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We demonstrate, by theory and experiment, the ultrafast tilting of the dispersion curve of a photonic-

crystal waveguide following the absorption of a femtosecond pump pulse. By shaping the pump-beam

cross section with a nanometric shadow mask, different waveguide eigenmodes acquire different spatial

overlap with the perturbing pump, leading to a local flattening of the dispersion by up to 11%. We find that

such partial mode perturbation can be used to adiabatically compress the spectrum of a light pulse

traveling through the waveguide.
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Physical systems can often be described by their eigen-
modes, that is, states of light or matter oscillating with a
well-defined frequency. For instance, the quantum-
mechanical eigenstates of an electron spin are spin-up
and spin-down [1], while the optical eigenmodes of a
photonic crystal are Bloch waves characterized by their
wave vector k and angular frequency !k [2]. Controlling
the eigenfrequencies allows for the reversible manipulation
of light and matter, provided the dynamics evolve adiabati-
cally, without exchange of energy between the eigen-
modes. As an example, adiabatically changing the
frequency spacing of spin states is nowadays routinely
employed to cool solids [1] or to control the precession
of a single spin [3]. The state-dependent change in eigen-
frequencies is realized by an external magnetic or electric
field which couples differently to spin-up and spin-down
states.

Usually, however, optical eigenmodes (such as those of
photonic crystals or microresonators) are perturbed by a
homogeneous and isotropic stimulus, leading to one and
the same shift of all the eigenfrequencies [4–9]. A much
higher level of control could be achieved if one allows for a
spatially varying perturbation that has different overlap
with the light field of different modes. Such a process
would result in a modified frequency spacing and density
of states [10], which is particularly interesting for a pho-
tonic crystal with its continuum of modes k. Figure 1(a)
shows that a k-dependent mode shift �!k would lead to a
local tilting of the photonic dispersion !k. A light pulse
being a superposition of these wave functions could then be
spectrally compressed and temporally stretched, provided
the dynamics were adiabatic. Moreover, as first proposed
by Yanik and Fan [11], such a pulse could be also slowed
down beyond the classical delay-bandwidth limitation.

In this Letter, we demonstrate that perturbing selected
regions of a photonic-crystal waveguide (PCW) by means
of a spatially shaped femtosecond laser pulse can locally

flatten or steepen the dispersion curve. This novel proce-
dure is akin to altering the shape of the ‘‘potential’’ con-
fining the wave functions, thereby realizing a new
dispersion relationship and density of states [2]. Such
partial mode perturbation can be used to compress or
expand the spectrum of a picosecond light pulse traveling
through the waveguide. As this operation proceeds adia-
batically, it is reversible and features high conversion
efficiency.
Our nanophotonic approach is schematically shown in

Fig. 1(b). While a light pulse travels through a PCW, a
pump pulse incident from above generates an electron-hole
plasma in the Si parts of the structure, thereby reducing the
refractive index. The index change does not occur in the
waveguide center, as a shadow mask keeps pump light
away from that region. Since PCW eigenmodes have a

FIG. 1 (color online). (a) Schematic of adiabatic light control.
An input light pulse excites eigenmodes of a photonic crystal,
whose dispersion !k is then blueshifted and flattened by an
external perturbation. When no light is scattered between eigen-
modes, the pulse undergoes an adiabatic spectral compression.
(b) Experimental realization. While a probe pulse travels through
a Si-based photonic-crystal waveguide, a pump pulse generates
free charge carriers in the illuminated Si regions. The shadow
mask causes a k-dependent spatial overlap between the wave-
guide mode and pump pattern.
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strongly k-dependent lateral extent [Fig. 2(a)], each
mode k has a different spatial overlap with the pumped
Si volume, resulting in a pronounced variation of the mode
shift �!k with respect to k. Note that the dynamics of the
probe pulse inside the waveguide will proceed adiabati-
cally because the pump pulse respects all spatial symme-
tries of the PCW [8,11]. Breaking these symmetries would
result in energy transfer between different modes [12] as
has been shown in a complementary experiment [13].

Theory.—We first explore our approach theoretically. To
this end, we consider the frequency shift �!k of mode k
that results when the pump pulse alters the refractive-index
landscape of the photonic crystal by an amount fðrÞ�n.
Here, 0 � fðrÞ � 1 reflects the normalized spatial distri-
bution of the absorbed pump energy, which induces a
change �n in the real part of the refractive index at
positions r where fðrÞ ¼ 1. Perturbation theory [2] then
predicts a relative eigenfrequency shift

�!k

!k

¼ ��n

n
Ok; (1)

which is directly proportional to the spatial overlap

Ok ¼
Z

d3rfðrÞukðrÞ (2)

between the profiles of the perturbation and eigenmode. In
these relations, n ¼ 3:48 denotes the refractive index of the

unpumped Si, and ukðrÞ is the energy density of mode k
normalized according to

R
d3rukðrÞ ¼ 1.

In order to tilt the dispersion, Ok needs to be
k-dependent. More precisely, we have to realize a relative
change �vk=vk in the local slope vk ¼ @!k=@k of the
dispersion curve that is much larger than the perturbation
�n=n. Note that �vk=vk also quantifies the relative veloc-
ity change and relative spectral compression [Fig. 1(a)] of a
light pulse encountering the dispersion change on the fly. In
this respect, PCWs offer two unique benefits. First, the
lateral mode extent depends strongly on k as seen in
Fig. 2(a) [14,15]. Second, using the slow-light modes
with low group velocity vk means that �vk=vk can be
enhanced for a given �n=n [8].
We calculated the eigenmodes [16] of a PCW [Fig. 1(b)],

which can be pictured as a missing row of holes in a Si
membrane (thickness 220 nm), perforated with a hexagonal
pattern of holes (lattice period a ¼ 390 nm, hole diameter
220 nm). The PCW (length L ¼ 180a ¼ 70:2 �m) has a
600-nm-thick SiO2 cladding on top of which a Au stripe
(675 nm wide, 20 nm thick) serves as a shadow mask. The
overlap and, thus, the interaction between the mask and the
evanescent tail of light inside the waveguide are negligible.
Figure 2(a) displays the unit cell of the PCWand the profile
ukðrÞ of the electromagnetic energy density for several
modes k. The respective values of k can be inferred from
the points labeled (i)–(xi) in the dispersion curve !k of

FIG. 2 (color online). Theoretical [(a)-(c)] and experimental [(d)-(f)] results for the waveguide dispersion changes. (a) Bottom panel:
The shape of the unit cell of the photonic-crystal waveguide together with the shadow mask. Panels (i)–(xi): Profiles of
electromagnetic energy density ukðrÞ of selected waveguide eigenmodes with k indicated in (b). Note the logarithmic color scale.
(b) Dispersion !k of the waveguide eigenfrequencies. (c) Solid line: Calculated overlap Ok between the eigenmode k [see (a)] and the
pump pattern fðrÞ given by the shadow mask (inset). Dashed line: Ok for a spatially uniform change in the Si refractive index.
(d) Measured real part of the Fourier-transformed output pulse Eoð!; �Þ versus ! at 40 ps before (red) and 1 ps after (blue) waveguide
pumping. (e) Dispersion curves of unpumped and pumped waveguides as extracted from (d). (f) Dispersion shift �!k at several delay
times obtained by subtraction of the measured !k [see (e)]. Dashed gray line: Theoretical curve of Fig. 2(c), repeated for comparison.
Bar: Error estimated from signal variations at delays � <�15 ps.
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Fig. 2(b). With increasing k, the slope of !k and, thus, the
group velocity decrease continuously, ending up in a flat
dispersion being characteristic of slow light (vk < c=50 at
ka=2�> 0:45) [17]. As seen in Fig. 2(a), the transition
from fast to slow light is accompanied by drastic changes in
the spatial mode profile [14,15]. Whereas the light field of
modes (i) and (ii) lies nearly entirely under the shadow
mask, it spreads out into the surrounding lattice of holes
for modes (iii)–(v) and then starts to contract again for
modes (vi)–(xi).

The k-dependent lateral mode spread should be also
reflected by the overlap Ok of mode profile and pump
pattern, as long as the mask’s shadow on the Si surface is
not washed out by diffraction of the pump beam. Finite-
difference time-domain simulations [18] of the pump-pulse
propagation indeed verify that fðrÞ roughly follows the
shape of the mask’s geometric shadow [inset in Fig. 2(c)].
The resulting overlap [Eq. (2)] of f with the waveguide
modes is shown in Fig. 2(c) and exhibits the expected
behavior: a steep rise for low wave vectors followed by a
flatter decay at higher k. Thus, any pulse populating these
modes will be spectrally compressed or expanded upon the
dynamic action of the perturbation. For comparison, the
dashed line shows the frequency shift for the case of a
homogeneous perturbation profile (f ¼ 1 throughout the
Si). The k dependence of Ok nearly vanishes, because the
total amount of mode energy inside the Si material is
almost independent of k.

Experiment.—In order to put our partial mode perturba-
tion scheme to the test, we fabricated a masked PCW with
the same geometrical parameters used in the calculations
by means of electron-beam lithography and reactive ion
etching. After filling with SiO2, a Au shadow mask is
placed on top of the SiO2 cladding by metal evaporation
and lift-off. In order to excite the PCW, pump pulses
(center wavelength 810 nm, duration 100 fs full width at
half maximum of the intensity, pulse energy 2 nJ, and
repetition rate 80 MHz) from a Ti:sapphire laser pass a
slit and cylindrical lenses resulting in a 3-�m-thin line
focus on the Si-membrane surface. The slit ensures exclu-
sive and homogeneous excitation along the length of the
PCW. To measure the PCW transmittance over a large
bandwidth, a Fourier-limited probe pulse (1540 nm,
180 fs, and 10 pJ) from an optical parametric oscillator is
coupled into the waveguide at a delay � after excitation by
the pump pulse. We pick up the probe at the output facet
and determine the complex-valued Fourier amplitude
Eoð!; �Þ of its electric field by means of spectral interfer-
ometry [19,20]. By varying the delay between the pump
and probe pulse, we obtain a two-dimensional data set
Eoð!; �Þ.

Figure 2(d) shows the real part of the measured Eoð!; �Þ
at 40 ps before PCW pumping (� ¼ �40 ps, red line) and
at 1 ps after (� ¼ 1 ps, blue line). In both cases, two
regimes with slow and fast oscillations are observed.

Assuming single-mode propagation, the phase acquired
by the probe pulse after propagation through the PCW
equals kð!ÞL. Thus, ReEo ¼ jEoj cosðkLÞ versus !
oscillates more rapidly for slower light as the inverse group
velocity @k=@! is larger. Therefore, the fast and slow
oscillations in Fig. 2(d) are signatures of slow and fast
light, respectively. Solving for the phase of Eo allows us to
extract the wave vector k as a function of ! (apart from an
unknown offset since only phase differences can be mea-
sured). The so-obtained waveguide dispersion!k is shown
in Fig. 2(e) before and after Si pumping. One clearly
recognizes the regions of fast and slow light, and the shape
of both curves is in very good agreement with that of the
one calculated [Fig. 2(b)].
A superficial glance at Fig. 2(e) might lead to the notion

that the dispersion directly after PCW pumping (� ¼ 1 ps)
is just a blueshifted version of the dispersion of the un-
pumped waveguide. However, a magnified view [inset in
Fig. 2(e)] reveals departures from such rigid-shift-type
behavior. This observation becomes even more apparent
when we subtract one of the dispersion curves from the
other. Figure 2(f) presents the resulting pump-induced
mode shift �!k at various delays after PCW pumping.
Shortly after excitation (� ¼ 1 ps), the mode shift varies
strongly with the wave vector, from �!k=2� ¼
0:060 THz (at ka=2� ¼ 0:33) to over 0.120 THz (0.38),
before dropping back to 0.095 THz (0.45). This curve
agrees excellently with the theoretical prediction [the solid
line in Fig. 2(c) and the gray dashed line in Fig. 2(f)].
Comparison of the calculated overlapOk and the measured
mode shift �!k with Eq. (1) allows us to estimate the
pump-induced change in the Si refractive index as�n=n �
�1:5� 10�3. Interestingly, at ka=2� ¼ 0:37 [arrows in
Figs. 2(e) and 2(f)], the measured�!k and, thus,Ok have a
quite steep slope, whereas the slope of !k is rather flat,
resulting in a measured ratio j�vk=vkj of as much as 12%.
This value is more than 80 times larger than the perturba-
tion j�n=nj, showing that our nanophotonic approach
[Fig. 1(b)] indeed causes a strongly k-dependent frequency
shift of the photonic-crystal eigenmodes.
At later times after pump excitation, charge-carrier dif-

fusion and recombination in the Si are expected to modify
the refractive-index distribution fðrÞ�n [10]. Indeed, with
increasing delay �, the measured �!k [Fig. 2(f)] under-
goes an overall decrease and returns into a flat line (� �
250 ps). This final, virtually k-independent mode shift
agrees well with the calculated �!k for a homogeneous
excitation pattern [the dashed line in Fig. 2(c)]. Thus, after
about 250 ps, the pump-induced charge carriers have dif-
fused into the Si underneath the 675-nm-wide shadow
mask, resulting in a homogeneous carrier density. These
numbers allow us to estimate a mean diffusion constant of
�10 cm2 s�1, which is in good agreement with previous
measurements [21]. Whereas the observed flattening of
the dispersion change arises from carrier diffusion, the
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temporal decrease of the k-averaged �!k on a time
scale of about 500 ps is a consequence of carrier recombi-
nation, predominantly taking place at the surfaces of the
PCW [10].

Spectral compression.—We finally illustrate how the
ultrafast modifications of the PCW dispersion can be
used to spectrally compress a light pulse. For this purpose,
we consider a Fourier-limited Gaussian pulse with a dura-
tion of 1.9 ps and a center frequency of 194.2 THz as PCW
input [the arrows in Figs. 2(e) and 2(f)] for the following
two reasons. First, the spectrum coincides with a part of the
dispersion that undergoes a significant pump-induced flat-
tening �vk=vk (see above). Second, this pulse allows one
to confine 96% of its energy within the length of the
waveguide as its duration is significantly shorter than its
transit time of 5.6 ps.

We are able to determine the PCW response to the
fictitious 1.9-ps input pulse from the two-dimensional
data set Eoð!; �Þ [Fig. 2(d)] that was measured by using
the much more broadband 180-fs probe pulse. This ap-
proach [8,20] merely presumes that the waveguide re-
sponse to the weak probe pulse is linear, which we have
verified experimentally. The extracted output spectrum is
shown in Fig. 3(a) as a function of the delay between the
pump and probe pulse. At delays � <�5 ps and � > 5 ps,
no dynamics occur as the probe pulse encounters a fully
unexcited or excited waveguide, respectively. The energy
of the output pulse is smaller in the excited case, because
free charge carriers lead to additional light absorption. At
� ¼ 0, the probe pulse is fully contained in the PCW when
the pump-induced shift �!k of the dispersion curve oc-
curs. As the light populating these modes is frequency-
shifted as well [Fig. 1(a)], we find a clear blueshift of the
PCW output around � ¼ 0 [Fig. 3(a)]. The center fre-
quency increases by 0.12 THz, in good agreement with
the magnitude of the measured �!k [Fig. 2(f)].

In order to evaluate further spectral modifications of the
blueshifted pulse, Fig. 3(b) displays the extracted output
spectra before and after waveguide excitation as well as at

� ¼ 0 [see the arrows in Fig. 3(a)]. For better comparison,
the spectra are normalized to the same height, and their
center frequencies are shifted to frequency ! ¼ 0. Note
that the spectrum of the blueshifted pulse is noticeably
narrower than the spectra obtained before and after PCW
pumping. The relative spectral decrease of the full width at
half maximum amounts to about 11%, which agrees well
with the relative change �vk=vk of 12% of the slope of the
dispersion curve [Figs. 2(e) and 2(f)]. Therefore, our find-
ings are consistent with the adiabatic spectral compression
of light as anticipated in Fig. 1(a). The conversion effi-
ciency is better than 60% and limited only by free-carrier
absorption. We note that adiabatic spectral expansion can
also be obtained when pulses in the slow-light region at
193.3 THz [Fig. 2(e)] are used (data not shown).
In conclusion, we have demonstrated that partial mode

perturbation can be used for all-optical adiabatic
pulse-bandwidth compression. This process is significant
because it overcomes the fundamental bandwidth-delay
constraint in optics [11]. Ultimately, such a process can
generate arbitrarily small group velocities for any light
pulse with a given bandwidth, without the need for intrinsic
material resonances. The unavoidable signal loss due to
free-carrier absorption could be prevented by using tuning
mechanisms like the instantaneous optical Kerr effect.
Besides the dynamical slow-down of light, spectral com-
pression could also find application as a magnifying time
lens [22–24]: The uniform shrinking of the frequency axis
by a factor 1þ �vk=vk yields an expansion of the pulse by
the inverse factor in the time domain. The magnitude of the
spectral compression could be enhanced further by opti-
mizing the profiles of the perturbing pump or by modifying
the photonic crystal itself. One could repeat the spectral
compression in cascaded photonic crystals: The smaller the
bandwidth of the pulse becomes, the smaller the slope of
the dispersion of the next waveguide stage can be chosen,
leading to a larger relative compression �vk=vk.
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