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Abstract

The model error has significant effect on the quality of numerical weather forecasts, in
addition to the initial and boundary conditions. Ensemble forecast and ensemble anal-
ysis systems provide an assessment of the uncertainty of the system and thus rely on an
appropriate representation of model error. However, due to theoretical and computa-
tional limitations model error estimation remains an unchallenged issue in operational
ensemble forecasting and data assimilation. This study addresses the importance of
estimating the model uncertainties associated with kinetic energy (KE) dissipations
in a Numerical Weather Prediction (NWP) model and incorporating the same in an
ensemble data assimilation (EDA) system. A stochastic kinetic energy backscatter
(SKEB) scheme is used to represent the flow-dependent model errors in an Ensemble
Prediction System (EPS). The backscatter scheme also serves as an alternative to rep-
resent the model errors in the EDA system, since it reflects the errors due to dissipation
or damping on the small scales by numerical diffusion and parameterization schemes.

The operational global weather forecast model GME of the Deutscher Wetterdienst
(DWD) and a coupled 3D VAR - Local Ensemble Transform Kalman Filter (LETKF)
assimilation system were used as test-bed for the experiments. The experiments were
performed in a pre-operational global ensemble prediction test suit. Three sets of ex-
periments were performed in order to study the impact of the SKEB scheme: i) Deter-
ministic forecasts, ii) Ensemble forecasts using initial conditions from the deterministic
analysis and iii) Ensemble forecasts using initial conditions from the EDA cycle. In all
the experiments, a Cellular Automated (CA) scheme was used to introduce stochastic-
ity into the backscatter scheme. Kinetic energy spectra of the horizontal wind of the
GME forecast shows the observed double cascade, which indicates that the backscatter
in fact compensates for the reduced energy up-scaling due to over-dissipation, and also
seems to compensate for the absence of the inverse cascade.

In the forecast experiments without the EDA cycle the results show that the SKEB
scheme significantly improves the medium-range forecast. For example, the tempera-
ture forecast significantly improves over ten days period at all pressure levels. Incorpo-
rating a stochastic backscatter scheme produces significantly better results compared
to random perturbations. The forecast which incorporates all the dissipation com-
ponents performs best in most cases and generates the highest ensemble spread. The
backscatter also has a significant positive effect on the precipitation forecast, especially
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in the Tropics.

In the GME-EPS experiments, overall the backscatter scheme increases the LETKF
analysis ensemble spread thereby inflating the covariance implicitly. However, the
increase in ensemble spread due to backscatter has an overall negative impact on the
analysis. Since the SKEB scheme has a positive impact on the ensemble spread which
implies the inflation of covariance, we expected a significant positive impact on the
LETKF analysis and the EPS forecast. However, the combined effect of the initial
uncertainty and of the other mechanisms in the EDA cycle have negative impacts on
the backscatter contributions deteriorating the analysis and thereby the EPS forecast
quality.

We also studied a worst-case scenario using the backscatter scheme, which violate
the basic assumptions in the Kalman filter based data assimilation, using simple toy
models. We considered the backscatter scheme as a multiplicative noise model, and
explored the challenges of the multiplicative noise to the current EnKF schemes. The
classic Lorenz ’63 model and a higher dimensional Lorenz ’96 model were used as
testbeds for this data assimilation experiments. A hybrid Kalman-Particle filter called
Sigma-point Particle Filter (SPPF) is presented as an alternative to solve the issues
associated with multiplicative noise.

We also introduced a simple stochastic pattern generator for the SKEB scheme
based on a power-law, which can overcome some of the drawbacks of the CA stochastic
pattern generator. The main advantage of using the new pattern generator is that there
is only one tuning parameter compared to the CA and there is no need of complicated
automation rules. The scheme is computationally simpler as it does not require any
spin-up runs.

In summary, we showed that the SKEB scheme is effective in representing the
kinetic energy dissipations and flow-dependent uncertainty in the GME model, and
incorporating the same in the model has significant positive impact on short-to-medium
range forecast.
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Chapter1
Introduction

1.1 Probabilistic Weather Forecasting: A Historical Overview
The existence of uncertainty in weather forecast and the ways to tackle it have been
subjects of interest for more than a century [Cooke, 1906; Murphy and Winkler, 1971,
1984; Ehrendorfer, 1997]. In the early 20th century there were many successful attempts
applying probabilistic techniques to weather forecasting. However those attempts were
focused on probabilistic verification of observed data (mostly temperature and precipi-
tation) rather than probabilistic modelling. On the other hand probabilistic forecasting
in those days was subjective, meaning that the uncertainties of the forecasts mostly
depended on the forecasters ability to issue the likelihood occurrence of a weather
event. The process of issuing categorical forecasts was improved since the introduction
of confidence intervals and probability scores such as the Brier score. For example, in
the case of a temperature forecast, there were mainly five categories of departure from
the average temperature: near normal, above normal, below normal, much above, and
much below normal. This categorization permitted the users to subjectively interpret
the forecasts and allowed them to make their own decision [Leight, 1953].

During the second half of the 20th century the focus shifted towards probabilistic
modelling. On one hand the main challenge was the limit on prediction primarily due
to the errors in the initial states, which were reconstructed from discrete observations
from finite number of points (incomplete data coverage) [Thompson, 1957]. On the
other hand the models themselves are based on incomplete knowledge. It was clear
that even if we assume no errors in the observed data, the reconstruction of the initial
state from such data (finite number of points) will not be same as the true state, and
it was therefore useless to perform long-range (longer than several days) forecasts in
detail. Practically, expanding the observation network thereby increasing the data
density is economically infeasible. Since the pioneering works by Edward N Lorenz
on the theoretical limit on prediction, it was necessary to establish the maximum
range of predictability, beyond which the details of the atmospheric state is essentially
unpredictable. However, it has been proposed that certain statistical characteristics
of the atmosphere might be inherently more predictable than its details [e.g., Namias,
1947; Namias and Clapp, 1949], which lead to the conceptual development of stochastic
approaches, and eventually of ensemble forecasting. See Lewis [2005] and Murphy [1998]
for complete historical reviews of probabilistic forecasting in the context of Numerical
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1.2 BACKGROUND: MODEL ERRORS AND ENSEMBLE FORECASTING 2

Weather Prediction (NWP).

1.2 Background: Model Errors and Ensemble Forecasting
In general one can divide the errors which cause the uncertainties in a forecast into
three classes: i) initial condition errors, ii) boundary condition errors, and the so-called
iii) model errors. Initial condition errors are the errors in specifying the initial state of
the model. Similarly, boundary condition errors are errors in specifying the boundary
conditions of the model. However, the role of boundary condition errors is small in a
global Numerical Weather Prediction (NWP) system compared to the initial condition
errors, but its impacts may be significant in regional NWP and climate models. The
term model errors broadly refers to errors in the formulation of the whole model itself
that include errors in modelling the dynamics as well as errors in representing subgrid
scale physical processes (physical parameterizations).

Estimating the uncertainty can be thought of as a process which quantifies the ex-
tent of the incomplete knowledge of the output quantity of a model (which is in fact
an approximation of reality) to incomplete knowledge of its input quantities [Cox and
Harris, 2006]. Theoretically, it is possible to precisely quantify the uncertainty of the
future state by propagating the associated Probability Density Function (pdf ) in time
by solving the continuous state evolution of the associated pdf in time described by the
Fokker-Plank Equation (FPE) or the corresponding Louville Equation (LE). However,
analytical solutions to the FPE have been found only in rare cases. Since the pioneer-
ing works by Epstein [1969] and Fleming [1971a,b], many successful efforts have been
made to quantify and incorporate the uncertainties in NWP models. The most popu-
lar concepts are: stochastic-dynamics prediction and the Monte-Carlo (MC) approach.
The stochastic-dynamic approach to uncertainty, developed by Epstein, is inherently
probabilistic, and involves approximating probability informations of the posterior dis-
tribution of the variables of interest by making use of the statistical moments of the
prior distribution. However, direct application of this approach is computationally in-
tractable in the case of global forecast models. The MC approach first proposed by
Leith [1974, 1978, 1980], involves integration of the forecast model starting from dif-
ferent initial condition. The MC approach is the basis of all the ensemble techniques
(including the ensemble data assimilation) which in fact mimics the time evolution of
the pdf. There also exist a third approach known as the Lagged-Average Forecasting
(LAF) proposed by Hoffman and Kalnay [1983], where the initial states are generated
from different but regularly lagged analysis time steps.

The main purpose of ensemble forecasting is to describe the uncertainty of the
forecast in terms of the statistical properties of the ensemble, and these statistical
properties depends on the representation of the model error, in addition to the initial
and boundary conditions. Appropriate representation of model error is very impor-
tant especially in the first hours of the integration. In the framework of an Ensemble
Prediction System (EPS), the initialization uncertainty can be tackled by integrat-
ing the model using a set of possible initial states generated using techniques such as
breeding vectors (BVs) [Patil et al., 2001; Keller et al., 2010], singular vectors (SVs)
[Ehrendorfer and Tribbia, 1997; Palmer et al., 1998; Gelaro et al., 1998], LAF [Dalcher
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et al., 1988; Toth and Kalnay, 1993] etc. or an analysis ensemble derived from an
ensemble data assimilation [Molteni et al., 1996; Houtekamer and Mitchell, 1998, 2001;
Kalnay, 2003]. For example, at the European Center for Medium-range Weather Fore-
casts (ECMWF), the initial ensembles are generated by perturbing the analysis using
a linear combination of SVs from an adjoint model and ensemble data assimilation
(EDA) perturbations. The use of SVs for the perturbation is based on the intuition
that SVs represent the error growth along the directions of most rapid amplification.
In the United States, the National Center for Environmental Prediction (NCEP) use
BVs, which show similar error growth characteristics as SVs, for the EPS initialization
[Toth and Kalnay, 1993, 1997]. One advantage of the BV approach is that it does not
need an adjoint model and is thus computationally attractive. Furthermore, the model
uncertainties can be brought down to some extent by introducing stochasticity within
the forecast model.

There have been numerous discussions in the literature regarding the role of model
errors in NWP [e.g., Tribbia and Baumhefner, 1988; Saha, 1992; Dee, 1995; Ehrendorfer,
1997]. The physical parameterization error is one of the major contributors to the
uncertainties associated with a model since the errors in the unresolved scales inevitably
amplify the errors in the resolved scales through the nonlinear scale interaction, also
known as inverse error-cascade [Lorenz, 1969; Leith, 1971; Ehrendorfer, 1997]. The
concept of stochastic parameterization is originated from the fact that incorporating the
uncertainties associated with the smaller scales may in turn helps a better estimation
of model errors, hence of forecast uncertainty, as well as a better representation of
atmospheric processes. This in fact turns out to be true in many operational EPS.

Apart from the model uncertainties caused by the parameterization schemes, al-
most all numerical weather prediction models generally tend to over-dissipate energy
near the truncation scale; few examples are: i) the Kinetic Energy (KE) released in
deep convection, which is assumed to be dissipated within the model grid; ii) Parame-
terization of the mountain and gravity wave drag, and iii) the vertical diffusion, which
generates turbulent energy dissipation. Shutts [2005] argued that a fraction of the dis-
sipated kinetic energy should be backscattered into the model. Shutts [2005] proposed
the use of a stochastic kinetic energy backscatter (SKEB) scheme in NWP models,
which was originally developed in the context of large eddy simulation [Leith, 1978;
Mason and Thomson, 1992; Frederiksen and Davies, 1997], to compensate for the re-
duced energy up-scaling due to the over-dissipation. It has been shown that, random
injection of backscatter near the model truncation scale compensates for the absence of
inverse cascade coming from the unresolved and highly dissipated scales [Shutts, 2005;
Berner et al., 2009; Charron et al., 2010; Tennant et al., 2011].

In the following sections we will discuss the role of model errors in data assimila-
tion, the motivation of this thesis, and the research questions. We will also provide a
summary of research contributions and the outline of this thesis work.

1.2.1 Role of Model Errors in Ensemble Data Assimilation
In meteorology and physical oceanography, data assimilation is a procedure for optimal
estimation of the state of the atmosphere or the ocean by combining all available ob-
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servations along with the model forecast states as well as the corresponding estimated
uncertainties, which include both forecast and observation errors. In a broad sense data
assimilation is equivalent to a recursive Bayesian optimal estimation. Generally, a data
assimilation system consists of three major components: a set of observations, a dy-
namical model, and an assimilation scheme which is equivalent to an optimal estimation
method. The most popular data assimilation methods are variational methods such as
3-Dimensional Variational (3D VAR) and 4-Dimensional Variational (4D VAR) meth-
ods, sequential methods such as Ensemble Kalman Filter (EnKF), and hybrid methods
which make use of the advantages of both variational methods and Kalman Filter (KF)
methods. Variational methods are based on Maximum-Likelihood Estimate (MLE) and
KFs are based on minimum mean-squared estimate. It can be shown that both 4D
VAR and KFs are equivalent in the case of linear Gaussian systems.

The goal of deterministic data assimilation systems (such as 3D VAR, 4D VAR) is
to provide an estimate of the most probable state of the atmosphere which then can
be used as the initial condition for a weather forecast. In NWP, this is achieved by
deriving an optimal analysis state using a short range forecast or background, the back-
ground errors, actual observations, and observation errors. The short range forecast
is usually initialized from a previous optimal analysis. The background and observa-
tion errors are usually prescribed quantities based on long term statistics, and also
based on other assumptions. Almost all operational data assimilation systems except
nudging are cycled data assimilation schemes, which consists of repeated sequences of
short range forecasts and analysis steps. One of the main goals of an EDA system is
to provide an estimate not only of the most probable state of the atmosphere but also
an estimate of its time-evolved uncertainties. The time-evolved uncertainty associated
with the analysis is also known as the analysis error or simply the error of the day.
Since an explicit description of the time-evolved pdf is not achievable, the uncertainty
is represented by an ensemble of model states for both the analysis and the background.
Another goal of the EDA is to use more sophisticated knowledge on the situation and
the state depending on the uncertainty of the background (background error) in order
to provide an improved deterministic analysis and analysis error. Thus the uncertainty
estimates provided by the EDA are background error and analysis error. These esti-
mates depend on the history of the cycled analysis system and on the uncertainties
introduced, mainly the observation and model errors.

The analysis error is derived during the analysis step by making use of the infor-
mation from the background error provided by the forecast ensemble and from the
observational error. Depending on the formulation, the observational errors is either
explicitly taken into account (as in ensemble square root filters) or must be introduced
by randomization of the observations (independent analysis approach at the ECMWF).
In order to account for the shortcomings of the analysis system itself (limited ensem-
ble size, linearity assumptions etc.) an inflation mechanism is used for the analysis
ensemble. More details regarding the formulation of the analysis step and inflation
mechanism can be found in section (2.2) and (4.1) respectively.

As mentioned previously, in a cycled data assimilation system the background is
derived from a short range ensemble forecast started from the previous analysis en-
semble. Consequently its uncertainty (background error) depends on the prior analysis
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error and also errors introduced by the forecast model, i.e., the model error. In con-
trast to the observation error the model error has to be introduced by incorporating
stochasticity during the model integration or randomly perturb the background state
at the end of the short-range forecast. Formulating suitable approaches to represent
the model error is an essential component of ensemble data assimilation systems and
currently subject of intensive research. The evaluation of the stochastic kinetic energy
backscatter scheme in the above context is the main contribution to this research.

Several strategies have been proposed and are extensively studied for incorporating
model errors into ensemble data assimilation schemes [e.g., Daley, 1992; Stensrud et al.,
2000; Evensen, 2003; Hamill and Whitaker, 2005; Hamill, 2006; Zupanski and Zupan-
ski, 2006; Houtekamer et al., 2009]. The most popular methods include: i) adding zero
mean Gaussian noise with a small amplitude during the assimilation cycle, which in
fact mimics the forecast uncertainty [Evensen, 2003]; ( ii) additive and multiplicative
inflation, i.e, inflating the “underestimated” background error covariance matrix before
the analysis step [Anderson and Anderson, 1999; Anderson, 2001]; iii) perturbing the
model physics (stochastic physics) [Buizza et al., 1999] or perturbing the model dy-
namics using techniques such as SKEB [Shutts, 2005] which in fact corrects or inflates
the background covariance matrix; iv) combination of the above three methods [Palmer
et al., 2009; Berner et al., 2011; Bonavita et al., 2012]. There is no clear indication of
the out-performance of one particular method over the others since the performance
of the above mentioned techniques also depends on the model formulation and on the
data assimilation scheme.

From the data assimilation point of view, the forecast errors are treated as the sum
of the model errors1, and of the system errors. As described in the previous section, the
background errors are the sum of the errors due to the imperfections in the knowledge
of initial atmospheric state, imperfections in the model formulations such as the adia-
batic framework (spectral or grid-point etc.), imperfections in using different vertical
co-ordinate systems, and errors due to the representativeness of physical processes. On
the other hand the so-called system errors are mostly due to numerics, i.e., numeri-
cal approximation, errors due to truncation and computing precision. Theoretically,
in contrast to the sequential data assimilation methods such as the KFs, variational
methods assume that there is no system errors, i.e., the numerical model is perfect.
However, in practice, a weak constraint formulation is used in order to incorporate the
system errors in variational methods [Gauthier and Thépaut, 2001; Trèmolet, 2003]. In
general, system errors are unavoidable in virtually any computer simulations involving
numerical models. In data assimilation it is assumed that their contribution to the to-
tal uncertainty is only a tiny fraction of the forecast errors, and does not introduce any
significant impact on the short-term forecasts within the assimilation window. Also,
it is assumed that the model and the observations are unbiased. In the framework of
operational EPS, both background and initial errors are inexplicably linked through
the data assimilation system. Any underestimation of one leads to the underestimation
of the other, which may lead to huge forecast uncertainty in subsequent cycles, and
unrealistic forecasts especially over longer time scales. It has also been shown that
minor analysis differences can cause major forecast differences [Rabier et al., 1996]. In

1In the data assimilation community, a more generic name for model error is background error
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this sense estimating precisely the forecast uncertainty and incorporating it into the
data assimilation scheme is of extreme importance in NWP.

The motivation of this research stems from the fact that, in the context of global
NWP, quantitative precipitation forecast (QPF2) is inherently probabilistic. The main
reasons for the inherent probabilistic nature are: i) the time scale of the physical pro-
cesses related to precipitation formation are much shorter than the model time step or
the forecast lead-time, and ii) the inherent uncertainties in the representation of subgrid
scale physical processes, i.e. the model error associated with physical parameterization.
Therefore the only feasible method for QPF is to characterize the uncertainty and prop-
agate the underlying pdf through MC approach. In practice, this is achieved through
ensemble simulations, i.e. applying stochastic techniques to a state-of-the-art global
EPS so that it can capture the forecast uncertainty. Simple stochastic approaches such
as random perturbation of physical tendencies are quite unsatisfactory at least in its
current state. On the other hand novel stochastic methods such as SKEB are promis-
ing but are still in their infancy. Thus a great deal of scientific underpinning is needed
in order to evaluate its effectiveness in representing the model error in an ensemble
prediction system.

1.3 Research Objectives
This thesis is primarily focused on evaluating the uncertainties associated with model
error and the ways to using them to improve the model error representation in an en-
semble data assimilation and prediction system. The chosen model for this study is the
operational global weather forecast model GME of the Deutscher Wetterdienst (DWD)
and the data assimilation system is a 3D VAR - Local Ensemble Transform Kalman
Filter (LETKF) [Hunt et al., 2007]. The GME model is an icosahedral-hexagonal
grid-point model [Majewski et al., 2002], and is ideally suited for an independent eval-
uation of forecast uncertainty because of its unique design features in comparison to
other operational weather forecast models (e.g., ECMWF, NCEP, CMC). On the other
hand, currently there are no stochastic parameterization or stochastic physics schemes
available for the operational GME model.

Until now, the first and only work referring to a stochastic parameterization of a
full-scale weather forecast model was performed by Theis [2005]. Theis [2005] used
the perturbed physics approach developed at the ECMWF [Buizza et al., 1999] in the
COSMO model (at that time, it was called LM, Local model), a high resolution re-
gional model further developed by the COSMO (Consortium for Small scale Modeling)
consortium COSMO [2003].

The chosen stochastic approach to study and characterize the forecast uncertainty
is the recently developed stochastic kinetic energy backscatter technique [Shutts, 2005;
Berner et al., 2009]. Generally speaking, the Kinetic energy backscatter is a concept,
which was developed during the early 90’s by [Leith, 1990; Mason and Thomson, 1992]
and was further developed to the SKEB scheme by Shutts [2005] at the ECMWF. In

2Funding of this PhD was provided by the DFG project, Quantitative Precipitation Forecast (QPF
Phase III - SPP 1167)
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the late 2010, ECMWF implemented a Spectral Stochastic Backscatter, which is based
on a spectral autoregressive model, for their operational Integrated Forecasting System.
Other operational forecasting centers, such as Canadian Meteorological Center (CMC),
and UK Met. Office (UKMO) are working on their own SKEB schemes. However, the
stochastic backscatter approach has not been yet used and studied in conjunction with
a coupled 3D VAR - LETKF data assimilation system.

This study aims to:

� Investigate the sources of kinetic energy dissipation and develop a Stochastic
Kinetic Energy Backscatter (SKEB) scheme for the operational global weather
forecast model GME of the DWD;

� Study the impact of SKEB scheme on the medium range weather forecasts;

� Investigate the nature of flow-dependent background errors in GME, and study
their impacts on the coupled 3D VAR - LETKF assimilation scheme, i.e. assessing
the contribution of SKEB to the background error covariance;

� Explore the possibilities to overcome the drawbacks or constraints of the SKEB
scheme on the GME-EPS, if any.

1.4 Contribution of this Research Work
During the course of this thesis, most of the research objectives stated in the previous
section were successfully completed. The following concrete contributions were made
to the development of a stochastic parameterization scheme for the GME Ensemble
Prediction System (EPS) of the DWD.

Summary of Research Contributions:

� Developed and implemented a Stochastic Kinetic Energy Backscatter (SKEB)
scheme for the GME-EPS in a pre-operational setting.

� Demonstrated that the SKEB scheme is capable of improving the GME proba-
bilistic forecast.

� Proposed and investigated a new power-law based random stream-function forc-
ing pattern generator for SKEB scheme for GME model, which is computationally
less-intensive than the cellular automated scheme and can overcome some of the
drawbacks associated with the Cellular Automation.

1.5 Thesis Overview
This thesis describes the successful implementation of the stochastic kinetic energy
backscatter scheme in the GME-EPS for improving quantitative precipitation forecasts.

Chapter 1 (Introduction) gives a brief general introduction to probabilistic ensemble
forecasting in a historical context, followed by an overview of uncertainty problems in
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NWP models, and possible solutions to it by using stochastic approaches. The key issues
in approximating model (background) errors are discussed along with their impact on
data assimilation schemes.

Chapter 2 (Tools and Methods) introduces the global Ensemble Prediction System
(EPS) based on the global model GME of the Deutscher Wetterdienst (DWD). This
chapter gives an overview of the GME model, and of the coupled 3D VAR - Local
Ensemble Transform Kalman Filter assimilation system used in the GME-EPS experi-
ments, as well as the existing issues and challenges associated with them. It also gives
a short overview of the ensemble verification tools used to evaluate the experiments.

Chapter 3 (Stochastic Backscatter in the GME Model) introduces the general con-
cept of Kinetic energy backscatter, and details the Stochastic Kinetic Energy Backscat-
ter (SKEB) scheme used in the GME forecast model. The impact of the SKEB scheme
on the forecast is evaluated in detail based on an ad-hoc set of EPS experiments. The
impact of backscatter on the precipitation forecast is analyzed in detail.

Chapter 4 (Stochastic Backscatter in the LETKF ) gives a detailed picture of how
the background errors are represented in LETKF in general. This chapter also gives
a detailed analysis of the LETKF assimilation, in particular of the impacts of incor-
porating the flow-dependent background errors in the LETKF using the backscatter
scheme.

Chapter 5 (Non-Gaussianity in Ensemble Kalman Filters) provides a different per-
spective on the role of stochastic kinetic energy backscatter as a multiplicative (state-
dependant) noise, and on its impact on both model forecast and LETKF assimilation.
The potential issues regarding the possible deviation from Gaussianity due to multi-
plicative noise are also discussed in detail. This chapter also introduces the hybrid
Kalman filter - Particle filter known as Sigma-Point Particle Filter. It is shown that
it can handle non-Gaussianity due to multiplicative noise while overcoming the draw-
backs of standard ensemble based Kalman filters. This Chapter has been published in
the Journal of Advances in Modelling the Earth System (JAMES), as Ambadan and
Tang [2011], and reproduced in this thesis with editorial modifications.

Chapter 6 (Conclusions) consolidates this thesis with a detailed discussion of the
presented research topics, and provides some suggestions for future research.

Appendix A, and B, give a summary of the LETKF algorithm and the least square
approach to Kalman gain; Appendix C gives additional figures supporting the main
results.



Chapter2
Tools and Methods

2.1 GME Model
The GME model is an icosahedral-hexagonal grid-point model developed by the DWD
[Majewski et al., 2002]. The GME model has a primitive equation based dynamical
core, and uses second order accurate semi-implicit numerical scheme. The current oper-
ational version of the GME uses a grid spacing of 20 km and 60 layers, and the forecast
is deterministic (i.e., no ensemble forecast). All ensemble experiments described in
this chapter use the GME model with a resolution of 40 km and 40 layers (with a cell
area of 1384km2), which was operational from 27th September 2004 till 2nd February
2010. The GME grid is generated by inscribing an icosahedron with 20 triangles of
equal size into the sphere. The spacing of the GME grid is determined by the number
of intervals ni on a main triangle side (of a length of about 7054 km). The vertical
discretization of GME is based on hybrid sigma-pressure coordinates [Simmons and
Burridge, 1981]. Combining all grid points of two adjacent large triangles to a square
matrix the global GME grid consists of 10 diamonds or sub-domains. For a better load
balance the (ni+1)2 grid points of each diamond are distributed to n1 × n2 processors
(processing elements, PEs). The sub-domains are surrounded by a halo of two rows
and columns, and are exchanged at each time step between adjacent sub-domains. The
parallel communication between PEs are based on Message Passing Interface (MPI)
routines, and all the diamonds are synchronized after each forecast step.

2.2 The GME Data Assimilation
In this section we will briefly review the concepts of the 3D VAR and of the LETKF
assimilation algorithms, which are used in our investigations. Initial conditions are
either taken from the operational 3D VAR data assimilation cycle (interpolated to
the resolution of the experiments) or from the pre-operational LETKF. In the latter
context the 3D VAR is still used for quality control of the observations. The theory and
derivations presented in this section are mainly based on the works by, Daley [1992];
da Silva et al. [1995]; da Silva and Guo [1996]; Courtier [1997]; Cohn [1997]; Cohn et al.
[1998]; Courtier et al. [1998]; Kalnay [2003]; Tippett et al. [2003]; Hamill [2006]; Hunt
et al. [2007], and the references therein.

9
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2.2.1 3D VAR Assimilation

Variational methods such as 3D VAR, are Maximum-Likelihood Estimators (MLE);
i.e., they seek an estimate which maximizes the probability of occurrence of the state..
Since variational methods seek a conditional mode they can be thought of as model-
trajectory estimators. On the contrary, sequential methods such as KFs are conditional
mean estimators or Minimum Mean-Squared Error (MMSE) estimators, i.e., they seek
an estimate which minimizes the mean squared error. In general both MLE and MMSE
estimators are equivalent in the case of a linear Gaussian system while they are different
for nonlinear systems.

To formulate the 3D VAR estimator, consider an L dimensional dynamical system
represented by a set of discretized state space equations,

θk = f
(
θk−1, qk−1

)
(2.1)

ψk = h (θk, rk) (2.2)

where θk represents the system state vector at time k, f(·) is the nonlinear function
of the state, qk is the random model errors, ψk is the measured state, h(·) is the
measurement function, and rk is the zero-mean random measurement noise. Assuming
that the state, observation and noise terms are Gaussian processes, the probability of
the maximum likelihood state of θ is proportional to e−J , where J is a cost function,
given by,

J (θ) =
1

2

[
θ − θbk

]T (
P b
k

)−1 [
θ − θbk

]
+ [ψo

k − h (θ)]T
(
R−1

)
[ψo

k − h (θ)] (2.3)

where θbk is the background, P b
k is the background state covariance matrix, also known

as the B matrix, ψo
k is the observations, and R is the observation error covariance

matrix. Assuming that
(
θ − θbk

)
is small and analysis is close to the truth, we can

linearize the observation function h (·) as follows:

[ψo
k − h (θ)] = ψo

k − h
(
θbk +

(
θ − θbk

))
(2.4)

≈ {ψo
k − h

(
θbk
)
} −H

(
θ − θbk

)
(2.5)

Substituting (2.5) in (2.3), we obtain the quadratic cost function,

J (θ) ≈ 1

2

[
θ − θbk

]T (
P b
k

)−1 [
θ − θbk

]
+
[
{ψo

k − h
(
θbk
)
} −H

(
θ − θbk

)]T (
R−1

) [
{ψo

k − h
(
θbk
)
} −H

(
θ − θbk

)]
(2.6)

For the analysis θ = θak, we set the gradient of J (θ) = 0, which minimizes the cost
function (2.3), i.e.,

∂J

∂θ

∣∣∣
θ=θak

= ∇θJ(θak) = 0 (2.7)
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Its solution gives the 3D VAR analysis equation,

θak = θbk +
[(
P b
k

)−1
+ HTR−1H

]−1
HTR−1

(
ψo
k − h

(
θbk
))

(2.8)

Equation (2.8) can be re-written in many forms. The most common form is,

θak = θbk +K
(
ψo
k − h

(
θbk
))

(2.9)

where K is known as the gain1 matrix, given by,

K = P b
kH

T
[
HTP b

kH +R
]−1

(2.10)

In practice the solution is obtained through iterative minimization algorithms, such
as conjugate-gradient algorithm, since direct inversion of the matrix term in (2.8) is
impractical because of its large dimensionality (L ≈ 108).

The GME-EPS uses a variant of 3D VAR, known as Physical Space Assimilation
System (PSAS) [Courtier, 1997]. which computes the analysis equation in the physical
space (or observation space) rather than in the model space. The main advantages
of PSAS are: i) most of the calculations are in observation space, which reduces the
size of the problem, ii) efficient preconditioning of the iterative solver (see below) is
possible, and iii) most parts of the algorithm are fairly independent from the model
formulation.

The PSAS algorithm solve the following equation for the quantity w

Mw = ψo
k − h

(
θbk
)

(2.11)

where M is the innovation matrix given by,

M =
(
HP b

kH
T +R

)
(2.12)

and the quantity w is known as partially weighted innovations. The corresponding
analysis is given by,

θak = θbk + P b
kH

Tw (2.13)

The innovation matrixM is usually not sparse and too big to be specified explicitly.
It must also be a symmetric positive definite matrix. Equation (2.11) is solved by a
standard pre-conditioned conjugate gradient algorithm [Golub and van Loan., 1989].
The pre-conditioner uses the block-diagonal of the matrix, M given by Eq. (2.12).
Each block consists of about 500-1000 nearby observations as matrices of this size can
easily be inverted explicitly.

Solving equations (2.11) to (2.13) is equivalent to minimizing the cost function (2.6).
In order to account for the nonlinearities in h, the linearization (2.5) is repeated in an
outer loop and (2.11) to (2.13) solved for adjusted H and right hand side of (2.11).
More details can be found in the GME 3D VAR documentation [Fischer et al., 2012].

1commonly known as Kalman gain
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In the GME 3D VAR, the background error covariance matrix P b
k is currently

derived by using the NMC method, i.e. by calculating the covariances of differences of
forecasts θ24h, and θ48h with different lead time but valid at the same time, i.e.,

P b
k ≈

1

γ
E
[
(θ48h − θ24h) (θ48h − θ24h)T

]
(2.14)

where E is the mathematical expectation, and γ is a scaling factor. The NMC method
is a commonly used procedure to estimate balanced correlation patterns for background
error covariances. The covariances are derived according to a seasonal climatological
basis using statistics from three consecutive months. Zonal averaging is used which
implicitly increases the size of the ensemble. A weak localization is applied in order
to suppress spurious correlations between the Northern and the Southern hemisphere.
The factor γ is derived from the previous analysis error estimate and a simple model
for the increase of forecast error with time. Covariances are stored in form of wavelet
coefficients on a Gaussian grid. Currently separability of horizontal and vertical cor-
relations is assumed. See the DWD 3D VAR documentation for more details [Fischer
et al., 2012].

2.2.2 LETKF Assimilation

Among sequential data assimilation methods, EnKF based methods have attracted
broad attention in meteorology and physical oceanography because of their simplicity
as well as ease of implementation [e.g., Evensen, 1992; Houtekamer and Mitchell, 1998;
Evensen, 2003; Zhang and Snyder, 2007]. In a broad sense, the EnKF is an MC approx-
imation to the standard KF which is in turn a simplification of Bayesian estimation
that provides sequential, unbiased, minimum error variance estimates based upon a
linear combination of all past measurements and dynamics [Welch and Bishop, 1995].
The main concept behind the formulation of the EnKF is that the prediction error
statistics described by the Fokker-Plank equation can be approximated using ensemble
integrations [Evensen, 1994, 1997]; i.e., the error covariance matrices can be calculated
using an ensemble of model states. The major strengths of the EnKF include: i) there
is no need to calculate the tangent linear or adjoint of forecast models, which is quite
difficult for General Circulation Models (GCMs), ii) the background error covariance
matrix is propagated in time via the full nonlinear model (no linear approximation),
and iii) it suits modern parallel computing [Keppenne, 2000]. However, there are also
some disadvantages of using EnKF data assimilation which limit the direct use of the
standard EnKF for many real world problems. They are: i) a finite ensemble size has
major effects on the performance of the EnKF. A small ensemble size increases the
residual errors while a large ensemble is computationally infeasible in NWP; ii) linear
assumptions in the assimilation step (linearized measurement or observation operator);
and iii) computing limitations due to size of the error covariance matrix.

Several EnKF based methods have been proposed over the last couple of decades,
some of which have shown to overcome most of the drawbacks associated with the stan-
dard EnKF assimilation. Among them, the most popular include Ensemble Adjustment
Kalman Filter (EAKF), the Ensemble Square Root Kalman Filter (EnSRKF), the Lo-
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cal Ensemble Transform Kalman Filter (LETKF), and their variants [e.g. Anderson,
2001, 2002; Tippett et al., 2003; Hamill, 2006; Hunt et al., 2007].

For the purpose of presentation, consider an ensemble of size N of the L dimensional
state space model given by (2.1)-(2.2). The approximated mean and covariance of the
background state in model space represented by the ensemble are given by,

θ̄
b
k ≈

1

N

N∑
n=1

θbk−1,n (2.15)

P b
k ≈

1

N− 1

N∑
n=1

[(
θbk,n − θ̄

b
k

)(
θbk,n − θ̄

b
k

)T]
(2.16)

=
1

N− 1

N∑
n=1

Θk (Θk)
T (2.17)

where (̄ ) denotes the statistical average over the ensemble, and Θk is a L×N matrix

whose nth column is θbk,n − θ̄
b
k. The EnKF algorithm also derives an analysis that

minimizes the cost function (2.3) by solving equation (2.8). Calculating the inverse
term in (2.8) becomes feasible only by restricting the solution to the subspace of the
ensemble.

Let w be a Gaussian random vector defined in the ensemble sub-space with mean
zero, and covariance (N− 1)−1 I, then the model state with covariance (2.17) can be
re-written as,

θ = θ̄
b
k + Θkw (2.18)

Therefore the cost-function (2.3) in the ensemble sub-space is given by,

J̃ (w) = (N− 1)wTw +
[
ψo
k − h

(
θ̄
b
k + Θkw

)]T
R−1

[
ψo
k − h

(
θ̄
b
k + Θkw

)]
(2.19)

A quadratic cost-function similar to (2.6) can be obtained by linear approximation of
the observation function h (·) given by,

h
(
θ̄
b
k + Θkw

)
≈ ψ̄b

k + Ψkw (2.20)

where,

ψ̄
b
k ≈

1

N

N∑
n=1

h
(
θbk,n

)
(2.21)

Ψk = ψo
k − ψ̄

b
k (2.22)

Thus we can re-write (2.19) as,

J̃ (w) = (N− 1)wTw +
[
ψo
k − ψ̄

b
k −Ψkw

]T
R−1

[
ψo
k − ψ̄

b
k −Ψkw

]T
(2.23)
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It is assumed that if wa minimizes (2.23), then the analysis θak is optimal. The analysis
equations are given by,

θ̄
a
k = θ̄

b
k + Θkw

a (2.24)

where,

wa = P̃
a

k (Ψk)
TR−1

(
ψo
k − ψ̄

b
k

)
(2.25)

P̃
a

k =
[
(N− 1) I + (Ψk)

TR−1Ψk

]−1
(2.26)

The initial background ensemble at the next analysis time is generated by integrat-
ing the model forward and adding some model error ε:

θbk = f
(
θak−1,n + ε

)
(2.27)

Accounting for model error is an essential part of any Kalman filter algorithm. With-
out that, the ensemble spread would always decrease due to the additional information
added to the system by the observations. Currently we represent the model error by
random errors ε whose spatial correlations are consistent with the dynamical balances
accounted by the 3D VAR B matrix. Technically we add a vector of normally dis-
tributed random variables multiplied by a fraction of the square-root of the 3D VAR
B matrix2. Another method to keep the ensemble spread at a finite value is inflation;
i.e., the ensemble deviations Θ are multiplied by a number slightly larger than 1. This
can be implemented within the LETKF algorithm itself without explicitly modifying
the model state [Hunt et al., 2007].

Analysis increments wa are restricted to the subspace spanned by the ensemble
members. For practical reasons the ensemble size N is about 100 or well beyond in
atmospheric applications. This is much too low to represent all the degrees of freedom
of the atmospheric state. Representation of the background error covariance matrix by
an ensemble of limited size leads to spurious large correlations. This is especially true
for locations separated by large distances. On the contrary the true correlations are
actually small due to the limited statistical basis. To cure this problem the ensemble
background error covariance matrix is generally multiplied element by element (Schur
product) by another (localization) matrix which has the same property of the covari-
ance matrix, i.e., positive definite, one on the diagonal, zero for off-diagonals for large
separation distances.

The EnKF algorithm described above is computationally cheaper because calcula-
tions are performed in the subspace of the ensemble. Straightforward application of
the Schur product localization leads to full rank background error covariance matrices
and thus lead to expensive numerical algorithm.

In the GME-EPS implementation we use the LETKF algorithm of Hunt et al.
[2007]. Hunt et al. [2007] use another localization procedure in order to keep the
algorithm efficient. At each grid-point of the model the EnKF equations (2.15)-(2.26)

2More details regarding the inflation techniques can be found in Chapter (4)
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are solved using only the observations within a given distance to this point. In order to
get analysis varying smoothly from grid-point to grid-point, observations are weighted
with a smooth function [Gaspari et al., 1998; Gaspari and Cohn, 1999]. Basically the
terms R−1 in Eqs. (2.25) and (2.26) are multiplied with this factor. This function is
very similar to a Gaussian being 1 for small distances and zero for σ ≈ 3 just at the
boundary of the area containing the used observations. For in-situ observations the
effect of Hunt et al. [2007] algorithm is very close to that of the original Schur product.

In LETKF implementation, an inflation of the covariance is necessary in most cases
due to the underestimation of P̃

a

k. The underestimation of covariance is due to: i) the
lack of enough spread in the forecast ensemble; ii) sampling errors; and iii) approxi-
mation of nonlinearities. Two most popular ways of introducing covariance inflation
are additive inflation and multiplicative inflation. Additive inflation is equivalent to
adding perturbation ε as in (2.27). More details regarding the covariance inflation
and the role of backscatter are described in Chapter 4. Appendix A summarizes the
complete LETKF algorithm.

2.2.3 Observation Processing

Observation processing is performed by the same code as used in the operational 3D
VAR system at the DWD. In the experiments the LETKF is preceded by a 3D VAR
step which performs the first guess check and quality control of observations. It then
passes the observations to the LETKF module. Conceptually, a hybrid 3D VAR -
LETKF uses a weighted P b

k matrix derived from both the 3D VAR and the LETKF
for the minimization of the cost-function. The main role of the 3D VAR module in
GME-EPS is to perform first guess checks and a quality control of observations. It
then passes the observations to the LETKF module. Before the assimilation step all
available observations are monitored, quality controlled, bias corrected and thinned.
Only a fraction of the available observations is used for the assimilation. Afterwards
the statistics on the data is stored and used in subsequent assimilation cycles. The
main task of monitoring the observations is to apply the observation operator to the
background model states and gather statistics which can later be used to assess the
errors and the biases. The quality control step includes blacklisting and removing
the outliers. The bias correction step removes any systematic error in the radiance
observations. The bias correction also gather the innovation statistics and derive the
mean bias of the observations w.r.t. the first-guess. The thinning step accounts for
correlation in the observations. If the correlations are not accounted for, too much
weight is given to that particular data which deteriorate the assimilation. The spatially
correlated data may be thinned until the remaining data is un-correlated. The thinning
step also helps to reduce the computational burden in the assimilation step. In almost
all experiments the role of 3D VAR in the actual assimilation step is minimal (other
than preprocessing observations). An overview of the hybrid system in GME-EPS
is illustrated in Fig. (2.1). In a later stage the 3D VAR - LETKF will be extended
to a truly hybrid system where the localized ensemble background is directly used in
the variational scheme, following the approach of extended control variables [Buehner,
2005; Buehner and Charron, 2007].
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Figure 2.1: Schematics of the 3D VAR - LETKF assimilation system

2.3 Overview of Verification Methods and Diagnostics
Several verification methodologies have been developed to evaluate forecast and anal-
ysis ensemble products from an EPS [e.g., Casati et al., 2008]. Generally speaking,
there is no well established way of comparing and evaluating ensemble data from two
different NWP systems, and there is no clear indication of the superiority of one sta-
tistical measure over the others in evaluating an ensemble forecast. Many research
suggests that verification and validation methodology for EPS need to be developed
further. However, the most commonly used statistics in evaluating ensemble forecasts,
which we have also used, are: i) the ensemble spread, and the root mean squared error
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(RMSE) against observation or reference analysis, ii) the continuous ranked probability
score (CRPS) and its components, iii) the Ranked histograms iv) the Brier score and
its components, and v) the receiver (relative) operating characteristics (ROC) curve
and its area. The following subsections will give a brief overview of the statistical
measures used in this thesis.

2.3.1 Ensemble Spread and Root Mean Squared Error

In ensemble forecasting, the most commonly used statistic is the ensemble (sample)
standard deviation, commonly known as the ensemble spread. The ensemble spread
measures the distance of an ensemble (sample) distribution from its mean (the sam-
ple mean). For the purpose of presentation, we use the common term SPREAD for
representing the ensemble spread, i.e.,

SPREAD =

√√√√( 1

N− 1

N∑
i=1

(
θi − θ̄

)2)
(2.28)

where θ̄ is the ensemble (sample) mean.

In theory, the quantity root mean squared error (RMSE) is the measure of the
distance between the ensemble (sample) distribution from the truth (population mean).
In general, it is the population standard deviation, i.e,

RMSEe =

√√√√( 1

N− 1

N∑
i=1

(θi − oi)2
)

(2.29)

where oi is usually either a set of accurate observations or an analysis from the same
or an independent analysis system representing the unknown truth.

In this thesis, instead of the standard RMSE we use the RMSE of the ensemble
mean as a metric to measure the accuracy of the forecast, i.e., a measure to evaluate
the ensemble mean compared to the truth. Here the operational analysis from DWD is
taken as the reference or truth. The RMSE the mean can be obtained from Eq. (2.28)
and (2.29) as follows:

RMSE =
√(

RMSEe
2 − SPREAD2

)
(2.30)

The RMSE is not a probabilistic but a deterministic score. Thus it can be used
to compare a deterministic forecast with (some product from) a probabilistic forecast
system, i.e., the mean of the forecast ensemble or a deterministic forecast started from
the ensemble mean analysis. For long forecast ranges, there the forecast becomes un-
certain, the mean of the forecast ensemble in general is better than a deterministic
forecast as it takes advantage from the fact that it is close to climatology. In order
to compare the RMSE of two forecasts in situations where the overall forecast quality
varies considerably in different situations (periods of different general weather situa-
tions) normalized RMSE differences are used, i.e. statistics of the RMSE differences
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normalized by the mean RMSE in a given subset, i.e.,

Normalized RMSEl =
(RMSEl − RMSEref )

{RMSEl=1...L, RMSEref}
(2.31)

The ensemble spread should provide information of the uncertainty of the forecast. It
is not a quality measure by itself but should match the RMSE defined above if forecast
uncertainty is assessed appropriately. Descriptions of more sophisticated probabilistic
measures are given in subsequent sections.

2.3.2 Ranked Histogram

In general the ranked histogram give more detailed information on the actual distribu-
tion of the truth (here observation or analysis) compared to the expectation (provided
by the ensemble forecast) than just comparing RMSE and SPREAD. For an EPS of N
ensemble members, equal weight is given to each member, i.e., the probability of oc-
currence of a certain event assigned to be equal for all members. The verifying analysis
is such that the members are indistinguishable. The ranked histogram (also known as
Talagrand diagram) is a measure of this indistinguishability [Talagrand et al., 1997;
Hamill, 2001]. The ranked histogram is generated by plotting the relative frequencies
of forecasted events with respect to the observed values as a function of the ensemble
distribution. In general the ranked histogram can explain the variability of ensemble
spread compared to observed. In a perfect EPS, the probability that the observation
falls between any two ensemble members is equal among all member pairs.

The steps to create a ranked histogram are as follows:

1. Sort the ensemble members in ascending order, which represents N+1 possible
bins that the observation may falls into (including the outliers)

2. Identify the bin in which the observation fits in.

3. Repeat step 2 for all observations, and calculate the total frequency (sum over)

4. Plot the frequency (on the y-axis) versus the ensemble bins (on the x-axis)

A flat ranked histogram represents a robust ensemble forecast, i.e., the ensemble
spread in fact represent the forecast uncertainty. However, a flat ranked histogram
does not necessarily indicate a good forecast since it is only an indication that the
observation distribution is well represented by the ensemble. A U-shaped ranked his-
togram indicates that most observations falls outside the ensemble (outliers), which is
also an indication of low ensemble spread. A dome-shaped ranked histogram indicates
that the ensemble is over-dispersive. A skewed dome-shape or U-shape indicate a bias
in the ensemble.

2.3.3 Brier Score

The Brier score, first introduced by Brier [1950], measures the mean squared probability
error of a forecast. It is also the first proper scoring rule introduced in NWP. The Brier
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score is most commonly used for evaluating binary events characterized by a threshold
value; for example, forecast events where precipitation is greater than 5 mm per day.
The Brier score has a negative orientation: the smaller the score the better is the
forecast. The Brier score (BS) is defined as,

BS (xi) =
∑
i

wi (pi − oi)2 (2.32)

where pi is the forecast probability of an event for the ith case (or grid point) charac-
terized by the threshold value xi, and oi is the observed probability. oi = 1 if the event
is said to have happened, otherwise oi = 0, and wi is the corresponding weight.

Sanders [1963] partitioned the Brier score into reliability and resolution. Later,
Murphy [1973] partitioned it into three terms: (i) reliability, (ii) resolution, and (iii)
uncertainty. The reliability component measures the correspondence between forecast
probability and observed relative frequencies, while resolution gives a measure of the
ability of a forecaster, or forecasting technique to separate, in advance, a set of situa-
tions for which the event will occur and the set of situations for which it will not occur.
The uncertainty measures the uncertainty of the forecast.

Following Hersbach [2000], the Brier score can be re-written as,

BS (x) = Reliability (x)− Resolution (x) + Uncertainty (x) (2.33)

=
N∑
i=0

gi (x) [oi (x)− pi]2 +
N∑
i=0

gi (x) [oi (x)− o (x)]2 + o (x) [1− o (x)] (2.34)

where,

o (x) =
N∑
i=0

gi (x) oi (x) (2.35)

For an EPS of N ensemble members of equal weight sorted ascendingly, pi = i
N

. The
quantity gi is the weighted fraction of the cases with pi probability of the forecast, and
oi is the fraction of cases (with pi) that are actually observed. gi, and oi are calculated
as follows.

gi = αi + βi (2.36)

oi =
βi

αi + βi
(2.37)

where,

2.3.4 Continuous Ranked Probability Score

In general the Continuous Ranked Probability Score (CRPS) can be interpreted as an
integral of the Brier score over all possible thresholds. The CRPS measures the inte-
grated squared difference between the cumulative distribution function of the forecast
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0 < i < N αi βi

xa > xi+1 xi+1 − xi 0

xi+1 > xa > xi xa − xi xi+1 − xa

xa < xi 0 xi+1 − xi

Outlier αi βi

xa < x1 0 x1 − xa

xN < xa xa − xN 0

and that of the observations. Following Hersbach [2000], the CRPS, may be decom-
posed into Reliability, and Potential CRPS (CRPSpot). It is given by,

CRPS = Reliability + CRPSpot (2.38)

=
N∑
i=0

ḡi
[
(1− ōi) p

2
i + ōi (1− pi)2

]
(2.39)

where gi, and oi can be calculated according to (2.36), and (2.37), and the (̄ ) denotes
the statistical average over N cases or grid points. The Reliability component of CRPS
measures the reliability of the EPS in general, while CRPSpot measures the CRPS of the
EPS if the system would have been perfectly reliable. The CRPS is also a negatively
oriented score: the lower the score, the better the system is. In the case of deterministic
forecasts the CRPS corresponds to the Mean Absolute Error (MAE), given by

MAE =
1

N

N∑
i=i

∣∣∣θi − oi∣∣∣ (2.40)

where oi is either the observed data or the analysis from a reference EPS depending
on the variables.

2.3.5 Receiver Operating Characteristics

The Receiver (or Relative) Operating Characteristic curve, commonly known as ROC
curve, is a plot of hit rate (HR) vs false alarm rate (FAR). The ROC measures the
ability of the forecast to discriminate between two alternative outcomes, and it indicates
the usefulness of a forecast. The hit rate is defined as the fraction of forecasted events
(with some threshold) which are correctly observed, and the false alarm rate is the
fraction of the forecasted events that are not actually observed (simply, the fraction
of incorrect forecast). The HR and FAR are computed from the following contingency
table.



2.3 OVERVIEW OF VERIFICATION METHODS AND DIAGNOSTICS 21

Observed Yes No

Forecast

Yes True Positive (TP) False Positive (FP)

No False Negative (FN) True Negatives (TN)

HR =
TP

TP + FN
(2.41)

FAR =
FP

FP + TN
(2.42)

The area under the ROC curve is related to the Mann-Whitney U test, a non-
parametric statistical hypothesis test, which tests whether positives (HR) are ranked
higher than negatives (FAR). For a perfect forecast, the area under the curve equals
unity, and the curve travels from the bottom-left to top-left of diagram, then across to
the top right of diagram. A diagonal line indicates that there is no forecast skill for the
EPS. A more detailed information on ROC can be found in Mason [1982] and Jolliffe
and Stephenson [2003].

2.3.6 GME-EPS Verification: Specifics, and Assumptions

The following are the specific assumptions made during the verification of the GME-
EPS output data.

1. All the above mentioned statistics are performed on the GME model grid. No
interpolation to Gaussian or regular lat-lon, or any other grid is performed (unless
otherwise stated in the description of the respective figures or results; for example
for the zonal average plots).

2. The statistics are computed for global values as well as for three regions of average
values, namely the Northern extra-tropics (20N to 90N, 180W to 180E), the
Tropics (20S to 20N, 180W to 180E) and the Southern extra-tropics (20S to 90S,
180W to 180E).

3. For the probability scores such as the CRPS, the statistical significance, and
confidence intervals are calculated using a bootstrap technique similar to Candille
et al. [2007].

4. For the ROC curve a bi-linear fitting is performed using a generalized linear
model. The fitting is necessary to avoid any bias as suggested by some researchers
[e.g., Wilson, 2000]. The ROC area under the curve (AUC) is calculated using
trapezoidal integration.

5. For the probability density plots, the bin size is calculated according to Freedman-
Diaconis rule, which is one of the standard method for the histograms and prob-
ability plots [Freedman and Diaconis, 1981; Birgé and Rozenholc, 2006].
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Chapter3
Stochastic Backscatter in the GME Model

3.1 Parameterizing stochasticity: Role of Backscatter
Generally speaking, introducing stochasticity (or stochastic parameterizations) into a
NWP model has two purposes: to represent the atmospheric processes stochastically,
and to approximate the time evolved pdf through a Monte-Carlo (MC) approach such
that one can estimate the forecast uncertainty.

In a broad sense, one may classify the stochastic parameterization schemes into
two types: i) introduce stochasticity in the existing parameterization schemes. For
example, simply multiplying or adding uniform (or Gaussian) random numbers to the
parameter of interest [e.g., Buizza et al., 1999; Theis et al., 2005]. ii) introduce the
stochasticity as a parameterization scheme, which represents uncertainties in subgrid-
scale processes as well as dynamical uncertainties. The SKEB scheme falls into the
latter type, where stochasticity is introduced as a separate parameterization scheme
rather than perturbing the existing parameters with a random number. The basic idea
behind the kinetic energy backscatter (KEB) is to inject a fraction of the dissipated
kinetic energy back into the numerical model to compensate the excessive dissipation
due to numerical diffusion and parameterized subgrid scale processes such as convec-
tion and gravity wave drag. Stochasticity is introduced into the KEB in the form
of a random streamfunction forcing modulated with approximated dissipated kinetic
energy. Effectively, the stochastic backscatter parameterization represents a nonlinear
scale interaction which allows the flow of energy from unresolved to resolved scales by
exciting the energy at the unresolved scales. This stochastic forcing is the basis of
flow-dependent perturbation for the GME-EPS.

In this chapter we introduce the stochastic forcing generators for GME, and then
we introduce the SKEB scheme developed for GME in detail, which serves as the
background for the experiments involving SKEB schemes.

3.2 Stochastic Kinetic Energy Backscatter in GME
Several SKEB schemes have been developed and implemented at various operational
centers over the last few years: Berner et al. [2009] developed a spectral SKEB for
the European Center for Medium Range Weather Forecasts (ECWWF) EPS; Charron

23
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et al. [2010] used a modified version of spectral SKEB for the Global Environmental
Multiscale Model (GEM) EPS, and Tennant et al. [2011] also used a modified version
of spectral SKEB for the Met Office Global and Regional EPS (MOGREPS). However,
there is no general way to implement a SKEB scheme since it depends on the particu-
lar model and model properties. Motivated by the works of Shutts [2005] and Berner
et al. [2009], a modified version of the cellular automated SKEB scheme is used to rep-
resent the flow-dependent model errors in the framework of a pre-operational Ensemble
Prediction System (EPS) using the global model GME of the Deutscher Wetterdienst
(DWD).

In the GME model, the SKEB scheme mainly depends on the kinetic energy dissipa-
tions from the horizontal diffusion scheme, and parameterization from deep convection
and subgrid-scale orography (SSO) wave drag. In general, the horizontal diffusion
scheme is employed to remove small scale noise and also to improve the stability of
the numerical scheme. In most cases the scheme is over-diffusive which creates the
so called numerical dissipation or simply the dynamical component of dissipation ap-
proximated from the horizontal diffusion scheme. It has been shown that the model
diffusive effects usually consume kinetic and available potential energy at an unrealis-
tically excessive rate [Shutts, 2005]. The dissipations from deep convection and gravity
wave drag are calculated from the respective parameterization schemes. The parame-
terization of deep and shallow convection is based on a mass flux approach [Tiedtke,
1989]. The convection scheme distinguishes three different convection types, namely
shallow, mid-level and deep. The SSO scheme is based on Lott and Miller [1997].
To save computing time, both the convective parameterization, and SSO scheme are
not computed each time step but only every third time step. Also, to remove high
frequency initial noise from the forecast GME employs an adiabatic digital filtering
initialization (DFI; Lynch et al. [1997]). To reduce the impact of the DFI on the initial
state, the filtering is performed in vertical normal mode space, which makes sure that
the structure of the atmospheric boundary layer is hardly changed by the DFI. In the
following subsections, we describe the implementation details of the SKEB scheme in
GME.

3.2.1 Stochastic Pattern Generators
Two most popular choices for generating random patterns are spectral auto-regressive
models [Weber and Talkner, 1993; Mitchell and Houtekamer, 2000; Berner et al., 2009]
and Cellular Automata (CA) models [Palmer, 1997, 2001; Shutts, 2005]. Operational
weather forecasting centers such as ECMWF, Canadian Meteorological Center (CMC),
and UK Met Office (UKMO) use spectral auto-regressive models for their SKEB scheme
[Berner et al., 2009; Charron et al., 2010; Tennant et al., 2011]. In our GME-EPS
experiments we have used a modified version of Shutts [2005] CA scheme for generating
the random pattern. The choice of Cellular Automation for SKEB scheme is due to
the following reasons: i) appropriateness for high resolution global grid-point models
such as GME; ii) allow interactions of many nearest neighboring grids or cells; iii)
the spatial pattern resembles convective cloud clustering in certain cloud-resolving
models; iv) automata rules are easy to configure according to the model properties
such as resolution etc.; v) simple random fields may be too noisy (crude spatial and



3.2 STOCHASTIC KINETIC ENERGY BACKSCATTER IN GME 25

temporal correlations), which may lead to incorrect error covariance estimation for
data assimilation; and vi) automata rules allow the spatial pattern to take arbitrary,
size and shape (not regular square cells).

3.2.2 Cellular Automated Scheme

In the GME-EPS, CA is implemented globally on the model resolution without any
coarse graining. The automation rules are similar to the “Generations” family of
CA. Since GME model uses an Arakawa-A grid staggering that places the prognostic
variables at the vertices of the triangle, a cell evolves according to the values (or lives)
of its twelve nearest neighbors as shown in Fig. 3.1. The automation rules used for
generating the stochastic pattern in GME is as follows:

1. Initialize the automation by seeding the cells with uniform random numbers or
life value between 0 and 100

2. Classify the cell as fertile or non-fertile according to a critical life value. We set
the critical value to 50, i.e. if the life value is greater than 50 then the cell is
considered as fertile otherwise non-fertile

3. For each fertile cell: if the number of nearest fertile neighbors is less than some
threshold less than 4, then decrease the life value of the cell by subtracting a
small fraction (in our case fraction depends on the resolution of the model). On
the other hand, the same rule applies to a fertile cell with “overpopulated” fertile
neighbors.

4. Spin-up stage: Repeat step 2 and 3 until we get a reasonable spatial pattern. For
spin-up, we used 500 automation steps for the low resolution (ni064) and 1000
steps for high-resolution (ni192)

5. Smooth and filter the final pattern. We have used a 5×5 Gaussian filter for
smoothing.

6. Finally scale the pattern and remove the bias if there is any. In our case we scale
the final pattern to −1 to 1

The automation rules are designed in such a way that the final pattern resembles an
“eddy vorticity” pattern rather than large scale structures. The automation rules are
applied at every model integration step. An example of the random stream-function
forcing patterns using CA on the GME model grid is shown in Fig. (3.1).

Temporal correlation is introduced into the CA by adjusting the CA rules accord-
ingly. For example, instead of initializing the automation with a random field at subse-
quent backscatter steps, the automation is initialized with previously evolved pattern.
Also, by reducing and adjusting the spin-up steps it is possible to introduce correlations
in both vertical and temporal coordinates. The correlations are introduced in order
to study the impact of randomness in GME forecasts, since it may reduce the noise
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Figure 3.1: Left: Twelve nearest neighbors of a cell (solid black dot) represented in
icosahedral-hexagonal grid of the GME model; Right: CA streamfunction forcing in the GME
model.

level in SKEB scheme. In a broad sense the process of introducing correlation can be
thought of as a first order auto-regressive model given by,

ψt = αψt−1 + wt (3.1)

where wt is the zero mean random white noise with a relatively small amplitude, ψt
the CA pattern at time t, and the parameter α controls the correlation strength.

3.2.3 Calculation of Total Dissipation in GME
Dissipative mechanisms such as diffusion schemes in GCMs are in general used to im-
prove the overall numerical stability by removing instabilities associated with numerical
and physical causes (for example, due to the parameterization of boundary layer tur-
bulence or mixing). Following Shutts [2005], the total dissipation in GME is calculated
as the sum of the dissipations due to horizontal diffusion, the dissipations from deep
convection parameterization, and the gravity wave drag due to SSO. [Shutts, 2005]
argued that the above three contributions acts as energy sinks and cause excessive
dissipations in NWP models. However these dissipations are highly model dependent.
For example, GME employes a fourth order hyper-diffusion given by,

Fu = −K4∇4u (3.2)

Fv = −K4∇4v (3.3)
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where ∇ is the gradient operator, and K4 is the fourth order diffusion coefficient given
by,

K4 =
1

2τ

(
∆x

2

)4

(3.4)

where ∆x is the grid length at the equator. Also, a second order diffusion is applied
near the top levels, which acts as a sponge layer to suppress the jets streams and also to
increase the overall numerical stability. It has been shown that the diffusion coefficients
in the GME model are much higher, and hence the diffusion is much stronger compared
to spectral models at the same resolution [Jablonowski and Williamson, 2011]. Hence
dissipations due to numerical diffusion are expected to be higher in the GME model.
Following Berner et al. [2009] the approximate numerical dissipation is given by:

Dn = −k~u · ~u′ (3.5)

where k is a scaling factor, ~u is the horizontal velocity vector, and ~u′ is the difference
between the velocity vector before and after the second order hyper-diffusion. Figure
(3.2) shows the numerical dissipation averaged over vertical layers.

Numerical dissipation

(J/kg/m^2)

Figure 3.2: Numerical dissipation in GME (vertically averaged)

The dissipation rate from deep convection is based on the convective mass-flux
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formulation [Berner et al., 2009]:

Dc =
δ

ρ3
M2

β2
(3.6)

where M is the updraft convective mass flux rate, δ the updraft detrainment rate, ρ
the density. Berner et. al (2009) choose the parameter β in such a way that the global
vertically integrated dissipation per unit time and unit area from deep convection
is about 2W/m2, which usually depends on the model and model physics. In our
experiments we considered β as an independent scaling parameter. An example for the
dissipation from deep convection at 500 hPa is shown in Fig. (3.3: Top)

The computation of dissipation from the SSO wave drag, shown in Fig. (3.3: Bot-
tom), is based on Lott and Miller [1997]. The SSO scheme has a pronounced impact on
the mean flow of GME. In general the SSO scheme blocks the flow in the lowest model
layers but gives rise to gravity waves which break and dissipate higher up retarding
the flow in the middle and upper troposphere.

The final streamfunction forcing is a function of the stochastic pattern, and square-
root of the total dissipation given by,

Fψ =
1

2
α.∆s.ψ.

√
D̂

∆τ
(3.7)

where α is a scaling factor which determines the fraction of the back-scattered energy,
∆s the CA grid length, ψ is the stochastic CA pattern, D̂ the total dissipation, and
∆τ is the time step for the automation. The effective streamfunction forcing at 500
hPa is shown in Fig. (3.4).

In the SKEB scheme used in this thesis work, the horizontal velocity tendencies due
to backscatter forcing are computed by taking the gradient of the streamfunction with
respect to the model co-ordinates. Finally, adding these tendencies to the horizontal
wind components gives back a fraction of the dissipated kinetic energy into the model.
In our SKEB implementation, the temperature field is kept unperturbed since the KE
increments in fact change the temperature field accordingly as they are directly propor-
tional. Others have included the temperature tendencies explicitly in the backscatter
scheme by crudely estimating the net loss of available potential energy (APE) [Shutts,
2005; Charron et al., 2010].

3.3 Role of Stochastic Backscatter in the GME forecast
This section is primarily focus on the GME medium range forecast in particular the
impact of the SKEB scheme on the forecast quality. The role of the SKEB scheme
in the LETKF assimilation is discussed in Chapter (4). This section is subdivided
into four sub-sections: 1) SKEB: Experimental setup, which will give an overview of
both the deterministic and ensemble forecast experimental setup involving the SKEB
scheme, 2) SKEB: Impact on Kinetic Energy Spectra, which will discuss the observed
double cascade in GME, 3) SKEB: Impact on the Medium-Range Forecast, which will
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Dissipation from deep convection

(J/kg/m^2)

Gravity/Mountain wave drag

Figure 3.3: Top: Dissipation from deep convection at 500 hPa; Bottom: SSO wave drag in
GME

describe the impact of SKEB on the medium range (ten days) forecast in detail, and
4) SKEB: Impact on the Precipitation Forecast, which will give a detailed analysis of
the precipitation forecast.
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Figure 3.4: Effective streamfunction forcing at 500 hPa

3.3.1 SKEB: Experimental setup
Three sets of experiments were performed in order to study the impact of the SKEB
scheme on the GME forecast: i) Deterministic forecasts (hereafter GME-DET), ii)
Ensemble forecasts using initial conditions from the deterministic analysis (hereafter
GME-ENS), and iii) Ensemble forecasts using initial conditions from the ensemble
data assimilation (EDA) cycle (hereafter GME-EPS). For GME-DET and GME-ENS
experiments, deterministic analysis from the DWD operational archive for the period
starting 2007-05-20, 00:00:00 UTC, are used to initialize the forecasts with a 6-hour
interval. The GME-DET forecast experiments were mainly used to study the impact
of backscatter on the KE spectra as well as to tune the SKEB scheme for the ensemble
experiments.

The GME-ENS experiments were run with GME resolution ni192, and constitute
a 32 member ensemble. All the statistical results presented for the GME-ENS ex-
periments use 4 cases (each with different initial condition) of 32 member ensemble,
i.e. 128 ensemble members at every 6-hour forecast step (5120 ensemble members for
the ten days forecast), for each case study. In total, seven different sensitivity case
studies were performed. The GME-ENS case studies were designed to estimate the
SKEB contributions from different dissipation mechanisms in the GME to the forecast
quality. Therefore, in each case the ensemble members were initialized with identical
initial state.

The GME-EPS experiments were performed in a pre-operational LETKF test suite.
The observations used for assimilation were monitored and quality controlled in the
same way as in the operational 3D-VAR system. The observations used in the as-
similation include conventional data such as in-situ radiosonde data (TEMP), aircraft
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observations, data from ships, satellite retrievals such as Atmospheric Motion Vectors
(AMV; from Eumetsat, GOES, NOAA/NESDIS, MODIS), buoys and scatterometer
data, pressure observations derived from satellite (PAOB), and satellite radiances (from
AMSU-A). The observation pre-processing include bias correction, thinning, black-
listing, and radiative transfer calculation using the RTTOV7 model. The assimilation
is performed every 6 hours, followed by a ten days forecast. A total of seven different
sensitivity experiments were performed for the low resolution (ni064) GME-EPS. The
experiments were started at 2007-05-20, 00:00:00 UTC with 6-hour assimilation cycle
in all cases. Each experiment is cycled until 2007-05-25, 18:00:00 UTC. The initial
32-member ensemble is prepared by the 3D VAR system, i.e. by adding a perturba-
tion ensemble to the deterministic analysis. The perturbation ensemble is prepared
by multiplying an ensemble of zero mean normally distributed random vectors to the
square-root of the B matrix (which is initially prepared using the NMC method). To
avoid any influence from the initial ensemble spread, all the statistical results presented
in this section use only the last 8 cycles, i.e. either 256 ensemble members at every 6
hour forecast step (10240 ensemble members for the 10 days forecast), for each case
study1.

More specific details regarding the GME-ENS and GME-EPS case-studies can be
found in the following subsections concerning the results.

3.3.2 SKEB: Impact on Kinetic Energy Spectra
The kinetic energy spectra of the atmospheric fields of an NWP model can be used to
study its general statistical features with respect to scale interactions, properties of the
dissipating mechanisms such as diffusion filters, as well as atmospheric turbulence. It
has been shown that, the KE spectrum of the observed atmosphere obeys a k−3 power-
law dependence on the wave number over the synoptic scale (1000-3000 km) and a
k−5/3 power-law over the meso-scale (wavelength 2.6-300km) [Nastrom et al., 1984;
Nastrom and Gage, 1985; Cho et al., 1999]. The observed k−3 power-law dependence
on wavenumber over the synoptic scale is the well known downscale enstrophy cascade
and can be associated with geostrophic turbulence [Charney, 1971]. On the other
hand there is no globally accepted theory supporting the k−5/3 power-law dependence
on the wavelength over the mesoscale. Three most prominent theories for the k−5/3

dependence are that: 1) it may be associated with a reverse energy cascade from high
to low wave numbers in quasi-2D-turbulence with a negative energy flux [Kraichnan
and Nagarajan, 1967; Gage, 1979; Lilly, 1983]; 2) it may be interpreted as a spectrum
of internal gravity waves with direct energy cascade to high wave-numbers, as oceanic
spectra [Dewan, 1979; Van Zandt, 1982]; 3) it may be due to baroclinic instability
[Tung and Orlando, 2003]. More details can be found in the papers by Lindborg
[1999]; Lindborg and Alvelius [2000]; Lindborg [2006].

Most atmospheric general circulation models, including GME, are capable of repro-
ducing the k−3 part of the kinetic energy spectrum but not the k−5/3 part. On the other
hand some less complex GCMs are shown to be capable of reproducing observed dou-
ble cascade without using any additional stochastic parameterization schemes [Koshyk

1In some cases we’ve used 16 cycles for statistical analysis.
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et al., 1999; Koshyk and Hamilton, 2001; Skamarock, 2004]. Figure (3.5) shows the
KE spectra of the horizontal wind at 500 hPa from the GME 6 hour forecast (blue
line), which shows the absence of the double cascade. One possible explanation for this
absence of the k−5/3 part of the GME spectra is due to the KE dissipations within the
model. For example, the strong bi-harmonic diffusion scheme in GME acts as a low-
pass filter which removes energy most strongly at high frequencies, which may in-turn
suppress the upscale energy transfer from the unresolved to the resolved modes. Re-
cently, ECMWF and UK Met. Office NWP models were able to reproduce the observed
double cascade by incorporating a spectral stochastic backscatter scheme [Palmer et al.,
2009; Tennant et al., 2011]. In this thesis, we have used the cellular automated SKEB
scheme for two main purposes: to account for the dissipated KE to the dissipation
mechanisms with in the model, and to account for the model uncertainty which can be
incorporated into the LETKF data assimilation system.
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Figure 3.5: SKEB using CA: Kinetic energy spectra of the horizontal wind at 500 hPa

Figure (3.5) also show the KE spectra of the horizontal wind with the SKEB scheme
(red line) and also the spectra of the backscatter forcing (green curve). The spectra (red
line) shows that the backscatter in fact inject the energy back into model at mesoscales
(green line), effectively contributing to the k−5/3 part of the spectrum. It should be
noted that, the k−5/3 part of the Kinetic Energy spectra is usually associated with the
kinetic energy of the divergent modes. However, in our SKEB formulation, we assume
that the contribution of the divergent mode at the mesoscale is negligible compared
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the rotational mode. This may explain the reason for the dampening of the tail of the
KE spectrum with SKEB (red line). The lack of proper divergent component in the
backscatter forcing at the mesoscales may be one reason for the lack of a clear k−5/3

dependence on wavenumber over the mesoscale, as shown in the GME KE spectra (red
line).

3.3.3 SKEB: Impact on the Medium-Range Forecast
One of the primary objective of this thesis work is to improve the global medium range
(i.e. three-to-five days) forecast by incorporating model uncertainty in the GME-EPS.

GME-ENS Dissipation components Backscatter CA Pattern

Exp. ID (in the SKEB scheme) forcing Correlation

nCAP-2a None α = 2 No

(CA Pattern is taken

as the streamfunction

forcing)

oCON-2a Deep CONvection α = 2 Yes

oALL-2a Numerical diffusion, α = 2 Yes

Deep convection, & α = 2 Yes

Gravity wave drag

nNAG-2a Numerical diffusion, & α = 2 No

Gravity wave drag

oNAG-2a Numerical diffusion, & α = 2 Yes

Gravity wave drag

oCAP-2a None α = 2 Yes

oNAG-1a Numerical diffusion, & α = 1 Yes

Gravity wave drag

Table 3.1: Summary of GME-ENS sensitivity experiments.

By introducing stochasticity into the model we assume that the model error, which
contributes to the forecast uncertainty, can be captured thereby improving the mean
forecast quality. This hypothesis is tested in the forecast by incorporating a cellular au-
tomated SKEB scheme into the GME model. Two sets of forecast results are presented
and analyzed in this section: i) the results from the GME-ENS experiments, and ii)
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the results from the GME-EPS experiments. The main difference between GME-ENS
and GME-EPS experiments are that the GME-ENS experiments incorporate only the
model uncertainty and no initial uncertainty, while the GME-EPS experiments incor-
porate both. To be more specific, the GME-ENS experiments were started with the
same initial condition (no ensemble spread; all initial members are identical) and they
do not involve any data assimilation cycle. On the other hand the GME-EPS integra-
tions were started from from the LETKF analysis ensemble, and thus are initialized
with finite ensemble spread. The model uncertainty is incorporated through the SKEB
scheme, and each ensemble member evolves stochastically and may be considered as
one of the possible realizations of the atmospheric state.

First we will analyze the forecast results from the GME-ENS experiments. A sum-
mary of the GME-ENS sensitivity experiments, and the SKEB parameters used are
given in table (3.1). As mentioned in the previous sub-section (3.3.1), the GME-ENS
experimental cases were designed to evaluate the SKEB contributions from different
dissipation mechanisms in the GME model, on the forecast quality.

Figure (3.6) show the Continuous Ranked Probability Scores (CRPS) for ten day
forecast for the 850 hPa temperature, for: Global (Top-Left), the Northern extra-
tropics (Top-Right), the Tropics (Bottom-Left), and the Southern extra-tropics (Bottom-
Right). The CRPS is a negatively oriented score, which means that a lower score in-
dicates better forecast quality. From a first look at the Fig. (3.6), it can be seen that
the black line, which represents the experiment without the SKEB scheme, is above
all the others, which in general indicates that the SKEB scheme has a positive impact
on the forecast. The improvement is more pronounced in the Tropics compared to
the extra-tropics. Although the significance level of improvements vary across differ-
ent sensitivity experiments, overall the CRPS show remarkable improvements in both
short-range and medium-range forecasts. Before analyzing the CRPS score of each in-
dividual sensitivity experiments and summing-up the reasons behind the improvements
in the forecast, we show other statistical measures such as the Ensemble Spread, the
Root-Mean Squared Error (RMSE) of the ensemble mean against operational analysis
(which is used as the reference or truth), Normalized RMSE (normalized against the
deterministic forecast without the backscatter), the Ranked Histogram etc. This will
help to perform an unbiased analysis of the results. In general, the RMSE scores (solid
lines) is in good agreement with CRPS scores, i.e., the experiments with SKEB scheme
have lower RMSE as shown in Fig. (3.7, top-row). The corresponding SPREAD is
shown by the dashed-lines. A general conclusion is that the spread in all GME-ENS
experiments is much too low compared to the RMSE due to the lack of spread in the
initial conditions. Furthermore the figures show that the RMSE of the GME-ENS
ensemble means is considerably smaller than the RMSE of the deterministic run espe-
cially for long forecast ranges. This is an expected result as the forecasts become less
predictable and the score of any single deterministic forecast will be worse than that of
the climatological mean. However the ensemble mean will approach the climatological
mean for long forecast lead times.

The normalized RMSE scores, shown in Fig. (3.7, highlight the differences between
the experiments during the first forecast hours where RMSE is small and are difficult
to assess in general. A negative normalized RMSE indicates that the RMSE in the
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Figure 3.6: Continuous Ranked Probability Score (CRPS) for 850 hPa temperature, for
ten days forecast: Global (Top-Left), the Northern extra-tropics (Top-Right), the Tropics
(Bottom-Left), and the Southern extra-tropics (Bottom-Right).

experiment is lower than in the reference, i.e., that it is better. These figures show that
it has an advantage to use the mean of the ensemble instead of the deterministic run
even during the first few hours of the forecast, where it is not naturally expected from
the above considerations.

The CRPS and RMSE scores confirm the general viewpoint that incorporating
model uncertainty can improve the quality of short and medium range forecasts signif-
icantly. However, there are some mismatches between the CRPS and RMSE scores of
individual SKEB sensitivity experiments. For example, the experiment with no dissi-
pation component in the SKEB scheme (green and orange lines) has a higher CRPS
than that of the experiment with all dissipation components in the SKEB (blue line).
This indicates that accounting for kinetic energy (KE) dissipations in the model can
significantly improve the forecast compared to simple stochastic perturbations of the
flow fields, which is in fact consistent with the general idea of incorporating a kinetic
energy backscatter. On the other hand the RMSE and Normalized RMSE scores of
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Figure 3.7: Ten days forecast statistics for 850 hPa temperature: RMSE (solid) and En-
semble SPREAD (dashed) on the top-row, RMSE/SPREAD Ratio (middle-row), and Nor-
malized RMSE (bottom-row), for the Northern extra-tropics, the Tropics and the Southern
extra-tropics respectively (from left to right).

the ensemble mean show the opposite, i.e., the skill scores show better results for ran-
dom perturbations of the flow fields than for the SKEB scheme which accounts all
the KE dissipations. This discrepancy may be due the fact that the RMSE scores are
deterministic scores while CRPS is a probabilistic score. By using RMSE, we assume
that the data follow a Gaussian distribution, and is based on ensemble mean rather
than individual ensemble members. On the contrary the CRPS is independent of such
assumptions. For example, Fig. (3.8) shows the probability density distributions of the
850 hPa temperature, and 500 hPa zonal wind fields in the ensemble space, at a par-
ticular location (Hamburg). It is clear from the figure that the ensemble distribution
does not follow an exact normal distribution and that the ensemble mean of the region
does not reflect the most probable value especially for temperature. Also, in this case,
the limited ensemble size has a strong influence on the ensemble mean, SPREAD and
RMSE scores. Thus giving more weight on RMSE may sometimes lead to unjustifiable



3.3 ROLE OF STOCHASTIC BACKSCATTER IN THE GME FORECAST 37

5 6 7 8 9 10 11 12 13
0

0.05

0.1

0.15

0.2

0.25

0.3

U−Velocity (500 hPa)

D
e
n

s
it

y

Probability Density: 500 hPa U−Velocity (03 day 06 hour)

 

 

oALL_2a

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

Difference (w.r.t sample mean): U−Velocity (500 hPa) 

D
e
n

s
it

y

Probability Density: Difference w.r.t. sample mean (03 day 06 hour)

 

 

oALL_2a

−4 −2 0 2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Difference (w.r.t. Op. Analysis): U−Velocity (500 hPa)

D
e
n

s
it

y

Probability Density: Difference w.r.t. Op. Analysis (03 day 06 hour)

 

 

oALL_2a

277 278 279 280 281 282 283
0

0.1

0.2

0.3

0.4

0.5

Temperature (850 hPa)

D
e
n

s
it

y

Probability Density: 850 hPa Temperature (03 day 06 hour)

 

 

oALL_2a

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Difference (w.r.t. sample mean): Temperature (850 hPa)

D
e
n

s
it

y

Probability Density: Difference w.r.t sample mean (03 day 06 hour)

 

 

oALL_2a

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Difference (w.r.t. Op. Analysis): Temperature (850 hPa)

D
e
n

s
it

y

Probability Density: Difference w.r.t. Op. Analysis (03 day 06 hour)

 

 

oALL_2a

Figure 3.8: Probability density of the 500 hPa U-velocity (top-row) and 850 hPa temperature
(bottom-row) at a particular location (Hamburg), in ensemble space

conclusions. In this sense the CRPS or other probabilistic verification scores are more
trustable than RMSE scores. Although RMSE scores are distribution dependent, they
are practically relevant, since the ensemble mean is one of the most common measure
for an ensemble of smooth fields such as temperature or wind.

Now, coming back to the GME-ENS results, it is clear from the CRPS and RMSE
scores, shown in Fig. (3.6), that accounting for the KE dissipations in the SKEB
scheme has significant positive impact on the forecast quality in all the three regions
(the Northern extra-tropics, the Tropics, and the Southern extra-tropics). From the
CRPS, it can be seen that among all sensitivity experiments, those which use correlated
stochastic forcing patterns (legend names starting with o) perform better than their
random counterparts (legend names starting with n). This may be due to the fact that
the random forcing reflects the correlation structure of the flow fields to be perturbed
(pseudo-random). A completely random forcing may be too noisy and may destroy the
existing correlation of the fields. This can also be inferred from the RMSE/SPREAD
ratios shown in Fig. (3.7: Middle-row). The RMSE/SPREAD ratio of experiments
with correlated stochastic forcing is closer to one than that of the uncorrelated ones.
It also implies that completely random forcing may suppress the SPREAD as seen in
Fig. (3.7: Middle-row, dashed-lines). Thus introducing correlation in the pattern is
necessary and in fact found to enhance the ensemble spread.

In the Northern extra-tropics and the Southern extra-tropics the difference between
the experiment which does not account for the KE dissipations from deep convection
(e.g. [oNAG 2a]), and the experiment which accounts for the same (e.g., [oALL 2a]) is
minimal. However, the difference is significant in the Tropics. This may be due to the
fact that the effects of deep convection parameterization in GME are more confined to
the Tropics as the associated KE dissipations (for e.g., see Fig. (3.3: Top). Therefore
the overall contribution from the SKEB scheme is relatively stronger in the Tropics,
and hence is the relative improvement in the forecast. This can also be seen in the
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SPREAD and RMSE/SPREAD ratios in the respective regions. For example, in the
experiment [oCON 2a], only the KE dissipation from deep convection contributes to
the backscatter forcing, and it has a larger SPREAD and lower RMSE/SPREAD ratio
in the Tropics compared to the extra-tropics, as shown in Fig. (3.7).

One of the main purposes of introducing the SKEB scheme is to incorporate the
model uncertainty in the GME forecast model, thereby increasing the ensemble spread
such that the observations (or truth) are more likely to fall within the ensemble range.
This can be verified using the ranked histogram (or Talagrand diagram). Figure (3.9)
show the percentage of outliers in the ranked histogram for the 850 hPa temperature
field over the forecast range, for the Northern extra-tropics, the Tropics, and the South-
ern extra-tropics respectively (from left to right). It can be seen from the figure that
the experiment [oALL 2a], which incorporates all the KE dissipations has the lowest
percentage of outliers. It should also be noted that incorporating the dissipation from
convection in SKEB significantly reduces the outliers in the Tropics. This is consis-
tent with the conclusions from CRPS and RMSE/SPREAD ratio of the same. Thus
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Figure 3.9: Percentage of outliers in the ranked histogram (Talagrand diagram): 850 hPa
temperature, ten days forecast.

in terms of CRPS and RMSE/SPREAD scores, the experiment [oALL 2a] where the
SKEB scheme accounts for all the KE dissipation components, gave the best forecast
result for the 850 hPa temperature in all regions. Figure (3.10), shows the CRPS and
the corresponding confidence interval for the same. The confidence interval shown in
Fig. (3.10: Bottom-row), is below the zero line threshold for all the forecast hours,
which clearly indicates that the improvement due to the SKEB scheme is significant
throughout the forecast range.

The zonal average of the SPREAD and RMSE of the 850 hPa temperature, for the
forecast time steps, 6 hours, 3rd, and 5th day, is shown in Fig. (3.11: Top-row). The
SPREAD is shown in dashed lines and the RMSE is shown in solid lines. The SPREAD
is highest for the experiment [oALL 2a], which accounts for all the KE dissipation
component. Overall, the zonal average figures also show improvement in the forecast,
i.e., lower RMSE values for the experiments with the SKEB scheme. However, there
are some exceptional latitudes where the RMSE is higher. For example, the RMSE
around 60°-80° south shows a spike at 6 hours and on the 3rd day but it disappears
on the 5th day. By looking at the spatial structure of the spread from the experiment
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Figure 3.10: Continuous Ranked Probability Score (CRPS) and confidence interval for 850
hPa temperature, for the experiment [oALL 2a]: the Northern extra-tropics (left), the Tropics
(middle), and the Southern extra-tropics (right)

[oALL 2a], shown in Fig. (3.11: bottom-row), it can be seen that those spikes in
RMSE are associated with excess/anomalous spread values at few grid-points. Also,
the spatial distribution of the SPREAD at 6 hours is quasi-uniform, with exceptions
around Europe. On the other hand, by looking at the SPREAD distribution on the
3rd, and 5th day, we can see that the SPREAD developed quickly and is much higher
at both extra-tropics compared to the Tropics. The reason for this can be explained
by comparing this feature with the spatial distribution of the KE dissipation from
numerical diffusion, shown in Fig. (3.2). From Fig. (3.2), it can be seen that most of the
dissipations are around the extra-tropics. Since the backscatter forcing is proportional
to the total KE dissipation, a larger dissipation will cause a larger backscatter forcing,
producing large SPREAD. Also, since there is no systematic way of estimating the
actual KE dissipation, any under or over estimation of the KE dissipation will cause
the backscatter scheme to produce under/over SPREAD, and this may create larger
errors (RMSE).

The spatial pattern of the RMSE distribution is shown in Fig. (3.12): the top-row
shows the RMSE from [No BS] experiment, the middle-row shows the RMSE from the
experiment [oALL 2a], and the bottom-row shows the RMSE/SPREAD Ratio from
[oALL 2a]; for the forecast time at 6 hours, 3rd, and 5th day respectively (from left
to right). From the spatial pattern it is obvious that the RMSE is higher for the
experiment without SKEB scheme. The errors are more pronounced in the extra-
tropics, especially on the 3rd, and 5th day. Comparing the RMSE distribution from
[No BS], and [oALL 2a], it is clear that the SKEB scheme in fact helps to reduce the
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Figure 3.11: Top-row: Zonal average RMSE (solid lines) and SPREAD (dashed lines).
Bottom-row: Spatial pattern of the SPREAD from [oALL 2a]; for the forecast time at 6
hours, 3rd, and 5th day respectively (from left to right).

forecast errors or, in other words, by incorporating model uncertainty into the forecast
model through a stochastic backscatter we can significantly reduce the forecast error.
The RMSE/SPREAD ration does not show any particular pattern, except few grid-
point which shows high ratio, which in fact associated anomalous SPREAD as shown
in Fig. (3.11: Bottom-row).

So far, we have looked only at the temperature at a particular pressure level
(850 hPa) which is one of the most widely used pressure level for forecast verifica-
tion. However, the impact of the SKEB scheme may be different at different vertical
levels and different forecast time, since the KE dissipation is also different for the
same. In the following we will show the vertical profiles of the verification scores for
the Northern extra-tropics, the Tropics and the Southern extra-tropics. Figure (3.13)
shows the CRPS vertical profiles for temperature for the Northern extra-tropics. The
top-row shows the CRPS for all experiments, the middle-row shows the CRPS for the
experiment [oALL 2a], and the bottom-row shows the corresponding confidence inter-
val, for the forecast time at 6 hours, 3rd, and 5th day, respectively (from left to right).
From the figure, it is clear that the temperature forecast improved throughout the
entire vertical levels especially for the experiment [oALL 2a]. The confidence interval
is below the zero line threshold which indicates that the improvement in the CRPS is
significant. The results are consistent at different forecast steps.

The vertical profile of the SPREAD and RMSE scores for the temperature field
for the the Northern extra-tropics is shown in Fig. (3.14). The top-row of Fig. (3.14)
shows the SPREAD (dashed lines) and RMSE of the mean (solid lines). The middle-
row of Fig. (3.14) shows the RMSE/SPREAD ratio, and the bottom-row shows the
normalized RMSE against the deterministic forecast [No BS]. Although the overall
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Figure 3.12: Top-row: RMSE from [No BS] experiment. Middle-row: RMSE of the mean
from [oALL 2a], and Bottom-row: RMSE/SPRED Ratio from [oALL 2a]; for the forecast
time at 6 hours, 3rd, and 5th day respectively (from left to right).

conclusion is consistent with the CRPS scores, the RMSE score gives us a different
outlook. Similar to Fig. (3.7), the lowest RMSE is for experiment [nCAP 2a], which
uses only the random cellular automation pattern and does not incorporate any dissipa-
tion component. On the contrary, the CRPS for the same is larger. The disagreement
between the absolute RMSE score and the CRPS arise from non-normal probability
density distribution (similar to the case shown in Fig. (3.8)). The SPREAD is highest
for the experiment [oALL 2a], hence the RMSE/SPREAD ratio is closer to unity than
others. Since the CRPS is smallest for experiment [oALL 2a], the conclusion from the
SPREAD and RMSE/SPREAD ratios are in well agreement with the CRPS. From the
vertical profile shown in Fig. (3.14), we can see that the SPREAD is relatively much
larger at higher levels, especially for experiments which incorporate KE dissipation
from numerical dissipation in the SKEB scheme. This is due to the fact the numerical
diffusion is much larger at higher levels in GME making it the largest contributer to
the KE dissipation in the SKEB scheme. Since the total KE dissipation is propor-
tional to the backscatter forcing, an increase in the dissipation causes an increase in
the backscatter forcing which gives rise to a higher SPREAD.

Analogously, Figure (3.15) shows vertical profiles of skill scores for the Tropics,
for the forecast temperature. Overall the CRPS profile shows that the SKEB scheme
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Figure 3.13: Continuous Ranked Probability Score (CRPS) vertical profiles for temperature
for the Northern extra-tropics. Top-row: for all experiments, Middle-row: for the experiment
[oALL 2a], and Bottom-row: corresponding confidence interval; for 6 hours, 3rd, and 5th day
respectively (from left to right).

has a significant positive impact on all levels on the forecast. The impact is more
pronounced in the later forecast hours. The RMSE scores of the mean also agree with
the conclusion from CRPS, although at higher levels there is some mismatch between
the scores. Overall, the SKEB scheme [oALL 2a] has the highest SPREAD and lowest
CRPS.

Similarly, Fig. (3.16) shows the vertical profile for the Southern extra-tropics. Al-
though the CRPS shows significant improvement for most SKEB schemes at 6th hour
and 3rd day, schemes involving correlated stochastic pattern and numerical dissipation
show better results on the 5th day, and the rest of the schemes show higher CRPS val-
ues especially at upper levels. Also the scheme implemented in experiment [oALL 2a]
shows the highest SPREAD.

Another most common physical quantity used for evaluating the forecast quality is
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Figure 3.14: Vertical profiles of skill scores for temperature for the Northern extra-tropics.
Top-row: RMSE and SPREAD, Middle-row: RMSE/SPREAD Ratio, and Bottom-row: Nor-
malized RMSE; for the forecast time 6 hours, 3rd, and 5th day respectively (from left to right).

the 500 hPa geopotential height. Figure (3.17) shows the RMSE, SPREAD, their ratio,
and the Normalized RMSE scores with respect to the [No BS] experiment. The top-row
shows the absolute RMSE (solid lines) and SPREAD (dashed lines), the middle-row
shows the RMSE/SPREAD Ratio and the bottom row shows the Normalized RMSE
with reference to the [No BS] experiment. From the figure, we can see that the response
of geopotential height to the backscatter is quite different from that of the temperature.
By looking at the Normalized RMSE scores, we can see that in the Northern extra-
tropics, the first 24 hour forecast shows significant positive impact for all the case
studies. Subsequent forecast steps show negative impact on the forecast for experiments
[oALL 2a] and [oNAG 2a]. Similar is the case for the Southern extra-tropics, i.e., for the
first 50-60 forecast hours all experiments show significant improvement in the forecast,
and afterwards the forecasts get worse. On the contrary, forecasts in the Tropics show
significant improvement up to seven days for all cases except [oCON 2a], which is in
fact the case where the KE dissipation contribution is only from deep convection. The
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Figure 3.15: Vertical profiles of skill scores for temperature for the Tropics. Top-row:
CRPS, Bottom-row: SPREAD and RMSE; for the forecast time 6 hours, 3rd, and 5th day
respectively (from left to right).

negative impact of the case [oCON 2a] can be explained by looking at the SPREAD of
the same. The SPREAD for [oCON 2a] increased almost exponentially in the Tropics.
Since the KE dissipation associated with the deep convection case is mostly centered
in the Tropics (see Fig. (3.3: Top), the SPREAD in [oCON 2a] is not spatially uniform
and is indeed concentrated in the Tropics. This non-uniformity can create anomalous
gradients in the backscatter forcing which cause large errors. In fact we have found that
few grid-points cause this anomalous values which is associated with the calculation of
the KE dissipation from the deep convection parameterization scheme in the model.

Now we compare the skill scores of the experiment [oALL 2a] which was found to
perform the best in the case of 850 hPa temperature forecast. Since RMSE scores alone
cannot be used to judge the forecast performance, we analyze and compare the case
using the CRPS score as well. Figure (3.18) shows the CRPS and the corresponding
confidence interval for the 500 hPa geopotential height ten days forecast, for the the
Northern extra-tropics, the Tropics, and the Southern extra-tropics respectively. The
CRPS score for the Northern extra-tropics is consistent with the RMSE, showing sig-
nificant improvement during the first 24 hours and slightly worsening afterwards for
a short period. The Southern extra-tropics also show significant improvement for the
first 24-36 hours but slightly worsen afterwards. In contrast to the extra-tropics, the
improvement in the Tropics is significant throughout the entire forecast period.

Apart from the temperature and the geopotential height, specific humidity is also
another common forecast variable used to evaluate the forecast quality. Figure (3.19)
shows the forecast statistics from the GME-ENS experiments for specific humidity, for
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Figure 3.16: Vertical profiles of skill scores for temperature for the Southern extra-tropics.
Top-row: CRPS, Bottom-row: SPREAD and RMSE; for the forecast time 6 hours, 3rd, and
5th day respectively (from left to right).

the Northern extra-tropics, the Tropics, and the Southern extra-tropics (from left to
right). The top-row shows the ten days forecast SPREAD (dashed lines), and RMSE
(solid lines), and the bottom-row of the figure shows the CRPS vertical profiles for the
first 6 hours forecast. From the figure, it can be seen that the forecast error reduced
significantly over the whole ten days forecast period, for all case studies. Figures
showing statistical significance can be found in Appendix-C. Also here, the highest
SPREAD is for experiment [oALL 2a], and the lowest for the case where no dissipation
is incorporated in the SKEB scheme. The CRPS vertical profile from experiment
[oALL 2a] also confirms the improvement due to the SKEB scheme. It is also very
clear that the improvement is not just confined to one specific pressure level but it is
apparent and significant throughout the entire vertical levels.

So far, we have analyzed the impact of the SKEB scheme on multilevel variables
such as the temperature, the geopotential height, and the specific humidity, and found
that the SKEB scheme has a significant positive impact on the forecast quality overall.
Now we will analyze the impact of SKEB scheme on the surface pressure. In general the
surface pressure can exhibit large variations over a large area and a short period of time
especially in the extra-tropics. Such large variations in surface pressure are directly
linked to the strong gradients in the wind components. Since the SKEB scheme directly
perturbs the wind components, the variations or perturbations in the wind can cause
large variations in surface pressure. Figure (3.20) shows the RMSE scores for surface
pressure for ten days forecast, for the Northern extra-tropics, the Tropics, and the
Southern extra-tropics (from left to right). The top-row shows the absolute RMSE
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Figure 3.17: Ten days forecast statistics for 500 hPa geopotential height. Top-row: RMSE
(solid) and SPREAD (dashed), Middle-row: RMSE/SPREAD Ratio, and Bottom row: Nor-
malized RMSE; for the Northern extra-tropics, the Tropics and the Southern extra-tropics
(from left to right).

(solid lines) and SPREAD (dashed lines), the middle-row shows its Ratio, and the
bottom-row shows the Normalized RMSE with reference to the [No BS] experiment. It
is clear from the figure that the SKEB impact on the surface pressure is quite different
in the three regions. In the Northern extra-tropics, the improvement is significant
throughout the entire forecast period, for all the SKEB cases. For the first 30-40 hours,
experiment [oALL 2a] is the best and afterwards it becomes relatively worse. In the
Tropics, all the cases except [oCON 2a] show significant positive impact for the first 30-
40 hours. In the Southern extra-tropics, only experiment [oCON 2a] shows significant
positive impact over the entire forecast period. All other cases have a significant impact
only for first 12-24 hours. It should be noted that although [oCON 2a] shows better
results in the extra-tropics, its response or behavior is more erratic, similar to the
case for geopotential height shown in Fig. (3.17). Since experiment [oALL 2a] contains
the KE contribution from convection, it is plausible that any issues associated with
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Figure 3.18: Continuous Ranked Probability Score (CRPS) and confidence interval for 500
hPa geopotential height, for the experiment [oALL 2a]: the Northern extra-tropics (left), the
Tropics (middle), and the Southern extra-tropics (right)
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Figure 3.19: Specific humidity profiles. Top-row: ten days forecast RMSE, and SPREAD
at 850 hPa; Bottom-row: 6 hour forecast CRPS for the experiment [oALL 2a]
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Figure 3.20: Ten days forecast statistics for surface pressure: RMSE (solid) and Ensemble
SPREAD (dashed) on the top-row, RMSE/SPREAD Ratio (middle-row), and Normalized
RMSE (bottom-row), for the Northern extra-tropics, the Tropics and the Southern extra-
tropics respectively (from left to right).

[oCON 2a], which is more evident in the Tropics, will also appear in [oALL 2a].

The CRPS of the surface pressure forecast for experiment [oALL 2a] is shown in
Fig. (3.21). In general the CRPS agree with the RMSE scores, indicating significant
improvement in the forecast during the first 60 hours of the forecast in the Northern
extra-tropics, and in the Tropics, and marginal improvement in the Southern extra-
tropics. The deterioration of the long-term forecast in the Tropics is due to the inac-
curacies in estimating the KE dissipation from deep convection.

3.3.4 Conclusion: Impact of SKEB on the GME-ENS Forecast

The following are the main conclusions concerning the impact of SKEB on the short
and medium-range forecasts in GME:
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Figure 3.21: Continuous Ranked Probability Score (CRPS) and confidence interval for
surface pressure, for the experiment [oALL 2a]: the Northern extra-tropics (left), the Tropics
(middle), and the Southern extra-tropics (right)

1. The SKEB scheme significantly improved the probabilistic temperature forecast
at all pressure levels, i.e. it gives valuable information on the probability distri-
bution in addition to the deterministic forecast.

2. Incorporating a stochastic backscatter scheme produces significantly better re-
sults compared to random perturbations (e.g. [oALL 2a] vs [nCAP 2a]). The
experiment [oALL 2a], which incorporates all the dissipation components, per-
forms best in most cases, and generates the highest SPREAD,

3. These experiments generally show too less SPREAD over the full forecast range
due to the lack of SPREAD in the initial perturbations. This cannot be com-
pensated by the backscatter scheme adding noise during the model integration
only.

4. Uncorrelated perturbations have less effect than vertically correlated perturba-
tions. Uncorrelated noise does not correspond to a meaningful (balanced) model
state and will be damped out. This especially applies to the extra-tropics.

5. Forecast results of geopotential height, specific humidity and surface pressure
show significant improvement over short-range (up to 60 hours) but show mixed
results for longer forecast.

In short, we have proved that the KE backscatter can significantly improve the
forecast. The most important message is that this improvement is achieved solely by
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tapping the model uncertainty since there is no initial uncertainty as each forecast en-
semble member starts from same initial state. In other words the forecast improvement
is achieved by incorporating the model uncertainty through a stochastic kinetic energy
backscatter scheme. Now the question is: How good is this improvement compared to
the improvement using an ensemble prediction system (EPS) which in fact incorporates
initial uncertainty? In the following, we will try to answer the above question.
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Figure 3.22: Ten days forecast statistics of GME-ENS compared to GME-EPS experiments
for 850 hPa temperature. Top-row: CRPS; Bottom-row: RMSE (solid), SPREAD (dashed);
for the Northern extra-tropics, the Tropics, and the Southern extra-tropics (from left to right).

Figure (3.22) shows a comparison of 850 hPa temperature forecast statistics from
the GME-ENS experiments and a GME-EPS experiment [EnNBS], of same resolution
(without using any stochastic backscatter scheme). The top-row shows the CRPS
statistics over ten days forecast period and the bottom-row shows the RMSE (solid
lines) and SPREAD (dashed lines). In general, Figure (3.22) gives two main messages:

1. the importance of incorporating the initial uncertainty, and

2. the importance of data assimilation (or EPS in general) for medium or long-range
forecast.

From the CRPS it can be seen that the experiment [oALL 2a] is better for the
first 24 hours (1 day) forecast in the extra-tropics and about 72 hours (3 days) in the
Tropics. The RMSE in general also agrees with the CRPS results although the range of
forecast hours (showing improvement in the skill scores) slightly differ. Both from the
CRPS and the RMSE, it is in fact surprising to see that the GME-ENS outperforms
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the GME-EPS experiment for the short-range forecast, although for medium and long
range forecast the EPS systems are always better. Two main reasons for the under-
performance of GME-EPS are: i) no model uncertainty is incorporated in the forecast
model although it is implicitly represented in the LETKF data assimilation system
through additive inflation; and ii) the initial ensemble members for the EPS are not
as good as that from the operational 3D VAR (it is an experimental system under
development) On the contrary the GME-ENS forecasts are initialized using the best
possible analysis (from the DWD operational data). Therefore, during the first two-
to-five days (depending on verification skill score and the region) the forecasts from
GME-ENS outperform that from GME-EPS as they initialized from a more accurate
forecast. After that time the GME-EPS is better as it leads to higher ensemble spread
due to the initial disturbances.

Figure (3.22) compares the forecast improvements achieved by two different forms
of uncertainty: i) model uncertainty (through stochastic KE backscatter), and ii) initial
uncertainty (through a set of possible initial states or ensemble). Naturally, the next
step would be to combine these two methods, which leads to the next research question:
would incorporating stochastic backscatter in GME-EPS give better results? Combin-
ing these two seems to be straight forward and one would expect a better forecasting
system. In the following section we will show the results from GME-EPS experiments
which incorporate the SKEB scheme. In fact our experiments results do not follow the
logic, and we will try to explain why they do not in the following sub-sections.

3.3.4.1 SKEB: Impact on the GME-EPS Forecasts

In this subsection, we will describe the details regarding the GME-EPS experiments,
followed by a detailed analysis of the results. A summary of the GME-EPS experiments,
the SKEB forcing fraction and LETKF inflation parameters used is given in table (3.2).
A total of seven EPS experiments were performed: two experiments (with and without
SKEB) with no additive or multiplicative inflation (NBS NAI and WBS NAI), two
experiments with additive inflation but no multiplicative inflation (NBS WAI, and
WBS WAI), two experiments with multiplicative inflation but no additive inflation
(NBS WMI, WBS WMI), and one experiment with additive inflation and with doubled
backscatter forcing (WBS WDF). Theoretical details regarding the covariance inflation
techniques and its effects on analysis can be found in Chapter (4). Here we will focus
more on the impact of the SKEB scheme on the EPS forecast. Details regarding the
impact of the SKEB scheme on the LETKF analysis can also be found in Chapter (4).

Figure (3.23) shows the ten days forecast statistics for 850 hPa temperature, for all
the experiments listed in table (3.2), for the Northern extra-tropics, the Tropics and
the Southern extra-tropics (left to right). Top-row shows the CRPS and the bottom-
row shows the RMSE (solid lines) and SPREAD (dashed lines). The thin-lines (both
solid and dashed lines) represent the experiments with the SKEB scheme, and the thick
lines represent the experiments without the backscatter.

First we will analyze the twin experiments [NBS NAI] and [WBS NAI] (gray color),
where there is no contribution from additive or multiplicative covariance inflation dur-
ing the assimilation cycle. These experiments where designed to evaluate the actual
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GME-EPS SKEB scheme Backscatter Additive Multiplicative

Exp. ID (Yes/No) forcing Inflation Inflation

NBS NAI No α = 0.0 0.00 0.00

WBS NAI Yes α = 2.0 0.00 0.00

NBS WAI No α = 0.0 0.25 0.00

WBS WAI Yes α = 2.0 0.25 0.00

WBS WDF Yes α = 4.0 0.25 0.00

NBS WMI No α = 0.0 0.00 1.10

WBS WMI Yes α = 2.0 0.00 1.10

Table 3.2: Summary of GME-EPS sensitivity experiments.

contribution of backscatter in the EPS or, in other words, to study the response of
the initial uncertainty in the presence of backscatter. From the figure, it can be seen
that the effects of SKEB or the response of the EPS due to the backscatter is quite
different in all the three regions. From the CRPS of the extra-tropics (both Northern
and the Southern), it can be seen that the EPS with backscatter [WBS NAI] has higher
CRPS than [NBS NAI], throughout the entire forecast period or, in other words, that
the SKEB scheme in fact deteriorates the EPS forecast in the extra-tropics. On the
contrary, the CRPS of the Tropics shows significant improvement in the forecast up
to five-to-six days but it quickly deteriorate afterwards. The RMSE scores shown in
Fig. (3.23: Bottom-row) agree with the results from the CRPS. The Normalized RMSE
scores in Fig. (3.24: bottom-row) show the significance of [WBS NAI] with respect to
[NBS NAI]. The figure shows that, in the extra-tropics [WBS NAI] is significantly
worse than [NBS NAI] but it is significantly better in the Tropics. However, we can
see an increase in the SPREAD in all three regions, which was also one of the primary
goals of incorporating the SKEB scheme into the EPS. The SPREAD for [WBS NAI]
in the Northern extra-tropics is around ten percent more than for [NBS NAI] in the be-
ginning of the forecast and it slightly increases over the forecast period. The Southern
extra-tropics also show an increase in the SPREAD for [WBS NAI] in the beginning
but the SPREAD decreases over the forecast period and is almost equal to [NBS NAI]
towards the end. The Tropics also show a relatively higher SPREAD for [WBS NAI]
for almost four-to-five days, but also in this case the SPREAD starts decreasing af-
terwards. Nevertheless, it can be seen that overall the RMSE and the CRPS results
are not very promising, especially in the extra-tropics. Before answering the ques-
tion: why the SKEB scheme has a negative impact, we will analyze and compare the
remaining GME-EPS sensitivity experiments, which implicitly incorporate the model
error through covariance inflation in addition to the SKEB scheme.

One of the main purposes of incorporating an additive or multiplicative covariance
inflation is to compensate the underestimated background error covariance. In other



3.3 ROLE OF STOCHASTIC BACKSCATTER IN THE GME FORECAST 53

6 24 42 60 78 96 114 132 150 168 186 204 222

0.5

1

1.5

2

2.5

3

3.5

4

Temperature (850 hPa): Northern Extra−tropics

C
R

P
S

Forecast time (Hours)

 

 

WBS_NAI
WBS_WAI
WBS_WDF
WBS_WMI

6 24 42 60 78 96 114 132 150 168 186 204 222

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Temperature (850 hPa): Tropics

C
R

P
S

Forecast time (Hours)

 

 

WBS_NAI
WBS_WAI
WBS_WDF
WBS_WMI

6 24 42 60 78 96 114 132 150 168 186 204 222

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Temperature (850 hPa): Southern Extra−tropics

C
R

P
S

Forecast time (Hours)

 

 

WBS_NAI
WBS_WAI
WBS_WDF
WBS_WMI

6 24 42 60 78 96 114 132 150 168 186 204 222

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Temperature (850 hPa): Northern Extra−tropics

[ 
S

P
R

E
A

D
 ]

 [
 R

M
S

E
 ]

Forecast time (Hours)

 

 

NBS_NAI
WBS_NAI
NBS_WAI
WBS_WAI
WBS_WDF
NBS_WMI
WBS_WMI

6 24 42 60 78 96 114 132 150 168 186 204 222

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Temperature (850 hPa): Tropics

[ 
S

P
R

E
A

D
 ]

 [
 R

M
S

E
 ]

Forecast time (Hours)

 

 

NBS_NAI
WBS_NAI
NBS_WAI
WBS_WAI
WBS_WDF
NBS_WMI
WBS_WMI

6 24 42 60 78 96 114 132 150 168 186 204 222

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Temperature (850 hPa): Southern Extra−tropics

[ 
S

P
R

E
A

D
 ]

 [
 R

M
S

E
 ]

Forecast time (Hours)

 

 

NBS_NAI
WBS_NAI
NBS_WAI
WBS_WAI
WBS_WDF
NBS_WMI
WBS_WMI

Figure 3.23: Ten days forecast statistics for the 850 hPa temperature. Top-row: CRPS,
Bottom-row: RMSE (solid lines), and SPREAD (dashed lines); for the Northern extra-
tropics, the Tropics, and the Southern extra-tropics (left to right).

words, to compensate the loss of first-guess spread during the assimilation cycle. In
general, most of the covariance inflation is achieved using ad-hoc procedures. By
using a stochastic backscatter scheme, we expect to increase the ensemble SPREAD
dynamically, thereby inflating the background covariance to some extent. More details
regarding the same can be found in Chapter (4). Now, we will compare the response
of the EPS with covariance inflation, to the one incorporating the backscatter scheme.
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Figure 3.24: Ten days forecast statistics for the 850 hPa temperature. Normalized RMSE
for the Northern extra-tropics, the Tropics, and the Southern extra-tropics (left to right).

Figure (3.23) also shows the CRPS (Top-row), and RMSE and SPREAD (Bottom-
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row) for the additive inflation EPS experiments [NBS WAI] and [WBS WAI] (blue
lines). From the CRPS and RMSE scores we can see that there is no significant
improvement in the forecast in the Northern extra-tropics. In fact by looking at the
normalized RMSE for [WBS WAI] shown in Fig. (3.24), we can see that it is in fact
slightly worse than [NBS WAI] for the first 36 hours, then almost the same for about 48
hours and then it becomes worse again. In the Southern extra-tropics we can see a slight
but significant improvement for the first 6-12 hours for experiment [WBS WAI] and a
worsening afterwards. We can also see that the relative increase in the SPREAD is very
small in the extra-tropics, compared to the SPREAD of the EPS with no inflation (gray
lines). This suggests that the inflation and the backscatter are in fact counteracting
each other. In contrast to the extra-tropics, the Tropics show (see the Normalized
RMSE) significant improvement up to six days. Although the counteracting effects are
visible in the Tropics, they are not so strong compared to the extra-tropics. We will
come back to the counteracting effects of SKEB and additive inflation in the later part
of this section.

In order to study the effects of backscatter forcing, we have performed an EPS
experiment [WBS WDF] (green line in Fig. (3.23) and (3.24)), which is similar to
experiment [WBS WAI] but with twice the backscatter forcing. From the CRPS and
RMSE score, it is very clear that it has a negative impact on the extra-tropics, and
the forecast is worse than [WBS WAI]. On the Tropics, [WBS WDF] has a significant
positive impact compared to [WBS WAI]. The SPREAD also increases dramatically
in the Tropics. On the contrary, the increase in the SPREAD due to the doubled
backscatter forcing weakens in the extra-tropics, which again suggests the fact that the
additive inflation and the backscatter forcing are opposite. However, although there
is a significant improvement in the Tropics, this lasts up to around four days, and
afterwards the scores show a steep increase in the CRPS and the RMSE. The cause
of this sudden deterioration of the forecast is unclear at the moment. One possible
explanation is the inaccurate estimation of the KE dissipation from deep convection,
which was also visible in the CRPS/RMSE for the Tropics in the GME-ENS experiment
[oCON 2a].

Compared to the additive inflation experiments, the performance of the multiplica-
tive inflation experiments ([NBS WMI] and [WBS WMI]) with backscatter is worse.
In some cases it is even worse than experiments with no inflation factors. One of
the surprising fact is that the multiplicative inflation experiment with backscatter
[WBS WMI] has comparatively lower SPREAD than the one without backscatter
[NBS WMI] in all the three geographical regions.

Now we will analyze the zonal average and spatial distribution of the RMSE
and SPREAD statistics, which will give more insights into the EPS response to the
backscatter scheme. The spatial patterns shown in Fig. (3.25) give an overview of the
geographical distribution of the backscatter contribution to the ensemble SPREAD. It
can be seen that the SPREAD for the 6 hour forecast is almost uniform compared to
[NBS NAI]. On the 3rd and 5th days, the SPREAD is much higher in the extra-tropics
in both experiments. One of the main differences in the spatial patterns of the two
experiments is the distribution of the SPREAD in the Tropics. The spatial pattern of
[WBS NAI] shows uniform, and relatively larger SPREAD, which indicates that the
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Figure 3.25: 850 hPa temperature statistics. Top-row: Spatial distribution of the SPREAD
for [NBS NAI], Middle-row: Spatial distribution of the SPREAD for [WBS NAI]; Bottom-
row: Zonal average RMSE (solid lines) and SPREAD (dashed lines). for the forecast time at
6 hours, 3rd, and 5th day respectively (from left to right).

backscatter is very effective, and in fact confirms the results from CRPS and RMSE
scores.

Figure (3.25: Bottom-row) compares the zonal average of the 850 hPa temperature
field, for all EPS experiments. From the figure it can be seen that [WBS NAI], which
is the experiment with backscatter and no inflation, has much lower SPREAD in the
extra-tropics compared to [NBS WAI], although [WBS NAI] shows relatively higher
SPREAD than [NBS NAI]. This is consistent for the 6 hour, 3rd, and 5th day. This
means that although the backscatter was able to generate a higher SPREAD the ampli-
tude is much less compared to the SPREAD due to the additive inflation. Among the
EPS experiments with inflation, multiplicative inflation with backscatter [WBS WMI]
produces the worst result, which in general agrees with our earlier conclusion.

In the EPS experiments, the SPREAD of the zonal wind fields from the backscat-
ter experiments are relatively larger compared to those for the temperature since the
backscatter forcing is applied directly on the wind components and there is no explicit
backscatter forcing on the temperature fields. This can be seen in the spatial pat-
terns shown in Fig. (3.26), which gives an overview of the geographical distribution of
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Figure 3.26: 500 hPa zonal wind statistics. Top-row: Spatial distribution of the SPREAD
for [NBS NAI], Middle-row: Spatial distribution of the SPREAD for [WBS NAI]; Bottom-
row: Zonal average RMSE (solid lines) and SPREAD (dashed lines). for the forecast time at
6 hours, 3rd, and 5th day respectively (from left to right).

the backscatter contributions to the ensemble SPREAD. Similar to the temperature
field, it can be seen that the SPREAD for the 6 hour forecast is almost uniform with
slightly larger SPREAD in the extra-tropics. On the 3rd and 5th day, the SPREAD
is much higher in the extra-tropics. The higher spread in the extra-tropics is due to
the fact that the KE dissipation due to numerical diffusion is relatively higher in the
extra-tropics, and is proportional to the backscatter forcing.

Figure (3.26: Bottom-row) also shows the zonal average of the RMSE (solid lines)
and SPREAD (dashed lines) of the 500 hPa zonal wind (top-row), at 6 hours, 3rd, and
5th day respectively (from left to right). From the zonal average figure it can be seen
that the 500 hPa zonal wind SPREAD of the experiment [NBS NAI], at 6 hour fore-
cast, is quite different from the 3rd, and 5th day. The main difference is that at 6 hours,
the 500 hPa zonal wind SPREAD of [WBS NAI] at the extra-tropics are much larger
compared to [NBS WAI]. On the other hand the SPREAD of [NBS NAI] is much lower
on the 3rd, and 5th day forecast, which indicate that in the extra-tropics, the SKEB
scheme was unable to generate enough SPREAD comparable to the additive inflation.
In the Tropics the difference is just the opposite with the exception that at 6 hour fore-
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cast, the SPREAD is almost the same for both [WBS NAI] and [NBS WAI]. Here also,
[WBS WMI], which is the experiment with multiplicative inflation and backscatter,
has the worst result among all EPS.
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Figure 3.27: ROC Area for 850 hPa temperature: GME-EPS experiments with and with-
out SKEB scheme, w.r.t ECMWF forecast; for Northern extra-tropics, the Tropics, and the
Southern extra-tropics (from left to right)

In all the results shown previously, we have compared the GME EPS forecasts
with the DWD operational high-resolution deterministic analysis from the same pe-
riod assuming that it provides the best data. However, this comparison may create a
biased conclusion since we compare results from the same model but within different
frameworks. In order to ensure unbiasedness in our conclusion we have compared our
GME-EPS results and the DWD operational data with the ECMWF operational anal-
ysis. Among all the operational weather forecasts, ECMWF operational forecasting
system is considered to be the best. To compare our results, we use the Receiver Oper-
ating Characteristic (ROC) statistics, which is a plot of hit-rate versus false-alarm rate.
The ROC measures the ability of the forecast to discriminate between two alternative
outcomes. Here the two possible alternative outcomes are the DWD operational fore-
cast and the ECMWF operational forecast, where the ECMWF data is the reference
or truth. Figure (3.27) shows the ROC Area plot for the 850 hPa temperature for the
10-day forecast. Maximum area represents maximum hit-rate, which means that the
forecast is closer to the reference. The statistics gives only a relative performance of
different GME-EPS experiments. From the figure it can be seen that, for both the
Northern and the Southern extra-tropics, the experiment [WBS NAI] which is the ex-
periment with SKEB scheme and no inflation, has the lowest area. In the Tropics, we
can see that [WBS NAI] has a higher area than [WBS NAI] for about four days, which
indicates the positive impact of the backscatter. For the experiments with additive
inflation, the backscatter has a negative impact on the extra-tropics and a significant
positive impact on the Tropics. Among all EPS, [NBS WAI] has the maximum area in
the extra-tropics, but in the Tropics the results with backscatter are the best. Overall
the ROC results reaffirm our earlier conclusions regarding the impact of the backscatter
scheme on the GME-EPS forecasts.

The vertical profile of the RMSE statistics of temperature, shown in Fig. (3.28),
gives an overview of the response of the EPS to the backscatter at all pressure levels at 6
hours, 3rd, and 5th day. The conclusion from the vertical profile is not different from the
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Figure 3.28: Vertical profiles for temperature, RMSE (solid lines) and SPREAD (dashed
lines). Top-row: the Northern extra-tropics, Middle-row: the Tropics, and Bottom-row: the
Southern extra-tropics; for the forecast time 6 hours, 3rd, and 5th day respectively (from left
to right).

conclusion from the 850 hPa temperature results shown previously, i.e., the backscatter
has a negative impact (higher RMSE) in the extra-tropics although it generates a
relatively larger SPREAD. The CRPS vertical profile, shown in the Appendix-(C),
confirms the results from the RMSE scores.

So far we have analyzed only the temperature field, and concluded that the backscat-
ter has a negative impact on the GME-EPS forecast on the extra-tropics and a positive
impact on the Tropics. However, this conclusion may not be the same for other vari-
ables such as geopotential height and surface pressure. Figure (3.29) shows the ten
days forecast CRPS for the 500 hPa geopotential height (top-row) and the surface
pressure (bottom-row). The figure shows that the SKEB scheme has a strong negative
impact on both the geopotential height and the surface pressure. The impact is quite
different from the temperature response in all the three geographic regions. From the
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Figure 3.29: Ten days forecast CRPS statistics. 500 hPa geopotential height (top-row),
surface Pressure (bottom-row); for the Northern extra-tropics, the Tropics, and the Southern
extra-tropics (from left to right).

figure it is also clear that both variables are very sensitive to backscatter forcing, which
is particularly evident from the results of experiment [WBS WDF] (green line).

Now, the question which remains to be answered is: why does the SKEB scheme
have a negative impact on the GME-EPS forecast? In the next subsection we will
describe the possible causes and try to formulate an answer to this question.

3.3.4.2 The SKEB does not have a positive impact on GME-EPS - Why?

In the first part of subsection (3.3.3), we have shown that the backscatter scheme signif-
icantly improves the GME-ENS forecast quality in all the three geographical regions.
Later in section (3.3.3), we have shown that the backscatter scheme has a negative
impact on the GME-EPS. The main differences between those two experiments are: 1)
GME-ENS does not account for initial perturbations and takes the initial conditions
from a deterministic analysis whereas GME-EPS uses an ensemble of perturbed initial
conditions. 2) GME-ENS and GME-EPS take their initial conditions from different
data assimilation systems: GME-ENS takes its initial conditions from the operational
3D VAR data assimilation cycle whereas GME-EPS takes them from the experimental
LETKF suite which is not very well tuned so far. Thus the analysis (or mean analysis)
compared to the deterministic analysis will be considerably different. Therefore possible
factors which might influence the backscatter to cause the negative impact in GME-
EPS are: the LETKF data assimilation cycle, the initial ensemble distribution, and a
combination of both, which would effectively change the statistical distribution of the
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assimilated variables. In order to test whether the LETKF assimilation influences the
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Figure 3.30: Ten days forecast statistics for 850 hPa temperature. Top-row: RMSE (solid)
and SPREAD (dashed), Bottom-row: CRPS, for the Northern extra-tropics, the Tropics, and
the Southern extra-tropics (from left to right).

backscatter, we have designed two experiments named [WBS ENS], and [WBS EMN].
The experiment [WBS ENS] is equivalent to the experiment [NBS WAI] but without
using the LETKF data assimilation cycle2. This experiment will in fact show how
the initial uncertainty evolves under the influence of backscatter forcing. The exper-
iment will also reveal how the assimilation cycle affects the backscatter contribution
on the forecast. Experiment [WBS EMN] is equivalent to the GME-ENS experiment
[oALL 2a], where there is no initial uncertainty is involved, i.e., the forecast is initial-
ized with the forecast ensemble mean of [NBS WAI]. The experiment [WBS EMN] will
show the model uncertainty component of the ensemble SPREAD.

Figure (3.30) shows the ten days forecast statistics for the 850 hPa temperature
for the experiments described above. The top-row shows the SPREAD and the RMSE
scores and the bottom-row show the CRPS, for the Northern extra-tropics, the Tropics
and the Southern extra-tropics (left to right). One of the striking features in Fig. (3.30)
is that, in the extra-tropics, the RMSE of experiment [WBS ENS] (shown in cyan
color) is relatively smaller than the one with assimilation cycle [WBS WAI] (thin blue
line), and is almost the same as [NBS WAI]. This means that the assimilation cycle
in fact negatively affects the backscatter contributions resulting in a deterioration of
the forecast quality. In the Tropics, the assimilation has a positive effect resulting in a
better forecast. Also, the relative contribution of model uncertainty to the SPREAD, is

2There is no data assimilation cycle; for each forecast cycle the initial ensemble is taken from
[NBS WAI] analysis
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very small in the extra-tropics but significant in the Tropics. Another striking feature
is the forecast RMSE of experiment [WBS EMN] (the black line), which is almost
the same as the RMSE of experiment [NBS WAI], particularly in the extra-tropics
and for the first 48-72 hours. It means that tapping the model uncertainty alone is
sufficient to get a good short-range forecast. This is also consistent with the GME-
ENS experiments. Experiment [WBS EMN] also suggests that the effects of model
and initial uncertainty are somewhat the same for the short-range forecasts. But for
the medium and long range forecasts the initial uncertainty plays a major role, and
contributions from the model uncertainty can be significant especially in the Tropics.
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Figure 3.31: Ten days forecast statistics for 850 hPa temperature. Top-row:
RMSE/SPREAD Ratio, Bottom-row: Percentage of outliers from ranked histogram (Tala-
grand diagram); for the Northern extra-tropics, the Tropics, and the Southern extra-tropics
(from left to right).

Now we will analyze the third factor: the possibility of a change in the statistical
distribution due to the combined effects of assimilation, backscatter, and initial uncer-
tainty. As mentioned in the previous subsection, one of the main tasks of the SKEB
scheme is to increase the ensemble SPREAD, which in turn increases the variability of
the data variable. This should in turn inflate the error covariance matrices implicitly in
the data assimilation scheme. In theory, a perfect EPS should have the SPREAD equal
to the RMSE (assuming a normally distributed data). In practice, the RMSE (which
is the expected SPREAD) is always higher than the actual SPREAD. An increase in
the SPREAD should give a better performance of the data assimilation system and
also help to reduce the RMSE. However this works only if we assume the distribution
is (to some extent) identical before and after the application of the SKEB scheme, so
that the deviation of the mean is minimal from its actual value. If the distribution is
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the same and the deviation of the mean is minimal then the smaller RMSE/SPREAD
Ratio implies a smaller error hence a better result. We will show that our GME-EPS
experiment results suggest that this is not the case.

Figure (3.31: Top-row) shows the RMSE/SPREAD Ratio from the GME-EPS ex-
periments for the 850 hPa temperature. From the figure it is clear that the ratio is
relatively smaller for all the experiments with the SKEB scheme except for the ex-
periment with multiplicative inflation [WBS WMI]. Comparing these with Fig. (3.23:
Bottom-row), we can see that in the the Northern extra-tropics the experiments with
backscatter such as [WBS NAI], have a relatively larger ensemble SPREAD compared
to their counterparts (e.g., [NBS NAI]), but also have a larger RMSE. This suggests a
larger deviation of the forecast mean from the actual mean. Also, we can see that the
increase in the SPREAD in fact helps to reduce the outliers in the ranked histogram as
shown in Fig. (3.31: Bottom-row). However this does not mean that the EPS becomes
better since a parabolic-shaped histogram may still create a lesser number of outliers.
In general, a perfect ranked histogram should be flat, which means that the probability
that the observation falls within range of forecasted values by the EPS is equal for all
ensemble members. Thus its is possible that the SKEB scheme creates a bias in the
EPS (e.g., shape is parabolic or skewed parabolic in the ranked histogram). Combining
the information from RMSE, SPREAD, their ratio, and the ranked histogram outlier
plot suggests that the backscatter causes a change in the statistical distribution of the
EPS forecast. If there is a change in the distribution and in the mean due to the
backscatter forcing, it will be evident in the probability density plot of the EPS.
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Figure 3.32: Probability density plot for 500 hPa U-velocity. Top-row: the Northern extra-
tropics, Bottom-row: the Tropics; for the forecast times 6 hours (left), and 5th day (right).
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Figure (3.32) shows the probability density plot of the 500 hPa zonal wind compo-
nent for the Northern extra-tropics (top-row), and the Tropics (bottom-row), for the
forecast times 6 hours (left), and 5th day (right). The black color represents [NBS NAI],
which is the experiment with no backscatter and no inflation, and the gray color rep-
resents [WBS NAI], which is the experiment with the backscatter scheme and no in-
flation. From the figure it is evident that there is in fact a change in the statistical
distribution due to the backscatter forcing. The change in the distribution and in the
mean is more clearly evident in the 5th day forecast probability density plot.

In short, the main reason for the negative impact of SKEB on GME-EPS is the
combined negative effects of the LETKF assimilation cycle and of the initial uncertainty
on the backscatter contribution, which effectively change the statistical distribution.
More details on the impact of SKEB on assimilation can be found in Chapter (4)

3.3.5 SKEB: Impact on the Precipitation Forecast
In this subsection we will analyze the impact of the SKEB scheme on the precipitation
forecast. We will analyze the GME-ENS precipitation results followed by the GME-
EPS results. The main statistics used for the precipitation analysis are CRPS, BRIER
score, and ROC. Since the GME-ENS and GME-EPS spatial resolutions are relatively
coarse, it is statistically meaningless to compare the global precipitation forecast with
station data. On the other hand there is no standard global station data for 6 hourly
or daily precipitation. Therefore the reference (i.e., observations) data used for the
forecast verification is the satellite-derived 3-hourly precipitation data from the NOAA
Climate Prediction Center (CPC) Morphing Technique (a.k.a CMORPH) [Joyce et al.,
2004, and references therein]. Although the CMORPH data set is not the best, it will
give an overall idea about the forecast performance of the EPS. The original CMORPH
data has high temporal and spatial resolution. For our purpose, we have used a coarse
resolution version of the data matching the GME-EPS resolution by nearest neighbor
remapping.

Figure (3.33) shows the ten days CRPS (top-row) and Brier score (bottom-row) for
the daily accumulated precipitation forecast for Europe (left column), and the Tropics
(right column), from the GME-ENS experiments. For the deterministic forecast [NBS]
(black line) the mean absolute error (MAE), which is equivalent to CRPS, used as the
reference. In general, the CRPS is equal to the integral of the Brier score for all forecast
thresholds. The CRPS for Europe shows that the GME-ENS experiments, except
[oALL 2a] and [oNAG 2a], are no better than that of the deterministic forecast for
the first two days, but later on GME-ENS results show better forecasts. Experiments
[oALL 2a] and [oNAG 2a] are only slightly better than the deterministic forecast, for
the first two days. Although the medium-to-long-range forecasts (in most cases, longer
than three days) for precipitations are not very trustworthy, the overall CRPS shows
a relative improvement due to the stochastic backscatter scheme. The CRPS for the
Tropics also shows similar improvements in the forecast with the lowest CRPS (which
implies best forecast) for [oALL 2a]. In contrast to the CRPS for Europe, all the GME-
ENS experiments have a better forecast skill than the deterministic forecast. It should
also be noted that although experiment [nCAP 2a], which does not account for any
KE dissipation, has a better forecast skill in the Tropics, it is in fact worse in Europe.
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Figure 3.33: Precipitation statistics from the GME-ENS experiments. Top-row: CRPS for
Europe (left), and the Tropics (right); Bottom-row: Brier score, 2 mm/day for Europe (left)
and 5 mm/day for the Tropics (right)

Nevertheless, experiment [oALL 2a] found to be the best in both regions, which also
shows the importance of stochastic backscatter instead of random perturbations. This
is in fact consistent with our earlier conclusion regarding other forecast variables such
as the 850 hPa temperature.

The Brier score shown in Fig. (3.33: Bottom-row) also agrees with the CRPS in
general. The employed threshold for Europe is 2 mm/day, i.e., the Brier score is calcu-
lated from the probabilities of the events where the daily accumulated precipitation is
2 mm. For the Tropics the threshold is set to 5 mm/day. Figure (3.33: Bottom-row)
also includes the Brier score from the high resolution GME-EPS experiment [EnNBS]
which includes the LETKF data assimilation cycle but does not include any backscat-
ter scheme. From the figure it can be seen that among all GME-ENS experiments,
[oALL 2a] is the best (lowest score) for both Europe and the Tropics. One of the strik-
ing features in the Tropics is that the skill of GME-ENS, especially the forecast skill
of [oALL 2a], from day 2 onward is almost the same as the [EnNBS]. It should also
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Figure 3.34: Precipitation statistics from GME-EPS experiments. Top-row: CRPS for
Europe (left), and the Tropics (right); Bottom-row: Brier score, 2 mm/day for Europe (left)
and 5 mm/day for the Tropics (right)

be noted that this relative improvement is solely achieved by incorporating the model
uncertainty through backscatter. Thus in theory we should be able to improve the
EPS precipitation forecast by incorporating model uncertainty via the SKEB scheme
along with the initial uncertainty via a set of ensemble.

Now we will analyze the precipitation forecast results from the GME-EPS experi-
ments (see Table (3.2)). Figure (3.34) shows the CRPS (top-row) and the Brier score
(bottom-row) for the ten days forecast daily accumulated precipitation for Europe (left-
column) and the Tropics (right-column). The Brier score thresholds are the same as
those of the GME-ENS case discussed above. The first message from the CRPS and
BRIER scores is that the backscatter in fact significantly improved the precipitation
forecast without any additive or multiplicative inflation. This is clearly from visible
from experiments [WBS NAI] and [NBS NAI] (grey lines). For the experiment with
backscatter and additive inflation [WBS WAI] there is only a slight improvement in
Europe but in the Tropics the improvement is remarkable throughout the entire fore-



3.3 ROLE OF STOCHASTIC BACKSCATTER IN THE GME FORECAST 66

1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Precipitation: Europe

C
R

P
S

Forecast time (Days)

 

 

WBS_WAI
WBS_ENS

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

Precipitation: Tropics

C
R

P
S

Forecast time (Days)

 

 

WBS_WAI
WBS_ENS

1 2 3 4 5 6 7 8 9 10

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Precipitation: Europe

B
ri

e
r 

S
c

o
re

Forecast time (Days)

 

 

WBS_WAI
WBS_ENS

1 2 3 4 5 6 7 8 9 10

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

Precipitation: Tropics

B
ri

e
r 

S
c

o
re

Forecast time (Days)

 

 

WBS_WAI
WBS_ENS

Figure 3.35: Precipitation statistics from the GME-EPS experiments. Top-row: CRPS for
Europe (left), and the Tropics (right); Bottom-row: Brier score, 2 mm/day for Europe (left)
and 5 mm/day for the Tropics (right)

cast period. On the other hand, the Brier score indicates that, for the experiment with
backscatter with multiplicative inflation [WBS WMI], the forecast is worse for the first
four-to-six days in Europe as well as for the first two days in the Tropics. The negative
response of backscatter in the presence of multiplicative inflation is in agreement with
our earlier conclusion regarding the same for temperature and geopotential height.

We have also analyzed the precipitation forecast from [WBS ENS], which is the
GME-EPS experiment where there is no assimilation cycle, i.e., each forecast cycle is
initialized with the ensemble from [NBS NAI]. As mentioned in the previous subsection,
this experiment is designed to study the impact of the LETKF assimilation cycle
on the backscatter. Figure (3.35) shows the CRPS and the Brier score for Europe.
From the scores, it can be seen that there is no big difference in the forecast skill for
Europe. Compared to the experiment without backscatter [NBS WAI] it is slightly
better on day one. On the other hand, in the Tropics we can see a clear improvement
(i.e., lower score). This clearly indicates the positive effects incorporating the model
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Figure 3.36: ROC statistics from the GME-EPS experiments. Top-row: Europe (with
threshold=2 mm/day); Bottom-row: the Tropics (with threshold=5 mm/day); for the first
three forecast days (left to right)
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Figure 3.37: ROC Area from GME-EPS experiments. Left panel: Europe (for threshold
2 mm/day); Right panel: the Tropics (for threshold 5 mm/day)
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come to the same conclusion from the ROC shown in Fig. (3.36): the top-row shows
the ROC for precipitation over Europe for the first 3-day forecast, with a threshold
of 2 mm/day; bottom-row show the same for the Tropics with a threshold set at
5 mm/day. One of the important messages from the figure is that the precipitation
forecast for Europe is not trustable from 2nd day onwards since the false alarm rate
is higher than the hit-rate. On day one, we can see the clear positive impact due
to the SKEB scheme. Also, experiment [WBS NAI] shows worse results from the
2nd day onwards compared to [NBS WAI], which indicates that the assimilation in
fact negatively affects the backscatter contribution. On the contrary, the precipitation
forecast over the Tropics is relatively trustable up to three days, and we can see there is
also a significant positive impact of the backscatter. On the other hand, the backscatter
experiment with the assimilation cycle [WBS NAI] shows no improvement, which again
points to the negative effects of LETKF assimilation on the backscatter contribution.
The ROC area shown in Fig. (3.37) summarizes the superior performance of the SKEB
scheme on the precipitation forecast: the larger area indicates better forecast quality,
which is clearly visible in the Tropics.

3.3.6 Conclusion: Impact of SKEB on the GME-EPS Forecast

The following are the main conclusions concerning the impact of SKEB on the GME-
EPS forecasts.

1. Overall the SKEB scheme has a negative impact on the forecast for most of the
prognostic variables especially on the extra-tropics. However, some variables such
as the temperature and the specific humidity, show a significant improvement in
the Tropics as well.

2. Almost all of the GME-EPS experiments with the SKEB scheme except [WBS WMI],
which is the experiment with the backscatter with multiplicative inflation, show
an increase in the ensemble SPREAD

3. All inflation mechanisms in the LETKF assimilation have negative effects on the
backscatter contribution, thereby deteriorating the forecast quality

4. The main cause of the negative impact of the backscatter mechanism on GME-
EPS is the combined effect of the LETKF assimilation and initial uncertainty,
which effectively changes the probability density distribution

5. Incorporating the model uncertainty alone (i.e. even without initial set of ensem-
ble) can produce good short-range forecasts, which show the positive impact of
the backscatter scheme on the forecast without the assimilation system.

6. The backscatter has a significant positive effect on the precipitation forecast,
especially in the Tropics



Chapter4
Stochastic Backscatter in the LETKF

4.1 Covariance Inflation in LETKF
As the name implies, one of the distinct features of the Local Ensemble Transform
Kalman Filter (LETKF) is its ability to perform local analysis at every grid-point
spanned in the ensemble sub-space, and use only the local observations within the
prescribed distance. The weights of the observations approaches zero at the bounds
of the localization volume. In the GME-EPS we follow the LETKF algorithm of Hunt
et al. [2007]. The basic theoretical formulation of the LETKF can be found in section
(2.2).

Unlike most ensemble Kalman filters (EnKFs), the LETKF does not explicitly cal-
culates either the background error covariance or the Kalman gain matrix. Instead, the
LETKF directly obtains the analysis (in a broad sense, the LETKF actually calculate
the analysis increments.). For the purpose of presentation, here we repeat the LETKF
analysis equations from section (2.2):

θ̄
a
k = θ̄

b
k + Θkw

a (4.1)

where,

wa = P̃
a

k (Ψk)
TR−1

(
ψk − ψ̄k

)
(4.2)

P̃
a

k =
[
(N− 1) I + (Ψk)

TR−1Ψk

]T
(4.3)

Here the analysis error covariance P̃
a

k is often underestimated due to finite ensemble
size, sampling errors, errors in representing the model error, and nonlinearities (for ex-
ample, associated with observation operators). This underestimation of the covariance
matrix causes filter divergence, i.e., the filter systematically favor the observations over
the model in the assimilation cycle, which eventually generates a sub-optimal analysis
ensemble [Hamill, 2006].

In order to compensate for the underestimation of the covariance matrix, a co-
variance inflation method was proposed, independently by Anderson and Anderson
[1999] in Meteorology, and Guivant and Nebot [2001] in control theory (specifically
within the Simultaneous Localization And Map building (SLAM) framework) engi-
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neering. In general, covariance inflation is an ad-hoc procedure of adding a positive
semi-definite matrix to a covariance matrix [Julier, 2003]. Anderson and Anderson
[1999] proposed a multiplicative variance inflation scheme, where the background error
covariance in EnKF was multiplied by a small number greater than unity. Guivant and
Nebot [2001] proposed covariance inflation techniques to de-correlate the off-diagonal
elements of the covariance matrix. The latter approach is based on the intuition that
most of the computational and storage costs arise from the maintenance and corre-
lation of cross-correlation terms. Since it has been shown that the correlation terms
cannot be simply set to zero [Castellanos et al., 1997], covariances must be increased
by a sufficient amount to compensate for the neglected correlation, which eventually
leads to the idea of covariance inflation. One of the main advantages of de-correlation
through covariance inflation is that it can significantly reduce the computational and
storage costs. However, it has been shown that the covariance inflation also raises
the risk that the covariance increases without bounds thus degrading the performance
of the filter. In general, de-correlation through additive inflation is equivalent to the
“Schmidt-Kalman” filter [Julier, 2003].

As mentioned above, in all inflation methods, a positive semi-definite matrix is
added to the state covariance matrix. Several strategies to choose the positive semidef-
inite matrix for the covariance inflation in Kalman filters in the context of data as-
similation have been proposed. However, there is no systematic way of doing so, and
the procedure is considered as a part of model tuning [e.g., Hunt et al., 2007]. Most
common strategies are 1) Additive inflation, 2) Multiplicative inflation, and 3) Hybrid
methods. 1) In the so called additive inflation (although the name has nothing to do
with the concept of additive inflation), a small multiple of the identity matrix is added
to the covariance matrix during each assimilation cycle, i.e, the covariance matrix given
by Eq. (4.3) can be re-written as:

P̃
a

k = P̃
a

k + γI (4.4)

where γ is a real random vector). In multiplicative inflation, the covariance is multiplied
by a small number, which is greater than one, being equivalent to adding a fraction of
the covariance matrix to itself, given by,

P̃
a

k = P̃
a

k + ρP̃
a

k (4.5)

where ρ is a small number (say 0.2). In practice, multiplicative inflation can be easily
achieved by multiplying the factor

√
(1 + ρ) to the background deviations Θk,n, and

Ψk,n [see Chapter (2)]. In the hybrid approach, a fraction of the 3D VAR B matrix
is added to the covariance matrix. However this can only be performed in the model
space since B cannot be formulated in the ensemble space. In the following subsection
we will discuss more on the covariance inflation procedure specific to the GME-EPS
implementation of LETKF and about the ways in which the flow-dependent model
error is incorporated into the covariance inflation process.
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4.1.1 Incorporating Flow-Dependent Model Errors in LETKF
As described in the previous subsection, one of the major factors which contributes
to the underestimation of the covariance is the inappropriate representation of model
error. Conventional additive inflation using random vectors may in fact add more
noise to the covariance matrix and destroy its correlation structure. Therefore one
of the desired properties of the inflating matrix is that it should be flow-dependent,
i.e., it should reflect the dynamical and correlation features of the model. Another
desired property of the inflation matrix is that the spatial and temporal correlation
structure should not strongly vary with the forecast time as otherwise it may create
biases. This in fact cannot be fully achieved by Eq. (4.4). On the other hand, the
multiplicative inflation given by Eq. (4.5) has the flow-dependency nature but it is not
truly stochastic and completely depends on the analysis covariance matrix (rather than
on the background), which anyway may not always reflect the true dynamical features of
the model. Thus in order to meet the desired properties, the GME-EPS implementation
of LETKF uses a modified version of the hybrid approach for additive inflation, i.e.,
instead of adding a constant fraction of the B matrix to the covariance matrix, a
stochastically perturbed

√
B matrix is used to inflate the background ensemble, given

by:

θk,n = θk,n +
√
B N

(
0,
√
σ
)

(4.6)

where N (0,
√
σ) is the normally distributed random vector with mean zero and vari-

ance σ. Although the hybrid additive inflation approach produces better results than
Eq. (4.4) and Eq. (4.5), it still has some limitations. One of the main limitations is
that it is highly depended on the 3D VAR B matrix, which is derived using the NMC
method and is therefore not truly flow-dependent. Another limitation is that it can-
not represent the model errors effectively, in particular the model errors due to KE
dissipations.

In theory, it is possible to overcome the aforementioned limitations of the inflation
scheme by using a SKEB scheme. We have used a stochastic KE backscatter (SKEB)
scheme as an alternative to the above mentioned inflation schemes in LETKF. The
experimental setup can be expressed in terms of Eq. (2.27) where the initial background
ensemble at the next analysis time is generated by integrating the model forward with
the backscatter scheme:

θbk = fSKEB

(
θak−1,n + ε

)
(4.7)

where fSKEB is the GME integration with the backscatter scheme, and ε is the addi-
tional model error or inflation using 3D VAR B matrix which is optional (ON/OFF).

In Chapter (3), we have shown that the SKEB scheme has a positive impact on
the ensemble spread, which implies inflation of covariance. Although the backscatter
has a significant positive impact on the forecast quality of the GME model (in the
GME-ENS experiments), the combined effect of the initial uncertainty and the LETKF
assimilation has a negative impact on the backscatter contributions, which results in
a deterioration of the forecast quality in GME-EPS. In the following subsections, we
will analyze the impact of the SKEB scheme on the LETKF analysis.
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4.2 Impact of the SKEB Scheme on the LETKF Assimilation
A brief summary of all the GME-EPS sensitivity experiments is given in Table (3.2).
Altogether there are seven assimilation variables namely: 1) temperature, 2) U-velocity,
3) V-velocity, 4) specific humidity, 5) specific cloud-water content, 6) specific cloud-ice
content, and 7) surface Pressure. First we will describe in details the LETKF analysis
and illustrate the first-guess RMSE and SPREAD scores of 850 hPa temperature, and
500 hPa zonal wind fields, followed by other assimilated variables. The RMSE and
SPREAD scores are calculated within the data assimilation cycles and not within a
free forecast. In principle the statistics should converge after a few days, otherwise
the assimilation will be unreliable (too less spread in general). Also, the initial spin-
up/spin-down stems from the initial start of the system. Thus we only started free
forecasts after a few days (or few assimilation cycle).

Figure (4.1) shows the statistics for the 850 hPa temperature: the top-row shows
the LETKF analysis RMSE (solid lines) and SPREAD (dashed lines), the middle-row
gives a comparison between the RMSE of the LETKF first-guess (solid lines) and the
LETKF analysis (dashed lines) and the bottom-row gives a comparison between the
ensemble SPREAD of the LETKF first-guess (solid-lines) and the LETKF analysis
(dashed-lines).

The most noticeable feature in Fig. (4.1: Top-row) is that, the ensemble SPREAD
decreases exponentially, especially for the experiment [NBS NAI] which does not incor-
porate either the SKEB scheme or any inflation scheme. This decrease of SPREAD is
apparent in all the three geographical regions. The rapid decrease of SPREAD is due to
the fact that in most cases the observation error covariances are much smaller than the
model errors, causing the LETKF assimilation system to force the forecast towards the
observations very quickly. However, this creates a systematic underestimation of the
error covariance in the subsequent assimilation cycle and causes the filter divergence as
mentioned in the previous subsection. The RMSE of the analysis is comparable among
all the experiments for the first few cycles, but it later diverges quite rapidly for the
experiments with backscatter. Although the experiment [WBS NAI] shows a relative
increase in the spread in the extra-tropics compared to [NBS NAI], the corresponding
RMSE is also quite high.

Among the experiments with inflation schemes, multiplicative inflation has the
worst performance and is distinctive in the sense that the ensemble SPREAD of
[WBS WMI] is relatively smaller than [NBS WMI] in all the three regions. In other
words, the backscatter forcing and the multiplicative forcing are acting opposite to
each other. One possible reason for this counteractive effect is that the multiplicative
inflation is unidirectional, i.e., since the inflation factor ρ in Eq. (4.5) is not stochastic,
the inflation which is applied to the background deviations Θk,n and Ψk,n will both
increase the SPREAD only in the same direction. Since the backscatter forcing is
stochastic, this effectively reduces the probability of increase in the SPREAD. On the
other hand, [WBS WAI], which is the experiment with additive inflation and backscat-
ter, has a relatively larger SPREAD compared to its counter-part [NBS NAI]. This
increase in SPREAD in fact supports our earlier hypothesis regarding the counteract-
ing effects, since the additive inflation given by Eq. (4.6) has a stochastic component.
In summary, it is clear that the SKEB scheme has a negative impact on the LETKF
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Figure 4.1: LETKF analysis and the First-Guess statistics for 850 hPa temperature, for the
Northern extra-tropics, the Tropics, and the Southern extra-tropics (left to right). Top-row:
RMSE (solid), and SPREAD (dashed) from the LETKF analysis; Middle-row: First-guess
RMSE (solid), and analysis RMSE (dashed); Bottom-row: First-guess SPREAD (solid), and
analysis SPREAD (dashed)

analysis especially on the extra-tropics. In the Tropics, although there is a slightly
positive improvement in the analysis, it is not significant. In order to study the causes
of the negative impact of the backscatter on the analysis, we will first compare the
LETKF first-guess statistics with the corresponding LETKF analysis.

In doing so, it becomes very clear that the backscatter forcing has a large positive ef-
fect on the SPREAD. In the Tropics, the SPREAD of [WBS NAI] is comparable to that
of [NBS NAI], which indicates that the backscatter was able to generate a SPREAD
comparable to the additive inflation scheme. In general, the first-guess SPREAD is
always larger than the analysis. However, [NBS WAI], which is the experiment with
additive inflation and no backscatter, shows relatively higher SPREAD for the analysis
than the first-guess. The main reason for this surprising feature is the additive inflation
mechanism in LETKF. In this experiment, the ensemble members are inflated after the
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Figure 4.2: LETKF analysis and First-Guess statistics for 500 hPa zonal wind, for Northern
extra-tropics, the Tropics, and the Southern extra-tropics (left to right). Top-row: RMSE
(solid), and SPREAD (dashed) from the LETKF analysis; Middle-row: Comparison of First-
guess RMSE (solid), and analysis RMSE (dashed); Bottom-row: Comparison of First-guess
SPREAD (solid), and analysis SPREAD (dashed)

LETKF analysis (which helps to increase the first-guess (FG) SPREAD in subsequent
cycles). Overall there is no large difference between the RMSE of the first-guess and
of the analysis for the first few assimilation cycles. Later, the difference is more visible
especially in the extra-tropics.

The RMSE and SPREAD statistics for the 500 hPa zonal wind are shown in
Fig. (4.2). The overall conclusion is not different from that of the temperature analysis
shown in Fig. (4.1). Since the backscatter forcing directly acts on the wind compo-
nents, we can see a substantial increase in the SPREAD for all the experiments with
backscatter in all three regions. At the same time, the RMSE is also very large, as a
consequence of the negative impact of the backscatter on the ensemble SPREAD. One
possible reason for this negative impact is due to the large initial ensemble SPREAD.
In most assimilation systems, the initial first-guess ensemble SPREAD is usually kept
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Figure 4.3: Zonal RMSE (solid) and SPREAD (dashed) from the LETKF analysis and the
first-guess, for 850 hPa temperature (left), and 500 hPa zonal wind (right).

substantially high in order to compensate the sudden decrease of SPREAD due to
the assimilation cycle. Comparing the first-guess ensemble SPREAD of experiments
[NBS NAI] and [WBS NAI], it is very clear that the SPREAD decreases at much lower
rate for the experiment with backscatter. It is therefore very likely that the backscatter
gives a better result if we start from a lower initial first-guess SPREAD - a case study,
which we leave for future work.

The zonal average RMSE statistics for the 850 hPa temperature and the 500 hPa
zonal wind are shown in Fig. (4.3). For all the experiments with backscatter, except
that with multiplicative inflation, the statistics for the wind show relatively higher
SPREAD especially in the extra-tropics, with the highest SPREAD in the Southern
extra-tropics. For the temperature field, although the SPREAD is higher for the ex-
periments with the backscatter scheme, the statistics are relatively small compared
to the wind. Also the SPREAD is lowest in the Northern extra-tropics, for the tem-
perature. However, the experiment with multiplicative inflation and backscatter show
relatively lower SPREAD for both temperature and wind fields. The reason is the
same one we described previously, i.e, the unidirectional multiplicative inflation and
the bi-directional backscatter forcings are acting opposite.

Figure (4.4) and (4.5) show the spatial patterns of the RMSE and SPREAD distri-
bution of the temperature and wind fields from the LETKF analysis, for experiments
[NBS NAI] and [WBS NAI]. For the temperature field, the spatial pattern shows that
the ensemble SPREAD is not uniformly distributed over the globe. In fact it shows a
bias in the Southern extra-tropics. In the Tropics and the the Northern extra-tropics,
we can see patterns where the SPREAD is very small. This is clearly visible also in the
RMSE/SPREAD Ratio pattern of the temperature field. Also, the RMSE patterns of
temperature does not show any apparent difference. There we assume that the higher
errors (RMSE) of [WBS NAI] are due to the anomalous values of a few grid-points.
On the other hand the zonal wind RMSE pattern shows large differences in the extra-
tropics, with higher RMSE values for [WBS NAI]. However, the RMSE/SPREAD ratio
pattern for the same variable is close to unity, which indicates that although the actual
SPREAD is high enough to match the RMSE (expected SPREAD), there is an ap-
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Figure 4.4: LETKF analysis SPREAD and RMSE spatial distribution for 850 hPa temper-
ature, from the experiments [NBS NAI] (left) and [WBS NAI] (right). Top-row: SPREAD;
Middle-row: RMSE; Bottom-row: RMSE/SPREAD Ratio.

parent difference in the ensemble mean values between experiments with and without
backscatter. This explains the overall negative impact of the backscatter scheme. We
will discuss more details regarding the same in a later part of this section.

So far we have only looked at the statistics of temperature and zonal wind at a
certain pressure level. Figure (4.6: top-row) shows the vertical CRPS, RMSE and
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Figure 4.5: LETKF analysis SPREAD and RMSE spatial distribution for 500 hPa temper-
ature, from the experiments [NBS NAI] (left) and [WBS NAI] (right). Top-row: SPREAD;
Middle-row: RMSE; Bottom-row: RMSE/SPREAD Ratio.

SPREAD profiles for temperature. For the Northern extra-tropics, [WBS NAI], the
experiment with SKEB scheme and no inflation, shows a higher CRPS which indicates
that the negative impact of backscatter is effective throughout the entire vertical extent.
For the Tropics and the Southern extra-tropics the CRPS shows mixed results. In the
Tropics, [WBS NAI], shows significant improvement in the upper levels, although the
improvements at the lower levels are not very significant. The Southern extra-tropics
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Figure 4.6: Vertical profiles for the 850 hPa temperature. CRPS (top-row) and RMSE
(bottom-row), for the Northern extra-tropics, the Tropics, and the Southern extra-tropics
(left to right).

.

shows no improvements at lower levels while the upper level results are worse. For
the experiment with additive inflation and backscatter [WBS WAI], the results for the
extra-tropics show no improvements at lower levels and a negative impact at the upper
levels. In the the Tropics the results are slightly better. The vertical profiles of RMSE
and SPREAD shown in Fig. (4.6: bottom-row) also generally agree with the above
conclusions gained from the CRPS profiles.

The vertical statistics of the zonal wind are shown in Fig. (4.6). The statistics show
that the experiments with backscatter have large negative impacts on the analysis at all
levels, for all the three regions. Possible reasons for this negative impacts are discussed
in section (4.2). Compared to the statistics for temperature one noticeable difference
is the magnitude of the SPREAD at higher levels (above 850 hPa). It is very likely
that this “over spread”, which is due to the higher backscatter forcing, contributed to
the higher errors (RMSE, CRPS).

The RMSE statistics of specific humidity, specific cloud-water content, and specific
cloud-ice content are shown in Fig. (4.8). In the case of specific humidity, all exper-
iments with backscatter show a slight improvement in the Tropics, limited at lower
levels. In the extra-tropics, the backscatter has a significant negative impact on the
analysis. The RMSE of specific cloud-water content, shows significant improvement in
all the three regions, for experiments [WBS NAI] and [WBS WAI]. On the contrary the
specific cloud-ice RMSE shows worse results with backscatter, although the ensemble
spread is relatively high.
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Figure 4.7: Vertical profiles for the 500 hPa zonal wind. CRPS (top-row) and RMSE
(bottom-row), for the Northern extra-tropics, the Tropics, and the Southern extra-tropics
(left to right).

.

In the next subsection, we will discuss possible causes of the negative impacts of
the backscatter on the LETKF analysis, and will summarize with concluding remarks.

4.2.1 Conclusions: Impact of the SKEB on the LETKF Analysis

In the above subsection, we have seen that the backscatter does not seem to improve
the LETKF analysis. The results show a slight improvement in the the Tropics (for
some variables), but also a deterioration of the analysis in the in the extra-tropics. In
this subsection we will explore the possible causes of this behavior and try to explain
the reasons for the negative impact of the backscatter scheme on GME-EPS.

One of the main factors influencing the quality of the LETKF analysis is the num-
ber of observations assimilated in the 3D VAR-LETKF system. In most cases, less
observations lead to relatively higher errors in the analysis. In our GME-EPS, all
observations undergo a number of preprocessing, which include: thinning, blacklist-
ing, quality control, First-Guess (FG) checks etc. Among those preprocessing steps,
the First-Guess (FG) checks involve filtering the observations based on their deviation
from the first-guess or background forecast, based on the following criterion:

if |FG−OBS| > γ
√
σ2
b + σ2

o , then reject the OBS (4.8)

where FG is the First-Guess or the background model forecast, OBS is the observa-
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Figure 4.8: RMSE and SPREAD statistics for specific humidity (top-row), specific cloud-
water content (middle-row), and specific cloud-ice content (bottom-row), for the Northern
extra-tropics, the Tropics, the Southern extra-tropics (left to right).

tions, σf and σo are the expected standard deviations (or SPREAD) of the background
forecast and observations respectively, and γ is a positive integer which controls the
amount of deviation. In the DWD assimilation system, conventionally, σf , σo, and γ
are kept constant. Thus, higher values of |FG−OBS| will cause the FG check in the
3D VAR preprocessing routine to reject the observations. So these observations will
not be assimilated in the LETKF, although it is likely they might be still good enough
to assimilate.

In our experiments with the backscatter scheme, for example, a relatively larger
number of Atmospheric Motion Vector (AMV) satellite observations, which were used
to assimilate the wind components, were rejected based on the FG checks given by
Eq. (4.8). This is due to the fact that the deviations |FG−OBS| were large due
to the higher SPREAD in the wind components as shown in Fig. (4.2). Figure (4.9)
shows a comparison of the percentage of rejected AMV observations w.r.t the total
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Figure 4.9: Percentage of rejected Atmospheric Motion Vectors (AMV) w.r.t. the total
assimilated AMVs in the assimilation cycle

assimilated AMVs, from the experiments [NBS NAI], [WBS NAI], and [NBS WAI]. It
is very clear from the figure (Fig. (4.2)) that [WBS NAI], which is the experiment with
SKEB scheme, has the highest percentage of rejected AMVs. Towards the end of the
assimilation cycle we can see that the rejection later is almost twice compared to the
experiment without the backscatter scheme. On the other hand, [NBS WAI], which is
the experiment with additive inflation and no backscatter, has the lowest percentage
of rejected AMVs. Thus it is highly likely that the rejection of the observations in
fact causes the deterioration of the LETKF analysis for all the experiments involving
the backscatter scheme. However, this does not necessarily mean that the background
forecast by the same experiments were completely wrong. Since the constant σb in
Eq. (4.8), which is the expected FG SPREAD, does not reflect the actual SPREAD, a
higher background SPREAD causes the FG check routine to reject the corresponding
observations. This is therefore one of the major limitations of the current FG check
preprocessing routine in the GME-EPS system. In short, the current FG check obser-
vation preprocessing routine in GME-EPS is one of the main causes of the deterioration
of LETKF analysis for the experiments with backscatter scheme.

Other possible reasons for the negative impact of the backscatter scheme on the
LETKF analysis are: changes in the probability distribution of the forecast w.r.t. ob-
servation in the ensemble space, and the changes in the probability density distribution
of the analysis variables in the state-space. Figure (4.10) shows the ranked histogram
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Figure 4.10: Ranked histogram (Talagrand diagram) for 850 hPa temperature, for the North-
ern extra-tropics (top), the Tropics (middle), and the Southern extra-tropics (bottom)

(or Talagrand diagram) of the 850 hPa temperature, for the Northern extra-tropics,
the Tropics, and the Southern extra-tropics, and Fig. (4.11) shows the histogram dif-
ference between NBS (No Back-Scatter) and WBS (With Back-Scatter) experiments.
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Figure 4.11: Ranked histogram difference between NBS (No Back-Scatter) and WBS (With
Back-Scatter) experiments for 850 hPa temperature, for the Northern extra-tropics (top), the
Tropics (middle), and the Southern extra-tropics (bottom)

It is very well known that, for a perfect EPS, the ranked histogram will be flat, by
this means that the probability that the observation falls within the ensemble is equal
for all ensemble members. This also implies that the ensemble members are unbiased.
However, from the GME-EPS histogram difference, shown in Fig. (4.11), it is obvious
that [WBS NAI], which is the experiment with backscatter and no inflation, has a bias
towards higher bin numbers (except the bin 0 and 32, which are outliers), in all the
three regions. This means that, although the probability of capturing higher values of
observed temperature for [WBS NAI] is higher, compared to [NBS NAI], it is relatively
lower for lower temperatures. This implicitly means that the temperature analysis of
the experiments with backscatter has a positive bias. However, it is also likely that the
positive bias is caused by the fewer number of observations used in the assimilation
system due to the FG checks. It is also clear from the figures that [WBS WMI], which
is the experiment with multiplicative inflation and backscatter, has a higher number
of outliers in the extra-tropics. Additionally, the relative probability for the ensemble
members are relatively lower, which agrees with our earlier conclusions regarding the
general under-performance of [WBS WMI].

The probability density distribution of the 500 hPa zonal wind from [NBS NAI] and
[WBS NAI], for the Northern extra-tropics and the Tropics are shown in Fig. (4.12).
Although there is a noticeable difference in the distribution between experiments with
and without backscatter, there is little difference between the FG and LETKF analysis
distribution both in the Northern extra-tropics and the Tropics. In the Northern extra-
tropics, the probability density is much lower for lower velocities and relatively higher
for higher velocities. This is in fact consistent with the conclusion from the ranked
histogram. On the other hand, for the Tropics the shape and amplitudes of the FG
and analysis distributions are almost the same.

In summary, the following are the main conclusions concerning the impact of the
SKEB on the LETKF analysis:

1. Overall the backscatter scheme increases the LETKF analysis ensemble SPREAD,
thereby inflating the covariance implicitly (which was one of the aims of intro-
ducing the backscatter scheme)
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Figure 4.12: Probability density distribution of the 500 hPa zonal wind. Top-row: the
Northern extra-tropics, and Bottom-row: the Tropics; for the First-Guess (left), and LETKF
analysis (right)

2. However, the increase in the SPREAD due to backscatter (without any additional
inflation scheme) has an overall negative impact on the analysis.

3. For 850 hPa temperature, the RMSE of the experiments with backscatter (and
no inflation) is relatively larger in the extra-tropics but smaller in the Tropics

4. The backscatter scheme has also a significant negative impact on the LETKF
analysis for zonal wind, specific humidity, and specific cloud-ice content, although
the specific humidity analysis seems to be better in the Tropics at the lower layers
of the atmosphere.

5. For experiments with additive inflation and backscatter, the results are not better
than the ones without backscatter at the lower levels but they are worse at the
upper levels.

6. The LETKF analysis of experiments with multiplicative inflation is one of the
worst among all experiments with backscatter scheme.

7. One of the main reason for the deterioration of the LETKF analysis in the exper-
iments with backscatter scheme is the rejection of observations due to the con-
ventional First-Guess (FG) check routine in GME-EPS or, in other words, fewer
observations were assimilated in the experiments with the backscatter scheme.
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8. Another reason for the negative impact of the backscatter on the LETKF analysis
is the positive bias in the ensemble probability distribution (in the ensemble
space), i.e., probability densities get lower for lower temperatures (and velocities),
and are relatively higher for higher temperature (velocities.), especially in the
extra-tropics.
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Chapter5
Non-Gaussianity in Ensemble Kalman Filters

In this chapter, we explore the possibility of a worst-case scenario using the backscatter
scheme, that violates the basic assumptions in the Kalman filter-based data assimila-
tion, using simple toy models. We consider the backscatter scheme as a multiplicative
noise model, and explore the challenges of the multiplicative noise to the current EnKF
schemes. The classic Lorenz ’63 model and a higher dimensional Lorenz ’96 model are
used as test beds for the data assimilation experiments. A hybrid Kalman-Particle
filter called, Sigma-point Particle Filter (SPPF) is presented as an alternative to solve
the issues associated with multiplicative noise.

5.1 Multiplicative Noise and Non-Gaussian statistics in EnKFs
Important assumptions involved in the Kalman filter data assimilation methods are: (i)
the background (or process) and observation (or measurement) noises are additive, and
(ii) the associated probability density functions are Gaussian1. However, these assump-
tions may not hold in reality. For example, the probability density function of daily
or weekly averages of many atmospheric variables is non-Gaussian, even though long-
term averages tend to follow Gaussian distribution. Recently, several studies have also
shown that persistent nonlinear circulation regimes in the atmosphere and associated
deviations from the Gaussian probability distributions can be modeled with multiplica-
tive noise [Sura and Sardeshmukh, 2008; Sardeshmukh and Sura, 2009; Sardeshmukh,
2010]. In this case, the multiplicative noise corresponds to the state dependent vari-
ations of stochastic feedback from unresolved system components [Sura et al., 2005].
Another interesting example is the stochastic parameterization method such as the
stochastic kinetic energy backscatter (SKEB) scheme used in many ensemble predic-
tion systems [Shutts, 2005; Shutts et al., 2008; Berner et al., 2008, 2009; Charron et al.,
2010]. The SKEB schemes, which are designed to account for the dissipations in the
forecast model, introduce perturbations, which are state-dependent directly or indi-
rectly. These perturbations introduce stochasticity into the model, and are expected
to increase the spread of the forecast ensemble. In a broad sense, one may consider
these schemes as multiplicative noises models. These stochastic schemes can create
non-Gaussian statistics, and may cause the forecast model to deviate from Gaussian-

1under those assumptions, the estimate will be “globally optimal”

87



5.1 MULTIPLICATIVE NOISE AND NON-GAUSSIAN STATISTICS IN ENKFS 88

ity. The representativeness errors due to the unresolved scales may also be considered
as multiplicative noise since they are state dependent and correlated in time [Janjic and
Cohn, 2006]. In general, the multiplicative process noise is attributed to the internally
evolving dynamical and numerical errors and the observation or measurement noise
corresponds to external noise. If the noise is multiplicative (state dependent) and the
model is nonlinear, both the internal and external noises play an important role in the
estimation statistics.

Non-Gaussianity and controlling noise have been recently an extensive research
topic in the data assimilation community [e.g., Peña et al., 2010]. Data assimila-
tion methods based on conditional mean estimate such as the iterated Kalman filter
[Jazwinsky, 1970; Cohn, 1997] have yielded limited success in non-Gaussian scenarios.
In variational assimilation methods such as 4D VAR, an asymmetric cost function might
be useful for assimilating non-Gaussian variables as shown by some studies [Tsuyuki
et al., 2003; Koizumi et al., 2005; Honda et al., 2005]. Fletcher and Zupanski [2006a,b,
2007] proposed two different approaches to deal with non-Gaussian variables in a 3D
variational data assimilation framework. The first approach uses a transform to make
the log-normal random variable into a normal random variable and the second one
uses the correct distribution for a collection of normal and log-normal random vari-
ables through a hybrid distribution which gives a different cost function to minimize.
However, this approach may not be effective in all cases as shown by Fletcher and
Zupanski [2007]. Zupanski [2005] developed the Maximum-Likelihood Ensemble Filter
(MLEF), a hybrid filter based on variational assimilation method and the EnKF. The
MLEF uses a nonlinear cost-function similar to the 3D-var and could be useful in some
cases where observations are log-normally distributed since the preferred estimator is
the Mode. Jardak et al. [2010] gives a comparison of the assimilation performances of
MLEF, EnKF and PF under additive noise and Gaussian assumptions. Theoretically
the MLEF method could be used for assimilating non-Gaussian variables. However,
its performance may be different if the random variable cannot be transformed to a
Gaussian Random Variable (GRV) and the corresponding noises are multiplicative.
The motivation of this work is to explore the EnKF based methods in the presence of
multiplicative noise, and in particular, the effects of multiplicative noise on them. A
Sigma-point particle filter (SPPF) will be presented and its applicability to multiplica-
tive noise models and non-Gaussian systems will be explored.

Section (5.1) gives a general overview of parameter estimation using ensemble based
Kalman filters. Section (5.2) introduces the Sigma-Point Particle Filter approach, while
Section (5.3) describes experimental and implementation details of the schemes in the
highly nonlinear Lorenz ’63 and Lorenz ’96 models. The last section summarizes the
conclusion.

5.1.1 Overview of EnKF Parameter estimation

One of the main objectives of data assimilation is to tune the parameters of a dynam-
ical model by deterministically using observations such that they can perform more
accurate simulations or predictions. Recursive parameter estimation using EnKF has
garnered modelers attention and made considerable progress [Annan and Hargreaves,
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2004; Annan, 2005; Annan et al., 2005a,b; Hacker and Snyder, 2005; Aksoy et al.,
2005b,a, 2006; Tong and Xue, 2008a,b]. Annan [2005] and Annan and Hargreaves
[2004] estimated the parameters of various models using EnKF, where they introduced
a preconditioning procedure and scaling to improve the error covariance matrix, which
may introduce additional computational burden. Aksoy et al. [2005b,a, 2006] and Tong
and Xue [2008a,b] used the EnSRKF formulation where they estimated the model pa-
rameters from noisy observations. In their approach, the Kalman gain term is replaced
by a scaling parameter in the state update equation, which acts as an alternative to
perturbing observations in the analysis step of standard EnKF. However, there are re-
ports that the standard EnKF generates poor parameter estimates, especially for high
nonlinear systems [e.g., Kivman, 2003]. Recently, Ambadan and Tang [2009] estimated
the parameters of the Lorenz ’63 model using Sigma-point Kalman filters (SPKF),
which use deterministic sampling of ensemble for calculating the error statistics [Julier
et al., 1995; Nørg̊ad Magnus et al., 2000; Ito and Xiong, 2000; Lefebvre et al., 2002;
Wan and Van Der Merve, 2000; Haykin, 2001; Van der Merwe et al., 2004]. All the
above mentioned experiments were performed under the assumption that the state
and observation noises are additive, and follow Gaussian distribution. In the following
sections, we will introduce a recently developed hybrid particle filter data assimilation
method, called Sigma-Point Particle Filter (SPPF), which use existing SPKF tech-
niques for resampling [Van der Merwe et al., 2000]. We will also show that the SPPF
scheme is more suitable in such situations where multiplicative noise is inherent in the
model.

5.2 The Sigma-Point Particle Filter
The theory and derivations presented in this section are mainly based on the works by
Doucet et al. [2000], Van der Merwe et al. [2000], Haykin [2001], Arulampalam et al.
[2002], Van der Merwe and Wan [2001a,b], Schon [2006], and Simon [2006].

Consider a stochastic process defined by a nonlinear differential equation of first
order in time:

θ̇k = f (θk) + g (θk) qk (5.1)

where f (·) and g (·) are in general nonlinear functions of the state θk, and qk is the
random force. The random force is generally considered as a zero-mean Gaussian
process or white noise. In the case of additive noise g (·) is a constant (e.g., 1.0), i.e.
independent of the state θk, and the stochastic process given by (5.1) is Markovian2

. On the other hand, in the case of multiplicative process noise, g (·) is a linear or
nonlinear function of θk, and the process is no longer Markovian.

For the purpose of presentation, the standard state space equations for an L di-

2In recursive estimation, the states evolve in time according to a Markov process. The Markovian
property implies that given the present state, the future states are independent of the past states,
which is one of the primary properties of recursive Bayesian estimators such as KF
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mensional model are given by,

θk = f
(
θk−1, qk−1

)
(5.2)

ψk = h (θk, rk) (5.3)

Here θk is the state vector at time k, f(·) is the forecast model, ψk is the observed
state, h(·) is the observation function, and qk and rk are the zero-mean random noises
corresponding to the background and observations respectively. Given the imperfection
of model states and observations, the recursive Bayesian estimation of the state space
model given by Eq. (5.2)-(5.3) is actually the Kalman Filter (KF), Extended Kalman
Filter (EKF), EnKF, SPKF etc., under Gaussian assumption. Appendix A summarizes
the least square formulation of Kalman gain, which is the core of the SPKF approach.
A pre-requisite for KF is the Gaussian distribution of background and observation
errors, under which the KF provides the globally optimal estimate for state-space
equations. The Gaussian assumption reflects the fact that the KF is designed based
on the minimization of the analysis error variance (i.e., the trace of error covariance),
which ignores the higher order moments. For a non-Gaussian system, the solution
by KF may not be optimal, and it could be even erroneous. In his seminal paper,
Kalman [1960] confined the filter to linear systems and linear measurement functions.
In fact, it has been shown that the standard Kalman gain used in KF, EKF and
EnKF is the special case of Eq. (B.15) when the measurement function is linear or
locally linearized, and the noise is additive [Ambadan and Tang, 2009]. The EnKF
and SPKF algorithms use the same optimality criterion in their algorithms. In the
following sections, we will show that the EnKF and the SPKF failed to estimate the
model parameters accurately in the presence of multiplicative noise and underlying
non-Gaussian probability distribution, and in such case the SPPF assimilation scheme
is found to be more accurate.

The basic idea behind the particle filter is to represent the underlying proba-
bility distribution by a set of samples known as particles, and associated weights.
Van Leeuwen [2009] provided a clear overview of generic particle filters and of their
role in geophysical estimation problems. In a broad sense the particles are similar to
the ensembles in the EnKF. In a particle filter the probability density function is fully
propagated in time whereas in the Kalman filter only the first and second moments
are propagated in time. The probability density is approximated using an empirical
function given by,

p (θk|ψ1:k) ≈
M∑
m=1

q̃
(m)
k δ

(
θk − θ(m)

k

)
,

M∑
m=1

q̃
(m)
k = 1, q̃

(m)
k > 0, ∀ m (5.4)

where θ
(m)
k ;m = 1, . . . ,M are the independent and identically distributed (i.i.d.) par-

ticles, at time step k, with corresponding weights q̃
(m)
k , and δ (·) is the Dirac-delta

function. Here m represents the particle index. Practically, it is almost impossible to
get i.i.d. samples at any time k from the posterior density function (5.4), but this limi-
tation can be circumvented by using importance sampling from a proposal distribution.
The choice of the proposal distribution is one of the most important factor in impor-
tance sampling schemes. Several strategies for choosing proposal distribution have been
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proposed in the literature. The most popular schemes include the Sampling Impor-
tance Re-sampling (SIR), the Residual sampling, and the minimum variance sampling.
For further details and references, see Gordon et al. [1993], Kitagawa [1996], Isard and
Blake [1998], Liu and Chen [1998], Doucet et al. [2000], Doucet et al. [2001], Haykin
[2001], Arulampalam et al. [2002], and Schon [2006].

The SPPF, first introduced by Van der Merwe et al. [2000], has wide applications in
robotics, and artificial intelligence. Van der Merwe et al. [2000] suggested that signifi-
cant improvement on the particle resampling can be accomplished by using a Kalman
filter for the proposal distribution. By using more advanced Kalman filters such as
the square-root EnKF, or the SPKFs one can generate a better proposal distribution
for the particle filter thereby propagating the statistics more accurately. The family of
SPKF algorithms includes the Sigma-Point Unscented Kalman Filter (SP-UKF) [Julier
et al., 1995; Wan and Van Der Merve, 2000], Sigma-Point Central Difference Kalman
Filter (SP-CDKF) [Nørg̊ad Magnus et al., 2000; Ito and Xiong, 2000] and their square
root versions [Haykin, 2001; Van der Merwe and Wan, 2001a,b]. Julier et al. [1995]
have shown that for the nonlinear model given by (5.2), the number of sigma-points
needed to compute precisely the mean and covariance of the model state at time k is
2L + 1, where L is the number of degrees of freedom. The selection scheme for the
sigma-points for SP-UKF is based on the scaled unscented transformation, and that
for the SP-CDKF is based on the sterling’s interpolation formula [Press et al., 1992;
Ito and Xiong, 2000; Nørg̊ad Magnus et al., 2000]. In our experiments we have used
the square-root SP-CDKF for generating the proposal distribution because of its well
known numerical stability [Van der Merwe, 2004].

In SP-CDKF the analytical derivatives in EKF are replaced by numerically eval-
uated central divided differences. For implementing the SP-CDKF, augmented state
vectors are constructed by concatenating the original model state, and the background
and observation error vectors. The augmented sigma-point state vectors are calculated
using the following selection scheme:

X k,0 = θ̄k w (m)
0 =

δ2 − L
δ2

(5.5)

X +
k,i = θ̄k +

(√
δ2P θk

)
i

i = 1, . . . , L w (m)
i =

1

2δ2
i = 1, . . . , 2L (5.6)

X−k,i = θ̄k −
(√

δ2P θk

)
i

i = (L+ 1) , . . . , 2L w (c1)
i =

1

4δ2
i = 1, . . . , 2L (5.7)

w (c2)
i =

δ2 − 1

4δ4
i = 1, . . . , 2L (5.8)

where δ is the central difference step size, and w (m)
i is the weighting term corresponding

to the ith sigma-point for computing the mean, and w (c)
i that for the covariance. The

sigma-points are then propagated through the forecast model, and the approximated
mean, covariance and cross-covariance for the calculation of Kalman gain are computed
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as follows:

θ̂
−
k ≈

2L∑
i=0

w (m)
i X θ

k,i (5.9)

ψ̂
−
k ≈

2L∑
i=0

w (m)
i Y θ

k,i (5.10)

P−θk ≈
L∑
i=1

[
w (c1)
i

(
X θ
k,i − X θ

k,L+i

)2
+ w (c2)

i

(
X θ
k,i + X θ

k,L+i − 2X θ
k,0

)2]
(5.11)

P−
ψ̃k
≈

L∑
i=1

[
w (c1)
i

(
Y θ
k,i − Y θ

k,L+i

)2
+ w (c2)

i

(
Y θ
k,i + Y θ

k,L+i − 2Y θ
k,0

)2]
(5.12)

P θkψ̃k
≈

L∑
i=0

w (m)
i

(
X θk
k,i − θ̂

−
k

)(
Y k,i − ψ̂

−
k

)T
(5.13)

Equations (5.9)-(5.13) form the core part for generating the proposal distribution
(Sigma-point particles) for SPPF. The SP-CDKF generated proposal distribution in
SPPF may be Gaussian approximate. However, it has been shown that as long as
the Kalman filter generated distribution overlaps with the proposal distribution, this
approximation results in a better particle filter implementation [Van der Merwe et al.,
2004]. One of the advantages of using the SP-CDKF for generating the proposal distri-
bution is that it uses only one “control parameter” (δ) compared to three in SP-UKF.
The SPPF algorithm is summarized as follows:3.

I. Initialization : k = 0

For i = 1 . . . N draw particles θi0 from the prior p (θ0)

II. For time k = 1, 2 . . .

1. Importance sampling step :

For i = 1 . . . N :

(a) Update the prior distribution for each particle with the SPKF

(i) Calculate the sigma points for the particle, X k,i =
[
X k,0 X +

k,j X−k,j
]

where X k,0, X +
k,j, andX−k,j are the sigma point vectors given by

X k,0 = θk (5.14)

X +
k,j = θ̄k +

(√
δ2P θk

)
i

(5.15)

X−k,j = θ̄k −
(√

δ2P θk

)
i

(5.16)

3Here we repeat the SPPF algorithm derived by Van der Merwe [2004]
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(ii) Propagate sigma points in time (forecast step of SPKF) :

X f
k = f

(
X k−1,X q

k−1
)

(5.17)

θ̂
−
k = w (m)

M∑
m=1

X f
k,m (5.18)

P−θk =
L∑
i=1

[
w (c1)
i

(
X f
k,i − X f

k,L+i

)2
+ w (c2)

i

(
X f
k,i + X f

k,L+i − 2X f
k,0

)2]
(5.19)

(iii) Measurement update (analysis step of SPKF) :

Y f
k = h

(
X f
k ,X r

k

)
(5.20)

ψ̂
−
k = w (m)

M∑
m=1

Y f
k,m (5.21)

P−
ψ̃k

=
L∑
i=1

[
w (c1)
i

(
Y f
k,i − Y f

k,L+i

)2
+ w (c2)

i

(
Y f
k,i + Y f

k,L+i − 2Y f
k,0

)2]
(5.22)

P θkψ̃k
=

L∑
i=0

w (m)
i

(
X f
k,i − θ̂

−
k

)(
Y k,i − ψ̂

−
k

)T
(5.23)

Kk = P θkψ̃k
P−1
ψ̃k

(5.24)

θ̂k,i = θ̂
−
k +Kk(ψk − ψ̂

−
k ) (5.25)

P θ̂k,i
= P−θk −KkP ψ̃k

KT
k (5.26)

(b) Sample X k,i ∼ N
(
θ̂k,i;P θ̂k,i

)
(SPKF analysis distribution)

For i = 1 . . . N, evaluate the important weights, and normalize the weights :

wk,i = wk−1,i
likelihoodk,i × priork,i

proposalk,i
(5.27)

= wk−1,i
p (ψk|θk,i) p (θk,i|θk−1,i)

p (θk,i|ψ1:k,i)
(5.28)

w̃k,i =
wk,i∑N
j=0wk,i

(5.29)

2. Resample the particles using the above weights (by multiplying with important weights)

3. Approximate the posterior distribution, and the estimate

θ̂k ≈
1

N

N∑
i=1

θ̂k,i (5.30)

A more detailed interpretation and derivation of the above expression can be found in
Van der Merwe [2004].
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5.3 Parameter estimation experiments
In general the parameter estimation involves a nonlinear mapping given by

Yk = N (θk,Λ) (5.31)

where the nonlinear map4 N (·) may be the dynamical model f(·) or an empirical model
such as a neural network, parameterized by the vector Λ.

The state space model for the parameter estimation problem can be written as,

Λk = Λk−1 + q (Λk)W
θ
k (5.32)

ψk = f (θk,Λk) + r (ψk)W
ψ
k (5.33)

where f(·) is the nonlinear model, Λ is the parameter vector which constitutes the
dynamical parameters (or empirical parameters in the case of empirical model), q(·)
and r(·) represent the multiplicative noise models corresponding to the model states
and observations, and W θ, and W ψ are random white noises corresponding to the
respective noise models. The state space model for the parameter estimation is similar
to the state estimation except for the fact that the state (here states are parameters)
time evolution is linear (Eq. 5.32) and the measurement function is nonlinear (Eq. 5.33).
In this particular situation Eq. (5.32) may be considered as a linear stochastic system
with multiplicative forcing. In the following subsection we will use the Lorenz [1963],
and Lorenz [1996] models as test beds for our parameter estimation experiments. In
all the experiments the state observations are related to the model parameters through
the nonlinear dynamical model.

5.3.1 Experiments with Lorenz ’63 Model

In the data assimilation community, the Lorenz [1963] model has served as a test bed
for examining the properties of various data assimilation methods as the model shares
many common features with the atmospheric circulation and the climate system in
terms of variability and predictability [Gauthier, 1992; Palmer, 1993; Miller et al.,
1994; Evensen, 1997]. The model can be used to simulate nearly-regular oscillations or
irregular chaotic variations by adjusting the model parameters that control the non-
linearity of the system. In our experiments, we used a modified version of the standard
Lorenz [1963] model with additional noise terms, given by

dx

dt
= σ (y − x) + q (x)wx (5.34)

dy

dt
= ρx− y − xz + q (y)wy (5.35)

dz

dt
= xy − βz + q (z)wz (5.36)

4In general Yk refers to the mapped vector (e.g. temperature) from the state vector θk, (e.g.
radiance), and N is the nonlinear function which is the mapping function (e.g. radiative transfer
model).
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where variables x, y, and z are related to the intensity of convective motion and to the
temperature gradients in the horizontal and vertical directions, and the parameters σ, ρ,
and β will be referred to as dynamical parameters. q (·) represents the state dependent
(multiplicative) background errors, and w is the Gaussian white noise. The true data
are created by integrating the model using the fourth-order Runge-Kutta scheme [Press
et al., 1992], with parameters σ, ρ, and β set to 10.0, 28.0, and 8/3 respectively, and
initial conditions set to 1.508870, −1.531271, and 25.46091 as in Miller et al. [1994]
and Evensen [1997].

To apply the assimilation algorithms, we discretize the nonlinear Lorenz model
(5.34)-(5.36) using the fourth-order Runge-Kutta method and write it in the form of
state space equations given by (5.32) and (5.33), where θk represents the system state
vector (a column vector composed of x, y and z), f(·) is the Lorenz model and qk is
the random (white) process noise vector (column vector composed of qx, qy and qz).
The measurement function ψk, required for the application of the EnKF parameter
estimation, is the nonlinear model itself, connecting the state observations and model
parameters.

For all the experimental cases (involving multiplicative noise) to be discussed, the
observation data sets are generated by setting:

q (θk)w
θ
k = Cmθkw

θ (5.37)

where Cm is a constant5, called the multiplicity factor, which determines the strength
of the state influence in the multiplicative noise. θ is the system state vector, and wθ is
the normally distributed white noise N(0,

√
2). This white noise distribution is similar

to that in the additive noise experiments in Miller et al. [1994] and Evensen [1997].
The observation interval is set to 25, i.e., the observations are assimilated to the model
at every 25 steps.

Two particular cases were studied. Case 1: the background noise (or internal noise)
is additive and the observation noise (or external noise) is multiplicative. Case 2: both
the background and the observation noises are multiplicative.

We assume that the parameter ρ is uncertain. Our task is to estimate the correct
value of ρ from infrequent noisy observations using a noisy model. In Case 1 the obser-
vations are generated using the multiplicative noise model given by Eq. (5.37), where
the multiplicity factor Cm is set to 0.02. Figure (5.1-a) shows the distribution of the
variables X and Z, and Fig. (5.1-b) shows the distribution of the corresponding addi-
tive and multiplicative noises used in the experiments. It is clear from the probability
plot that the observations (Fig. (5.1-a) are non-Gaussian. The multiplicative noise
shown in Fig. (5.1-b) also shows non-Gaussian features, and is symmetric. However,
the symmetric nature may not be the case for real observations. In all our experiments,
we set the initial parameter to zero.
Figure (5.2-a) shows the parameter estimation results using the EnKF scheme. The
number of ensemble members used in the experiments is 100. Similarly, Fig. (5.2-b)

5In our study we focus only on linear multiplicative noise model where Cm is a constant. How-
ever in many real situations such as the stochastic kinetic energy backscatter (SKEB) schemes, the
multiplicative noise models are nonlinear in general.
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Figure 5.1: (a) Observation distribution: Gray - X, and Black - Variable Z; (b) Noise
Distributions for X: Left panel - Additive Noise, Right panel - Multiplicative noise; solid
curves represent corresponding Gaussian fits

shows the results using the square-root SP-CDKF, which uses 2L+ 1 sigma-points for
the estimation. As can be seen in Fig. (5.2-a) the EnKF scheme failed to estimate
the parameter. On the other hand the performance of the square-root SP-CDKF is
better but the parameter is still slightly overestimated as shown in Fig. (5.2-b). It
should be noted that the estimate might be sensitive to the initial guess. In fact
the performance of the SP-CDKF can be adjusted by tuning the central difference
parameter. However in all our trial experiments the SP-CDKF either underestimates
or overestimates the true parameter even though it converges very fast compared to



5.3 PARAMETER ESTIMATION EXPERIMENTS 97

other Kalman filter schemes. We repeated the experiment with the SPPF scheme,
which is a hybrid Particle filter-Kalman filter. The results are shown in Fig. (5.2-c),
and they are remarkably better compared to any of the Kalman filter based assimilation
schemes including the advanced square-root filters.
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Figure 5.2: Lorenz ’63 model: (a) EnKF (b) SR-CDKF (c) SPPF with 100 particles. True
ρ - dashed line, estimated ρ - solid red line.

In Case 2, the situation is much more realistic and may give rise to complex non-
Gaussian distribution. Here we focus only on the performances of the advanced square
root SP-CDKF and the SPPF since the role of generic EnKF methods are in this case
irrelevant. Figure (5.3-a & b) shows the results of the experiments, which are similar
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to Case 1 where the square root SP-CDKF overestimates/underestimates the model
parameter, and the SPPF scheme estimates the parameter with better accuracy. To
study the effect of the multiplicity factor on the SPPF assimilation scheme, we have
increased Cm from 0.02 to 0.2. The results of the experiments are shown in Fig. (5.3-c).
From the figure it can be concluded that irrespective of the strength of the multiplica-
tive noise, the SPPF scheme was able to estimate the parameter accurately. Table
(5.1) gives the Root Mean Squared Error (RMSE) values of all the above experiments,
which in general confirms the results from the figures.
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Figure 5.3: Lorenz ’63 model: (a) SR-CDKF (b) SPPF using 100 particles. (c) SPPF with
a higher multiplicity factor of 0.2. True ρ - dashed line, estimated ρ - solid red line.
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In summary, we have investigated the merits and de-merits of different Kalman filter
based ensemble data assimilation schemes in a multiplicative model noise environment,
using the low-dimensional Lorenz ’63 model. Important features in evaluating the
performance of a data assimilation algorithm are its robustness and computational
expense as they can become issues when it is applied to higher dimensional models. In
the following section we will further explore the above mentioned schemes using the
higher dimensional Lorenz ’96 model.

5.3.2 Experiments with Lorenz ’96 Model

To explain the dynamics of weather at a fixed latitude, Lorenz [1996] introduced a
one dimensional atmosphere that shares similar error growth characteristics as full
Numerical Weather Prediction (NWP) models. In our experiments, we used a modified
version of the model containing K variables X1, · · · , Xk, which may be thought of as
atmospheric variables in K sectors of a latitude circle, governed by,

dXk

dt
= −Xk−1 (Xk−2 −Xk+1)−Xk + F + q (Xk)w

Xk︸ ︷︷ ︸ (5.38)

where the constant F is called the forcing term. The last term (under-bracketed ex-
pression) in Eq. (5.38) forms the noise model, which is given by Eq. (5.37). By using
cyclic boundary conditions, the definition of Xk is extended to all values of k; i.e. Xk−K
and Xk+K equal to Xk. It is assumed that a unit time ∆t = 1 corresponds to five days.

The experimental setup is similar to that of Lorenz and Emmanuel [1998], where
K = 40 and the magnitude of the forcing term is set to 8 for which the system is
chaotic. The system was integrated using fourth-order Runge-Kutta scheme, with an
integration step ∆t = 0.05 (i.e. 6 hours). The experiments were carried out with
random initial conditions, and the observations were generated by applying the noise
model to the true model. For different case studies the strength of the multiplicative
noise was controlled by setting the multiplicity factor either to 0.02 (weak case) or
0.2 (strong case). Also the observation interval was set to 5, i.e., the observed states
are assimilated to the nonlinear model at every 5 steps. A complete discussion of the
Lorenz ’96 model can be found in Lorenz [1996]; Lorenz and Emmanuel [1998]; Lorenz
[2005, 2006a], and [Lorenz, 2006b]. Here we focus on a case study where both the model
and measurement noises are multiplicative, which is similar to the second case study
using the Lorenz ’63 model described in the previous subsection. In all experiments in
this section, we assume that observations of all the states are available, and the forcing
term F is uncertain. Initially we set the forcing term F to zero, and our aim is to
estimate the actual forcing term F accurately from the observed state variables so that
we will be able to tune the dynamical model for a more accurate prediction.

Estimation results are shown in Fig. (5.4-a & b) respectively. These results imply
that the pure Kalman filter based methods either underestimate or over-estimate the
parameter. It is due to the fact that pure Kalman filter based optimal estimation
methods rely only on the first two moments, which are insufficient for estimating non-
Gaussian statistics. In all the cases described above the SPPF scheme is very successful
in estimating the parameters with reasonable accuracy. The results of experiments



5.3 PARAMETER ESTIMATION EXPERIMENTS 100

1

2

3

4

5

6

7

8

F

(a)

 

 

SR−CDKF
True

200 400 600 800 1000 1200 1400 1600 1800 2000

−2

0

2

4

6

8

10

12

14

F

(b)

 

 

SPPF
True

1

2

3

4

5

6

7

8

F

(c)

 

 

SR−CDKF
True

360 720 1080 1440 1800 2160 2520 2880 3240 3600

5

10

15

20

Time Steps

F

(d)

 

 

SPPF
True

Figure 5.4: Lorenz ’96 model: (a) SR-CDKF (b) SPPF (c) SR-CDKF with a higher multi-
plicity factor of 0.2. (d) SPPF with a higher multiplicity factor of 0.2 True F - dashed line,
estimated F - solid red line.



5.4 DISCUSSION AND CONCLUSIONS 101

using a higher multiplicity factor are shown in Fig. (5.4-c & d). The results once
again re-iterate the fact that pure Kalman filter methods fail in non-Gaussian scenarios
whereas the hybrid SPPF scheme estimates the parameter accurately. However, the
RMSE values corresponding to the Lorenz ’96 model experiments are relatively higher
than those of the square-root SP-CDKF. This is due to an initial fluctuation in SPPF
estimate. The RMSE values may get smaller for SPPF if one takes a longer assimilation
period, since the SP-CDKF converges to an under-estimated value (almost constant)
after a certain assimilation steps.

Assimilation Observation Background Multiplicity RMSE

Method error error factor, Cm

EnKF (L63, Fig. 5.2-a) Multiplicative Additive 0.02 10.2340

SR-CDKF (L63, Fig. 5.2-b) Multiplicative Additive 0.02 4.5692

SPPF (L63, Fig. 5.2-c) Multiplicative Additive 0.02 3.4762

SR-CDKF (L63, Fig. 5.3-a) Multiplicative Multiplicative 0.02 3.5363

SPPF (L63, Fig. 5.3-b) Multiplicative Multiplicative 0.02 3.8475

SPPF (L63, Fig. 5.3-c) Multiplicative Multiplicative 0.2 2.6334

SR-CDKF (L96, Fig. 5.4-a) Multiplicative Multiplicative 0.02 1.4193

SPPF (L96, Fig. 5.4-b) Multiplicative Multiplicative 0.02 2.9593

SR-CDKF (L96, Fig. 5.4-c) Multiplicative Multiplicative 0.2 1.5403

SPPF (L96, Fig. 5.4-d) Multiplicative Multiplicative 0.2 3.0108

Table 5.1: Parameter estimation: Root Mean Squared Error

5.4 Discussion and Conclusions
Over the last decade, the data assimilation community made significant progresses
towards the development and application of ensemble based Kalman filter data assim-
ilation schemes. The EnKF and its derivatives have been widely applied to various
fields, in particular atmosphere and ocean sciences. However, a preliminary limit
imposed in carrying out all the above mentioned Kalman filters is that the states,
observations and associated noise models should follow a Gaussian distribution. On
the other hand, the multiplicative noise typically introduced in nonlinear dynamical
systems may cause non-Gaussianity, which is a major concern for the Kalman filter
based ensemble data assimilation, and has not been well addressed in the literature.
Recently, Anderson [2010] introduced the Ranked Histogram Filter (RHF), which is a
promising workaround to deal with non-Gaussian observation space. Notwithstanding
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those improvements, the Kalman filter based methods still lacks the ability to handle
non-Gaussian statistics. In such cases, hybrid methods may be more useful.

We have explored the impacts of multiplicative noise on ensemble based Kalman
filter data assimilation methods in the context of parameter estimation problems. In
parameter estimation in the presence of multiplicative noise, the nonlinearity of the
measurement function also plays an important role. Our experiments show that all
ensemble based Kalman filters, including EnKF, SPKF and square root SPKFs, either
underestimate or overestimate the parameter, sometimes even diverging from the true
value. The main reason for their poor performance is the fact that the multiplicative
noise causes the system to deviate from Gaussianity. In such situations, it is difficult
to approximate the statistical moments in a closed form, which is the necessary and
sufficient condition for global optimality of the EnKFs.

Further, we introduced the recently developed SPPF scheme to the assimilation
problem involving multiplicative noise. In the SPPF scheme, the particles are resam-
pled using the SPKF scheme. Using a three-variable Lorenz ’63, and a forty-variable
Lorenz ’96 model, we explored the merits and properties of SPPF. The results showed
that the SPPF scheme can estimate the model parameters with reasonable accuracy
and most importantly better than ensemble Kalman filters. The main advantages of
using the hybrid method are that the number of particles is significantly reduced com-
pared to the SIR particle filter, and the method works well in a multiplicative noise
environment.

In our experiments, we assume that the dynamical parameters are stationary, and
do not change with time. It is a common approach in parameter estimation using
the Kalman filters [Annan and Hargreaves, 2004; Annan, 2005; Annan et al., 2005a,b;
Hacker and Snyder, 2005; Aksoy et al., 2005b,a, 2006; Tong and Xue, 2008a,b]. Other
researchers have noted that the time series defined by Eq. (5.32) may not be stationary
[Dee, 1995; Evensen et al., 1998]. This lack of stationarity may add further complexity
into the estimation problem. Besides, it may be possible that large differences in the
initial parameter value may place the system in qualitatively different regimes. In
fact, in such models, the original state has stable equilibriums (or stable limit cycles)
while the true state was chaotic. We would imagine such cases would present a special
challenge to any state-of-the art data assimilation technique.

Another interesting issue is the computational expense of the SPPF algorithm. In a
broad sense, one may consider the SPPF scheme as a super-ensemble technique, where
each sample is estimated through a subset of sigma-points and resampled accordingly.
Compared to EnKFs and SPKFs, the computational requirement of SPPF is larger.
However, the super-ensemble structure of the SPPF algorithm is highly parallelizable,
and one can manage the computing time with the expense of more computing resources.
On the other hand, the hybrid approach may help many researchers to use the existing
EnKF based assimilation packages such as the Data Assimilation Research Test bed
(DART), [Anderson et al., 2009], which is optimized for many GCMs. There is no
doubt that much additional research is required before applying the SPPF technique
to highly dimensional systems like GCMs.

In conclusion, we have demonstrated that hybrid methods such as the SPPF can
overcome the drawbacks of pure Kalman filter bases ensemble data assimilation meth-
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ods in the presence of multiplicative noise, and associated deviations from Gaussianity.
Issues related to SPPF do not seem to impede their applications to high complexity
models.

This Chapter has been published in the Journal of Advances in Modelling the Earth System
(JAMES), as Ambadan and Tang [2011], and reproduced here with editorial modifications
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Chapter6
Conclusions

6.1 Summary of Results and Conclusions
This thesis primarily addressed the importance of estimating the model uncertainties
associated with kinetic energy (KE) dissipations in a Numerical Weather Prediction
(NWP) model and of incorporating the same in an ensemble data assimilation system.
The operational global weather forecast model GME of the Deutscher Wetterdienst
(DWD) and the hybrid 3D VAR - Local Ensemble Transform Kalman Filter (LETKF)
are used as the test-bed for this study. This thesis work is unique in the following
aspects: 1) it gave an independent evaluation of model uncertainty associated with KE
dissipation in GME compared to other operational weather forecast models (ECMWF,
NCEP, CMC); 2) it leed to the development of the first stochastic parameterization
(or stochastic physics) scheme based on kinetic energy backscatter for the operational
global weather forecast model GME of DWD; 3) it gave a comprehensive study of
different KE dissipation component in the backscatter scheme and it impacts on the
GME-EPS medium range forecast as well as on the 3D VAR - LETKF assimilation
system; and 4) it substantially contributed towards the development of an operational
GME-EPS.

6.1.1 Impact of the SKEB on the KE Spectra and on the GME forecast

In summary, we have proved that: 1) the stochastic kinetic energy backscatter (SKEB)
scheme is very effective in tapping the model error and associated uncertainties in the
GME model, and 2) the quantified (approximated) model uncertainty can later be used
to provide dynamical feedbacks through the backscatter scheme, improving the model
forecast significantly. The following are the specific results concerning the impact of
SKEB on the GME model forecast.

1. As shown by the KE spectra of the horizontal wind of the GME forecast, the
backscatter inject the energy back into model near the meso-scales, effectively
contributing to the k−5/3 part of the spectrum.

2. The reason for the dampening of the tail of the GME KE spectrum is due to the
lack of proper divergent components in the backscatter scheme.
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3. Incorporating KE dissipation through the stochastic backscatter scheme produces
significantly better forecast results compared to random perturbations.

4. Forecast experiments which incorporate KE dissipation due to numerical diffu-
sion, deep convection and small-scale orographic gravity wave drag are the best
for generating a large ensemble spread.

5. Regarding the GME forecast: the SKEB scheme significantly improves the tem-
perature forecast over ten-days, at all pressure levels.

6. Forecast results of geopotential height, specific humidity and surface pressure
show significant improvement over short to medium-range (up to 60 hours) but
show mixed results for long-range forecast.

7. The backscatter scheme has a significant positive effect on the precipitation fore-
cast, especially in the Tropics

6.1.2 Impacts of SKEB on the LETKF Analysis and on the GME-EPS Forecast

We have proposed and implemented a stochastic KE backscatter (SKEB) scheme as an
alternative to the current additive and multiplicative covariance inflation schemes in the
LETKF assimilation system for the GME-EPS. Since the SKEB scheme has a positive
impact on the ensemble spread, which implies inflation of covariance, we expected a
significant positive impact on the LETKF analysis and EPS forecast. However, the
combined effect of the initial uncertainty and of other mechanisms in the LETKF
assimilation resulted in negative impacts on the backscatter contributions, hence in
a deterioration of the analysis and EPS forecast quality. The following are the main
conclusions concerning the impact of SKEB on the LETKF analysis and on the GME-
EPS forecasts.

6.1.2.1 Impacts of SKEB on the LETKF Analysis

1. Overall the backscatter scheme found has a negative impact on the LETKF anal-
ysis although the backscatter has a positive impact on the background covariance
inflation

2. For 850 hPa temperature, the analysis RMSE is relatively larger in the extra-
tropics but smaller in the Tropics, which indicates slight improvement in the
Tropics.

3. The SKEB scheme has significant negative impacts on the zonal wind, specific
humidity, and specific cloud-ice content analysis, although specific humidity anal-
ysis is better in the Tropics at lower layers.

4. For experiments with additive inflation and backscatter the results are no better
than the one without backscatter at the lower levels but they are worse at the
upper levels.
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5. Experiments with multiplicative inflation are the worst among all experiments
with the backscatter scheme.

6. The main reason for the deterioration of LETKF analysis in the experiments
with backscatter scheme is the rejection of observations due to the conventional
First-Guess check routine in GME-EPS. Or, in other words, fewer observations
were assimilated for experiments with backscatter scheme.

7. Another reason for the negative impact of the backscatter on the LETKF analysis
is the positive bias in the ensemble probability distribution (in the ensemble
space), i.e., probability densities get lower for lower temperatures (and velocities),
and are relatively higher for higher temperature (and velocities.), especially in
the extra-tropics.

6.1.2.2 Impacts of SKEB on the GME-EPS Forecast

1. In GME-EPS, the SKEB scheme has negative impacts on the forecast for most
of the prognostic variables in the extra-tropics. However, some variables such as
temperature and specific humidity show significant improvement in the Tropics.

2. Almost all GME-EPS experiments with the SKEB scheme, except the experiment
with backscatter with multiplicative inflation, show an increase in the ensemble
spread

3. The main cause of the negative impact of backscatter mechanism on GME-EPS
is the combined effects of the LETKF assimilation (which generates sub-optimal
analysis) and of initial uncertainty, which effectively changes the probability den-
sity distribution.

4. Incorporating the model uncertainty alone (i.e. without in initial set of ensem-
ble) can produce good short-range forecasts , proving the positive impact of the
backscatter scheme on the GME forecast (without the assimilation system).

5. The current inflation mechanism in the GME-EPS assimilation system has neg-
ative effects on the backscatter contribution of the ensemble spread.

6. The GME-EPS with the backscatter shows a significant improvement on the
precipitation forecast, especially in the Tropics

6.2 Outlook
A couple of key issues related to the SKEB scheme have been identified that must be
addressed in the near future. A first issue is related to the computational problems as-
sociated with the cellular automated stochastic pattern generator in the SKEB scheme.
In the following subsection we briefly describe a new approach for generating stochastic
pattern, which is relatively simple compared to the CA scheme. The second issue con-
cerns the covariance inflation in 3D VAR - LETKF assimilation using the backscatter
scheme including first-guess (FG) filtering during the observation preprocessing. In
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the current implementation, unlike other covariance inflation schemes, the assimilation
system has no direct information regarding the contribution of the backscatter. It is
possible to formulate a covariance inflation factor (such ρ in in the multiplicative in-
flation scheme) from the backscatter scheme which can be later used in the LETKF
to adjust the covariance matrix. Also, it would be interesting to determine whether
incorporating the first-guess (FG) spread information in the FG check criteria given
by Eq.(4.8) reduces the number of rejected observations.

6.2.1 Stochastic Pattern Generators

The main disadvantages of the cellular automation (CA) scheme are: i) the difficulties
in the design of appropriate automation rules for the model, and ii) the excessive
computing time needed for the CA spin-up. These issues motivated us to design a
simple scheme for generating the random spatial pattern for GME. The kinetic energy
spectra of the streamfunction forcing from the cellular automated SKEB scheme (shown
in Fig. (3.5)) indicate that the backscatter forcing may be considered as a blue noise
which has roughly a 5/3 dependence. This leads to the development of a much simple
stochastic pattern generator for the GME-SKEB scheme based on a power-law. The
basic idea is to generate a blue noise field which has a spectral slope of k5/3 (contrary
to k−5/3 cascade) and then modulate the blue noise with the total dissipation to form
the backscatter fraction. The main advantage of using such a scheme is that there is
only one tuning parameter compared to the CA, and there is no need of complicated
automation rules. The scheme is computationally simpler as it does not require any
spin-up runs. An example of the random stream-function forcing patterns using the
power-law scheme is shown in Fig. (6.1: left). Fig. (6.1: right) also shows the KE
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Figure 6.1: Stochastic stream-function forcing pattern (left) and corresponding GME Kinetic
energy spectra at 500 hPa

spectra of the horizontal wind at 500 hPa from the GME 6 hour forecast using the
power-law scheme. The black curve is the KE spectrum without the SKEB scheme;
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the red curve is that with the power-law scheme, and the blue curve represents the
KE spectrum of the backscatter energy. The spectra shows the effectiveness of this
new scheme which can backscatter the energy back into model partially contributing
to the k−5/3 part of the spectrum. Here also, the quick dampening of the tail of the KE
spectrum (red line) is due to the lack of proper divergent component in the backscatter
forcing.
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Figure 6.2: Ten days forecast statistics for 850 hPa temperature. Top-row: CRPS, Bottom-
row: RMSE (solid lines), and SPREAD (dashed lines); for Northern extra-tropics, the Trop-
ics, and the Southern extra-tropics (left to right).

Figure (6.2) shows some of the initial results of the GME 10-day forecast for the
850 hPa temperature field using the new power-law scheme (red line). The top-row of
Fig. (6.2) shows the Continuous Ranked Probability Scores (CRPS) and the bottom-
row shows the RMSE (solid line) and the ensemble SPREAD (dashed line) for the
Northern extra-tropics, the Tropics, and the Southern extra-tropics (left to right).
From the results it is clear that although the power-law scheme [PL SKEB] is not
better than the cellular automated scheme [CA SKEB], it is still better than the fore-
cast without any backscatter scheme [NBS]. It should also be noted that this initial
experiment setup [PL SKEB] was not very well tuned compared to [CA SKEB]. Nev-
ertheless, our results are promising and it may be possible to achieve equivalent or
relatively better performances by appropriately tuning the scheme. There is no doubt
that much additional research is needed to applying these techniques in the 3D VAR -
LETKF assimilation systems. It is left for future research.

As a final remark, in this thesis work, we explored the possibilities of quantifying the
model uncertainty associated with the KE dissipation and also the ways to incorporate
it in an ensemble Kalman filter-based data assimilation system. Although limitations
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were found, the present study represents a step forward in developing robust ensemble
prediction systems (EPS) for short-to-medium range weather forecast.



AppendixA
The LETKF Algorithm

I. Ensemble initialization: for each ensemble member, m = 1 . . . M

θa0,m = E (θ0,m) (A.1)

II. For time k = 1, 2 . . .

1. Time update equations:

θbk,m = f
(
θak−1,m

)
(A.2)

θ̄
b
k =

1

M

M∑
m=1

θbk,m (A.3)

P b
k =

1

M− 1

M∑
m=1

[(
θbk,m − θ̄

b
k

)(
θbk,m − θ̄

b
k

)T]
(A.4)

=
1

N− 1

M∑
m=1

Θk (Θk)
T (A.5)

2. Measurement update equations:

(a) Apply h operator to the backgound ensemble, θbk,m

ψb
k,m = h

(
θbk,m

)
(A.6)

ψ̄
b
k =

1

N

N∑
n=1

ψbk,m (A.7)

Ψk = ψo
k − ψ̄

b
k (A.8)

(b) Compute the weight matrix:

P̃
a

k =
[
(N− 1) I + (Ψk)

TR−1Ψk

]T
(A.9)

wa = P̃
a

k (Ψk)
TR−1

(
ψo
k − ψ̄

b
k

)
(A.10)
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(c) Calculate the analysis:

θ̄
a
k = θ̄

b
k + Θkw

a (A.11)

In the LETKF the computation of the background error covariance given by Eq.(A.4)
is not necessary since it is not used for the calculation of analysis.



AppendixB
Least square formulation of Kalman gain

The state update equation for the state space model (2.1)-(2.2) is given by,

θ̂k = θ̂
−
k +Kk(ψk − ψ̂

−
k ) (B.1)

where Kk is the Kalman gain. The superscript “−” represents the prior states given
by the following equations:

θ̂
−
k = E

[
f(θk−1, qk−1)

]
(B.2)

ψ̂
−
k = E

[
h(θ−k , rk)

]
(B.3)

where E [·] represents the mathematical expectation or the expected value.
In general, the estimation error is defined as,

θ̃k = θk − θ̂k (B.4)

Similarly the error between the noisy observation ψk and its prediction ψ̂
−
k , is given

by

ψ̃k = ψk − ψ̂
−
k (B.5)

Substituting (B.4) into the state update equation (B.1), we can rewrite the estimation
error as

θ̃k = θk − θ̂
−
k −Kk(ψk − ψ̂

−
k )

= θ̃
−
k −Kkψ̃k (B.6)

Here we made use of the fact that the estimator is unbiased:

E
[
ψ̃k

]
= 0

E
[
θ̃k

]
= 0 (B.7)

Now, the state error covariance, P θk and the cross covariance, P θkψ̃k
between the state
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and observation error can be rewritten in terms of equations (B.4) and (B.5) and are
given by

P θk = E
[
θ̃kθ̃

T

k

]
(B.8)

P θkψ̃k
= E

[
θ̃
−
k ψ̃

T

k

]
(B.9)

Taking the outer products and expectation of (B.6) produces

E
[
θ̃kθ̃

T

k

]
= E

[(
θ̃
−
k −Kkψ̃k

)(
θ̃
−
k −Kkψ̃k

)T]
= E

[
θ̃
−
k θ̃

T

k−

]
−E

[
θ̃
−
k ψ̃k−

T
KT

k

]
−E

[
Kkψ̃kθ̃k−

T
]

+E
[
Kkψ̃kψ̃

T

kK
T
k

]
(B.10)

Using equations (B.8) and (B.9), equation (B.10) can be rewritten as

P θk = P−θk − P θkψ̃k
KT

k −KkP ψ̃kθk
+KkP ψ̃k

KT
k (B.11)

Our aim is to minimize the trace of P θk for the unbiased estimator, i.e.

∂

∂Kk

(Tr (P θk)) = 0 (B.12)

We have

Tr (P θk) = Tr
(
P−θk − P θkψ̃k

KT
k −KkP ψ̃kθk

+KkP ψ̃k
KT

k

)
(B.13)

= Tr

[(
Kk − P θkψ̃k

P−1
ψ̃k

)
P ψ̃k

(
Kk − P θkψ̃k

P−1
ψ̃k

)T]
+ Tr

(
P−θk − P θkψ̃k

P−1
ψ̃k
P T
θkψ̃k

)
(B.14)

We want to choose Kk in order to minimize (B.11). It can be easily verified that the
above expression1 (B.11) is minimum when

Kk = P θkψ̃k
P−1
ψ̃k

(B.15)

Here we have used the following identities,

∂

∂A

(
Tr
(
ABAT

))
= 2AB (B.16)

where B is symmetric, and

∂

∂A

(
Tr
(
ACT

))
=

∂

∂A

(
Tr
(
CTA

))
= C (B.17)

Substituting the expression for Kalman gain, given by equation (B.15) back into the

1Here we have used the principle Tr (AB) = Tr (BA)
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expression for the error covariance (B.11), the covariance update equation is given by

P θk = P−θk −KkP ψ̃k
KT

k (B.18)

It has been shown that the standard Kalman gain used in KF, EKF and EnKF is a
special case of Eq. (B.15) when the measurement function is linear or locally linearized,
and the noise is additive [Ambadan and Tang, 2009].



LEAST SQUARE FORMULATION OF KALMAN GAIN 116



AppendixC
Additional Supporting Figures

C.1 SKEB: Impact on the GME-ENS Forecast
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Figure C.1: CRPS confidance intervals for 850 hPa temperature, for ten days forecast:
Global (Top-Left), the Northern extra-tropics (Top-Right), the Tropics (Bottom-Left), and
the Southern extra-tropics (Bottom-Right).

117



ADDITIONAL SUPPORTING FIGURES 118

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (00 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

CRPS

 

 

NBS
oALL_2a

0.8 1 1.2 1.4 1.6 1.8 2

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (03 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

CRPS

 

 

NBS
oALL_2a

0.8 1 1.2 1.4 1.6 1.8 2 2.2

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (05 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

CRPS

 

 

NBS
oALL_2a

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (00 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

[ CRPS ] Confidence Interval

 

 

oALL_2a

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (03 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

[ CRPS ] Confidence Interval

 

 

oALL_2a

−0.8 −0.6 −0.4 −0.2 0 0.2

1012

990

930

828

692

539

388

257

154

70

Temperature: Tropics (05 day 06 hours)

L
e

v
e

ls
 (

h
P

a
)

[ CRPS ] Confidence Interval

 

 

oALL_2a

Figure C.2: CRPS vertical profile statistics for temperature, for the experiment [oALL 2a],
for the Tropics. Top-row: CRPS, and Bottom-row: corresponding confidence interval; for 6
hours, 3rd, and 5th day respectively (from left to right).
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Figure C.3: Vertical profiles of RMSE statistics for temperature for the Tropics. Top-row:
RMSE/SPREAD ratio; and Bottom-row: Normalized RMSE, for 6 hours, 3rd, and 5th day
(from left to right).
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Figure C.4: CRPS vertical profile statistics for temperature, for the experiment [oALL 2a],
for the Southern extra-tropics. Top-row: CRPS, and Bottom-row: corresponding confidence
interval; for 6 hours, 3rd, and 5th day respectively (from left to right).
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Figure C.5: Vertical profiles of RMSE statistics for temperature for the Southern extra-
tropics. Top-row: RMSE/SPREAD ratio; and Bottom-row: Normalized RMSE, for 6 hours,
3rd, and 5th day (from left to right).
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Figure C.6: Specific humidity profiles. Top-row: ten days forecast RMSE, and SPREAD at
850 hPa; Bottom-row: 6 hour forecast CRPS confidance interval for the experiment [oALL 2a]
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C.2 SKEB: Impact on the GME-EPS Forecast
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Figure C.7: RMSE/SPREAD ratio statistics for the 850 hPa temperature, ten days forecat;
for the the Northern extra-tropics, the Tropics, and the Southern extra-tropics (left to right).
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Figure C.8: CRPS vertical profile statistics for temperature, for the Northern extra-tropics.
Top-row: CRPS, and Bottom-row: corresponding confidence interval; for 6 hours, 3rd, and
5th day respectively (from left to right).
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Figure C.9: Vertical profiles of RMSE statistics for temperature, for the Northern extra-
tropics. Top-row: RMSE and SPREAD, Middle-row: RMSE/SPREAD Ratio, and Bottom-
row: Normalized RMSE; for the forecast time 6 hours, 3rd, and 5th day respectively (from left
to right).
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Figure C.10: CRPS vertical profile statistics for temperature, for the Tropics. Top-row:
CRPS, and Bottom-row: corresponding confidence interval; for 6 hours, 3rd, and 5th day
respectively (from left to right).
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Figure C.11: Vertical profiles of RMSE statistics for temperature, for the Tropics. Top-row:
RMSE and SPREAD, Middle-row: RMSE/SPREAD Ratio, and Bottom-row: Normalized
RMSE; for the forecast time 6 hours, 3rd, and 5th day respectively (from left to right).
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Figure C.12: CRPS vertical profile statistics for temperature, for the Southern extra-tropics.
Top-row: CRPS, and Bottom-row: corresponding confidence interval; for 6 hours, 3rd, and
5th day respectively (from left to right).
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Figure C.13: Vertical profiles of RMSE statistics for temperature, for the Southern extra-
tropics. Top-row: RMSE and SPREAD, Middle-row: RMSE/SPREAD Ratio, and Bottom-
row: Normalized RMSE; for the forecast time 6 hours, 3rd, and 5th day respectively (from left
to right).
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Figure C.14: Ten days forecast RMSE statistics for 500 hPa geopotential height. Top row:
RMSE (solid) and Ensemble SPREAD; Middle-row: RMSE/SPREAD Ratio; and Bottom-
row: Normalized RMSE, for the the Northern extra-tropics, the Tropics and the Southern
extra-tropics respectively (from left to right).
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Figure C.15: CRPS and confidence interval for 500 hPa geopotential height, for the North-
ern extra-tropics (left), the Tropics (middle), and the Southern extra-tropics (right)
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Figure C.16: CRPS vertical profiles for specific humidity, for 6 hour forecast. Top-row:
CRPS; Bottom-row: corresponding CRPS confidance interval.
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Figure C.17: Ten days forecast statistics for surface pressure: RMSE (solid) and Ensemble
SPREAD (dashed) on the top-row, RMSE/SPREAD Ratio (middle-row), and Normalized
RMSE (bottom-row), for the Northern extra-tropics, the Tropics and the Southern extra-
tropics respectively (from left to right).



ADDITIONAL SUPPORTING FIGURES 130

C.3 SKEB: Impact on the LETKF Analysis
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Figure C.18: RMSE statistics for LETKF analysis for 850 hPa temperature. Top-row:
RMSE/SPREAD ratio; Bottom-row: Normalized RMSE; for the Northern extra-tropics, the
Tropics, and the Southern extra-tropics (from left to right).
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Figure C.19: RMSE statistics for LETKF analysis for 500 hPa zonal wind. Top-row:
RMSE/SPREAD ratio; Bottom-row: Normalized RMSE; for the Northern extra-tropics, the
Tropics, and the Southern extra-tropics (from left to right).
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Figure C.20: ROC statistics for 850 hPa temperature against ECMWF deterministic analy-
sis, for the Northern extra-tropics, the Tropics, and the Southern extra-tropics (left to right).
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AppendixD
List of Acronyms

3D VAR 3 Dimensional VARiational
4D VAR 4 Dimensional VARiational
AMSU Advanced Microwave Sounding Unit
AMV Atmospheric Motion Vectors
AUC Area Under the Curve
BS Brier Score
BV Breeding Vector
CA Cellular Automation
CMC Canadian Meteorological Center
COSMO COnsortium for Small scale MOdelling (also name of the model)
CRPS Continuous Ranked Probability Score
DFI Digital Filter Initialization
DWD Deutscher Wetterdienst
EAKF Ensemble Adjustment Kalman Filter
ECMWF European Center for Medium-range Weather Forecasting
EDA Ensemble Data Assimilation
EnKF Ensemble Kalman Filter
EnSRKF Ensemble Square-Root Kalman Filter
EPS Ensemble Prediction System
FAR False Alarm Rate
FN False Negative
FP False Positive
FPE Fokker-Planck Equation
GCM General Circulation Model
GEM Global Environmental Multiscale
GOES Geostationary Operational Environmental Satellite
GRV Gaussian Random Variable
HR Hit Rate
JAMES Journal of Advances in Modeling Earth System
KE Kinetic Energy
KEB Kinetic Energy Backscatter
KF Kalman Filter
LAF Lagged Average Forecasting
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LE Louville Equation
LETKF Local Ensemble Transform Kalman Filter
LM Local Model (regional model of DWD, now renamed to COSMO)
MAE Mean Absolute Error
MC Monte-Carlo
MLE Maximum Likelihood Estimation
MLEF Maximum Likelihood Ensemble Filter
MMSE Minimum Mean Squared Error
MODIS MODerate resolution Imaging Spectrometer
MOGREPS Met. Office Global and Regional Ensemble Prediction System
MPI Message Passing Interface
NCEP National Center for Environmental Prediction
NESDIS National Environmental Satellite, Data and Information Service
NMC National Meteorological Center
NOAA National Oceanic and Atmospheric Administration
NWP Numerical Weather Prediction
pdf Probability Density Function
PDF Probability Distribution Function
PF Particle Filter
PSAS Physical Space Assimilation System
QPF Quantitative Precipitation Forecast
RMSE Root Mean-Squared Error
ROC Receiver (or Relative) Operating Characteristics
SIR Sequential Importance Sampling
SKEB Stochastic Kinetic Energy Backscatter
SLAM Simultaneous Localization And Map
SP-CDKF Sigma-Point Central Difference Kalman Filter
SP-UKF Sigma-Point Unscented Kalman Filter
SPKF Sigma-Point Kalman Filter
SPPF Sigma-Point Particle Filter
SSO Subgrid-Scale Orography
SV Singular Vector
TN True Negative
TP True Positive
UKMO United Kingdom Meteorological Office
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