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Abstract

Background: Patent ductus arteriosus (PDA) is one of the most common forms of congenital heart disease. Mutations in
transcription factor TFAP2B cause Char syndrome, a human disorder characterized by PDA, facial dysmorphysm and hand
anomalies. Animal research data are needed to understand the mechanisms. The aim of our study was to elucidate the
pathogenesis of Char syndrome at the molecular level.

Methodology/Principal Findings: Gene expression of Tfap2b during mouse development was studied, and newborns of
Tfap2b-deficient mice were examined to identify phenotypes. Gel shift assays had been carried out to search for Tfap2
downstream genes. Promoters of candidate genes were cloned into a reporter construct and used to demonstrate their
regulation by Tfap2b in cell transfection. In situ hybridizations showed that the murine transcription factor Tfap2b was
expressed during the entire development of mouse ductus arteriosus. Histological examination of ductus arteriosus from
Tfap2b knockout mice 6 hours after birth revealed that they were not closed. Consequently, the lungs of Tfap2b2/2 mice
demonstrated progressive congestion of the pulmonary capillaries, which was postulated to result secondarily from PDA. In
addition, Tfap2b was expressed in the limb buds, particularly in the posterior limb field during development. Lack of Tfap2b
resulted in bilateral postaxial accessory digits. Further study indicated that expressions of bone morphogenetic protein
(Bmp) genes, which are reported to be involved in the limb patterning and ductal development, were altered in limb buds
of Tfap2b-deficient embryos, due to direct control of Bmp2 and Bmp4 promoter activity by Tfap2b.

Conclusions/Significance: Tfap2b plays important roles in the development of mouse ductus arteriosus and limb
patterning. Loss of Tfap2b results in altered Bmp expression that may cause the heart-limb defects observed in Tfap2b
mouse mutants and Char syndrome patients. The Tfap2b knockout mouse may add to the very limited available animal
models of PDA.
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Introduction

The transcription factor TFAP2, also known as AP-2, consists of

five members: TFAP2A, TFAP2B, TFAP2C, TFAP2D and

TFAP2E [1,2,3,4,5,6,7]. TFAP2s have been found to be involved

in the transcriptional regulation of many cellular genes required

during embryonic development. The critical roles of TFAP2s

during embryonic development have been demonstrated by

phenotypes associated with natural gene mutations and knockout

animal models. In Drosophila, several dAP-2 mutants are identified

through a mutagenesis screen. Null mutants die as adults or late

pupae with a reduced proboscis, severely shortened legs lacking

tarsal joints, and brain abnormalities; hypomorphic alleles cause

more-modest changes in leg length [8]. In mice, Tfap2a-deficient

mice have severe anomalies, including anencephaly, body-wall

defects and malformations of the outflow tract of the developing

heart [9,10,11]. Loss of Tfap2b has been reported to cause

congenital polycystic kidney disease due to excessive apoptosis of

renal epithelial cells, ultimately resulting in terminal renal failure

[12,13]. Tfap2c knockout mice are arrested or retarded in their

embryonic development, as they fail to establish a normal

maternal-embryonic interface due to malformed extra-embryonic

tissues. The majority of Tfap2c-null mice fail to survive beyond 8.5

days post coitum [14]. Tfap2e-null mice demonstrate disorganized

olfactory bulb lamination [15]. Phenotypes associated with

TFAP2D have not been reported.

The ductus arteriosus (DA) is an arterial connection in the fetus

that shunts blood from the main pulmonary artery to the

descending aorta. Ductal patency in utero is an active state to

reduce the blood flow into the fetal lungs, which is principally
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maintained by prostaglandins [16]. The abrupt ductal closure at

birth establishes the mature circulatory pattern. In certain animals,

the DA becomes obliterated as a result of constriction and

remodeling within a few hours after birth, whereas in humans it is

usually complete within 48 h [17]. Failure of ductal closure, called

patent ductus arteriosus (PDA), is one of the most common forms

of congenital heart diseases - it affects approximately 1 in 1300 live

births. If silent PDAs are included, the incidence will be at least

doubled [18]. Although single gene mutations are identified in

some syndromic form of PDAs [19,20], causes for sporadic PDAs

in fullterm infants remain largely unknown.

Char syndrome (CHAR; OMIM#169100) is a syndromic form

of PDA with facial dysmorphism and abnormalities of the 5th

finger, belonging to the class of heart-hand syndromes. It is an

autosomal dominant disorder with complete penetrance, but

variable expression of the phenotype. Char syndrome is linked to

the chromosome 6p12–p21 and missense mutations are identified

in the TFAP2B gene in unrelated families with genotype-

phenotype correlations [21]. It is found that the mutant TFAP2B

proteins act via a dominant-negative mechanism [4,19]. In a later

study, splice site mutations within the TFAP2B gene have been

identified causing Char syndrome in a haploinsufficiency mech-

anism [22,23]. The pathogenesis of this disease is unclear. In this

report, we described that transcription factor Tfap2b played a

critical role in the development and remodeling of mouse ductus

arteriosus as well as in the limb patterning, elucidating the

pathogenesis of Char syndrome on a molecular basis. Complete

loss of Tfap2b caused PDA, while even partial loss could result in

postaxial accessory digits. Exploration of the downstream genes

demonstrated that Tfap2b regulated bone morphogenetic protein

(BMP) expressions, which play very important roles in the

development of both the cardiovascular system and the limbs,

and may contribute to the heart-limb defects in Tfap2b knockout

mice.

Results

Tfap2b is expressed in precursors of the DA and the
aortic arch

We previously described the Tfap2b expression pattern during

mouse development [2,24]. Here, we focus on its unpublished

expression pattern during the development of the cardiovascular

system and the limbs, which are typically affected in Char

syndrome patients.

The neural crest is a migratory population of cells that originates

from the dorsal aspect of the neural tube and plays important roles

in the embryonic development of mouse. Tfap2b gene expression

starts at E8.5 in the neural tube, where neural crest cells originate.

With migration of neural crest cells, the expression of Tfap2b in

branchial arches was weakly detectable at E9.5 and was clearly

visible at E10.5 (Fig 1, a, b, c). Identical results were also obtained

from in situ hybridizations on sections from E9.5 and 10.5 embryos

(data not shown). At this period, the branchial arch arteries (also

called aortic arch arteries) develop, which partially remodel into

important vascular structures such as the common carotid arteries

formed by the 3rd aortic arch artery. The 4th and 6th aortic arch

arteries develop into the aortic arch and the DA in the next stage,

respectively. Notably, in situ hybridizations on transverse sections of

E11.5 embryos indicated Tfap2b expression in the 4th and 6th aortic

arch arteries (Fig 1, d, e).

Tfap2b is expressed in the DA and aortic arch
Vascular system development proceeds from symmetry to

asymmetry. After E12, the aortic arch and DA are formed from

the left 4th and the left 6th aortic arch arteries, respectively. Fate

mapping of migrating cardiac neural crest cells reveals that the

wall of the ductus arteriosus derives from cardiac neural crest cells

[25]. To test whether Tfap2b expression continues during DA and

aortic arch formation, we performed in situ hybridizations on

Figure 1. Expression of Tfap2b in precursors of the ductus arteriosus. Whole mount in situ hybridization showed Tfap2b expression in the
neural tube as well as branchial arches at E8.5–E10.5 (a, b, c). In situ hybridizations with a radioactive Tfap2b mRNA probe on transverse sections of
E11.5 embryos demonstrated Tfap2b expression in the 4th and 6th aortic arch arteries (d, e), the precursors of arch of the aorta and ductus arteriosus,
respectively. The left panels were bright field photomicrographs and the right panels were dark field photomicrographs. nt, neural tube; ba, branchial
arch; 4thA, the 4th aortic arch artery; 6thA, the 6th aortic arch artery.
doi:10.1371/journal.pone.0022908.g001

Tfap2b Deficiency and Heart-Limb Defects in Mice

PLoS ONE | www.plosone.org 2 July 2011 | Volume 6 | Issue 7 | e22908



E13.5 embryos and detected strong Tfap2b expression in these

structures, indicating that Tfap2b is expressed during the whole

timeframe of DA and aortic arch formation (Fig 2). However, the

expression of Tfap2b in the DA of late stage embryos and neonates

was not able to be detected.

Deletion of Tfap2b results in PDA and congestion heart
failure

Tfap2b2/2 mice developed normally through embryogenesis,

but the body color of most mutants changed from pink to purple

shortly after birth, showing the symptoms of heart-lung failure and

lack of oxygen. Most Tfap2b2/2 pups died within 24 h after birth,

with a few of them living less than 2 h. At 2 h after birth, the

majority of the Tfap2b2/2 pups appeared to be healthy but a

histological analysis of their DAs invariably showed patency

(Table 1). In contrast, the DA of nearly all Tfap2b+/2 and

Tfap2b+/+ littermates were closed at that time (p,0.01 and

,0.001, respectively). Among those Tfap2b2/2 pups that survived

for at least 6 h, the DA was still not closed as shown by consecutive

sections through the DA in contrast to wild-type pups (Table 1
and Fig 3a, b, c, d; p,0.001).

Next, we performed histological examinations on surviving and

deceased Tfap2b2/2 mice as well as sacrificed wild-type neonate

littermates. Interestingly, the lungs in Tfap2b2/2 mice demon-

strated progressive congestion of the pulmonary capillaries and a

disorganized and shrunken alveolar structure, which became more

severe from dying to dead pups (Fig 3e, f, g). As Tfap2b was not

expressed in lungs, this phenotype was most likely secondary to the

patent DA and was a sign of congestive heart failure, which might

be a further cause for the early lethality of Tfap2b mutant mice.

Tfap2b2/2 mice develop postaxial accessory digits
Tfap2b-null mice formed an additional finger-like structure that

grew out laterally from the 5th finger (Fig 4a). This postaxial

accessory digit of the forelimbs was seen in all null mutants and in

18.2% of Tfap2+/2 mice. All wild type mice were normal

(p,0.001). Hindlimbs were only affected in approximately 5%

of the Tfap2b null mutants. The sizes of the accessory digit

structures varied but never reached that of a normal digit. These

accessory digits contained only one phalange as judged by bone

staining and a finger nail never appeared (Fig 4b).

Abnormalities in the limbs were consistent with the gene

expression patterns. Tfap2b expression was observed in the

posterior part of the forelimb buds at E10.5 by whole mount in

situ hybridization (Fig 4c). Similarly, in the hindlimbs the

Figure 2. Expression of Tfap2b in the ductus arteriosus. In situ
hybridization using a radioactive Tfap2b mRNA probe on transverse
sections of E13.5 embryo showed Tfap2b expression in the wall of
ductus arteriosus (arrow in a), while hybridization on a sagittal section
of an E13.5 embryo demonstrated staining of the aortic arch (arrow in
b). da, ductus arteriosus; aa, aortic arch.
doi:10.1371/journal.pone.0022908.g002

Figure 3. Failure of ductal closure and pathological changes in
lungs of Tfap2b knockout mice. Representative transverse sections
of DAs from WT (a), Tfap2b+/2 (b), and two Tfap2b2/2 (c, d) pups at 6 h
after birth. In each, the ductus arteriosus (DA, arrows) was inferiorly
positioned and the lumen superior to the arrow was the descending
aorta. The WT and Tfap2b+/2 DAs were completely constricted, while
both Tfap2b2/2 DAs remained patent regardless of the level of section
examined. ao, descending aorta. The lower panel showed the
pathological changes in the lungs. The WT pup was sacrificed at 6 h
after birth (e). The section in the middle was from a Tfap2b2/2 pup that
survived until 6 h and was sacrificed at 6 h (f). The third section was
from a Tfap2b2/2 neonate that died at 5 h after birth (g). Marked
congestion of the pulmonary capillaries and disorganized alveolar
structures were seen in the lungs of Tfap2b2/2 mice. These pathological
changes were more severe in the dead Tfap22/2 pups.
doi:10.1371/journal.pone.0022908.g003

Table 1. Prevalence of patent ductus arteriosus.

Genotype PDA (2 h) PDA (6 h)

Tfap2b+/+ 0/6 0/6

Tfap2b+/2 1/8 0/6

Tfap2b2/2 8/8 7/7

doi:10.1371/journal.pone.0022908.t001

Tfap2b Deficiency and Heart-Limb Defects in Mice
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expression was evident in an identical pattern at E11.5. Afterwards

the Tfap2b-expressing region in the fore- and hindlimb buds

became more prominent and extended to the anterior area

(Fig 4d, e).

Bmp2 and Bmp4 are Tfap2b downstream target genes
that may contribute to the heart-limb defects

As null mutation of Tfap2b caused both PDA and postaxial

accessory digits in the mouse, we assumed that the absence of

Tfap2b affected signaling pathways, which play important roles in

the development of heart and limbs. We had explored whether

Tfap2b was involved in the known prostaglandin pathway by

treating pregnant mice at E18.5 with indomethacin, but observed

premature closure of the DA in all wild-type and Tfap2b2/2

fetuses, suggesting that the PDA in Tfap2b2/2 mice was a primary

event independent of the prostaglandin pathway. Bone morpho-

genetic proteins (BMP) have been shown to play critical roles in

limb bud outgrowth and patterning [26], while BMP signaling via

the type I BMP receptor, ALK2, is crucial for the development of

the cardiac outflow tract and ventricular myocardium [27].

Therefore, we tested Bmp2 and 4 expressions in the limb buds of

E10.5 to E12.5 by whole mount in situ hybridization. Although the

expression of Bmp2 and 4 did not grossly differ in the limb buds

between Tfap2b2/2 and Tfap2b+/+ embryos, we reproducibly

observed a slightly broader and stronger signals of Bmp2 in

Tfap2b+/+ (particularly at E10.5) and Bmp4 in Tfap2b2/2 limb

buds (most prominent at E11.5) (Fig 5), indicating that Bmp2

expression was downregulated and Bmp4 expression was upregu-

lated in the Tfap2b-deficient embryos comparing to that of wild

type embryos.

To test whether the Tfap2b gene was directly involved in the

regulation of Bmp2 and Bmp4 gene expression, we analyzed their

promoter regions. In silico sequence analysis revealed that both

promoter regions contained at least three putative Tfap2 binding

sites. These DNA-oligo sequences were synthesized, radioactively

labeled and used as probes for gel shift assays. Nuclear extracts

from Hela cells were used for the gel shift experiments because this

cell line has been known to contain high levels of TFAP2 proteins.

Among these potential TFAP2 binding sites, two oligos from the

Bmp2 promoter (first and second) and two oligos from the Bmp4

promoter (first and third) specifically bind TFAP2 proteins, albeit

with different binding affinities. Competition with cold TFAP2

oligos demonstrated that the binding was specific, while the

supershift by adding anti-Tfap2 antibodies further confirmed that

the probes were retarded by TFAP2 proteins (Fig 6). Therefore,

we subcloned a 2225bp promoter fragment of the Bmp2 gene and

a 1618bp promoter fragment of the Bmp4 gene along with their

transcription start sites into the pGL-basic vector upstream of the

luciferase reporter gene. Co-transfection of Tfap2b or Tfap2a

expression plasmids with the promoter constructs into NIH3T3

(ATCC) or HepG4 (ATCC) cells demonstrated that Bmp2

promoter activities were increased 3 to 6 fold in a dose dependant

manner (P,0.01). In contrast, the Bmp4 promoter activity was

negatively regulated by Tfap2 genes. Both Tfap2a and Tfap2b

repressed Bmp4 promoter activity in HepG2 and NIH3T3 cells 2.5

to 4 fold (P,0.01) (Fig 7).These data suggest that the transcription

factor Tfap2b is involved in the regulation of Bmp2 and Bmp4

expression and changes in Bmp expression might contribute to the

heart-hand defects in Tfap2b-deficient mice.

Discussion

Previously we have shown that Tfap2b2/2 mice die perinatally

with massively enhanced apoptotic cell death of renal epithelial

cells and terminal renal failure resulting in defective tubular

secretary function and ion homeostasis [12,13]. In this report we

demonstrate that Tfap2b mutants have a patent ductus arteriosus

and pathological changes in the lungs, which cause a lack of

oxygen supply in Tfap2b2/2 pups. As the kidneys, heart and lungs

are all vital mouse organs, both phenotypes can lead to the death

of mutant mice. Based on the physiological functions of these

organs, we believe that PDA and secondary pathological lung

changes should particularly account for the very early lethality of a

subset of Tfap2b mutants.

Abnormalities in Char syndrome also include facial dysmor-

physm and absent fifth middle phalanges with hypoplasia of the

fifth proximal and distal phalanges, but no renal disease has been

diagnosed [21]. Although no obvious facial dysmorphysm is

observed in Tfap2b2/2 mice, they develop PDA and postaxial

hexadactyly. The finger-like structure contains a single phalange

but no nail. The phenotypic difference between mouse and human

might be due to different species as well as different molecular

mechanisms stemming from the type of mutations. In humans two

different pathological mechanisms underlying Char syndrome

Figure 4. Postaxial accessory digits in Tfap2b2/2 mice and
Tfap2b expression during limb bud development. A postaxial
digit-like structure grew out laterally of the fifth finger of forelimbs in all
Tfap2b2/2 mice (a). Alizarin-red staining indicated a skeletal element
within the accessory digit (b). Whole mount in situ hybridization
showed Tfap2b expression in the posterior region of the forelimbs at
E10.5 (c), E11.5 (d) and E12.5 (e).
doi:10.1371/journal.pone.0022908.g004

Figure 5. Knockout of Tfap2b alters the expression of Bmp2 and
Bmp4. Whole mount in situ hybridization of E10.5 to E12.5 embryos
showed the expressions of Bmp2 and Bmp4 in the limb bud of wild type
and Tfap2b2/2 embryos. Bmp2 expression was decreased in the limb
buds of Tfap2b2/2 embryos, particularly at E10.5, while the expression
of the Bmp4 gene was apparently increased in the limb buds of Tfap2b-
null mutants.
doi:10.1371/journal.pone.0022908.g005

Tfap2b Deficiency and Heart-Limb Defects in Mice
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have been described: dominant-negative and haploinsufficiency

[19,22]. In dominant-negative mutations, the mutant proteins

dimerize with and knockdown the normal TFAP2B proteins,

leaving only J of the functional TFAP2B level. Haploinsufficiency

is caused by abnormal splicing of the TFAP2B gene, producing

exon skipping and frameshift mutations which are expected to

create a premature stop codon and bring about a nonsense-

mediated decay of the transcripts that result in loss of half of the

functional TFAP2B proteins. The Tfap2b-deficient mouse belongs

to the haploinsufficienncy model. With a small fraction of Tfap2b+/

2 mice developing limb anomalies and PDA, a gene dose effect is

observed. Since Tfap2b+/2 mice do not develop any kidney defect,

and even with J of functional TFAP2B proteins in Char

syndrome patients no renal abnormality is diagnosed, we postulate

that the ductus arteriosus and the posterior limb field are more

sensitive to reduced Tfap2b protein levels than the kidney.

Several pieces of evidence have addressed the importance of

Tfap2 transcription factors in the development of the cardiovas-

cular system. Tfap2a2/2 mice show malformations of the outflow

tract of the developing heart, with majority of them having double

outlet right ventricle and a small fraction demonstrating persistent

truncus arteriosus [11]. Loss of CITED2, a Tfap2 co-activator in

mice, causes similar cardiac defects, confirming that transcrip-

tional gene regulation by Tfap2 proteins is crucial for normal

cardiac development [28]. In this study we demonstrate that

Tfap2b is expressed in cardiac neural crest cells during the early

development of mouse DA and may therefore play an essential

role for its proper formation and remodeling. Both Tfap2a and

Tfap2b are expressed in cardiac neural crest cells in the

pharyngeal arches surrounding the pharyngeal arch arteries

[11], which later populate the aortopulmonary septum and

conotruncal cushions prior to and during overt septation of the

outflow tract [25]. As Tfap2a and Tfap2b knockout mice show

different cardiac phenotypes, it is most likely that the two genes

play different roles within cardiac neural crest cells.

Tfap2b is expressed in the DA precursor and the wall of DA of

middle stage mouse embryos, implying that it plays an important

role as a transcription factor by regulating the expression of other

genes during the early stages of ductal development, which are

essential for ductal remodeling and closure at birth. By treating

mutant Tfap2b fetuses with indomethacin we can exclude the

connection of Tfap2b to the prostaglandin pathway. Ivey et al

recently also have shown that Tfap2b is expressed in the vascular

smooth muscle layer of the ductus arteriosus, which derive largely

from neural crest cells and initiate postnatal ductal closure. Their

data suggest that a transcriptional network composed of Tfap2b,

Ets-1 and Hif2a may regulate ductal smooth muscle development

and that a disruption of this pathway may contribute to patent

ductus arteriosus by affecting the development of its smooth

muscle layer [29].

Figure 6. TFAP2 oligos derived from Bmp2 and Bmp4 promoters bind TFAP2 proteins. Electromobility gel shift assays (EMSAs) were
performed by incubating HeLa cell extracts with radioactively labeled TFAP2 oligonucleotides derived from Bmp2 and Bmp4 gene promoters. The
oligos 1, 2 in the Bmp2 promoter and oligo 1, 3 in the Bmp4 promoter bound TFAP2 proteins with different affinities. The signals were competed by
adding 100x cold oligos and the radioactive oligos were supershifted by anti-TFAP2 antibody, demonstrating binding specificity. Oligo 2 from the
Bmp4 promoter bound unknown proteins that moved faster than the TFAP2 protein-oligo complex, but was neither competed by cold oligos nor
supershifted by TFAP2 antibodies.
doi:10.1371/journal.pone.0022908.g006

Tfap2b Deficiency and Heart-Limb Defects in Mice
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Hand anomalies are another prominent characteristic of Char

syndrome, causing it to be a member of the class of combined

congenital cardiac and limb deformities – the so-called heart-hand

syndromes. Tfap2b is restrictively expressed in the posterior

mesenchyme of the developing mouse limb at E10.5 and its

expression extends more anterior at later developmental stages.

Consistently, hand anomalies affect only posterior digits in Char

syndrome patients and Tfap2b2/2 mice. In contrast, Tfap2a is

expressed in the anterior and posterior mesenchyme. Inactivation

of Tfap2a in mice result in severe limb anomalies with poly- or

polysyndactylies, as well as an absence or duplication of more

distal limb elements [10,30]. These data imply that both

transcription factors fulfill critical and non-redundant functions

during limb bud development as they cannot compensate for the

loss of the other in the posterior mesenchyme.

The mechanisms underlying the association of heart-hand

defects are unknown. More than 100 Mendelian disorders present

with both heart and limb defects. A hypothesis has been proposed

that there is a cardiomelic developmental field – the heart and

limb primordia, in the early embryo. Abnormalities in this field

might result in heart-hand defects [31]. As we have documented in

this study that Tfap2b is expressed during the entire developmental

time window of the DA and the limbs, the developmental

abnormalities in the ductus and limbs should be attributed to the

altered expression of downstream genes, and may be through the

same pathway. Bone morphogenetic proteins (BMPs) are secreted,

multi-functional growth factors that belong to the transforming

growth factor b (TGFb) superfamily. Members of BMPs,

particularly the BMP2 and BMP4, are expressed in the vertebrate

limb bud and BMP signaling plays an important role in limb

outgrowth and patterning. Bmp mutant mice show malformed

limbs, including postaxial polydactyly with digit five duplications

[26,32,33]. BMP2 and BMP4 have also been implicated in

promoting neural crest cells’ (NCC) induction, maintenance,

migration and differentiation in several different model organisms

[34]. The mouse has three known BMP2/4 type I receptors, of

which Bmpr1a is expressed in the neural tube sufficiently early to be

involved in neural crest development from the outset. Ablation of

Bmpr1a caused a shortened cardiac outflow tract with defective

septation, acute heart failure, and reduced proliferation of

ventricular myocardium [27]. Importantly, abnormal regression

of the left 6th aortic arch artery, which is the precursor of DA, was

identified in mice lacking the Bmp receptor ALK2 in neural crest

cells [35]. These observations provide direct evidence that Bmp

signaling is required for the development of mouse DA and limbs.

As the direct regulator of Bmp2 and Bmp4, Tfap2b protein level

and activity will alter the activities of Bmp2 and Bmp4, which will

subsequently impact the development of mouse DA and limbs.

Based on the literature and our findings, we conclude that Bmp2

and Bmp4 are Tfap2b downstream target genes and may

contribute to the PDA and postaxial accessory digits in the

Tfap2b-null mice.

Figure 7. Tfap2b directly regulates Bmp2 and Bmp4 activities in cell transfections. The Bmp2 and Bmp4 promoter regions were cloned into
pGL3-basic upstream of the luciferase gene as schematically shown. Crosses indicated the relative locations of the three TFAP2 binding sites in the
promoters (a). Luciferase activities were increased by co-transfection of the Bmp2 promoter construct and Tfap2 expression plasmids in HepG2 and
NIH3T3 cells (b). In opposite, Luciferase activities were decreased by co-transfection of Bmp4 promoter construct and Tfap2 plasmids in both cell lines
(c). Data in b and c were presented as mean 6 SD. Stars indicated significant differences from basal levels of relative luciferase activities (P,0.01).
doi:10.1371/journal.pone.0022908.g007

Tfap2b Deficiency and Heart-Limb Defects in Mice
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Materials and Methods

Tfap2b-null mice and genotype analysis
The Tfap2b-deficient mice were created by disrupting the 4th

exon of the Tfap2b gene. Tails of adult mice were cut at three

weeks after birth. Tissues from newborn pups were collected at the

time of sacrifice. Genomic DNA was extracted from these tissues

using a DNeasy Blood & Tissue Kit (Qiagen). The genotypes for

Tfap2b were determined by PCR using the following primers:

MAP2B4d: 59 CCT CCC AAA TCT GTG ACT TCT 39;

MAP2B4r: 59 TTC TGA GGA CGC CGC CCA GG 39;

PGKpolyA-d: 59 CTG CTC TTT ACT GAA GGC TCT TT 39

[12,13]. Control Tfap2b+/+ mice were generated by crossing

Tfap2b+/2 mice to ensure an identical genetic background.

This study conforms to the Guidelines for Care and Use of

Laboratory Animals published by the US National Institutes of

Health. All experimental manipulations of mice were approved by

the Institutional Animal Care and Use Committee of Mount Sinai

School of Medicine (Approval number 98–777).

In situ hybridization
A 326-bp fragment of Tfap2b (nt343–668) cloned in a pBS

vector was used to generate a mRNA probe used for studying the

Tfap2b expression patterns during mouse development. 20 mg

plasmid DNA were linearized with suitable restriction sites to

allow the T3 or T7 promoter to transcribe a35S-UTP- labeled

antisense and sense Tfap2b-specific RNA probes. Probe length was

reduced by alkaline hydrolysis at 60uC for 35 minutes. The probe

was purified with a Sephadex-G50 column. For whole mount in

situ hybridization, the RNA probes were labeled with digoxin and

precipitated with ethanol. After washing with 70% ethanol, the

probes were resuspended in RNase-free water.

Wild type mice, which were generated by crossing the Tfap2b+/

2 mice, were mated overnight. The next morning, females were

checked for vaginal plugs. Positive females were separated to new

cages and the afternoon of the plug date was assigned a gestational

0.5 days post-coitum (dpc). Embryos were collected between 7.5

dpc and 18.5 dpc. Pregnant females were sacrificed by CO2 and

the embryos were collected in DEPC-treated PBS. Embryos were

fixed in 4% paraformaldehyde overnight, washed in 150 mM

NaCL, and dehydrated through graded ethanol. After treating

with Americlear (Allegiance) twice, embryos were embedded in

Paraplast (Fisher) overnight under vacuum. Serial sections of 7 mm

were cut and floated onto Superfrost/Plus (Fisher) slides. Then the

slides were dried at 37uC overnight and stored at room

temperature until use.

Paraffin sections of mouse embryos were deparaffinized with

Americlear (Allegiance) and hydrated with graded ethanol from

100% to 95%, 85%, 70%, 50% and 30% for 3 min each step. PBS

was the last step in hydration. After fixing with 4% paraformal-

dehyde, protease K digestion was performed, followed by

treatment with TEA/acetic anhydride. Then the sections were

dehydrated through a graded ethanol series (the order of graded

ethanol was reversed). Hybridization was carried out at 50uC.

Following washing, the sections were air dried. Autoradiography

was performed by dipping the slides in the Kodak NBT2 emulsion,

air drying and exposing for 7–10 days. This was followed by

developing in Kodak D19 and H&E counter staining.

For whole mount in situ hybridization, paraformaldehyde-fixed

embryos were washed with PBS/Tween-20 and then digested with

protease K. After post-fixing with 4% paraformaldehyde/0.1%

glutaraldehyde, hybridization was performed using a DIG-labeled

RNA probe for 48 h, followed by reaction with an AP-anti-DIG

antibody (Roche). Embryos were washed extensively and then

incubated with BMP-purple substrate (Roche).

Phenotype analysis
Tfap2b +/2 males and females were mated and pregnant females

were monitored until natural delivery at term. Two or six hours

after birth, newborn pups from heterozygous intercrosses were

decapitated and transected below the rib cages. The chests were

fixed with 2% formalin for 48 h, processed with an automatic

processor and paraffin-embedded. Serial sectioning was performed

and the slides were stained with H&E for pathological analysis of

DA. For the histological analysis of limbs, tissues were fixed in 4%

paraformaldehyde/PBS over night at 4uC, then dehydrated and

embedded in paraffin. Five to seven-micron sections were made

with a microtome and stained with H&E.

Promoter constructs, transfections and luciferase assays
Lambda phage and Pac libraries were screened. The 59 end

flanking regions of the murine Bmp2 and Bmp4 genes from residue

2834 to +1394 of Bmp2 and 21492 to +120 of Bmp4, referring to

the transcription start site, were amplified by either genomic PCR

or lambda phage screening. All fragments were inserted into the

plasmid pGL3-basic (Promega) and confirmed by sequencing.

HepG2 (ATCC, HB-8065) and NIH3T3 (ATCC, CCL-92) cells

were grown at 37uC / 5% CO2 in DMEM (Dulbecco’s modified

Eagle medium; Gibco) supplemented with penicillin (100 U/ml),

streptomycin (10 mg/ml) (Sigma) and 10% fetal calf serum (Gibco).

26105 HepG2 or 66104 NIH3T3 cells were seeded into each well

of a 6-well plate and transiently transfected with 0.5 mg promoter

plasmid DNA using the Lipofectamine Plus method (Gibco)

according to the manufacturer’s instructions. In addition, different

amounts (10, 50, 100 ng) of Tfap2a and Tfap2b cDNAs were

cotransfected. All transfections were performed in triplicate.

24 hours after transfection, the cells were lysed and the luciferase

activity in the lysate was measured. To normalize transfection

efficiency, 0.1 mg of a pRL-TK plasmid (Promega) was cotrans-

fected and renilla luciferase activity was measured by a Dual

Luciferase Reporter Assay (Promega). Student t test was carried out

to analyze the differences of relative luciferase activities between

co-transfections with Tfap2 plasmids and their corresponding basal

levels (Bmp promoter construct alone).

Gel mobility shift assays
The following complementary oligonucleotides corresponding

to three AP-2 consensus binding sites in the Bmp2 and Bmp4

promoter regions were synthesized, annealed, radioactively end

labeled with 32P and used as probes: Bmp2 AP-2 I sense: GAG

TGA GCG CCC AAG GCG AGC GGG C, antisense: GCC

CGC TCG CCT TGG GCG CTC ACT C; Bmp2 AP-2 II sense:

GAC ACT TGG CCC GAG GGC TCG GAG C, antisense:

GCT CCG AGC CCT CGG GCC AAG TGT C; Bmp2 AP-2 III

sense: GCG CCG CAG CCG TGC GGG CTC TGC TG,

antisense: CAG CAG AGC CCG CAC GGC TGC GGC GC;

Bmp4 AP-2 I sense: AAA AAG GGG CCA AAG GGC ACT

TTG T, antisense: ACA AAG TGC CCT TTG GCC CCT TTT

T; Bmp4 AP-2 II sense: GAG GCG AGG CCC CGT GGC TGG

ATG GG, antisense: CCC ATC CAG CCA CGG GGC CTC

GCC TC; Bmp4 AP-2 III sense: AGG GAG GGG CCG CTG

GGG GGA AAG A, antisense: TCT TTC CCC CCA GCG

GCC CCT CCC T. Nuclear extracts were prepared from Hela

cells, which are rich in TFAP2A. 20 ml reactions were set up on ice

containing 6.5 ml H2O, 1 ml Hela cell extracts, 1 ml dI/dC (10

units/ml), 11.5 ml 2x gel shift buffer (20 mM Tris pH7.9, 9%

Ficoll 400, 120 mM KCl, 8 mM MgCl2, 0.2 Mm EDTA,

Tfap2b Deficiency and Heart-Limb Defects in Mice

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22908



100 mg/ml BSA, 0.4% NP40 and 2 mM DTT). After 15 min, the

reactions were fractionated on 4% acrylamide gel. The gel was

dried and visualized by autoradiography. To test the specificity,

100-fold excess of unlabeled, well-characterized TFAP2 binding

oligos (AGT AGA AGC TGG GCC CCA GGC GTG GCG

CTT) were added for the competition assay. Specific Tfap2-DNA

complexes were determined by supershift experiments, which were

performed using an anti-AP-2a antibody (Geneka).
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