimensions higher than four, the analytic methods of Section 4.4 are no longer
efficiently applicable. We could not find an asymptotic formula for (5.41) resembling (4.63)
and (4.64) for the large spin regime of the N3y = 1 multiplicity generating functions. Hence, we
determine the tf 'P () including the leading trajectory rf’p (g) from our data found by expanding
the partition function (5.3) up to mass level 25. The multiplicities of [n, 0; 0] multiplets are
shown in the following Table 5, data for non-zero values (k, p) = (2, 0), (0, 2) and (1, 1) can be
found in Appendix B.2. Table entries marked in red are only affected by the stable pattern té{’:[; (9)

whereas the blue numbers arise from q”t{( Pg) — g™ ré( "?(g), i.e. by including the (subtractive)
subleading trajectory.

5.4.1. Levels of first appearance

Let us firstly determine the level of first appearance for various families {[n, k; p], n =
0,1,...} of Ngg = (1,0) supermultiplets with second SO(5) Dynkin label k and R symmetry
quantum number p fixed. It is identical to the leading ¢ power of the multiplicity generating
function G «, » (¢) or its expansion coefficients r/f P (g) defined by (5.42). The following Table 6
gathers the mass levels o/m? < 25 where the first instance of a {[n, k; p], n=0,1,...} member
can be found.

We observe that, roughly speaking, the level of first appearance for supermultiplets [n, k; p]
depends linearly”> on the SO(5) Dynkin label k (with slope %) but quadratically on the R sym-
metry spin p/2, in agreement with the final remark in Section 3.2.

5.4.2. Explicit formulae for the Tek’p(q)

Let us now list the leading terms in t?’o(q), rez’o(q), rf’z(q) and tgl’l(q), obtained through
the entries of Table 5 and its (k, p) # (0, 0) relatives displayed in Appendix B.2. This allows
to reconstruct the large spin asymptotics of the multiplicity generating functions G,k »(q) via
(5.42).

25 The linear k dependence can be partially understood from the A1 » dependence in (2.68). However, the bosonic string
suggests that an SO(5) representation [n, k] is delayed by two levels under k — k + 1 whereas the observations from
Table 6 clearly show a delay of three levels per k — k 4 1. Even though we cannot give a detailed explanation on
analytical grounds, it is clear that this extra delay in mass level must be due to the worldsheet fermions, see e.g. (2.69)
and (2.70).



Table 5

Negaq = (1, 0) multiplets with SO(5) quantum numbers [, 0] and SU(2) g spin 0.

om?  #[0,0;0] #[1,0;0] #[2,0;0] #[3,0;0] #[4,0;0] #[5,0;0] #[6,0;0] #[7,0;0] #[8,0;0] #[9,0;0] #[10,0;0] #[11,0;0]
1 0 1 0

2 0 0 1 0

3 1 2 0 1 0

4 2 2 3 0 1 0

5 3 9 4 3 0 1 0

6 8 12 14 5 3 0 1 0

7 13 35 24 17 5 3 0 1 0

8 30 58 63 29 18 5 3 0 1 0

9 53 135 116 82 32 18 5 3 0 1 0

10 107 243 265 153 88 33 18 5 3 0 1 0
11 193 505 503 358 172 91 33 18 5 3 0 1
12 376 918 1044 696 403 178 92 33 18 5 3 0
13 670 1803 1975 1474 801 423 181 92 33 18 5 3
14 1246 3269 3887 2839 1711 846 429 182 92 33 18 5
15 2220 6136 7235 5687 3355 1824 866 432 182 92 33 18
16 4005 11015 13691 10754 6784 3605 1870 872 433 182 92 33
17 7025 20052 25041 20649 13021 7348 3718 1890 875 433 182 92
18 12407 35469 45971 38304 25243 14213 7606 3764 1896 876 433 182
19 21469 63030 82532 71226 47411 27774 14790 7720 3784 1899 876 433
20 37182 109838 147906 129443 89013 52547 29015 15048 7766 3790 1900 876
21 63492 191293 260818 234646 163536 99387 55177 29600 15162 7786 3793 1900
22 108142 328527 457957 418298 299140 183903 104797 56431 29859 15208 7792 3794
23 182254 562391 794256 741961 538495 338749 194850 107476 57016 29973 15228 7795
24 306007 952431 1369976 1299438 963344 613928 360467 200360 108738 57275 30019 15234
25 509309 1605996 2339762 2261945 1702039 1105604 656324 371692 203052 109324 57389 30039

9PI—SS (£10T) 948 4 915Ky vajonN / v 32 3T "d

SOl



901

Table 6

Mass level where the [0, k; p] multiplet of NVgg = (1, 0) firstly occurs. Empty spaces indicate that the representations in question do not occur at levels < 25.

Ip. k! 0 1 2 3 4 5 [§ 7 8 9 10 11 12 13 14 15 16
0 1 2 5 8 11 14 17 20 23
1 2 4 7 10 13 16 19 22
2 3 4 7 10 13 16 19 22 25
3 5 7 10 13 16 19 22 25
4 7 8 10 13 16 19 22 25
5 9 11 14 17 20 23
6 11 12 15 18 21 24
7 14 16 19 22 25
8 17 18 20 23
9 20 22 25

10 23 24

9PI=SS (£10T) 9.8 q $15&Yyd Avajonp /v 32 1T “d
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e SO(5) Dynkin labels [n — oo, 0] and SU(2) g representation [0]

10%(q) =1+ 0g +3¢> + 5¢° + 18¢™* +33¢° + 92¢° + 18297 + 433¢*
+ 876¢° + 19004 ' + 37949 + 77964 ' + 152384 "3
+30049¢ ' + 574659 +109773¢
+ 20534997 +382249¢'8 + 7005204 + - - -,
0(q) = q(1 +4¢" +10g> + 30> + 764" + 190> + 449¢° + 1035¢” + 2298¢°
+4999¢° + 10580 "% +21976¢"" + 44727¢'% 4+ 89543¢" + - ),
%) = q(1 +q +10¢% + 23¢° + 81¢* + 194¢° + 531¢° + 1232¢”
+2967¢% +6586¢° + ---),
©00(q) = ¢*(1 4+ 5¢ + 16¢% +53¢> + 153¢* +417¢° + - ),
%) =q*(1+q+11g> +--). (5.43)
e SO(5) Dynkin labels [n — 00, 2] and SU(2) g representation [0]

70(q) = ¢*(1 + 29 +8¢% + 17¢° + 52¢* +117¢° 4+ 293¢° + 645¢" + 14684°
+3119¢° 4 6667¢'° + 13674¢" +27913¢' 4 554469 '3 4+ 109 165¢'*
+210717¢" +402714¢'° +757889¢ "7 + 14122084 + . -.),

550(q) = ¢* (1 + 49 + 14¢% + 41¢° + 118¢* +306¢° + 764¢° + 1818¢ + 4191¢°
+9344¢° +20318¢'% +43083¢"" +89493¢'? + 1822394 " + - ),

750(q) = ¢° (3 4+ 99 +40¢% + 114¢> + 345¢* 4 890¢° + 2297¢° + 54814
+12871¢% + ),

7%q) = ¢°(1+5¢ +23¢° +79¢° + 251¢* + 7117¢° + - --),

2%q) =¢%(3 4+ 10g +48¢% + - --). (5.44)

e SO(5) Dynkin labels [n — 00, 0] and SU(2) g representation [2]

102(q) = ¢ (3 + 5¢ + 20> + 46¢> + 128¢* + 288¢° + 696¢° + 1513¢” + 3354¢°
+7025¢° +14707¢"° + 297364 " +59679¢'% + 116933¢ "3
+226900¢ ' +432515¢'5 + 816089¢'0 + - - ),

2 (q) = ¢*(1+3¢" + 13¢% 4+ 37¢° 4+ 109¢* 4 285¢° + 727¢° + 17374"
+4050¢® +9075¢° + 198684 "% +42302¢'" + 88278¢'* + -- ),

132(q) = ¢> (142 + 13> + 37> + 124¢* + 331¢° + 906¢°
+2233¢7 454564 + - - ),

©02(q) = ¢>(2+ 79 +29¢° + 9247 +282¢* + - ),

%) =q>(1+3g +18¢> +--). (5.45)
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e SO(5) Dynkin labels [n — 0o, 1] and SU(2) g representation [1]

11 (q) = 4> (2 +4q + 13¢% + 35¢ + 89¢* + 21647 + 508¢° + 11454 +25214°
+5402¢° + 113204"'° + 232384 " + 468564 ' + 928504
+181217¢™ + 34861295 + 6617924 % 4124078647 + - --),

21 (g) = ¢*(1 + 4q + 13¢% +43¢° + 122¢* + 323¢° + 8144° + 19624 + 45504°
+10233¢° +22370¢'0 +47718¢" +99574¢"* +--.),

21(g) = g3 (14 5¢ + 2142 +70¢° + 211g* + 584° + 1529¢° + 379847 + - ),

T;’I(Q) =q4(1 + 6g +24q2 + 85q3 4. .)’

@ =¢>A+--). (5.46)

Further ré(’p(q) are listed in AUXTILTIARY FILE 2. They suggest that the r;’p(q) expansion
(5.42) converges more quickly with larger values of k and smaller values of p.

5.5. Four-dimensional Ny =2 spectra

In order to determine universal string spectra with Nz =2 SUSY, we shall now compact-
ify two dimensions of minimally supersymmetric Ny = (1, 0) theories on a 72, This preserves
all the eight supercharges and the internal rotation symmetry becomes an R symmetry factor
of SO(2)gr = U(1)g. Hence, the dimensionally reduced theory in d = 4 spacetime dimensions
enjoys Nag =2 SUSY and R symmetry SU(2)g x U(1)g. The fundamental Ny = 2 super-
Poincaré multiplet encompasses 8 + 8 states,

Z(Nag =2) =21y + 21,10, + (% +272)[0]y + (z + 2~ )11, [1], (5.47)

where z denotes the U(1)g fugacity. The tensor product of (5.47) with a Clifford vacuum in
some SO(3) x SU(2)g x U(1)g representation yields a family of supermultiplets characterized
by three quantum numbers — n for SO(3) spin, m for SU(2)g spin and p for U(1)r charge.
The resulting 16(n + 1)(m + 1) states are described by the supercharacter’®

26 The simplicity of the SO(3) tensor product [2m] - [2k] = Z;"Hlf m| [2[] allows for compact closed formulae for the
SO3) x SU(2)g x U(1) g decomposition of a general Nyy =2 supercharacter
[n; m, p] = 2P {[m) [n + 2]+ [m]r[n — 2] + [m + 2] [n] + [m — 2], [n] + 2[m],[n]
+ (2 + 27 ) mlr ] + (2 + 27 Y (m + 1 + I — 10,) (10 + 11+ [0 — 11) ). (5.48)

This generic character formula (5.48) holds for values n, m > 2 of the Clifford vacuum’s SO(3) x SU(2) g spin quantum
numbers and specializes otherwise:

[7:0, p] = 2P {[n + 21+ [n — 21+ 2 (0] + (1 + 22 + 2 2) ]
+ e+ )+ 11+ -1}, n>2, (5:49)

{
+(
[0:m. p] = 2P {{m], (2] + [m1[0] + [m + 21, [0] + [m — 21,[0] + (c* + 2 ~2) [m], [0]
e+ Y ([m+ 10 +m—11)11), m>2, (5.50)
d

[0:0, p] = 2P {[21+ [21-[0] + (2% +272)[0]+ (z + =z~ D111}, (5.51)
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[n; m, pli= Z(Nag =2) - 2P [m], [n],. (5.53)

The position of the semicolon in the arguments of the supercharacter allows to distinguish Ny =
2 multiplets [[; -, -] from Mgz = (1, 0) multiplets [-,-; -].

The universal partition function of Az = 2 scenarios is obtained through GSO projection of
the following character products:

=2
N4d 2(q YT, Z)_XNS |GSO(q VT, Z)+XR |Gso(q;yvrsz),

Nig=2 3 Nag=4,c=6 3
xns' leso@:yor2) = —q Z[XNS( (@ )R e @ xRs (g3 )

S0(3 Nog=b,c=6 S0(3 ;

XNS( )( g y)XNSM;l oce o( g V)XNS( )( zmq;z)]f
Nig=2 1 5o
XR4d |Gso(q;y,r,1)—§XR ()(q y)XRh 1/4( 1/2(61 r)XR ()(61 2). (5.54)

Its symmetry under reversal p +— —p of U (1) g charges motivates the definition

[n;m, p] + [n;m, —p], p#0,

5.55
[n; m, 0], p=0, ( )

[n; m, £p] := {
then the power series expansion of (5.54) starts like?’
xXN4=2(q; v, 7, 2)

1
= <y2 o e b A SO+ y‘)[l]z[l]r)qo

8 massless states

+([2:0,0] + [0; 0, +2])q

80 states at level 1

+ ([[4; 0,0] +2[2; 0, £2] +[2; 0,0] + [1; 1, £1] + [0; 0, +4] + 2[0; 0, O]])q2

512 states at level 2
+ ([[6; 0,0] 4+ 2[4; 0, 2] + [4; 0,0] + 2[3; 1, £1] + 2[2; 0, £4]
+2[2; 0, £2] + 6[2; 0, 0] + 2[1; 1, £3] + 3[1; 1, 1] + [0; 2, 0] + [0; 0, £6]
+4[0; 0, £2] + 2[0; 0, 0] )¢ + O(¢*). (5.56)

The vertex operators occurring in the three multiplets of the first mass level have been constructed
in [33], see Eqgs. (6.3) to (6.11) of that reference for bosons and Eqs. (6.22) to (6.30) for fermions.
The content of the first five levels is summarized in Table 7.

Comparison with the partition function (5.4) of the Ngg = (1, 0) ancestor theory (and Table 4)
clearly demonstrates that the six-dimensional viewpoint gives a more streamlined handle on the

[1; 1, p] = 2P {[11 31 + B[] + (2 + 22 + 2 2)[11,[1]
+ (2 + 2 ) (1200121 + 121,101 + [2] + [01) ). (5.52)

We observe the general selection rule that either none or all of n,m, p are odd, hence, there is no need to consider
[1;0, p] or [0; 1, p].
27 Again, there is a subtlety in applying the above formula to the massless R sector; see the footnote before (4.4).

However, this can be fixed easily: one can simply add to it %(y - y_l)(z -z Hor-rHto get the correct massless
character in R sector.
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Table 7
N4q = 2 multiplets occurring up to mass level 5.

o'm? Representations of NVgz = 2 super-Poincaré

1 [2;0,0] + [0; 0, £2]

2 [4;0,0] +2[2;0,%2] + [2;0,0] + [1; 1, £1] + [0; 0, £4] + 2[0; 0, 0]

3 [6;0,0] + 2[4; 0, £2] + [4; 0, 0] + 2[3; 1, £1] + 2[2; 0, £4] + 2[2; 0, £2] + 6[2; 0, 0]
+2[1; 1, £3] +3[1; 1, £1] + [0; 2, 0] + [0; 0, £6] +4[0; 0, £2] + 2[0; 0, 0]

4 [8; 0,0] + 2[6; 0, £2] + [[6; 0, O] + 2[5; 1, £1] + 2[4; 0, 4] + 3[4; 0, £2] + 8[4; 0, 0]

+3[3: 1, £3] + 6[3; L 1] + [2; 2, 2] + 3[2: 2, 0] + 2[2; 0, £6] + 3[2: 0, 4] + 12[2; 0, £2]
+ 11[2;0,0] +2[1; 1, £5] + 5[1; 1, 23] + 10[1; 1, £1] +2[0; 2, £2] + [0; 2, 0] + [0; 0, £8]
+5[0; 0, £4] + 4[0; 0, 2] + 11[0; 0, 0]

5 [10;0,0] + 2[8; 0, £2] + [8: 0,0] + 2[7; 1, £1] + 2[6: 0, 4] + 3[6: 0, =2] + 8[6: 0, 0]
+3[5: 1, £3] + 7[5: L 1] + [4; 2, 2] + 4[4: 2, 0] + 2[4; 0, 6] + 4[4: 0, £4] + 16[4; 0, £2]
+ 17[4;0,0] + 3[3: 1, £5] + 11[3; 1, £3] + 21 [3; 1, £1] + [2; 2, £4] + 7[2; 2, £2] + 8[2; 2, 0]
+2[2: 0, 8] + 3[2: 0, £6] + 15[2; 0, 4] + 23[2:; 0, £2] + 38[2: 0, 0] + [1; 3, £1] +2[1; 1, +7]
+6[1; 1, 5] + 16[1; 1, £3] + 28 1; 1, 1] + 3[0; 2, £4] + 4[0; 2, £2] + 9]0; 2, 0] + [0; 0, £10]
+5[0; 0, £6] + 6[0; 0, 4] + 21[0; 0, 2] + 16[[0; 0, 0]

spectrum in terms of fewer supermultiplets. This is why we do not provide an asymptotic anal-
ysis and data tables for the universal Ny = 2 spectrum like we did for the d = 6 ancestor in
Section 5.4 and Appendix B.2.

6. Spectra in compactifications with 16 supercharges

This section is devoted to maximally supersymmetric Type I superstring compactifications
on even-dimensional tori where all the sixteen supercharges are preserved [1]. The methods
introduced in Sections 2.4 and 2.5 are applied to decompose the partition function of the
(X i W ) CFT describing d = 10, 8, 6,4 spacetime dimensions into characters of the little
group SO(d — 1). According to Fig. 1, the d = 10 case takes the role of the ancestor the-
ory for 16 supercharges, so its spectrum will be analyzed in particular detail. In the remain-
ing cases d = 8§, 6,4, dimensional reduction converts part of the higher-dimensional Lorentz
symmetry into an internal R symmetry, i.e. we branch the ten-dimensional little group into
SO) — SO(d — 1) x SO(10 — d)g. In this process, individual Lorentz fugacities y; with
k > %(d — 2) are reinterpreted as R symmetry fugacities ry.

Before looking at individual dimensionalities in detail, let us fix the notation for describing
supersymmetric spectra with R symmetries: Characters of the spacetime little group SO(d — 1)

are denoted by [ay, ..., a,] with fugacities yq,...,y, and n = %(d — 2) whereas those of the
R symmetry SO(10 — d) g receive an extra subscript [by, ..., b¢]g with fugacities rq, ..., r¢ and
L=5— %. Our notation for supercharacters makes use of double brackets [ay, ..., a; b1, . .., b¢]

enclosing the SO(d — 1) x SO(10 — d) g quantum numbers of the highest weight state. The semi-
colon between a, and by separates spacetime from R symmetry Dynkin labels and eliminates
any ambiguity about the spacetime dimension under consideration.

6.1. Ten-dimensional N1og = 1 spectra

In this subsection, we want to revisit the results of [9] on SO(9) covariant partition functions
for ten-dimensional open string excitations and examine further symmetry patterns. The minimal
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massive Mjgg = 1 SUSY multiplet encompasses SO(9) representations of a spin two tensor, a
three-form and a massive gravitino”®

ZMNoa=1):=[2,0,0,0] +[0,0,1,0]+[1,0,0,1]. 6.1)

This is precisely the particle content of the first mass level, its vertex operators can for instance
be found in Egs. (2.8), (2.9) and (2.22) of [33].

The generic multiplet is obtained as a tensor product of Z(Njggy = 1) with some SO(9) repre-
sentation and therefore described by the following N1y = 1 supercharacter:

lai, az, a3, a4] == ZNioa = 1) - [a1, az, a3, as]. (6.2)

This is the basic building blocks of the refined ten-dimensional partition function. The latter can
be obtained through standard GSO projection of the spacetime CFT

- Nioa=1
XM= g y) = 09 6o (@5 ) + xR

L= 1|Gso(q;y,r)=561’5[XNS()(q N =xe (€ y)].

1
A=l (g5 y),

Nioa=1 1 500
xR |GSO(Q§)’,V)=§XR (g y). (6.3)

where ng@) (g; y) and Xﬁ0(9) (g; y) are given by (2.69) and (2.70).
In a power series expansion in ¢, the coefﬁcient of the nth power ¢" comprises the super-
Poincaré characters of the nth mass level m? = n/a’>:

xN0a=l(g; y)

4 =
=(Z(y]+y] El_[y,+y] ) ’
j=1 j=1

16 massless states
+ [0,0,0,0]q
[ ——
256 states at level 1

+ [1,0,0,0]¢* +([2,0,0,0] + [0,0,0,1])g"

2304 states at level 2 15 360 states at level 3
+([3,0,0,0] + [1,0,0, 1] + [1,0,0,0] + [0, 1,0,0])g*
+0(gY). (6.4)

The supermultiplets up to level eight are listed in Table 8 and the complete first 25 mass levels
can be found in Table 9 and Appendix B.3.

28 Note that Z(Njgg = 1) is denoted by Zg in[9].

29 Note the usual subtlety about the massless R sector which was explained in the footnote before (4.4). One can simply
fix this by adding %([O, 0,0, lso) — 0,0, 1, 0lsos)) = % ]_[?:1 (yi — yfl) to the present result and obtain the correct
answer; see also (3.16) of [9]. The % [1,0,0, 0]g factor in the massive sector of the aforementioned (3.16) exactly matches
our formula at any positive g power.
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Table 8

Nioq = 1 multiplets occurring up to mass level eight.

o'm? Representations of NVjgq = 1 super-Poincaré

1 [0,0,0,0]

2 [1,0,0,0]

3 [2,0,0,0] + [0,0,0,1]

4 [3.0,0,0] 4+ [1,0,0,1] + [1,0,0,0] + [0, 1,0,0]

5 [4,0,0,0] +[2,0,0,1] + [2,0,0,0] + [1,1,0,0] + [1,0,0, 1] + [0, 1,0,0] + [0, 0, 1, 0]
+[0,0,0,1] + [0,0,0,0]

6 [5,0,0,0] +[3,0,0,1] + [3,0,0,0] + [[2,1,0,0] + [2,0,0, 1] + [2,0,0,0] +2[1, 1,0, 0]
+(1,0,1,0] +2[1,0,0, 1] +2[1,0,0,0] + [0, 1,0, 1] + [0, 1,0, 0] + [0, 0,0, 2] +2[0,0,0, 1]

7 [6,0,0,0] + [4,0,0,1] + [4,0,0,0] + [3,1,0,0] + [3,0,0, 1] + [3,0,0,0] +2[2, 1,0, 0]

+[2.0,1,0] +3[2.0,0,1] +3[2,0,0,0] + [1, 1,0, 1] +2[1, 1,0,0] + [1,0, 1,0] + [1,0,0,2]
+4[1,0,0,1] +2[1,0,0,0] + [0,2,0,0] +2[0, 1,0, 1] 4 2[0, 1,0,0] +3[0,0, 1,0]
+[0.0.0.2] +2[0.0.0, 1] +2[0.0, 0, 0]

8 [7.0,0,0] + [5,0,0, 1] + [5.,0,0,0] + [4, 1,0,0] + [4,0,0, 1] + [4,0,0,0] +2[3, 1,0,0]
+[3.0,1,0] +3[3.0,0,1] +4[3,0,0,0] + [2, 1,0, 1] +3[2. 1,0,0] + [2.0, 1,0] + [2,0,0,2]
+5[2,0,0,1] +3[2,0,0,0] +[1,2,0,0] +3[1,1,0, 1] +5[1,1,0,0] +4[1,0, 1,0]
+2[1,0,0,2] +7[1,0,0, 1] +5[1,0,0,0] + [0,2,0,0] + [0, 1, 1,0] +4[0, 1,0, 1]
+5[0,1,0,0] + [0,0, 1, 1] +2[0,0, 1,0] + 3]0, 0,0, 2] 4 4[0, 0,0, 1] + [0,0,0,0]

6.1.1. The total number of states at a given mass level

The total number of states at a given mass level m can be read off from the coefficient of
g™ in the partition function XN 10d=1 (4 y) when the SO(9) fugacities yi, ..., y4 are set to unity.
The function XNW =l(g; {y; = 1}) is referred to as the unrefined partition function. From (2.71),
(6.3) and SUSY,*" we have

_ _ (1, 4 00 14+g" 8
N gy = 1) = 2060 llcso(q;{yi=1}):%:16H<1—Z") '

n=1

(6.6)

The coefficients in the power series of this formula reproduces the third column of Table 1. It
also agrees with (5.3.37) of [25]. Note that )(Nlof*’:1 (q; {yi = 1}) is not a modular form.

6.1.2. The number of states at each mass level and its asymptotics
The number of states at the mass level m can be determined by
1 49 Nga=t1
—_— - - 10d= . JR—
N =5 @ omii X (¢: fyi=1), (6.7)
c
where C is a contour around the origin.
Now let us compute an asymptotic formula for the number of states N,, at mass level m when
m — 00. Note that a similar discussion can be found in Sections 4.3.3 and 5.3.1 of [25]. For
completeness, let us go over some details here. We focus on the limit ¢ — 1~ and proceed in

30 The agreement of GSO projected partition functions for NS and R sectors follows from Jacobi’s abstruse identity:

93(L )Y — 041, * =01, * = 0. (6.5)
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a similar way to Section 4.1. The asymptotic behavior (4.11) and (4.13) of ¥»(1, ¢) and n(q),
respectively, leads to

2

Nioa=1(g: 1y, = 11) ~ 1—qg)* ——27[ 1~ 6.3
X (¢:vi=1}) (271)4( q) eXp( ogg) 97 (6.8)

Let us now combine (6.7) with (6.8). As m — 00,

1 1 [dq 4 272
Npy~———@p —(1-— ——— —ml . 6.9
m (2n)42m'?§ q( q) exp( ogg " 0gq> (6.9)

C

The saddle point is at go = exp(—7 /2/m) and the steepest descent direction is the imaginary
direction in ¢. We proceed in a similar way to (4.17) by writing ¢ = goe' and using Laplace’s
method to obtain

o0
1 1 m3/?
Nm ~ mezexp(ZT[v 21’}1)5 / d@exp(—WQ )

—00

1
~ Wm_ll/4€2ﬂm, m — OQ. (610)

6.1.3. The GSO projected NS and R sectors

In this section we compute the contributions from the NS and R sectors to the partition func-
tion given in (6.3). Here we consider the refined partition function, i.e. the fugacities y’s are kept
explicit.

The NS sector
From (6.3) and (2.69), the partition function of the GSO projected NS sector has the structure
N 4
1
Xs™ ™ loso @ ¥) = Z FYS @ []12kaly, (6.11)

.....

,,,,, k4(q)—(q q)002 Z Z

neZ+ meZ/

x l_[(—l)nA+l(1 _ an)q%m%Jr(nzA) (anlkA—mAl _an(kA+mA+l))

4 4
x %[ [T(0—qmat2) + (—pymismamiomd T (1 + q’"”%)} (©6.12)

A=1 A=1

The R sector
From (6.3) and (2.70), the partition function of the GSO projected R sector is

1w so@ v = FR k4(q>1'[[2kA+1]yA, (6.13)

,,,,,

kezl, A=l
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,,,,,

Flg,.“,k4(61)
4
= %q*%(q; 61)(;12 Z Z n(_l)nA+1(1 _ qu+1)(1 _an)q%(mA+%)2+(”2A)
meZéOneZiA=1
4
x II(anMA—mA\__an&A+mA+2». 6.14)
A=l

6.1.4. Multiplicities of representations in the N1og = 1 partition function
Combining the contributions from the NS and R sectors, we have

= Nioa=1 Niga=1
XM= g 9) = 309 0 @ ) F xR g0 @3 ¥)
4 4
= > <F};’S(q) [ [12kaly, + FR [ 12ka + 1]yA>. (6.15)
kGZio A=l A=1

Supersymmetry implies that this partition function can be rewritten as

xN= g yy = 37 [n1na.n3, nal Gy nynsns @), (6.16)

4
neZ20

and the aim is to compute explicitly a multiplicity generating function Gp, ;. n3.n,(q)-
The multiplicity of [n1, n2, n3, n4] appearing in XNIW =1 (g; y) can be determined as follows:

Nia=1(,-
X (q;y)
Gnynymsng (@) = | duso) ()1, n2,n3,naly - ————
Z(N1oa = D (y)
NS R
=Gy @D+ Gy nsng (@), (6.17)
where
NS
Gnl,nz,n3,n4(q)
4
—112kaly
= f dpso© (D)1, nz.n3,naly %ZU?‘”FE?_,WL (6.18)

4
keZ>0

R
Gnl,nz,n3,n4 (q)

[T [2ka + 11y, &
N T : 6.19
ZMNiopg = D(y) k1,...,k4(9) ( )

=/dM50(9)(y)[n1,nz,ns,n4]y Z

4
keZ>o

The inverse of the character of the fundamental multiplet in (6.1) can be written as a geometric
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series>! similar to (4.42) and (5.29)

[ZWioa = D(y, 1]
y4

— 4
- Y4 Y1) 2)4 Y1Y2Y4 Y34 Y134 y2Y354
(53 (135 (1458 (1 T2 (13250 (14 21530 (14 225308 (1 v yayaya)

8 (Clyim: S8 (~DWGAD2 . S8 LA, 44
= Z (—1)Z§:1mjy1§3/=1( )m-’y2z./=1( ) m-/y3z./=1( ) mjy4+2_/=1m,/.

8
mEZ>0

6.21)

6.1.5. Some useful identities

In this section, we derive some useful identities that will be put into use later. Once we plug the
series expansion (6.21) of the inverse Z(Njos = 1) into the integrand of (6.17), the elementary
contributions to multiplicity generating functions G, s, n5,n, are integrals of type

4

Jo(w; p) = / duso )" | [Lpalr (6.22)
A=1
as well as
4
Fwikim) = [ dusow i nz.na.naly [ 55 ks 6.23)
A=1

There are four cases to be considered, namely spin/non-spin representations of SO(9) and for
each of these cases ki, ..., k4 can be all even or all odd. In what follows, we assume that k, n €
Z“>0 and w € Z*. For non-spin representations,

J(w;2k1,...,2k4;n1,...,2n4)
4
= > A 2k). .0 2k5) [ | Jo(wa: 2ka. 2k), (6.24)
Kezd, A=l
Jw;2ky+1,...,2ka+1;n1,...,2n4)
4
= > A(hagi 2k}, 2k) [ ] Jo(wa: 2ka +1,2K)). (6.25)
K'eZi, A=1

where A, = (n1 +no + n3 + n4, ny + n3 + ng, n3 + n4, ng). For spin representations,

31 Note that this can also be rewritten as

[ZNi0a = D] ™' = tim (PE[s10.0.0.11,])'">

o0 1/2
= [ Z (—=1)™Sym™[0, 0, 0, 1]y} . (6.20)

m=0
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J(w; 2k, ..., 2ka;n1,...,2n4+1)

4
= Y A2k + 12k + 1) [ | Jo(wa: 2ka. 2k + 1), (6.26)
K'eZi, A=1
Jw;2k1 +1,...,2ks +1;nq,...,2n4 + 1)
4
= > AR 2K+ 1 2k 4 1) [ | Jo(wa: 2ka + 1,2 + 1), (6.27)
K'ezi, A=l

where Ay = (n1 +no +n3+nq4+ %,nz +n3+nq4+ %, n3+n4 + %, ng + %). Recall from (2.57)
and (2.62) that

A 2Kky, ... 2ky) = Zdt O o)) s gt (6.28)
0654
o8 AN
A2k + 1 2k 1) = Z det( R (kJ(A>+ 5)) . (6.29)
° O'ES4 A,B=1

6.1.6. Multiplicity generating function
The NS and R sector contributions to the multiplicity generating function for the representa-
tion [ny, ny, n3, na] can be rewritten as

AN @= 3 (=T S F(Wom): 2k, ..., 2kes m) FNS

.....

L@, (6.30)

.....

meZiO keZi,
8

GR @)= (=DZ=" N F(Wm)i 2k + 1, 2%k + 1in) FR L (q),

meZ, keZi,,
6.31)

where
W(,,,)_(Z( 1)/m] Z( 1)L(/+1)/2Jm Z( 1)L(J+3)/4Jm 4_|_ij)' (6.32)
j=1 Jj=1 j=1

As stated in (6.3), the multiplicity of the representation [n1,n2, n3, na] in the Njgg = 1 parti-
tion function is given by

Gnl,nz,ng,m (@)

= Y X S [T (W 2k, 2kain) BYS (@)
meZl, keZi,
+T(Wam)s 2k +1,..., 2k + 1;m) FR_, (@) (6.33)

6.2. Empirical approach to N1oq = 1 asymptotic patterns

In this subsection, we proceed like in Sections 4.5 and 5.4 to obtain large spin asymptotics
of multiplicity generating functions G x,y.;(¢) for Nigs = 1 supermultiplet [n, x, y, z]. The



D. Liist et al. / Nuclear Physics B 876 (2013) 55-146 117

supermultiplet content of the first 25 mass levels is used to determine the ¢ expansion of the
leading coefficients t,”"*(¢) defined by:

2n _X,¥,2 3n_X,¥.2

Gray:@=4q"1,"(@) — ¢ 17" (@) +¢7" 55" (q) — -+
o
=> =DM (). (6.34)
=1

Again, the rgx Y (g) are found to be power series in ¢ with non-negative coefficients.

Having d > 4 spacetime dimensions makes the analytic methods of Section 4.4 inefficient, i.e.
we did not find a manageable asymptotic formula for (6.33). Hence, we compute the 1:; Y g)
at £ < 5 on the basis of an O(¢%) expansion of the partition function (6.3). The multiplici-
ties of [n, 0,0, 0] multiplets are shown in the following Table 9, and analogous data tables for
[n, x, y, z] at non-zero values of x, y, z can be found in Appendix B.3. The numbers marked in
red match with the leading trajectory contribution q”rf’y "“(g) whereas blue numbers correspond

to ¢"1;"*(q) — ¢*"75""*(¢q) including one subleading trajectory.

6.2.1. Levels of first appearance
The mass level where some [0, x, y, z] multiplet firstly occurs can be studied by inspecting

the leading power of the multiplicity generating function Gy, y,;(¢) and therefore rZ %(g). The

following Table 10 gives an overview of this mass level threshold for various values of x, y, z.

For all supermultiplets [0, x, y, z] considered in Table 10, the level of first appearance is
delayed by three whenever the second Dynkin label is incremented as x — x + 1. This suggests
to look for a similar linear effect of y > y+ 1 and z — z+ 1. Up to the two exceptions [0, 0, 0, 0]
and [0, 0, 0, 1], the data in the tables shows that the value y of the third Dynkin label increases
the level of first appearance by 6y.

The influence of the last Dynkin label z is much more difficult to probe without any explicit
multiplicities beyond level 25 at hand. If an asymptotically linear relation between z and the level
of first appearance of [0, x, y, z]] exists, then it certainly admits even more exceptions than in the
y = y + 1 case. The onset of [n,0,0,4], [»,0,0,5] and [r, 0,0, 6] multiplets at levels 14, 19
and 24, respectively, suggests that an increment z — z + 1 delays the [0, x, y, z]] multiplet by
five levels — at least in the regime of sufficiently large values of x, y, z.

On the basis of this reasoning, we conjecture that sufficiently high mass levels of first occur-
rence for general supermultiplets [n, x, y, z]] are determined by the following overall prefactor
in their multiplicity generating function:
n+3x+6y+5z—6 x O(1),

Gnx,y,2(q) ~q x,y,z large (6.35)

Note that also the six-dimensional Ngg = (1, 0) spectrum exhibits an asymptotic linear relation
between the second SO(5) label k and the level of first appearance: Table 6 shows that sufficiently
high levels of first appearance for [n, k; p] are delayed by three under k > k + 2.

6.2.2. Explicit formulae for the r;’y’z(q)

We shall now give the explicit results for a large class of 7,"""*(¢), obtained through the
entries of Table 9 and its generalizations to (x, y, z) # (0, 0, 0) gathered in Appendix B.3. This
reflects large spin information on the multiplicity generating functions G, x,y, ;(¢) via (6.34).



Table 9
Niog = 1 multiplets with SO(9) quantum numbers [n, 0, 0, 0].
o'm? #1[0,0,0,0] #[1,0,0,0] # [2,0,0,0] #[3,0,0,0] #[4,0,0,0] # [5,0,0,0] #[6,0,0,0] #[7,0,0,0] #[8,0,0,0] # [9,0,0,0] #[10,0,0,0] # [11,0,0,0] # [12,0,0,0] # [13,0,0,0] # [14,0,0,0]

1 1 0

2 0 1 0

3 0 0 1 0

4 0 1 0 1 0

5 1 0 1 0 1 0

6 0 2 1 1 0 1 0

7 2 2 3 1 1 0 1 0

8 1 5 3 4 1 1 0 1 0

9 3 5 9 4 4 1 1 0 1 0
10 3 12 10 11 5 4 1 1 0 1 0
11 8 15 23 14 12 5 4 1 1 0 1 0
12 8 30 31 31 16 13 5 4 1 1 0 1 0
13 19 41 61 45 36 17 13 5 4 1 1 0 1 0

14 22 77 89 87 53 38 18 13 5 4 1 1 0 1 0
15 41 109 164 132 104 58 39 18 13 5 4 1 1 0 1
16 57 190 245 244 162 113 60 40 18 13 5 4 1 1 0
17 100 282 426 378 299 179 118 61 40 18 13 5 4 1 1
18 138 471 656 657 473 332 188 120 62 40 18 13 5 4 1
19 235 710 1097 1040 830 532 350 193 121 62 40 18 13 5 4
20 336 1153 1699 1751 1333 938 565 359 195 122 62 40 18 13 5
21 544 1750 2778 2769 2263 1523 1000 583 364 196 122 62 40 18 13
22 799 2785 4309 4561 3630 2600 1635 1034 592 366 197 122 62 40 18
23 1261 4237 6907 7201 6025 4212 2803 1697 1052 597 367 197 122 62 40
24 1860 6634 10700 11637 9629 7034 4567 2918 1731 1061 599 368 197 122 62
25 2895 10082 16893 18301 15694 11337 7662 4774 2981 1749 1066 600 368 197 122

811

9FI-SS (£10T) 9£8 & $215KYyd 402]1oMN /[0 12 10T “d
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Table 10

First mass level where fermionic supermultiplets [0, x, y, z] of Moy = 1 firstly occur. Empty spaces indicate that the
representations in question do not occur at levels < 25.

Iy.Z 0 1 2 3 4 5 6 7
0 14+3x 3+ 3x 6+ 3x 10+ 3x 14+ 3x 194 3x 24 4+ 3x

1 5+43x 8+ 3x 12+ 3x 16 4+ 3x 20+ 3x 25+ 3x

2 11+ 3x 14 +3x 18 +3x 22 +3x

3 17+ 3x 20+ 3x 24 4 3x

4 23 +3x

e SO(9) Dynkin labels [n — 00,0, 0, 0]

t000(g) = ¢ (1+0g + 1g% + 1¢° + 4¢* + 5¢° + 13¢° + 18¢7 +404® + 62¢°

+122¢'0 + 1974 + 3684 ' + 6014 "3 + 1070¢'* + 176743
+3051¢"° +5022¢"7 + 8489¢'® + 13897¢'% + - - ),
00q) =q' (1 4+ 29 +49% + 9¢° + 18¢* + 36¢° +70¢° + 133¢” + 2494°
+460q° + 83640 + 1503¢"" +2672¢ "% + 46999 "% + - --),
7% = q' (14 1g +5¢° + 94> + 264" + 48¢° + 112¢° + 2114
+439¢® +818¢° +---),
%) = ¢" (1 + 3¢ + 84> + 204> + 48¢* +106¢° + - - ),
200 =¢" (1+ 19+ 64> +--). (6.36)
e SO(9) Dynkin labels [n — o0, 1,0, 0]

7100g) = q* (1 + 29 + 3¢% + 7¢° + 14¢* + 28¢° + 53¢° + 103¢ + 1894°
+352¢° + 63490 + 11464 +2026¢"% + 35784 + 62094 '
+10752¢" +18378¢'° +31279¢"7 + - ),
(@) =¢°(1+2q +5¢> + 11¢> + 269" + 54¢° + 114¢° + 2279 + 449¢®
+863¢° + 1639¢'° + 30504 !
+5618¢"* +10187¢"3 +---),
w100y = g% (2 + 5¢ + 15¢% + 35¢° + 86q* + 185¢° + 403¢° +825¢7 +-- ),
1°°(q)— O(1+3g + 11¢* +30g” + - --). (6.37)
e SO(9) Dynkin labels [n — o0, 0, 1, 0]

100

t910g) = ¢5(1 + 19 + 5% + 8g° + 224 + 40 + 90¢° + 1654 + 3384°
+619¢° 4+ 11904 '° 4 21494"" + 39694 ' + 70484 '3 + 126309 '
+22060¢"° +38603¢'° +-- ),

(@) =q°(1+2q +7¢% + 17¢° + 41¢* +91¢° + 199¢° + 4124
+841¢% + 1665¢° 4+ 3241¢'° + 6178¢" + 11611 + - ),

(@) =¢%(1+2q + 11g* +25¢° + T1¢* + 160¢° + 381¢° + 809¢" + - ),

010

01()
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M@ =¢" 2 +7g +23¢2 +--). (6.38)
e SO(9) Dynkin labels [n — o0, 0,0, 2]
00 2

(@) =q%(1 +2q +7¢% + 13¢> + 33¢* + 66¢° + 143¢° + 27747
+ 55998 4+ 1053¢° +2019¢'° +3715¢ " 4 685942 + 1233843
+22156¢™ +39043¢1 + ),

(@) =q"(1+4q" + 11¢> +28¢” + 68¢* + 155¢° +339¢° + 7169 + 14694"
+2938q9 +5755¢'0 +11054¢ " +---),

002

2202(4) = g%(2+ 5¢ + 19¢* + 484> + 130g"* + 301¢° +703¢° + 1518¢ +---),

220204 = g"1 (1 + 4q + 164> +49¢> + ). (6.39)
e SO(9) Dynkin labels [n — o0, 0,0, 1]

2201 () =g (1 + 1q + 3¢ + 647 + 12¢* + 24¢° +48¢° + 90q” + 171¢°

+317¢° +579¢'° + 1045¢'"! + 18704 + 32994 + 57774
+10017¢" +17222¢' +29370¢'7 + -- ),
9) =q*(1+2¢" +5¢% +13¢° +29¢* + 62¢° + 130¢° + 2634’
+520q8 +1008¢° 4 19164 '°
+3583¢"" +6609¢'% + - ),
9) =q°(1+3q" +10g% + 264> + 63¢* + 143¢° + 315¢° + 664¢" + - ),
9) =q%(1+4q+12¢* +35¢° +--°),
00 M) =¢"0+-0). (6.40)

001
(

001
(

001
(

Further rg’) "“(q) listed in AUXILIARY FILE 2 support the trend that the tg Y%(g) expansion
(6.34) converges more quickly at higher value of x, y, z.

6.3. Eight-dimensional Ngg = 1 spectra

Starting from this subsection, we consider even-dimensional Type I superstring compactifi-
cations on T2 tori preserving all the sixteen supercharges. The highest-dimensional example is
Ngg =1 SUSY in eight spacetime dimensions. As explained in [42,43], dimensional reduction
of the open superstring from d = 10 to d = 8 paves the way towards powerful on-shell SUSY
techniques to manifest hidden simplicity of scattering amplitudes among massive string modes
(further examples following in [44]): One technical advantage of the eight-dimensional setting
is the possibility to covariantly single out a Clifford vacuum which is annihilated by half of the
supercharges, say the right-handed SO(8) spinor of SUSY generators [42,43]. This is a particu-
lar motivation to focus on the covariant particle content of the maximally supersymmetric open
superstring in d = 8.

Let r denote the fugacity with respect to the R symmetry SO(2)r = U(1)r and y; the fugaci-
ties of the massive little group SO(7), then the fundamental Ag; = 1 super-Poincaré multiplet is
described by the supercharacter
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ZWNga=1):= (r* +r7)[0,0,01 + (+* +73)[0,0, 1]
+ (r* +r72)(10, 1,01+ [1,0,0])
+ (r+r71)(11,0, 17+ [0,0, 11)
+12,0,0]14[0,0,2]+[1,0,0]+[0,0,0] (6.41)
which is obtained by branching the SO(9) representations contributing to the Ajgs = 1 analogue
(6.1) to SO(7) x U(1)g. The minimal multiplet (6.41) can be generated from a scalar Clifford

vacuum of U (1)g charge +4, and the generic Ngy = 1 multiplet follows from a Clifford vacuum
with non-trivial SO(7) x U (1)g quantum numbers.>” This gives rise to the supercharacter

lai,as, a3; Q] := Z(Nga = 1) - r9[ay, az, a3). (6.42)

The eight-dimensional partition function is obtained from its ten- dimensional ancestor (6.3) by

singling out an internal factor XNS( ) within ng@ (y) = ]_[k | XNs (yk) and reinterpreting its
argument as an R-symmetry fugacity:

Nga=1

=G 3,7 = 8 ™ 650 @3 3P+ 1 450 @3 35 s

Ngg=1 _1 7 3
Xngl ‘GSO(q y,r)= —61 Z[XNS< )(q y)XNS( )(q r)

ng(ﬂ( erzq y)Xfng)( 27riq; r)]’

= 0@ o r) = 21827 (g5 1 x32® (gi ). (6.43)
Let us display the first four coefficients of the power series expansion in ¢>°:
KM= gs y. )
3 3
- (Z(y] +y7) 4 ]_[ (vj +y; )(r+r1))q°
j=1 ] 1

16 massless states
+ [0,0,0:0]g + ([0.0,0; £2] + [1,0,0; 0] 4>
256 states at level 1 2304 states at level 2

+ ([0, 0, 0; £4] + [1, 0, 0; £2] + [0, 0, 1; %1]
+[2,0,0; 0] + [0,0,0; 0])g> + O(g*). (6.44)

The pairing of opposite U (1) g charges &0 motivates the following shorthand:

lai, a2, a3; Q] + [ai1, a2, a3; —Q] for Q #0,

4
[ai, a2, a3; 0] for 0 =0. 6.45)

lai, a2, a3; £0] 3={

32 Recall that the semicolon in lai, az, a3; b] separating the U (1) g quantum number b from the SO(7) Dynkin labels
ay, ay, a3 eliminates potential confusion with \gy = 1 supercharacters (6.2).

3 Again, there is a subtlety in applying the above formula to the massless R sector; see the footnote before (4.4).
However, this can be fixed easily: one can simply add to it % H?:l v — yj_l)(r —rHio get the correct massless
character in R sector.
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Table 11

Ngq = 1 multiplets occurring up to mass level six.

o'm? Representations of Ng; = 1 super-Poincaré

1 [0,0,0;0]

2 [0,0,0; £2] + [1,0,0; 0]

3 [0,0,0; £4] + [1,0,0; £2] + [0, 0, 1; 1] + [[2, 0, 0; 0] + [0, 0, 0; 0]

4 [0,0,0; 6] + [1,0,0; £4] + [0, 0, 1; £3] + [2,0, 0; £2] + [1, 0, 0; £2] + 2]0, 0, 0; +2]

+ 1,0, 1; 1] + [0,0, 1; £1] + [3,0, 0; 0] + 2[1, 0, 0; 0] + [0, 1, 0; 0] + [0, 0, 0; 0]

5 [0,0,0; 48] + [1,0,0; +6] + [0, 0, 1; +5] + [2,0,0; +4] + [1,0,0; +4] +2[0, 0, 0; +4]
+[1,0, 1; £3] +2[0,0, 1; £3] + [3,0,0; £2] + [2, 0, 0; +2] 4 3[1, 0, 0; £2] + 2[0, 1, 0; 2]
+[0.0,0; £2] + [2,0. 1; £1] 4 2[1,0, 1; +1] + 3]0, 0, 1; £1] + [4.0, 0; 0] + 2[2. 0, 0; 0]
+[1,1,0;0] +3[1,0,0; 0] + [0, 1,0; 0] + [0,0,2; 0] + 4]0, 0,0; 0]

6 [0.0,0; +10] + 1.0, 0; £8] + [0, 0, I; £7] + [2.0,0; £6] + [1.0,0; +6]
+2[0,0,0; +6] + [1,0, 1; £5] +2[0, 0, I; +5] + [3, 0, 0; £4] + [2,0,0; +4]
+3[1,0,0; +4] +2[0, 1,0; £4] +2[0,0,0; +4] + [2, 0, 1; £3] +3[1,0, 1; +3] +3[0,0, 1; +3]
+ [4.0,0; £2] + [3,0,0; £2] + 3[2,0,0; 2] + 21, 1,0; £2] + 5[1, 0, 0; 2] + [0, 1, 0; £2]
+2[0,0,2; +2] +4[0,0,0: £2] + [3.0, I; £1] +2[2.0, 1; £1] +4[1,0, 1; £1]
+[0,1,1; 1] +5[0,0, 1; £1] + [5, 0, 0; 0] +2[3. 0, 0; 0] + 2. 1, 0; 0] +4[2. 0, 0; 0]
+[1.1,0: 0] + [1.0.2: 0] 4 5[1.0.0; 0] + 5[0. 1, 0; 0] + [0. 0. 2; 0] + 3[0. 0, 0; 0]

The supermultiplets up to level six are listed in Table 11, some of their scattering amplitudes
are discussed in [43,44]. The branching process obviously increases the number and diversity of
multiplets compared to the ten-dimensional analogue, cf. Table 8. This is why we do not repeat
the higher level analysis carried out for the d = 10 ancestor in dimensionally reduced settings.

Note that this partition function can also be obtained by branching the SO(9) representations
appearing in the Vg = 1 partition function (6.4) into SO(7) x U (1) g representations. In terms
of characters, one simply maps SO(9) fugacities into SO(7) x U(1)g fugacities; a possible fu-
gacity map is as follows:

21 =1, 2 =1y2, 3 =13, 24 =S5, (6.46)

where 71, ..., z4 are fugacities of SO(9), y1, y2, y3 are fugacities of SO(7) and s is a fugacity of
U (1) . For example,

LSRR NS SR SN SRS SIS SR
[1’070,0]z=1+—2+Z1+—2+22+—2+Z3+—2+Z4
] 75 25 1
1 1 1 1
=l+S+yi+5+n+5+y+5+s°
Y1 b5 V3 s
=[1,0,0;01y:s +[0,0,0; +2] .5 +[0,0,0; =2y, (6.47)

where the notation [b1, b2, b3; Q] denotes the SO(7) x U(1)r representation.
6.4. Six-dimensional Ngg = (1, 1) spectra

Six-dimensional Type I compactifications with sixteen supercharges are said to possess Ngg =
(1, 1) SUSY. The spacetime symmetry branches to SO(9) — SO(5) x SO(4)r, i.e. two Cartan
generators of ten-dimensional Lorentz group take the role of R symmetry generators probing
fugacities ry, ry of SO(4)g = SU(2)g x SU(2)g. The fundamental supermultiplet of the Ngg =
(1, 1) super-Poincaré group has the following SO(5) x SU(2)g x SU(2)r particle content:
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Z(Nea = (1,1)) :=[2,0]-[0,0]g + [0, 2] - [0, 0]
+1[0,2]-[1,11g +[1,0]- [1, 11g
+1[1,0]- (12,01 + [0, 21g) + [0, 0] - [2, 2]k
+1[0,01-[1, 11z +[0, 01 - [0, O]g
+[1,11- ({1, 01z + [0, 11r)
+10,17- ([2, 11z + [1, 2]g + [1, 0]z + [0, 1]&). (6.48)

Note that the R-symmetry characters [...]r carry a subscript to avoid confusion with the Lorentz
symmetry of identical rank.

The most general multiplet follows from (6.48) by taking tensor products with SO(5) x
SUQ2)r x SU(2) g representations, this leads to the supercharacter

la1, az; b1, by] := Z(Nea = (1, 1)) - [a1, a2] - [b1, b2]g. (6.49)

The six-dimensional partition function is obtained from its ten-dimensional ancestor (6.3) by
singling out two internal factor leg(é) within Xl‘fg(ﬁ) (y) = Hi: 1 Xlﬁg(é) (yx) and reinterpreting

their second argument as an R-symmetry fugacity:
1,1 1,1
iNe=0D (goy ry = )R8 =AD| sy + x| o g5 v,

Nea=(1,
NS D 6s0(q: y, 1)

50(5) (ezmq y)XS(s)(S)( 2niq; r)]

@ sl (i ). (6.50)

1 1 5
=34 2 @ s i ) -

Nea=(1,1 S0
P )IGSO(q;y,r)=§xR

Its ¢ expansion starts like**

Ne=00(g; y, 1)

2 2 2 2
Z(Z(yjz-+y] +Zr +r; +%Hy,+y] l—[rj+r )
j=1 j=1

Jj=1 Jj=1

16 massless states

+ [0,0;0,0)g +([0,0;1,1] +[1,0;0,0])q>

256 states at level 1 2304 states at level 2
+ ([0,0;2,2] +[1,0; 1,1] + [0, 1; 1, 0]
+[0,1;0, 1] + [2,0; 0,0] + [0, 0; 0,0])¢> + O(¢*), (6.51)

and supermultiplets at higher levels < 5 are listed in Table 12.

Note that this partition function can also be obtained by branching the SO(9) representations
appearing in the Ny = 1 partition function (6.4) into SO(5) x SU(2)gr x SU(2) g representa-
tions. In terms of characters, one simply maps SO(9) fugacities into SO(5) x SUR2)g x SU(2)r
fugacities; a possible fugacity map is as follows:

34 Again, there is a subtlety in applying the above formula to the massless R sector; see the footnote before (4.4).
However, this can be fixed easily: one can simply add to it % H?:l Oj - yj_l) 1—6:1 (rj — rj_]) to get the correct
massless character in R sector.
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Table 12

Ngqa = (1, 1) multiplets occurring up to mass level five.

o'm? Representations of Ngz = (1, 1) super-Poincaré

1 [0,0;0,0]

2 [0,0;1,1] 4+ [1,0;0,0]

3 [0,0;2,2] + [1,0; 1, 1] + [0, 15 1,0] + [0, 1; 0, 1] + [2,0; 0, 0] + [0, 0; 0, 0]

4 [0,0:3,3] +[1,0;2,2] + [0, 1;2, 1] + [0,0;2,0] + [0, 1; 1,2] + [2,0; 1, 1] + [1,0; 1, 1]

+2[0,0; 1, 1] + [1, 1; 1, 0] + [0, 1; 1,0] + [0, 0; 0, 2] + [1, 1;0, 1] + [0, 1; 0, 1] + [3, 0; 0, 0]
+2[1,0;0,0] + [0, 2;0,0]

5 [0,0;4,4] + [1,0:3,3] + [0, 1; 3,2] + [0, 0; 3, 1] + [0, 1; 2, 3] + [2. 0: 2, 2] + [1,0; 2, 2]
+2[0,0;2,2] + [1.1; 2, 1] +2[0, 1; 2, 1] 4+ 2[1, 0; 2, 0] + [0, 0; 2, 0] + [0, 0; 1, 3] + [1. 1; 1, 2]
+2[0, 15 1,2] + [3,0; 1, 1] + [2,0; 1, 1] +3[1,0: 1, 1] +2[0,2; 1, 1] +2[0,0; 1, 1] + [2, 1; 1, 0]
+2[1,1; 1,0] +3[0, 1; 1,0] + 2[1, 0; 0, 2] + [0, 0; 0, 2] + [2. 1; 0, 1] +2[1, 1; 0, 1] +3[0. 1; 0, 1]
+[4,0;0,0] +2[2,0;0,0] + [1,2;0,0] + [1,0;0,0] +2[0, 2; 0, 0] + 3[0, 0; 0, 0]

-1
21 =1, 2 =Y2, 3 =Trir, 4=riry (6.52)

where 71, ..., z4 are fugacities of SO(9), y1, y» are fugacities of SO(5), and ry, rp are fugacities
for the two SU(2) r factors. For example,

1 2 1 2 1 2 1 2
[1,0,0,0, =1+ 5 +z1+ 5 +25+ 5 +253+ 5 +25
4 2 23 2y

1 1 _ _

=1+ S +yi+S5+y+E+r)(n+r")
1 b5

=[1,0;0,0]y;r +[0,0; 1, 1]y;p, (6.53)

where the notation [ag, az; b1, b>] denotes the SO(5) x SU(2)g x SU(2) g representation.
6.5. Four-dimensional Ny = 4 spectra

Finally, four-dimensional theories with maximal Aj; = 4 SUSY follow from the ten-
dimensional ancestor through compactification on 7. The internal rotation group is identified
with the R symmetry SO(6)rR, its characters are denoted by [b1, b2, b3]g. The universal partition
function decomposes into characters of the Nz = 4 super-Poincaré algebra, the fundamental one
being

Z(Naa =4) =[0]([0, 0, 2]z + [0, 2, 0]z + [2,0, 0] +2)
+ [2][0, 1, 11r + 2[2][1, 0, O] & + [4]
+ [11([0,0, 11z + [0, 1,01z + [1,0, 1]g 4 [1,1,0]r)
+[31([0, 0, 11g + [0, 1, 0]). (6.54)
Any other supermultiplet follows by taking a tensor product of (6.54) with the SO(3) x SO(6)r
representation [n][by, by, b3]r of the Clifford vacuum,
[n; b1, by, b3] := Z(Naqa =4) - [n][b1, b2, b3]R. (6.55)

The four-dimensional partition function is obtained through the usual procedure from the ten-

dimensional ancestor (6.3), this time we have to interpret three factors of xfgﬁ) as carrying

R-symmetry fugacities 7;:
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N gy m = st |Gso(q y,r)+xR |G50(c1 y.7),
1850 @ y,r)——q e @ e i)
XS(S)G)( qu y)legU)( 2niq; r)],
N4"_4\Gso(q y.r)= —XR 29 @’ Pg; . (6.56)

The power series in ¢ starts with®

KM= gy, )

3 3
- N -1 ,
:(y2+y 2~|—2:(r12-—i—rj )+§[1]yj1:[1(rj+rj )>q0+ [0;0,0,0]q

Jj=1 256 states at level 1

16 massless states
+ ([0; 1,0, 0] + [2: 0,0, 0])g>+([0: 0,0, 0] + [0; 2, 0, 0] + [1; 0,0, 1]
2304 states at level 2

+[1;0,1,0] + [251,0,0] + [4; 0,0,0])g° + O(g*), (6.57)

the coefficients of ¢g* and ¢> can be found in Table 13. The explicit vertex operators from the
first level are listed in Section 4 of [33].

Note that this partition function can also be obtained by branching the SO(9) representations
appearing in the Aoy = 1 partition function (6.4) into SO(3) x SO(6) g representations. In terms
of characters, one simply maps SO(9) fugacities into SO(3) x SO(6)r fugacities; a possible
fugacity map is as follows:

Z1=r1, 22 =12, 73 =13, 4=y, (6.58)

where z1, ..., z4 are fugacities of SO(9), rq, 2, r3 are fugacities of SO(6)g and y is a fugacity
of SO(3). For example,

1 1
[1000]1—1+ +Z]+ +72+ +Z3+ +Z4
Zl Z2 Z3 Z4

1 1 1

+r1+ +r 4= +r3+(1+—2+y2>
r1 r2 r3 y

=1[0; 1,0, 01, +[2;0,0,0l,.,, (6.59)

where the notation [a; by, b>, b3] denotes the SO(3) x SO(6) g representation for which the SO(3)
representation is [a] and SO(6) g representation is [b1, b2, b3]g.

7. Conclusion

We have investigated model independent superstring states common to all Type I compactifi-
cations that preserve My = 1 and Ngg = (1, 0) SUSY, respectively, and identified the underlying

35 Again, there is a subtlety in applying the above formula to the massless R sector; see the footnote before (4.4).

However, .this can be fixed easily: one can simply add to it %(y - y_l) H?: 1 = rj_l) to get the correct massless
character in R sector.
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Table 13
N4q = 4 multiplets occurring up to mass level 5.

o'm? Representations of NVy; = 4 super-Poincaré

1 [0;0,0,0]

2 [0;1,0,0] + [2;0,0,0]

3 [0;0,0,0] + [0;2,0,0] + [[1; 0,0, 1] + [1; 0, 1,0] + [2: 1, 0,0] + [4;0,0,0]

4 [0;0,1,1] +2[0; 1,0,0] + [0;3,0,0] + [1;0,0, 1] + [1;0,1,0] + [1: 1,0, 1] + [1; 1,1, 0]

+3[2:0,0,0] + [2; 1,0, 0] + [2:2,0,0] + [3;0,0, 1] + [3: 0, 1,0]
+ [4:1,0,0] + [6: 0,0, 0]

5 4[0;0,0,0] + [0;0,0,2] + [0;0, 1, 1] + [0; 0,2,0] + [0; 1,0,0] + [0; 1,1, 1]
+2[0:2,0,0] + [0:4,0,0] +3[1:0,0, 1] +3[1: 0, 1,0] +2[1: 1,0, 1]
+2[1;1,1,0] + [1; 2,0, 1] + [1:2, 1,0] +2[2; 0,0,0] +2[2; 0, 1, 1] + 5[2; 1, 0,0]
+[2:2,0,0] + [2:3,0,0] +2[3; 0,0, 1] +2[3; 0, 1,0] + [3; 1,0, 1] + [3; 1, 1,0]
+3[4;0,0,0] + [4; 1,0,0] + [4;2,0,0] + [5; 0,0, 1] + [5: 0, 1,0]
+ [6:1,0,0] + [8: 0,0,0]

super-Poincaré multiplets at individual mass levels. Part of our results are the associated unre-
fined partition functions together with their asymptotics for large mass levels, see (4.8)—(4.17)
and (5.5)—(5.12). The refined versions of the universal partition functions are given by (4.4) and
(5.3) and rewritten in terms of super-Poincaré characters in (4.39), (4.61), (4.62), (5.23) and
(5.41). Moreover, we have presented dimensional reductions of the universal Ngg = (1, 0) and
N1o4 = 1 spectra to even dimensions d > 4 in Sections 5.5, 6.3, 6.4 and 6.5.

Multiplicity generating functions for individual supermultiplets tend to stabilize in the regime
where the spin j (or more generally the first SO(d — 1) Dynkin label) is comparable to the mass
level M = o’m?. More specifically, the validity for the stable pattern roughly ranges between
%(M — Mo) 5 j S M — My where the offset Mo depends on the remaining super-Poincaré quan-
tum numbers of the multiplets beyond the spin. In the mathematically most tractable Ny = 1
case, we have derived closed formulae (4.63) and (4.64) for the leading Regge trajectory. In the
highest-dimensional scenarios with given number of supercharges — Ny = 1, Ngg = (1, 0) and
Nioa = 1 — we extracted both leading and subleading Regge trajectories from explicitly com-
puted multiplicities up to level o’m? = 25, see Sections 4.5, 5.4 and 6.2.

Identifying the super-Poincaré covariant spectrum in scenarios with different numbers of su-
percharges provides a significant step towards a better understanding of the string S-matrix. As
pointed out in [43], cubic tree level vertices among all the massive states are the seeds for super-
string amplitudes of higher multiplicity and genus. The results of this work appear inspiring
to push this programme further, using on-shell superspace techniques in various dimensions
[38,42]. Refined partition functions as computed here serve as generating functions for helic-
ity supertraces [45] which allow to disentangle contribution of individual supermultiplets to loop
amplitudes.

Extending flat space results as presented in this work to curved spacetime provides an ex-
citing direction of further research. Anti-de-Sitter backgrounds are of particular interest in view
of their conjectured correspondence to conformal field theories [46,47]. For instance, the model
independent higher spin string spectrum at the first massive level in AdS3 x 3 compactifications
with pure NSNS background has been pioneered in [48]. This is a motivating starting point to-
wards generalizations to non-zero RR flux and superstrings in AdSs x S, see [49] for a review.
Also, we would like to mention Ref. [50] which extracts information on the AdSs x $° Kaluza
Klein excitations from the Aoy = 1 flat space spectrum, in particular from its large spin regime
investigated in detail here. Finally it would be also very interesting to explore the extended sym-
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metry structure of the universal higher spin states in supersymmetric string compactifications, in
analogy to the Wy -symmetries in three-dimensional higher spin theories on AdS3 [51-53].
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Appendix A. Notation and conventions

Unless stated otherwise, the following notation and conventions will be used throughout the
paper.

A.1. Group and representation theoretic objects

e The plethystic exponential of a multivariate function f (¢, ..., ;) that vanishes at the origin,
f(@,...,0) =0, is defined as
1
k k
PE[f(tl,...,tn)]=CXP<Z%f(I1,...,tn)>. (A.1)
k=1
The fermionic plethystic exponential is defined by
o (_1)k+1 ' '
PEF[f(11,....tn)] =exp ZTf(tl,...,tn) ) (A.2)
k=1
e An irreducible representation of a simple group G can be denoted by its highest weight
vector.
— With respect to a basis consisting of the fundamental weights (the w-basis), we write the
highest vector as [ay, ..., a,] with r =rank G. This is also known as the Dynkin label.
— With respect to a basis of the dual Cartan subalgebra (the e-basis), we write the highest
vector as (A1, ..., Ar).

— Note that we use the round brackets to distinguish the latter from the former for which the
square brackets are used.
e For SO(2n + 1), the label [ay, ay, ..., a,] is related to the label (A1, A2, ..., A,) by the for-
mula

1
A=ai+ai1+--+ap— +§an, 1<i<n—1,
1
)\nzzana (A.3)
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or equivalently
ai=Xxi —XAiy1, 1<i<n—1,
an =2Xy. (A.4)

Note that a representation is uniquely specified by its character. We use the nota-
tion [ay,az,...,ar]y (resp. (A1,...,A;)y) to denote the character of the representation
a1, az, ..., a;] (resp. (A1, ..., A;)) written in terms of the variables y = (y1, ..., y). When-
ever there is no potential confusion, we drop the subscript y to avoid cluttered notation.

A representation of a product group G x Gz is denoted by [ay,...,ar;b1,b2,...,bp]
where [a1, ..., a, ] is an irreducible representation of G and [by, ..., by, ] is that of G,. We
use a semi-colon (;) to separate each representation.

We use the notation [n] to denote the (n + 1)-dimensional irreducible representation of SU(2)
and SO(3). Its character is given by

+n/2
[nly= ) »y* (A.5)
k=—n/2
The character of the vector representation of SO(2n + 1), with n > 1, is taken to be
n
(1,0,....00y =[1,0,....0l, =1+ > (3¢ + ¥ ) (A.6)
k=1

In general, the character of the irreducible representation (Aq, ..., A,) of SO(2n + 1) is given

by the Weyl character formula:

20i+n—i+3)  —2(i+n—i+3)
Ot )y = 20 it/ b=t (A7)
b Ay = 2n—ith)  —2m-ith), ' '
det(y; ; "

The choice of the character in (A.6) has a great advantage: One can relate the character of
the vector representation of SO(2n + 1) to that of the vector representation of SO(3) in a
simple way:

As we shall see in subsequent sections, this helps simplify a number of computations.
The Haar measures of SO(3) and SU(2) are taken to be

/d ()—fd ()=t &
Hso)\Y) = Hsu)\y) = 227_” y

lyl=1

—(1-y)(1-y7?). (A.9)

In general, the Haar measure for SO(2n 4 1) can be written as

/ duson+1)(y) = / duso@)(y1) -+ / duso@) (yn) (), (A.10)

where

]
p=— T[] =)=y (1 =320 =577, (A1)
1<z<]<n
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A.1.1. Special functions
e The g-Pochhammer symbols are defined as

n—1 oo

(@:q)n =] (1 —aq").

(@: @)oo= [ [ (1 - aq").

k=0 k=0

o Our conventions for the Dedekind eta and the Jacobi theta functions are

36

[e.0]

@) =q7 [[(1-¢") =47 @ oo,

?1(y,q) =

W2(y,q) =

¥3(y,q) =

P4(y, q)

n=1
. o

—ig¥(y? =y ) [J(1=q")(1 = ya") (1 = y~'q").

n=1

o0

q8 y2 +y 2 1_[ —i—yq )(l+y71q"),
n=1

o0

1—[(1 —g)(1 _i_yqnfl/Z)(] Ly lg 1),

n=1

0

= H(l —q")(1- yqn_l/z)(l —ylgnm12),

n=1

In terms of an infinite sum, the Jacobi theta functions can be written as

a _ Ym—a/2)? (—imb  \(m—a/2)
AT R—

where

1
191—19|:1

meZ

) T ]

e The Appell-Lerch sum is defined as follows [41]:

u, )=

where

y=exp(2miu),

_ e Z(—l)me
?1(y,q) 1-

imu wim(m+1)t+2wimu

)

e2mimt+2mwiu
me7z

q =exp(2mit).

129

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

36 These conventions are related to, for example, those adopted in Appendix A of [54] by y = exp(2mwiv), g =
exp(2mit). We refer the reader to this reference for further properties of such functions.
37 The notation in this paper and that in Proposition 1.4 of [41] can be related as follows. Our notation is on the left-hand

sides of the following equalities: u(u, q) =

(@, u,q),and ¥y (u, t) = -0 (u, 7).
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Appendix B. Data tables for super-Poincaré multiplicities

This appendix contains data tables for multiplicities of super-Poincaré representations up to
mass level a’m? = 25. We only display tables for the ancestor theories with 4, 8 and 16 super-
charges, respectively, since these highest-dimensional theories organize the states in the most
economic number of supermultiplets. Particular attention is paid to stable patterns, i.e. to the
asymptotics of multiplicity generating functions for large spins and mass levels. Further tables
of this kind which were displayed in an earlier version of the file can now be found in an AUX-
ILTARY FILE 1.

Each of the following tables is devoted to family of supermultiplets whose quantum numbers
differ in the first SO(d — 1) Dynkin label and match in the remaining SO(d — 1) and R-symmetry
quantum numbers. Rows are associated with mass levels, and columns are associated with the
value of the first SO(d — 1) Dynkin label to which we loosely refer to as the spin. Independently
of spacetime dimensions and supercharges, the multiplicity generating functions G_ (q) tend
to stabilize for large values of the spin and the mass level in the limit where both of them are
uniformly increased. This leading Regge trajectory (corresponding to the 7;(g) contribution in
(4.74), (5.42) and (6.34)) is exact when numbers occur repeatedly along diagonal lines in the
tables, these entries are marked in red.

Moreover, once the asymptotic numbers in red are subtracted from the data outside the first
stable region, further subleading trajectories emerge. The leftover after this subtraction tends to
stabilize along lines where the mass level grows twice as fast as the spin. This can be understood
as the second Regge trajectory (corresponding to the 75" (g) contribution in (4.74), (5.42) and

(6.34)) with slope % and subtractive sign. Its region of exact validity is highlighted in blue.
B.1. 4 Supercharges in four dimensions

Tables B.1, B.2 are based on the N3y = 1 partition function (4.4), organized in terms of
multiplicity generating functions G, ¢(q), see (4.39).

B.2. 8 supercharges in six dimensions

Tables B.3, B.4, B.5 are based on the Ngz = (1, 0) partition function (5.3), organized in terms
of multiplicity generating functions G, »,,»(q), see (5.23).

B.3. 16 Supercharges in ten dimensions

Tables B.6-B.9 are based on the Njg; = 1 partition function (6.3), organized in terms of
multiplicity generating functions G, j,.n3,n,(q), se€ (6.16).

Appendix C. Deriving the asymptotic formulae for A3y = 1 multiplicity generating
functions

In this appendix, we derive the asymptotic results on multiplicity generating function G, g (q)
in the limit n — oo presented in Section 4.4.

In what follows, we will exploit the n — oo behavior of objects T, (m, k) := (}}) — (kTp),



Table B.1

o'm? [1;2] [3;2] [5:2] [7;2] [9; 2] [11;2] [13;2] [15;2] [17;2] [19; 2] [21;2] [23;2]

1 0

2 0

3 1 0

4 2 2 0

5 6 6 2 0

6 17 15 8 2 0

7 38 43 22 8 2 0

8 89 101 62 24 8 2 0

9 195 233 152 71 24 8 2 0
10 411 512 361 176 73 24 8 2 0
11 843 1089 803 430 185 73 24 8 2 0
12 1694 2231 1734 978 456 187 73 24 8 2 0
13 3302 4483 3602 2146 1053 465 187 73 24 8 2 0
14 6336 8758 7304 4525 2343 1079 467 187 73 24 8 2
15 11919 16795 14402 9300 4997 2420 1088 467 187 73 24 8
16 22053 31582 27835 18548 10383 5200 2446 1090 467 187 73 24
17 40173 58428 52685 36227 20921 10878 5277 2455 1090 467 187 73
18 72204 106359 98044 69217 41236 22068 11083 5303 2457 1090 467 187
19 128014 191004 179419 129896 79473 43785 22569 11160 5312 2457 1090 467
20 224337 338384 323661 239545 150345 84906 44955 22774 11186 5314 2457 1090
21 388651 592391 575773 435174 279322 161591 87520 45458 22851 11195 5314 2457
22 666314 1025226 1011672 779119 510970 301946 167204 88696 45663 22877 11197 5314
23 1131024 1755809 1756589 1377070 920804 555389 313632 169841 89199 45740 22886 11197
24 1902209 2976969 3017219 2404087 1637411 1006121 579053 319310 171019 89404 45766 22888
25 3170935 5000934 5129359 4150179 2874993 1798156 1052851 590920 321953 171522 89481 45775

9PI—SS (£10T) 948 4 915Ky vajonN / v 32 3T "d
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Table B.2
o'm? [0; 1] [2:1] [4;1] [6: 1] [8: 1] [10; 1] [12: 1] [14; 1] [16; 1] [18; 1] [20; 1]

1 1 0

2 0 2 0

3 3 2 3 0

4 3 11 4 3 0

5 15 20 18 5 3 0

6 21 58 39 21 5 3 0

7 66 115 105 49 22 5 3 0

8 112 274 223 135 52 22 5 3 0

9 267 543 521 296 146 53 2 5 3 0
10 487 1159 1066 698 330 149 53 2 5 3 0
11 1027 2248 2258 1467 786 341 150 53 22 5 3
12 1872 4483 4465 3133 1682 821 344 150 53 22 5
13 3684 8456 8874 6300 3637 1774 832 345 150 53 2
14 6654 16077 16929 12629 7413 3868 1809 835 345 150 53
15 12430 29505 32174 24376 15014 7960 3961 1820 836 345 150
16 22104 54085 59444 46663 29304 16246 8195 3996 1823 836 345
17 39831 96778 109017 86997 56583 31974 16809 8288 4007 1824 836
18 69495 172263 195931 160521 106459 62184 33250 17045 8323 4010 1824
19 121751 301246 348996 290518 197927 117845 64978 33817 17138 8334 4011
20 208588 523209 612069 520208 360936 220529 123748 66270 34053 17173 8337
21 356951 896281 1063839 917434 650566 404759 232640 126586 66838 34146 17184
2 601090 1524153 1825894 1601735 1154779 733851 428967 238668 127882 67074 34181
23 1008432 2562971 3106955 2761714 2027692 1310137 781160 441385 241522 128450 67167
24 1670909 4278549 5231334 4717314 3515675 2312784 1400641 806110 447457 242819 128686
25 2755277 7075262 8737282 7973033 6035514 4030732 2482787 1449609 818653 450315 243387

el
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Table B.3

om?  [0,2;0]  [1,2,0]  [2,20]  [3,2:0] [420] [520] [62:0] [7.20]  [820]  [920]  [10,2;0]  [11,2;0]

1 0

2 1 0

3 1 1 0

4 4 2 1 0

5 6 7 2 1 0

6 19 13 8 2 1 0

7 34 38 16 8 2 1 0

8 81 79 48 17 8 2 1 0

9 156 184 103 51 17 8 2 1 0
10 332 378 252 113 52 17 8 2 1 0
11 636 813 530 279 116 52 17 8 2 1 0
12 1276 1623 1171 604 289 117 52 17 8 2 1 0
13 2404 3290 2395 1350 631 292 117 52 17 8 2 1
14 4614 6386 4962 2816 1427 641 293 117 52 17 8 2
15 8537 12406 9823 5912 3001 1454 644 293 117 52 17 8
16 15853 23445 19436 11896 6361 3078 1464 645 293 117 52 17
17 28748 44075 37346 23836 12913 6549 3105 1467 645 293 117 52
18 52034 81247 71315 46446 26104 13368 6626 3115 1468 645 293 117
19 92579 148705 133388 89732 51295 27149 13556 6653 3118 1468 645 293
20 163950 268145 247448 169908 99935 53631 27607 13633 6663 3119 1468 645
21 286638 479693 451900 318623 190744 104983 54682 27795 13660 6666 3119 1468
2 498178 848018 818105 588270 360520 201413 107347 55140 27872 13670 6667 3119
23 856969 1487396 1462590 1075628 670688 382510 206529 108401 55328 27899 13673 6667
24 1465054 2583018 2592572 1942043 1235427 715151 393379 208899 108859 55405 27909 13674
25 2483037 4452127 4547623 3474093 2246578 1323605 737611 398523 209953 109047 55432 27912
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el

Table B.4
a'm?  [0,0;2] [1,0:2] [2.0:2] [3.0:2] [4,0:2] [5.0:2] [6.0: 2] [7.0:2] [8.0:2] [9.0:2] [10,0;2]  [11,0;2]

2 0

3 1 0

4 0 2 0

5 3 3 3 0

6 4 9 4 3 0

7 13 20 17 5 3 0

8 20 50 34 19 5 3 0

9 53 101 93 43 20 5 3 0
10 93 224 192 115 45 20 5 3 0
11 203 449 446 252 125 46 20 5 3 0
12 369 924 903 589 275 127 46 20 5 3 0
13 743 1798 1920 1241 659 285 128 46 20 5 3 0
14 1355 3523 3792 2664 1405 683 287 128 46 20 5 3
15 2585 6673 7601 5410 3071 1476 693 288 128 46 20 5
16 4662 12617 14601 10981 6311 3245 1500 695 288 128 46 20
17 8585 23303 28083 21538 13007 6741 3317 1510 696 288 128 46
18 15272 42800 52540 41953 25810 13982 6916 3341 1512 696 288 128
19 27351 77315 97864 79808 50933 28012 14422 6988 3351 1513 696 288
20 47902 138661 178789 150444 97964 55666 29010 14598 7012 3353 1513 696
21 83950 245476 324415 278690 186802 107982 57944 29451 14670 7022 3354 1513
22 144814 431357 580136 511315 349601 207363 112896 58952 29627 14694 7024 3354
23 249137 750026 1029661 925300 648055 391117 217862 115197 59394 29699 14704 7025
24 423589 1294613 1806340 1658994 1183895 730037 412771 222852 116206 59570 29723 14706
25 717200 2214733 3145140 2940833 2142556 1343353 774118 423453 225163 116648 59642 29733
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Table B.5

om?  [0.1:1]  [LL1] 1] [Bou1] 41 [5ou1] 0 (61 [711] 0 [8.1:1] [9.1:1]  [10,1:1]  [11,1:1]

1 0

2 1 0

3 1 2 0

4 4 3 2 0

5 8 9 4 2 0

6 18 23 12 4 2 0

7 39 51 31 13 4 2 0

8 82 114 76 34 13 4 2 0

9 165 249 174 85 35 13 4 2 0
10 333 519 391 203 88 35 13 4 2 0
11 652 1064 843 465 212 89 35 13 4 2 0
12 1260 2137 1776 1024 495 215 89 35 13 4 2 0
13 2396 4202 3645 2203 1102 504 216 89 35 13 4 2
14 4499 8128 7330 4609 2399 1132 507 216 89 35 13 4
15 8321 15488 14450 9428 5080 2478 1141 508 216 89 35 13
16 15236 29063 28022 18898 10511 5280 2508 1144 508 216 89 35
17 27556 53844 53451 37201 21297 10997 5359 2517 1145 508 216 89
18 49336 98540 100527 71985 42376 22425 11198 5389 2520 1145 508 216
19 87449 178260 186521 137212 82828 44899 22915 11277 5398 2521 1145 508
20 153595 319063 341843 257835 159430 88321 46042 23116 11307 5401 2521 1145
21 267352 565412 619252 478197 302417 171054 90889 46533 23195 11316 5402 2521
2 461595 992485 1109824 876142 565992 326453 176672 92036 46734 23225 11319 5402
23 790578 1726764 1968850 1587104 1046065 614658 338400 179255 92527 46813 23234 11320
24 1343972 2979088 3459778 2844391 1910959 1142740 639492 344063 180403 92728 46843 23237
25 2268336 5098709 6025145 5046950 3452679 2099666 1193279 651564 346650 180894 92807 46852
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Table B.6

o/'m2[0,1,0,0]1.1,0,0][2.1,0,0] 3. 1,0,0] [4. 1,0, 0] [5. 1,0, 0] [6. 1.0, 0] [7. 1,0, 0] [8, 1,0, 0] [9. 1,0, 0] [10, 1,0,0] [ 11, 1,0, 0] [12, 1,0,0] [13. 1,0, 0] [ 14, 1,0, 0]

[oIEN e N

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

AR == — O

7

13

21

37

60
101
165
274
441
717
1149
1847
2928
4647
7310
11482
17908

~N O LN = O

—

29

54

90
159
268
457
760
1276
2088
3443
5585
9060
14538
23301
36995

N YW= O

1

23

42

77
137
243
422
732
1248
2121
3551
5929
9790
16095
26221
42535

W3 W= O

1

26

48

92
163
298
522
924
1592
2750
4656
7886
13160
21906
36063

N W= O

14

27

51

98
178
326
580
1032
1801
3134
5361
9148
15414
25846

~N W= O

14
28
52
101
184
341
608
1092
1912
3351
5762
9894
16754

187
347
623
1120
1972
3464
5982
10303

629
1135
2000
3524
6095

N W= O

14
28
53
103
189
351
632
1141
2015
3552

~N W= O

28
53
103
189
352
633
1144
2021

~N W= O

103
189
352
634

0

1 0

2 1

3 2

7 3
14 7
28 14
53 28
103 53
189 103
352 189

EEN VI SR )

—_

53
103

9¢1
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Table B.7

o/'m2[0,0,1,0] 1,0, 1,0][2.0, 1,0] 3.0, 1,0] [4,0. 1,0] [5.0. 1,0] [6.0. 1,0] [7. 0. 1, 0] [8,0. 1,0] [9. 0, 1,0] [ 10,0, 1, 0] [ 11,0, 1,0] [ 12,0, 1,0] [13.0. 1, 0] [ 14,0, 1, 0]

24
25

O NN WO ~=O

30

64

97
179
282
496
784
1335
2117
3497
5546
8981
14141
22570

(T N SN

24

85
164
276
502
842

1473
2449
4164
6853
11401
18557
30342
48846

73
125
249
431
803

1379
2462
4181
7238
12131
20509
33931
56288

0 N = = O

22

39

88
158
321
578
1099
1951
3559
6218
10990
18890
32585

o0 N = = O

22

40

89
163
331
602
1149
2058
3770
6637
11791
20406

0 N = = O

40
90
164
336
612
1173
2108
3878
6849
12218

0 N = = O

22
40
90
165
337
617
1183
2132
3928
6957

0 N = = O

22
40
90
165
338
618
1188
2142
3952

o0 W = = O

22
40
90
165
338
619
1189
2147

00 W — — O

22
40
90
165
338
619
1190

o0 W = = O

22
40
90
165
338
619

0 N = = O

22
40
90
165
338

00 W = = O

22
40
90
165

00 N = = O

22
40
90
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Table B.8

«’'m2[0,0,0,2][1,0,0,2][2,0,0,2][3.0,0,2] [4,0.,0,2] [5. 0,0, 2] [6. 0,0, 2] [7. 0,0, 2] [8, 0, 0, 2] [9, 0, 0, 2] [ 10,0, 0, 2] [ 11,0, 0, 2] [ 12, 0,0, 2] [ 13,0, 0, 2] [ 14, 0, 0, 2]

[ BEN Be NNV |

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

W= = O

160
286
469
805
1314
2199
3558
5837
9361
15106
23999

W= O

—_

62
132
249
491
900

1685
3018
5438
9530
16701
28688
49138

139
266
531
985
1864
3378
6148
10888
19266
33418

548
1025
1951
3560
6520

11624
20692

N - O

143
276
555
1042
1991
3647
6704
11999

o= O

33
66
143
271
558
1049
2008
3687
6791

N = O

33
66
143
277
559
1052
2015
3704

W= O

66
143
271
559

1053
2018

143
277

1053

0

1 0

2 1

7 2
13 7
33 13
66 33
143 66
271 143
559 277

8¢€1
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Table B.9

«’'m2[0,0,0,1][1,0,0, 1][2,0,0, 1][3.0,0, 1][4,0,0, 1] [5,0,0, 1] 6.0, 0, 1][7.0,0, 1] [8,0,0, 1] [9, 0,0, 1][10,0,0, 1] [11,0,0, 1] [12,0,0, 1] [13,0,0, 1] [14,0,0, 1]

0 NN N R W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

N RPN —O —O

S S S R
~ O

89
147
233
376
603
954

1511
2383
3727
5821
9050
13998

IR N R

1

22

38

66
113
190
318
532
877
1438
2345
3795
6105
9775
15552
24624
38797

W= —

19

35

62
112
197
342
587
1001
1686
2823
4684
7716
12620
20513
33121
53183

— O W= = O

1

22

43

77
142
256
452
792
1376
2354
4003
6745
11265
18678
30757
50273

P ONW— — O

158
288
517
916
1610
2789
4795
8164
13782
23075
38366

N AN W= = O

1

24

47

88
166
304
550
983
1740
3037
5260
9019
15332
25850

N AW == O

—_

48
89
169
312
566
1016
1808
3169
5514
9498
16217

N YW= = O

48
90
170
315
574
1032
1841
3237
5647
9754

ROWw ==

1
24
48
90
171
316
571
1040
1857
3270
5715

N O W—= = O

1
24
48
90
171
317
578
1043
1865
3286

N AW == O

48
90
171
317
579
1044
1868

N W= = O

48
90
171
317
579
1045

N ANW = = O

48
90
171
317
579

NN W= = O

48
90
171
317

N AW = = O

—

48
90
171
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Toni2@m+1,m+n+1—k) 2m 1
2n+2 m , m n m+n+1—k’

2m
Tons2(m,m+n — k) ~< ) (C.1)
m+n—k
assuming that m, k > 0.
C.1. Warm-up: Multiplicities of [2n + 1, 0] and [2n, 1] as n — oo
In order to get familiar with the asymptotic methods in the Ny = 1 context, we shall first of

all discuss the large spin regime of supermultiplets with U (1) g neutral Clifford vacuum.
The multiplicity generating function for the representation [2n + 1, 0] can be written as

o o o0 [o SN
Gonr10@)=Y_ > Mpurro)(m. —p — Lk @)+ DY Mppui1,01(p- - ki ),
k=0m=0 p=0 k=0 p=0

(C.2)
where the function 9o, 41,207 and M, 41,207 are defined in (4.59) and (4.60) and, as n — oo,

e m-—p 2m + 1
Mpzn-+1,01 (s po ks q) ~ (= 1) p[nyzS’(q)<zm + 1) (m +n+1- k)

- 2
+ F£p<q)(m2m” ) (m o k)} (€3)

Note that the binomial coefficient (0‘) increases as f increases from O to |« /2] and then decreases
as B increases from |«/2] + 1 to .

Observe that 9)?[[2n+1’0] (m, —p — 1,k; q) is sharply peaked near (m, p, k) = (0,0, n) for n
large. Therefore, the dominant contribution to the first set of summations in (C.2) comes from

oo o0 o0

Z Z Z Mppy1,010m, —p — 1, ks q)

m=0 p=0 k=0
[e1] Te2] [n(l+e€3)]

~ Z Z Z Mpny1,0/0m, —p — 1, k;q) any €1, €2,€3>0, n—> 00
m=0 p=0k=|n(l—e3)]

o o0 o
~3 3 Mpuyropm.—p— Ln+8:q). n— oo (C.4)
m=0 p=08§=—00

In the limit of large k, we can use asymptotic formulae (4.23) and (4.28) for F; ,FIS? (¢) and F ,E » ).
The summation over é from —oo to 0o can be readily computed using the fact that

2m ” 2m
§ § § § —m 2m
= = 1 + s
q(m—(S) q(m—B) g a)
§=—00 S=—m
2m +1 mtl 2m +1
8 s —m 2m+1
E = E = 1+ . C.5
q(m—8+l) q(m—S—}—l) 7 9) €5
§=—00 §=—(m+1)

Next, the summation over m from 0 to oo can be computed using the following identities:
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[e9) 2p+3
_ 1+m+p R B

_ meq 2m — (— p—1 i
mEZO( q) "(1+q) < om > (=9) —g

o) 2p+2
m mal 1+ m+ I I

Y )" (1 +9)? “( 1 ”)=(—q> R (C.6)

+2m 1—g

m=0

Thus, from (C.4), we find that
o o0 o
YD Y Mpusropm,—p =1,k q)
m=0 p=0 k=0

(=)

.08 {1 (V@)02(1, 9)* = [u2(/g)P3(1, 0)* — ua(—/q)¥a(1.9)*]}.

(C.7
where the functions u1(q) and u>(q) are defined as follows:

1— q4p+6
L+ 2P 2) (1 + g2+’

)

3y2

ui(q) =y _ ¢q*"*?)
p=0

1— q4p+4

(L+ g2 ) (142’ 9

)

2

0@ =3 7
p=0

It remains unclear whether u1(q) and u3(g) can be written in terms of known functions (if this
is useful at all). In practice, it is easy to compute the power series #1(g) and u2(g) up to a high
order in g. Moreover, their asymptotic formulae can be easily derived in the limit ¢ — 0. We
shall come back to this point later.

Let us now examine the second set of summations in (C.2). The function M, 1,07 (P P, k; )
is sharply peaked near (p, k) = (0, n) for large n. Thus,

oo 0

DO Mpusr0p(ps 2ok @) ~ Mpzus1,01(0, 0,13 g),  n— o0
k=0 p=0
1 (1-g)
4q:9)% 144

g 592(1, )% (C.9)

From (C.2), we simply add (C.4) and (C.9) together and obtain the expression (4.72) for
Q2n+1,0, in agreement with the stable pattern in Table 3.

From recurrence relation (4.35) for G, o, the asymptotic behavior of multiplicity generating
functions U (1) g charge Q =1 is given by

1
Gon1(9) = 5[0 @) = Gan1.09) = Ganr.0(@)]- (C.10)

Using the asymptotics Go,—1,9 ~ q_lenH,Q as well as (4.72) for Go,41,0 and (4.23) for

F E(S), we arrive at (4.73). This also agrees with the stable pattern tabulated in Appendix B.1.



142 D. Liist et al. / Nuclear Physics B 876 (2013) 55-146

C.2. Multiplicities of [2n + 1,2Q0] and [2n,2Q + 1] as n — oo, Q = O(1)

This subsection generalizes the asymptotic results from the Q = 0 (or Q = 1) sector to generic
U (1) g charges. The multiplicity generating function for [2n + 1, 2Q] can be written as

Gus120@) =YY [Z{Dﬁ[[zn+1,2g]] (m,—p—1.kiq)

k=0m=0Lp=0

+ Mpnt1,20]( + P, P ks @)}

0-1
+ me[[znﬂ,zgﬂ(m,erval,k;q)} (C.11)
p=0

where the 92, 11,2¢] function follows the following n — oo behavior:

—m— O+m—p 2m +1
Man+1,20] 0. p. ki q) = (—1)? P[FE,E(q)( ot 1 ><m+n+l—k)

_ 2
+F,§,,(q)(Q ;’; p) (er;_k)] (C.12)

The dominant contribution to G2,41,2¢0(g) comes from

Gont1,20(q)
oo [e] [n(l+e1)]

/\/ZZ Z [9)?[[2"+1’2Qﬂ(m,—p—1,k,q)+9ﬁ[[2n+1,2Q]](m+P’ p’k’ q)]
m=0 p=0k=|n(1—ep)|

oo Q-1 [n(l+€))]

3D Mpupipgpm.m+p+1kiq). €.e>0,n— 00
m=0 p=0 k=[n(1—¢})]

o0 o o0
~ Z Z Z [fm[[zn+1,2Q]} (m,—p—1,n+38;q)
m=0 p=035=—00

+ Mpns1,20]m + p. p.n+8:9)]
oo 0-1 o

+20 Y Mpug)mm+p+1Ln+8iq), n—cc. (C.13)
m=0 p=0 6=—00

The first set of summations can be evaluated as follows:
o0 [e¢) oo
Z Z Z Mpnt1,20](m, —p —Ln+68:9)
m=0 p=05=—00

1—09)2 n—Q—1
= %{ul(ﬁ, 0)91(1, )

— (027, ©)93(1, @)% — ur(—/q, Q)a(1, 9)*]}, (C.14)

where
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o0 4p+40+6
Ml(q Q):Zq2(p+%)2 l—q p+40+
T 1+ g7 (1 + g7 )’
o0 _ 4p+40+4
1 p
_ 2(p+1)2 g C.15
u2(q, Q) ;q T o A ) (C.15)
The next set of summations in (4.62) can be evaluated as follows:
o o0 o
Z Z Z Mpznt1.20)(m + p, p.n+68:q)
m=0 p=05=—00
3
(D21 —g)’¢" > 2
= v1(v/q, Q)0a(1, q)
2(q: 9)8, (Ve
+ (/7 Q93(1,9)” — v2(=/q, Q)¥a(1,9)*]}, (C.16)

where?®

LQ/2] _1y2
vi(g, Q) = Z/: gy (0 Lo+t 2p-0, (14¢)°
e 2p . p+1/2, p+1 4q ’

2p—2 2
= (I+g? )1 +¢%0)
2
L0/2] (1+q)qu2(l+q2)2p ( 0 ) F [1, 0+1. 2p+1-0Q (1+Q)2]
; ~ 7

n(g, Q)= pX_(:) (1 + g2~ (1 + g2t \2p + 1 p+l p+32 T 4q

(C.18)
The last set of summations in (4.62) can be evaluated as follows:

oo 0-1 o©

ZZ Z Mppy1,207m,m+p+1,n+38;q)

m=0 p=0 §=—00

(D21 —g)3¢"
B 2(q;9)%
+q3[wa (3, QP3(1,9)% — wa(—v/q, Q)94(1L, 2]}, (C.19)

{wi(v/q, Q)92(1, ¢)*

where

oo 0-—1 +1,,142(14+m+p)2=2 2y2m (Q—1—
(—1)pHigra(mbpy=am (4 g2)2m(C7) =)

wl(q’ Q)= Z Z (1 +q2(m+p))(1 +q2(1+m+p))

m=0 p=0

’

38 Upon obtaining the hypergeometric functions, we make use of the following identities for p > 0:

Q

_ Q+m 0 1L.0+1.2p-0 (1 +¢)°
"™ (] 2m — F LA TS
Z( Va1 +a) (2p+2m> (217)3 2[ p+1/2,p+1  4q ]

m=0

Y 2
_ +m 02p+1 1,0+1.2p+1-0 (1+4¢q)
§ —D"gT"™(1 2’”“( 0 ):( ) F [ ; } C.17
D¢ T +a) 1+42p+2m 3720 prip3n 4q €.17)

m=0
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o 0-1 +1,2(m+p+3)2—2m 2\2m+1(Q—1-p
9 (—DHPTq 2 (I+4°)
0@ 0=g 33 Y Gia) (o)

m=0 p=0

(1+ ql+2m+2p)(1 + q3+2m+2p)
Combining the three sets of summations into (4.62), we have

Gont1,20(q)
_ (-9)¢" (
297 (q; )%
+ (D21 - (V7. Q) +q *wi(Vq. 0))]
+93(1, ) [~ u2(v/q. 0) + (=D2(1 - @) (2(V7. 0) + ¢*w2(V7. 0))]
+94(1,)*[q' " Cus(—/q. Q) — (D21 — ) (v2(—/q. Q)
+q*wa(—v7. )]} (C21)

which exactly (4.63) with the definition (4.65) for the function F(g, Q) in the curly brackets.
Note that this formula reproduces (4.72) when Q = 0.

This allows to quickly infer asymptotic [2r,2Q + 1] multiplicities through the recursion
(4.38) and the asymptotic relations G2,42,20+1(q9) ~ g¢G2,,20+1(q) as n — oo:

(1, 9)*[¢" " %ui(/q, ©)

Gon20+1(q) ~ [F;EQ+1(q) — Gon4120(@) — Gony1.2042(9)]- (C.22)

14+¢

The asymptotic formula (4.28) for F, ,E 0+1 (g) and the definition (4.65) for the function F (g, Q)
then leads to (4.64).

Appendix D. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j-nuclphysb.2013.08.003.
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