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1. Introduction

It has long been known that retinoids are necessary for normal embryogenesis. To understand the role
of retinoids in this process, it is important to elucidate the retinoid signalling pathway. The retinoid sig-
nal transduction pathway consists of three major components: (i) the metabolism of biologically active
retinoids, (ii) nuclear receptors which bind to and are activated by retinoids, and (iii) the genes whose
expression is regulated by the receptor/ligand complex. The initiation of the retinoid signal transduction
pathway critically depends of the presence of biologically active retinoids. The production and degrada-
tion of these biologically active retinoids will be the main focus this brief review. In addition, we will
discuss the developmental aspects of retinoid metabolism.

Several retinoids including all-trans-retinoic acid, 9-cis-retinoic acid, 4-oxo-all-trans-retinoic acid,
and 3,4-didehydro-all-trans-retinoic acid have been shown to be biologically active in the developing
embryo [7–10,13,17,18,32,33,35]. The all-trans isomers of these biologically active retinoids bind to
retinoic acid receptors (RARs) while 9-cis-retinoic acid binds to retinoid X receptors (RXRs) as well
as to RARs. RARs and RXRs belong to the family of nuclear hormone receptors. These are multi-
domain transcription factors that bind to specific enhancer elements (retinoic acid response elements or
RAREs) in a ligand dependent fashion [23,24]. Typically, RAR’s and RXR’s bind to enhancer elements
as heterodimers. In the absence of ligand, a co-repressor is bound to this RXR/RAR heterodimer causing
repression of transcription from the associated promoter. Upon binding of ligand, the co-repressor is
released and transcription is activated through binding of a co-activator. Ultimately, co-activators and
co-repressors affect the chromatin structure of the ligand-regulated gene [16,37].
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2. Retinoid metabolic pathway

Retinol is converted to retinoic acid (RA) by two successive dehydrogenation reactions. A retinol dehy-
drogenase (RoDH) converts retinol to retinal in the first step. This step is rate limiting and reversible [6].
In the second non-reversible step, a retinal dehydrogenase (RalDH) converts retinal to RA. Although
these reactions have been known to occur for some time [11], the enzymes that carry out these reactions
have only recently been characterized at a molecular level. To date, several RoDH and RalDH isozymes
have been isolated ([12,27] for review).

The degradation of RA is thought to begin with the conversion of RA into more polar metabolites, such
as 4-OH-RA and 4-oxo-RA. A novel cytochrome P450, P450RAI (also known as CYP26), has recently
been isolated that converts RA to 4-OH-RA, 4-oxo-RA and 18-OH-RA [15,30,38,39]. To date, P450RAI

is the only enzyme isolated that is capable of degrading RA. The above enzymes act in concert to control
the homeostasis of RA in the embryo and ensure the proper regulation of retinoid target genes. Although
not discussed here, cellular retinoid binding proteins are also thought to be important in the control of
RA homeostasis ([18] for review).

2.1. Conversion of retinol to retinal

Several retinol dehydrogenases (RoDHs) have been isolated and characterized with respect to expres-
sion pattern in the developing embryo. A class I alcohol dehydrogenase (class I ADH) is expressed in
kidney at embryonic day 9.5 (E 9.5), while a class III ADH has been isolated that is expressed throughout
the embryo from stage E 6.5 to E 9.5 [2]. In addition, a class IV ADH has been isolated that shows ex-
pression restricted to the mesoderm of the primitive streak starting at E 7.5 [1,2]. In older embryos, class
IV ADH is expressed in the dorsal neural fold, somites, paraxial mesoderm, neural crest, the proximal
portion of the forelimb bud, and in craniofacial primordia [2]. Recently, an enzyme has been identified
in both mouse and human that specifically converts 9-cis-retinol into 9-cis-retinaldehyde, a precursor to
9-cis-RA [25,31].

2.2. Conversion of retinal to retinoic acid

Several retinaldehyde dehydrogenases (RalDHs) have been identified that can convert retinal to RA.
Two of these, class I ALDH [1] and RALDH-2 [28] are expressed in the primitive streak mesoderm
similar to the expression of class IV ADH. The expression patterns of these enzymes support the idea
that the primitive streak region of the early embryo is a site of RA production and this locally generated
RA may control the expression of RA-responsive homeobox (Hox) genes at this developmental stage.
At later stages, class I ALDH is expressed in somites, paraxial mesoderm, dorsal retina and craniofacial
mesenchyme [1] while RALDH-2 is expressed in somites, the optic vesicle, interdigital tissue of the
limb, tooth buds, the inner ear and the pituitary gland. These later expression patterns are also similar to
the expression of class IV ADH in later stage embryos [1,2].

2.3. Conversion of retinoic acid to 4-OH-RA, 4-oxo-RA and 18-OH-RA

The degradation of RA is thought to begin with the formation of polar intermediates such as 4-OH-RA
and 4-oxo-RA [14]. A novel cytochrome P450 has been isolated, P450RAI, that is inducible by RA and
can convert RA into 4-OH-RA, 18-OH-RA and 4-oxo-RA [30,38,39]. Fujii et al. [15] have also cloned
a cytochrome P450 that they believe to be different from P450RAI based on the metabolites produced.
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However, sequence comparison of the two proteins from mouse show that they are identical. Expression
of P450RAI has been described in the mouse by Fujii et al. [15]. At E 7, extraembryonic and embryonic
endoderm and embryonic mesoderm expressP450RAI. By E 7.25 transcripts are detected in the primitive
streak region. By E 7.5, expression in the primitive streak region has greatly diminished, butP450RAI

transcripts are now found in the anterior part of the embryo in all three germ layers. By E 8.5, the gene is
highly expressed in the tailbud mesoderm, the posterior neural plate, and at the anterior end of the embryo
including the hindbrain, the foregut, and the first pharyngeal arch (a primordium of the vertebrate face).
By E 9.5 to 10.5 transcripts are found at the dorsoventral boundary of the retina, the caudal most part of
the embryo and in neural crest cells that contribute to the cranial ganglia. These cells are known to be
sensitive to excess RA and one role of P450RAI may be to keep RA levels low in these cells. P450RAI is
also found in the limb bud as well as in the interdigital space. Of note, treatment of embryos with RA
resulted in an abolishment of the caudal expression domain of P450RAI and at the same time, in an up-
regulation of expression of this gene in the cranial region. Thus in the embryo, this gene is differentially
regulated by RA. It will be interesting to compare the expression patterns of the RA-producing enzymes
(RoDHs and RalDHs) with that of P450RAI. The present data suggest that in the early embryo (E 7.5 and
before) the two types of enzymes are co-expressed in the primitive streak region. This is somewhat of
a paradox, since it would mean that locally produced RA is degraded at once. A future task will be to
determine whether additional retinoid metabolism enzymes exist and where and when precisely these are
expressed. Although the research on RA synthesis and degradation is still in its infancy, information about
the concentrations of RA in tissue is a critical factor in determining receptor-mediated gene activation.

3. Developmental consequences of retinoid metabolism

Many genes involved in early brain formation and patterning have been shown to be responsive to
RA [3–5,34]. In fact, several of these have been shown to contain RAREs that are essential for normal
expression [20,26]. Ectopic RA application has been shown to cause a mirror-symmetrical digit dupli-
cation in the developing limb bud [36] and the blocking of the retinoid signalling pathway during early
determination of the wing field has been shown to disrupt normal wing formation [21]. Proper develop-
ment of organs such as the heart have been shown to be sensitive to RA [29] and vitamin A-deficient
embryos show marked abnormalities in the heart and in other parts of the cardiovascular system [22].
RA has also been implicated in determination of the ventral retina [19]. Although detailed expression
patterns of class I ALDH, RALDH-2 and P450RAI have not been carried out in all of these tissues
and organs, some of the RA metabolizing enzymes show interesting expression patterns in those tissues
and organs known to depend on RA signal transduction. This suggests that these retinoid metabolizing
enzymes play a major role in the proper formation and differentiation of these tissues and organs.
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