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Abstract

Background: Members of the Mps1 kinase family play an essential and evolutionarily conserved role in the spindle assembly
checkpoint (SAC), a surveillance mechanism that ensures accurate chromosome segregation during mitosis. Human Mps1
(hMps1) is highly phosphorylated during mitosis and many phosphorylation sites have been identified. However, the
upstream kinases responsible for these phosphorylations are not presently known.

Methodology/Principal Findings: Here, we identify 29 in vivo phosphorylation sites in hMps1. While in vivo analyses
indicate that Aurora B and hMps1 activity are required for mitotic hyper-phosphorylation of hMps1, in vitro kinase assays
show that Cdk1, MAPK, Plk1 and hMps1 itself can directly phosphorylate hMps1. Although Aurora B poorly phosphorylates
hMps1 in vitro, it positively regulates the localization of Mps1 to kinetochores in vivo. Most importantly, quantitative mass
spectrometry analysis demonstrates that at least 12 sites within hMps1 can be attributed to autophosphorylation.
Remarkably, these hMps1 autophosphorylation sites closely resemble the consensus motif of Plk1, demonstrating that these
two mitotic kinases share a similar substrate consensus.

Conclusions/Significance: hMps1 kinase is regulated by Aurora B kinase and its autophosphorylation. Analysis on hMps1
autophosphorylation sites demonstrates that hMps1 has a substrate preference similar to Plk1 kinase.
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Introduction

The purpose of mitosis is to equally distribute the duplicated

genome amongst dividing cells. Defects in chromosome segregation

can lead to aneuploidy, which in turn is implicated in tumorgenesis

[1,2]. Attachment of mitotic chromosomes to spindle microtubules is

mediated by the kinetochore (KT), a proteinaceous complex

assembled on centromeres [3,4]. Importantly, the KT functions not

only as a structural platform, but also as a signaling hub to coordinate

chromosome attachment, SAC activity and the metaphase to

anaphase transition [5]. The purpose of the SAC signaling cascade

is to delay the onset of anaphase until all chromosomes have

undergone stable, bi-oriented attachments [6,7]. Biochemically, this

is achieved through inhibition of the ubiquitin ligase APC/C

(anaphase promoting complex/cyclosome), in part through seques-

tration of Cdc20, an activator protein of the APC/C [7,8].

SAC function requires several proteins that localize to the outer

KT. Of these, Bub1, Bub3, Mad1, Mad2, Mad3/BubR1 and

Mps1 are conserved from yeast to humans [6]. Mps1 (‘monopolar

spindle 1’) was originally identified in budding yeast as a gene

required for spindle pole body (SPB) duplication [9]. Subsequent-

ly, Mps1 was found also to be essential for SAC activity [10,11]

and this latter function is clearly conserved in evolution

[12,13,14,15,16]. Human Mps1 (hMps1; also known as TTK

[17]) peaks in expression and activity as cells go through mitosis

[14,18]. Moreover, mammalian cells depleted of Mps1 are unable

to sustain full SAC activity [14,19]. hMps1 is known to recruit

checkpoint components to unattached kinetochores, including

Mad1 and Mad2 [13,16,20,21,22,23,24], and to stabilize APC/C

inhibitory complexes [22]. Furthermore, hMps1 was found to

contribute to the correction of improper chromosome attachments

[20,22,23,25,26], echoing earlier studies in budding yeast [27,28].

When the SAC is active during prometaphase, hMps1 is hyper-

phosphorylated, concomitant with high hMps1 activity [14]. It has

been demonstrated that hMps1 autophosphorylates on T676

within the activation loop and that this modification is required for
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full activity in vitro [29] and SAC function in vivo [30,31]. Most

recently, in vitro autophosphorylation of the catalytic domain of

hMps1 on at least 16 residues was described and phosphorylations

at both T676 and T686 were shown to be important for catalytic

activity [32]. In addition, several in vivo phosphorylation sites

outside the catalytic domain have been described [30,31,33], but

the functional significance of these latter phosphorylations has not

yet been studied in detail.

Here, we have explored which upstream kinases might be

responsible for phosphorylation of hMps1 during mitosis. We

identified 29 in vivo phosphorylation sites within hMps1, including

4 sites that have not previously been reported. While Cdk1,

MAPK, Plk1 and hMps1 itself can phosphorylate hMps1 in vitro,

the kinase activities of Aurora B and hMps1 are required for the

hyper-phosphorylation induced upshift (retardation of the gel

electrophoretic mobility) of hMps1 during mitosis. Using quanti-

tative mass spectrometry, we demonstrate that numerous phos-

phorylation sites, including several sites matching the Plk1

consensus, are in fact hMps1 autophosphorylation sites. This

indicates that hMps1 and Plk1 are able to phosphorylate similar

motifs.

Results

Identification of in vivo phosphorylation sites on hMps1
kinase

To study the functional significance of hMps1 phosphorylation,

we first carried out experiments aimed at mapping phosphoryla-

tion sites on hMps1 during mitosis. Using a previously described

anti-hMps1-N1 monoclonal antibody (mAb) [14], we immuno-

precipitated endogenous hMps1 protein from Nocodazole arrested

mitotic HeLa S3 cell lysates. A band of 97 kDa, the predicted

molecular weight of hMps1 (Fig. 1A), was subjected to in-gel

digestion with trypsin, TiO2 based enrichment of phosphopeptides

and analysis by mass spectrometry. A total of 29 phosphorylation

sites were identified (Fig. 1B for a representative spectrum). Of

these, 4 sites (S329, T418, T423 or T424, T458) represent novel

sites. Moreover, 3 sites (T564, S682, S742) previously reported to

be phosphorylated in vitro are shown here to be phosphorylated

also in vivo. The remaining 22 sites were independently identified

by other groups during the course of our study (Table S1)

[30,31,33].

As a first step towards understanding which kinase(s) might be

responsible for the observed phosphorylations, the 29 phosphor-

ylation sites identified in this study were grouped according to

known consensus motifs for key mitotic kinases. Four sites (S281,

S436, T453, S821) matched an S/T-P motif, suggesting that they

are likely targets of proline-directed kinases, notably CDKs or

MAPKs [34]. Three sites (T12, S37, S363) conform to the classic

Plk1 kinase consensus motif D/E-X-S/T-w [35], and two

additional sites (S321 and T564) contain a N/Q in position 22

as well as a hydrophobic residue in position +1. These latter sites

conform to a broadened Plk1 consensus motif [36]. In addition, six

other sites (S7, T33, T360, T371, T676, S742) share features with

the broadened Plk1 consensus motif (E/D/N/Q at 22 position),

although they lack a hydrophobic residue at position +1. Finally,

S682 qualifies as a potential Aurora B phosphorylation site [37],

but the remaining 13 sites do not match the consensus for any of

the above kinases (Table S1). The positioning of phosphorylation

sites along the primary sequence of hMps1 is illustrated in Fig. 1C.

hMps1 is a likely substrate of several mitotic kinases
The observation that phosphorylation sites identified on

endogenous hMps1 conform to the consensus motifs of several

known mitotic kinases raised the possibility that hMps1 is

regulated by one or more of these enzymes. To directly address

this question, a kinase dead (KD) version of recombinant full-

length GST-hMps1 protein was purified from Sf9 cells and used as

an in vitro substrate for a panel of recombinant kinases. As shown in

Fig. 2A, GST-hMps1-KD could readily be phosphorylated by

Cdk1/Cyclin B as well as, albeit to a lesser extent, both MAPK

(Erk2) and Plk1. In addition, immuno-purified hMps1 kinase also

phosphorylated GST-hMps1-KD, as well as itself (Fig. 2A). In

contrast, Aurora B barely phosphorylated GST-hMps1-KD,

although it strongly phosphorylated MCAK (Fig. S1), a known

Aurora B substrate [38,39].

To determine whether any of the above kinases also

phosphorylates hMps1 in vivo, we used Western blotting to monitor

the effects of various kinase inhibitors on the phosphorylation-

induced mitotic upshift of endogenous hMps1. As illustrated in

Fig. 2B, cells were released from a double Thymidine arrest and

10 hours later treated for 1 hour with either DMSO or kinase

inhibitors, together with Nocodazole and the proteasome inhibitor

MG132 (to ensure a mitotic arrest). When compared to hMps1 in

Thymidine arrested cells, the migration of hMps1 in DMSO-

treated mitotic cells was clearly retarded, and, as shown previously,

this upshift reflects hMps1 hyperphosphorylation [14]. The upshift

was also observed after inhibition of Plk1 by TAL [40], Cdk1 by

Roscovitine, or MAPK by U0126 (Fig. 2C). In contrast, the upshift

was significantly attenuated in the presence of the hMps1

inhibitors SP600125 [41], Reversine [21] and Mps1-IN-1 [16]

or the Aurora B inhibitor ZM447439 [42]. To demonstrate the

efficacy of drug treatment, a mitotic upshift of BubR1 was

monitored in parallel. In agreement with previous results [43,44],

the BubR1 upshift was attenuated in response to TAL,

Roscovitine, or ZM447439; interestingly, it was sensitive also to

SP600125, Reversine and Mps1-IN-1. Taken together, these

results suggest that hMps1 itself as well as Aurora B control the

hyperphosphorylation-induced upshift that is typical of hMps1

during mitosis. Considering that hMps1 was a poor in vitro

substrate of Aurora B (Fig. 2A), Aurora B inhibition is likely to

reduce the upshift of hMps1 through an indirect mechanism.

In support of this view, and in agreement with recent

independent studies [20,21], we found that siRNA-mediated

depletion or inhibition of Aurora B led to a significant reduction of

the hMps1 signal at KTs (Figures 3A and B). This suggests that

Aurora B positively regulates hMps1 localization to KTs, which

may then promote hMps1 hyperphosphorylation and activation

through an increase in the local concentration of hMps1.

hMps1 autophosphorylation sites resemble the Plk1
consensus motif

Taking into account the large number of apparent Plk1

phosphorylation sites identified on endogenous hMps1 (Fig. 1C),

we were surprised to find that the Plk1 inhibitor TAL failed to

detectably influence hMps1 hyperphosphorylation (Fig. 2C). To

explore which, if any, of the putative Plk1 sites on hMps1 were

sensitive to TAL treatment in vivo, we combined mass spectrometry

with SILAC (stable isotope labeling with amino acids in cell

culture) (Fig. 4A). In parallel experiments, we inhibited hMps1

itself using SP600125. HeLa S3 cells labeled with amino acids

made of light or heavy isotopes were released from a Thymidine

arrest into Nocodazole. Mitotic cells were then collected by shake-

off and released for 40 minutes into fresh medium containing

kinase inhibitors (TAL or SP600125) or DMSO for control. After

mixing equivalent amounts of lysates from drug-treated and

control cells, endogenous hMps1 was immunoprecipitated,

resolved by SDS-PAGE, and in-gel digested by trypsin. Following

Analysis of Mps1 Autophosphorylation Sites
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TiO2 enrichment of phosphopeptides, phosphorylation sites were

analyzed and quantified by mass spectrometry. Remarkably,

phosphorylation at most potential Plk1 sites was not detectably

reduced upon TAL treatment (Fig. 4B). Only phosphorylation at

S363 was reduced in response to both TAL and SP600125, and

phosphopeptides corresponding to T371 and T676 could not be

identified in the TAL treated samples. These results strongly argue

that Plk1 is not responsible for most of the phosphorylations on

putative ‘Plk1 consensus’ sites on hMps1. In striking contrast,

inhibition of hMps1 caused a marked reduction in phosphoryla-

tion on 12 sites (S7, T12, T33, S37, S80, S321, S363, T371, S382,

T676, T686, S837) (Fig. 4B). SP600125 was originally developed

as an inhibitor of JNK [45] and has recently been shown to also

inhibit Aurora B in vitro [21]. Hence SP600125 cannot be

considered a specific inhibitor of hMps1. However, we emphasize

that phosphorylation at 4 putative Cdk1 sites was not affected by

SP600125 treatment (Fig. 4B); furthermore, in vitro kinase assays

revealed no influence of SP600125 on Plk1 kinase activity (data

not shown). Considering the reported inhibitory effect of

SP600125 on Aurora B, it is possible that SP600125 treatment

leads to an indirect inactivation of hMps1 via a lack of Aurora B-

dependent recruitment to kinetochores. However, we emphasize

that similar results to those shown in Figure 4B were also obtained

when using the more specific Mps1 inhibitor Mps1-IN-1 ([16],

Figure 1. Identification of in vivo hMps1 phosphorylation sites. (A) Coomassie Brilliant Blue (CBB) staining of anti-Myc and anti-hMps1
immunoprecipitation products resolved on a 4–12% NuPAGE gel. About 20 mg mitotic HeLa S3 cell lysate was incubated with anti-Myc or anti-
hMps1 N1 antibody coupled with protein G beads, respectively. (B) Collision induced dissociation (CID) mass spectrum of the human TTK/hMps1
derived phosphopeptide (1–9) (ac)M(ox)ESEDLS(ph)GR. C-terminal and N-terminal fragments of the peptide are marked as y- and b-ions, respectively,
S(ph) denotes phospho-serine, and (ac)M(ox) represents the acetylated and oxidized N-terminus. The observed peptide fragments are also shown
within the sequence above the spectrum. The MS/MS spectrum unambiguously identifies S7 as the phosphorylated amino acid within the peptide.
(C) Schematic showing hMps1 phosphorylation sites identified by mass spectrometry. Sites conforming or resembling to a Plk1, Cdk1/MAPK and
Aurora B consensus motifs are shown in red, blue and purple, respectively. The asterisk indicates the phosphorylation site in the activation loop.
doi:10.1371/journal.pone.0018793.g001
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Table S2). Thus, the most straightforward interpretation of the

above data is that SP600125 indeed inhibited hMps1. Collectively,

our SILAC data strongly suggests that phosphorylation of several

putative ‘Plk1 sites’ on hMps1 is not brought about by Plk1 but by

hMps1 itself. Recently, Tyler et al. reported numerous hMps1

autophosphorylation sites [32], but several of these could not be

confirmed here as in vivo hMps1 phosphorylation sites. On the

other hand, 7 additional sites (S15, T288, T360, S362, T564,

S682, S742) not identified in our SILAC analysis were also

reported as in vivo autophosphorylation sites in recent publications

[31,32,46]. A Web logo representation of all autophosphorylation

sites identified in vivo, either here or previously (see Table S3),

confirms that hMps1 phosphorylation sites demonstrate a

propensity for E/D/N/Q at the 22 position (11 of 19 sites), very

similar to the Plk1 consensus motif (Fig. 4C) [36].

The resemblance of the broadened Plk1 and proposed hMps1

consensus motifs prompted us to re-analyze a recently generated

data set of the Plk1-dependent and spindle-associated phospho-

proteome [36]. In particular, we searched this data set for

phosphorylation sites that were unresponsive to chemical inhibi-

tion or knock-down of Plk1 in SILAC experiments but contained

E/D/N/Q at the 22 position [36]. Using recombinant GST-

hMps1 for phosphorylation of peptides spotted onto membranes,

we could indeed show that several of these in vivo phosphorylation

sites not only conform to the proposed hMps1 consensus motif but

are also phosphorylated by hMps1 in vitro. These include MCAK

(T87), Nup98 (S591) and Cep215 (S613) (Figure 4D).

Discussion

In this study we examined in vivo hMps1 phosphorylation by

mass spectrometry and investigated candidate upstream kinases for

their possible involvement in hMps1 phosphorylation. Although a

number of the hMps1 phosphorylation sites analyzed here were

also identified independently by other groups [29,30,32,33,47], we

emphasize that our study provides in vivo evidence for phosphor-

ylation of several sites that had previously been identified only in

vitro. Our biochemical analysis of hMps1 in mitotic cells indicates

Figure 2. hMps1 is a likely substrate of several mitotic kinases. (A) In vitro phosphorylation of recombinant GST-hMps1KD in either kinase
buffer alone, or by recombinant Plk1, Cdk1, MAPK, Aurora B kinase and immuno-purified hMps1 kinase. The left panel shows CBB staining of the SDS-
PAGE gel, the right panel shows the result of autoradiography. (B) Schematic representation of the protocol followed to analyze the upstream
kinase(s) required for hMps1 hyperphosphorylation in vivo, as monitored through a characteristic upshift. (C) Mitotic cells treated with the indicated
small molecule inhibitors were collected using the protocol shown in (B) and processed for Western blotting against hMps1, BubR1 and a-tubulin
respectively.
doi:10.1371/journal.pone.0018793.g002
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PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18793



that Aurora B kinase and hMps1 itself are required for hMps1

hyper-phosphorylation during mitosis. Given that the mitotic

upshift of hMps1 correlates with increased kinase activity [14], it is

likely that hMps1 and/or Aurora B regulate the in vivo activity of

hMps1. While hMps1 readily phosphorylated itself in vitro, only

marginal in vitro phosphorylation of hMps1 by Aurora B was

observed. Thus, it appears plausible that Aurora B causes mitotic

hyperphosphorylation of hMps1 through an indirect mechanism.

In line with evidence from Xenopus [48] and recent studies using

the novel inhibitors Reversine and AZ3146 [20,21], our

immunofluorescence analysis indicated that the association of

hMps1 with KTs was significantly reduced in response to an

impairment of Aurora B function.

In addition to encompassing most of the previously identified

phosphorylation sites (Table S1), our study reveals a number of

novel sites. Interestingly, we found that 12 phosphorylation sites

within hMps1 represent autophosphorylation sites. Weblogo

analysis on these SP600125-sensitive sites and autophosphoryla-

tion sites reported by other groups showed that hMps1

phosphorylation sites have a preference for E/D/N/Q at the

22 position. This demonstrates that hMps1 and Plk1 are able to

recognize similar substrate consensus motifs. In agreement with

this conclusion, a recent survey of kinase specificities in

Saccharomyces cerevisiae revealed a preference for D/E at the 22

position for yeast Mps1 [49]. Moreover, several published Mps1

substrates have a E/D/N/Q at 22 position, including Borealin

(T94) [25], Ndc80 (S4, T38, T248, T252) [50], Dam1 (S221) [51],

Spc29 (T18, T159, S187, T240) and Cdc31 (T110) [52,53]. This

list can further be extended by the substrates MCAK (T87),

Nup98 (S591) and Cep215 (S613) presented in this study.

Although both hMps1 and Plk1 are important for mitotic

progression and the fidelity of chromosome congression, the known

roles of these kinases are widely different. While disruption of

hMps1 function interferes with SAC activity and thus accelerates

traverse through mitosis, inhibition of Plk1 causes a SAC-dependent

mitotic arrest. Thus, it may appear surprising that at least some

substrates of hMps1 and Plk1 share a similar consensus motif. In vivo,

substrate specificity of any kinase is strongly influenced by

subcellular localization. Moreover, the interactions between kinases

and their substrates are influenced also by molecular features (in

either kinase and/or substrate) that reside outside of the interaction

domain between consensus motif and catalytic site. Nevertheless,

our present data suggest that hMps1 and Plk1 share at least some

common physiological substrate(s). Thus, the access of the two

kinases to these substrates is expected to be tightly regulated in time

and space. In future studies, it will be interesting to explore the

possibility that hMps1 and Plk1 converge on a set of common

physiological substrates during mitotic progression.

Materials and Methods

Cell culture and drug treatments
HeLa S3 cells were routinely maintained in DMEM (Invitrogen)

supplemented with 10% FBS and penicillin-streptomycin (100 IU/

ml and 100 mg/ml, respectively, GIBCO). Thymidine was used at

2 mM, Nocodazole at 100 ng/ml, SP600125 at 20 mM, Reversine

at 0.5 mM, Mps1-IN-1 at 1.0 mM (kindly provided by Nathanael S.

Gray), ZM447439 at 5 mM, TAL at 1 mM, Roscovitine at 100 mM,

U0126 at 20 mM, and MG132 was used at 20 mM.

Plasmids and recombinant protein production
For expressing recombinant hMps1, wild type and kinase dead

hMps1 cDNA was amplified and cloned into the pVL1393

baculovirus transfer vector (Pharmingen) with an N-terminal GST

tag, and then expressed in Sf9 cells following the manufacturer’s

instructions. Recombinant His-Plk1 [54] and MBP-BubR1 [43]

have been described previously.

Figure 3. Aurora B is required for maximal KT localization of hMps1. (A) Representative immunofluorescence images of prometaphase cells
treated for 1 hour with DMSO or ZM447439, or transfected with GL2- or Aurora-B-directed siRNA. Thirty-six hours after transfection, cells were fixed
with PHEM buffer and then co-stained for Mps1 (red), ACA (green), and DNA (blue). Scale bar represents 10 mm. (B) Bar graph showing the
quantification of hMps1 KT signal (normalized to ACA signal) in cells treated as described in (A). Bars indicate mean 6 SE after analysis of 5 cells (.20
KTs were counted per cell). * P,0.01 versus DMSO treated cells. ** P,0.01 versus GL2 siRNA transfected cells.
doi:10.1371/journal.pone.0018793.g003
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Antibodies
Monoclonal anti-hMps1-N1 [14] and anti-BubR1 [43] anti-

bodies have been previously described. Anti-a-tubulin (DM1A,

Sigma) and ACA (Immunovision, Springdale, AR) were obtained

commercially. For all Western blotting, signals were detected using

HRP-conjugated anti-mouse or anti-rabbit antibodies (Pierce).

Kinase assays
In vitro phosphorylation of recombinant kinase dead GST-

hMps1 was carried out at 30uC using 300 ng of recombinant

hMps1-KD and 100 ng of each kinase in 40 ml of kinase reaction

buffer (50 mM Tris-HCl pH7.5, 10 mM MgCl2, 0.5 mM DTT,

10 mM ATP, 5 mCi c-32P-ATP). Reactions were stopped after

Figure 4. Potential Plk1 sites are hMps1 autophosphorylation sites. (A) Schematic representation of the SILAC experimental protocol used to test
the effect of the small molecule inhibitors TAL and SP600125 on hMps1 phosphorylation in vivo. (B) Table showing the relative phosphorylation levels, as
identified by mass spectrometry, after treatment with TAL or SP600125. Phosphorylation sites responsive to SP600125 treatment are shown in red,
phosphoacceptor residues are shown in bold and residues matching the proposed hMps1 consensus motif are underlined. The table shows the results from
two independent experiments. Hyphens indicate that the phosphopeptide was not identified. (C) Web logo analysis of hMps1 autophosphorylation sites
(upper panel). Logos were created using Web logo 2.8.2 (http://weblogo.berkeley.edu/) [59]. In the lower panel the corresponding frequency plot is
reported. (D) Previously identified phosphorylation sites matching the broadened Plk1 consensus but being unresponsive to Plk1 inhibition or depletion
[36] were chosen for peptide spot kinase assays. From left to right: peptide spots (phosphoacceptor S/T to the left; alanine substitution A to the right),
protein name, phosphorylated residue and target peptide. Phosphoacceptor residues are shown in bold, residues matching the broadened Plk1 consensus
motif are underlined. Membranes were either incubated with wild-type (WT) or kinase-dead (KD) GST-hMps1. Borealin (T94) was included as control.
doi:10.1371/journal.pone.0018793.g004

Analysis of Mps1 Autophosphorylation Sites
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30 min by addition of sample buffer. Samples were then resolved

by SDS-PAGE and visualized by autoradiography. Recombinant

active Cdk1/Cyclin B, MAPK (Erk2) and Aurora B kinase were

purchased from Invitrogen.

SILAC labeling with 13C6
15N4-L-arginine and 13C6

15N2-L-
lysine

HeLa S3 cells were cultured in DMEM formulated with either

unlabeled L-lysine and L-arginine or labeled 13C6
15N4 -L-

arginine and 13C6
15N2-L-lysine (Cambridge Isotope Laboratories)

at the concentration of 44 and 86 mg/ml respectively, and

supplemented with 10% dialyzed fetal bovine serum, 50 units/

ml penicillin, and 50 mg/ml streptomycin. Unlabeled and labeled

HeLa cells were synchronized in mitosis using a sequential

Thymidine block/release, Nocodazole block protocol. Unlabelled

mitotic cells were collected and released into MG132 plus DMSO;

in parallel, labeled mitotic cells were collected and released into

MG132 plus TAL or SP600125. After 40 minutes, both sets of

cells were collected and equal amount of cell lysates (,15 mg

each) were mixed together. Endogenous hMps1 was then

immunoprecipitated using the anti-hMps1-N1 mAb. Samples

were separated by a 4–12% NuPAGE gel (Invitrogen).

Mass spectrometry and peptide identification
Coomassie Brilliant Blue (CBB)-stained protein bands were in-

gel digested by trypsin (sequencing grade, Roche, Germany)

essentially as described [55] and phosphorylated peptides were

enriched using TiO2 affinity purification with glycolic acid as a

modifier [56]. Subsequently, tryptic peptides were analyzed by

nanoLC-MS/MS using a nanoACQUITY ultra performance

liquid chromatography system (Waters, U.K.) coupled to an LTQ-

Orbitrap (Thermo, Germany). Samples were injected onto a silica

capillary column (New Objective, U.S.A.) packed with 3-mm

ReproSil-Pur C18-AQ (Dr. Maisch GmbH, Germany). Peptides

were separated by a stepwise 110-min gradient of 0–100%

between buffer A (0.2% formic acid in water) and buffer B (0.2%

formic acid in acetonitrile) at a flow rate of 200 nL/min. The mass

spectrometer was operated in data dependent MS/MS mode to

automatically switch between MS survey and MS/MS fragmen-

tation scans of five most abundant precursor ions. Peak lists were

generated using DTA supercharge [57] and searched using the

Mascot (Matrix Science, UK) software package against the human

International Protein Index (IPI) database (http://www.ebi.ac.uk/

IPI/IPIhelp.html) with carbamidomethyl cysteine as a fixed

modification and oxidized methionine, phosphorylation (S,T,Y),
13C6

15N4 -L-arginine, and 13C6
15N2-L-lysine as variable

modifications. Searches were performed with a precursor mass

tolerance of 5 ppm and fragment ion tolerances of 0.7 Da and

identified phosphorylation sites were further validated by visual

inspection of MS/MS spectra. For phosphopeptide quantification,

the ratios between the monoisotopic peaks of labeled and

unlabeled forms of phosphopeptides were calculated by MSQuant

[57].

Immunofluorescence microscopy, image processing and
quantification

HeLa S3 cells grown on coverslips were fixed with a pre-

extraction-fixation method using PHEM buffer [58]. Samples

were examined on a Deltavision microscope (Applied Precision),

with optical sections acquired 0.2 mm apart in the Z-axis.

Deconvolved images from each focal plane were projected into a

single picture using Softworx (Applied Precision). Images were

taken at identical exposure times within each experiment, acquired

as 24-bit RGB images, and processed in Adobe Photoshop. Images

shown in the same panel have been identically scaled. Measure-

ment of KT intensities was performed in ImageJ (http://rsb.info.

nih.gov/ij/) on non-deconvolved images. Quantification of KT

intensities was performed as previously described [43]. Essentially,

a circular region with fixed diameter was centered on each KT,

and unless indicated otherwise, anti-centromere antibody (ACA)

intensity was measured in the same region and used for

normalization (after subtraction of background intensity measured

outside the cell).

Peptide spotting assay
Peptide arrays were generated using standard F-moc chemistry

on a MultiPep robotic spotter (Intavis) following the manufactur-

er’s instructions. Peptides synthesized and immobilized on

cellulose membranes were tested for phosphorylation by human

GST-Mps1. Dried membranes were first washed in ethanol and

then hydrated in kinase buffer (50 mM Tris-HCl pH7.5, 10 mM

MgCl2, 100 mM NaCl, 1 mM DTT, 100 mM NaF, 1 mM

Sodium Ortho-Vanadate) for 1 h, followed by overnight blocking

in kinase buffer with 0.5 mg/ml BSA. The next day, the

membrane was blocked again with kinase buffer containing

1 mg/ml BSA and 50 mM cold ATP at RT for 1 h. The blocking

buffer was subsequently replaced with kinase reaction buffer

containing 0.2 mg/ml BSA, 45 mCi/ml [c-32P]-ATP and 50 mM

cold ATP in the presence of recombinantly expressed GST-Mps1-

WT or GST-Mps1-KD (kinase dead) for 3 h on a shaker at 30uC
(5.0 ml reaction volume per membrane). Membranes were then

washed extensively: 10615 min in 1 M NaCl, 365 min in H2O,

3615 min 5% H3PO4 , 365 min in H2O, and then sonicated

overnight in 8 M urea, 1% SDS (w/v), and 0.5% (v/v) ß-

mercaptoethanol to remove residual nonspecific radioactivity. The

membranes were washed again with H2O, followed by ethanol

and dried before being visualized by autoradiography.

Supporting Information

Figure S1 In vitro phosphorylation of recombinant
GST-Mps1KD. Substrate was incubated in either kinase buffer

alone, or with Plk1, Cdk1, MAPK, Mps1 and Aurora B kinase. To

show that kinases are active toward appropriate substrates,

recombinant MBP-BubR1 was subjected to in vitro phosphoryla-

tion by Plk1 and Cdk1 kinase and His-MCAK to Aurora B kinase.

The source of Mps1 kinase was immunoprecipitated Mps1 (Mps1

IP). The left panel shows CBB staining of the gel. The right panel

shows the result of autoradiography.

(TIF)

Table S1 Summary of identified hMps1 phosphoryla-
tion sites. The first column summarizes phosphorylation sites,

with novel in vivo sites identified in this study shown in bold. The

second column shows short sequences adjacent to the phosphor-

ylation sites (underlined residues). In the absence of definitive

information on a particular phosphorylation site, potential

alternative positions are shown. The third column shows the

MASCOT score for each phosphopeptide identified in this study.

(PDF)

Table S2 Relative phosphorylation levels after treat-
ment with Mps1-IN-1. Sites on hMps1 identified by mass

spectrometry after treatment with Mps1-IN-1 are listed together

with the corresponding peptide sequences and relative phosphor-

ylation levels. The phosphoacceptor is shown in bold and residues

matching the proposed hMps1 consensus motif are underlined.

(PDF)
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Table S3 Autophosphorylation sites for weblogo analy-
sis. Autophosphorylation sites identified in previous studies and in

the present work were analyzed by Web logo software. 12 sites (S7,

T12, T33, S37, S80, S321, S363, T371, S382, T676, T686, S837)

were demonstrated as autophosphorylation by our SILAC

analysis. As reported by other groups [1–3], 7 other sites (S15,

T288, T360, S362, T564, S682, S742) not identified in our

SILAC analysis are also in vivo autophosphorylation sites. Although

S436 and S821 were also reported as autophosphorylation sites

[1], our data demonstrate these two sites are not autopho-

sphorylation sites. Residues highlighted in red belong to autopho-

sphorylation sites matching the proposed hMps1 consensus motif.

(PDF)
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