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Abstract

Stochastic expression of genes produces heterogeneity in clonal populations of bacteria under identical conditions. We
analyze and compare the behavior of the inducible lac genetic switch using well-stirred and spatially resolved simulations
for Escherichia coli cells modeled under fast and slow-growth conditions. Our new kinetic model describing the switching of
the lac operon from one phenotype to the other incorporates parameters obtained from recently published in vivo single-
molecule fluorescence experiments along with in vitro rate constants. For the well-stirred system, investigation of the
intrinsic noise in the circuit as a function of the inducer concentration and in the presence/absence of the feedback
mechanism reveals that the noise peaks near the switching threshold. Applying maximum likelihood estimation, we show
that the analytic two-state model of gene expression can be used to extract stochastic rates from the simulation data. The
simulations also provide mRNA–protein probability landscapes, which demonstrate that switching is the result of crossing
both mRNA and protein thresholds. Using cryoelectron tomography of an E. coli cell and data from proteomics studies, we
construct spatial in vivo models of cells and quantify the noise contributions and effects on repressor rebinding due to cell
structure and crowding in the cytoplasm. Compared to systems without spatial heterogeneity, the model for the fast-
growth cells predicts a slight decrease in the overall noise and an increase in the repressors rebinding rate due to
anomalous subdiffusion. The tomograms for E. coli grown under slow-growth conditions identify the positions of the
ribosomes and the condensed nucleoid. The smaller slow-growth cells have increased mRNA localization and a larger
internal inducer concentration, leading to a significant decrease in the lifetime of the repressor–operator complex and an
increase in the frequency of transcriptional bursts.
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Introduction

Transcriptional and translational regulatory networks control

the phenotype of modern cells, regulating gene expression in

response to changing environmental conditions and/or biological

stimuli. It has been well established that intrinsic noise in gene

regulation results from the discrete biochemical nature of the

process [1]. There is also an extrinsic component to the total noise

arising from cell-to-cell variation in the number of copies of the

transcription and translation machinery (transcription factors,

RNA polymerases, ribosomes, etc) [2–4]. Stochastic noise can lead

to different phenotypic outcomes for a cellular population and, in

certain fluctuating environments, the resulting heterogeneous

population can be more optimal for growth than would be a

population containing a single phenotype [5,6].

Theoretical modeling of stochasticity in gene expression has

been a topic of intense study in the last decade and has greatly

increased our understanding of the effect that statistical noise has

on gene regulation (for reviews see [7–11]). Without detailed

information regarding spatial heterogeneity within a cell, models

of stochastic gene expression are typically expressed in terms of the

chemical master equation (CME), which describes the time

evolution of the probability for a chemical system to be in a given

state [12]. Various analytical methods including moment gener-

ating functions [1,3,13], the Langevin and Fokker-Planck

equations [14], linear noise approximation [4], and many-body

theory [15] are used to study such models of gene expression.

Computer simulations, usually based on a variant of Gillespie’s

stochastic simulation algorithm (SSA) [16] are also widely

employed to analyze gene network models that are too complex

to be amenable to analytical modeling [17,18].

Such theoretical studies have predicted and experimental

measurements have shown [2,19–23] that populations of cells

can be quite heterogeneous, even when starting from an initially

identical state. The large variance in the population distribution is

usually ascribed to bursting in the process of gene transcription.

Two models have been developed which can be used as a

framework for quantitatively analyzing population distributions to

infer the underlying gene expression kinetics.

The burst model (Figure 1A) of Friedman et al. [24] is based on

the assumption that an mRNA’s lifetime is short compared with

that of its protein product. In that case, proteins will be produced
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in independent bursts with exponentially distributed sizes. The

solution to the stationary probability distribution of protein x in

the continuous CME formulation of the model was shown to be

the Gamma distribution p(x)~
xa{1e{ x

b

C(a):ba
where the a and b

parameters were interpreted to be the frequency of transcriptional

bursts relative to the protein lifetime and the mean number of

proteins produced per burst, respectively.

Shahrezaei and Swain [25] further developed the analytical

theory of gene expression, by deriving not only the time-dependent

probability distribution for the burst model, but also the steady-

state distribution for a two-state model of gene expression

(Figure 1B; three-stage model in their nomenclature). In the

two-state model a gene alternates between transcriptionally active

and inactive states with constant rates. Their analytical distribu-

tions show that in addition to large variance within a population,

bimodality can appear when transitions between the active and

inactive states are slow. A similar model has also been used to

analyze the switching behavior of a population due to rare large

events versus the cumulative effect of many small events [26].

Computational modeling can greatly assist in understanding

genetic systems where complexity exceeds the capacity of

analytical solutions. In a model for an inducible genetic switch

incorporating more of the complexity present in real biological

systems (Figure 1C), the transitions between the active and inactive

transcriptional states are no longer constant but depend upon an

external inducer likely in a nonlinear manner. The positive

feedback (PFB) loop changes the network topology by introducing

an additional regulatory link. Both of these differences provide

additional sources of noise in the circuit that may affect the

probability distributions. Combining computer modeling of a

complete genetic circuit with analysis using simplified analytical

models can help to provide an overall picture of the dynamics of

such a system.

Further complexity in modeling real biological systems comes

from the spatial heterogeneity within a cell and molecular

crowding in the in vivo environment. It is becoming apparent that

the cell is not a well-stirred system [27–29]. Studies using

cryoelectron tomography techniques [30–34] have revealed that

individual macromolecules are not necessarily uniformly distrib-

uted inside the cell, but may be clustered in a spatially dependent

manner. Spatial organization can affect reaction kinetics by

increasing local concentrations of reactants and enzymes.

Additionally, crowding and non-specific molecular interactions

in the in vivo environment can lead to anomalous subdiffusive

behavior for macromolecules, as measured experimentally [35,36]

and by computational modeling of bacterial cytoplasmic environ-

ments [37–39]. Accounting for spatial heterogeneity is a challenge

to computational biology that must eventually be met and several

such modeling studies have been undertaken [37–44].

Stochastic modeling of gene expression circuits in a three-

dimensional bacterial cell poses several difficulties, both compu-

tational and informational in nature. Recently a ‘‘lattice microbe’’

method [37] was developed using GPU (graphics processing unit)

computational accelerators to simulate diffusion of macromole-

cules within a modeled Escherichia coli cell packed with a

distribution of obstacles according to reported proteomics data.

It implemented a multiparticle reaction-diffusion algorithm on a

three-dimensional lattice to perform simulations of cell-scale

systems. With the lattice microbe method one can observe

anomalous diffusion of macromolecules and track diffusive-

reactive processes over the timescale of the cell cycle, with spatial

resolution from 2–16 nm. On the informational side, painstaking

Figure 1. Three models for stochastic gene expression. (A) Burst
model in which transcription of the DNA is always active. (B) Two-state
model in which the DNA switches with constant rates between active
and repressed states. (C) Inducible genetic switch in which an inducer
both controls the rate of switching between active and inactive
transcription states and is also positively regulated by the protein
product – a positive feedback loop (PFB). The gray dotted connection
indicates a weak effect of the inducer in promoting the unbinding of
repressor at high inducer concentrations.
doi:10.1371/journal.pcbi.1002010.g001

Author Summary

Expressing genes in a bacterial cell is noisy and random. A
colony of bacteria grown from a single cell can show
remarkable differences in the copy number per cell of a
given protein after only a few generations. In this work we
use computer simulations to study the variation in how
individual cells in a population express a set of genes in
response to an environmental signal. The modeled system
is the lac genetic switch that Escherichia coli uses to find,
collect, and process lactose sugar from the environment.
The noise inherent in the genetic circuit controlling the
cell’s response determines how similar the cells are to each
other and we study how the different components of the
circuit affect this noise. Furthermore, an estimated 30–50%
of the cell volume is taken up by a wide variety of large
biomolecules. To study the response of the circuit caused
by crowding, we simulate the circuit inside a three-
dimensional model of an E. coli cell built using data from
cryoelectron tomography reconstructions of a single cell
and proteomics data. Correctly including random effects of
molecular crowding will be critical to developing fully
dynamic models of living cells.

Noise in a Whole-Cell Gene Switch
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efforts must be undertaken to obtain parameters for the models.

Kinetic parameters, which are often obtained under in vitro

conditions, must be validated by comparing modeling results to

published experiments. Recent time-lapse fluorescence microscopy

experiments have been able to track dynamic behavior for

individual macromolecules in vivo [21,45], providing an additional

source for model parameters. Parameters obtained from in vivo

single-molecule experiments are uniquely suited for stochastic

modeling, as they provide population distributions not simply

mean values from ensemble measurements. Equally importantly

such parameters are measured under in vivo conditions and

incorporate the effects of the cellular environment. Also, super-

resolution imaging studies [46–49] provide further spatial

information to complement the cryoelectron tomography data.

We present here a computational study of gene expression noise

in the inducible genetic switch shown in Figure 1C using both

well-stirred and spatially resolved models. Spatial models of E. coli

cells were constructed to approximate cytoplasmic crowding under

both rapid and slow growth phenotypes, with the latter being

based on data from cryoelectron tomography [50]. Both spatial

models were simulated using the lattice microbe method [37]. The

genetic switch was based on the well-characterized E. coli lactose

utilization system, parameterized using measurements from a

recent series of in vivo single-molecule fluorescence studies

[21,22,51] as well as published in vitro rate constants. We report

the contributions to intrinsic noise from the regulatory elements of

the inducible genetic circuit as well as the extrinsic noise due to in

vivo crowding. Using the slow-growth model we investigate the

effect of using experimentally determined cellular architecture in

reaction-diffusion models, with implications for effects due to cell

growth. Comparing the noise from the inducible genetic switch to

the bursting and two-state models described above (Figure 1A,B),

we consider what improvements in both modeling and experi-

mental efforts are needed to develop stochastic models of gene

expression with predictive power regarding phenotype switching

and heterogeneity in cellular populations.

Methods

Lac circuit kinetic model
Lactose uptake in Escherichia coli. The lactose utilization

system in E. coli is a model system for studying inducible genetic

circuits [52–58]. The overall genetic system is described in

Figure 2. Briefly, the lac repressor (LacI; R in model annotation)

[59–61] binds to the lac operator (O in model annotation)

upstream of the DNA encoding for the genes responsible for

lactose uptake and metabolism, repressing their expression in the

absence of lactose. In the presence of lactose or another inducer (I
in model annotation), LacI binds the inducer preferentially and is

prevented from binding to the operator region allowing

expression of the proteins in the lac operon. One protein in the

operon, lactose permease (LacY; Y in model annotation),

establishes positive feedback in the circuit by inserting into the

membrane and actively transporting lactose into the cell, ensuring

that LacI remains sequestered; the cell switches to the induced

state. Theoretical and experimental studies have investigated the

behavior of lac system and shown it to be stochastic, depending on

random fluctuations to switch between the off and on states

[62,63]. We assumed the same overall kinetic structure for our

model of the lac system as Stamatakis and Mantzaris [63],

but where possible derived the rate parameters from single

molecule in vivo experiments. The reactions and stochastic rate

constants, derived using a well-stirred approximation, are given in

Table 1.

Lac operon regulation: Activation and inactivation of

transcription. The regulatory behavior of the lac circuit results

from the binding of the repressor to the lac operator, thereby

inhibiting transcription initiation. There are three possible

inducer–repressor species and we modeled the binding and

unbinding reactions of each to the operator:

R2zO '
kron

kroff

R2O, ð1Þ

IR2zO '
kiron

kiroff

IR2O, ð2Þ

I2R2zO '
ki2ron

ki2roff

I2R2O: ð3Þ

The stoichiometry of inducer–repressor binding is currently

subject to debate [64]; it is unclear whether the affinity of IR2

for the operator is of the same order as that of R2 or much lower.

We therefore compared the effect on our model of both a high

kiron (comparable to kron) and a low kiron (%kron). In either case,

the affinity of I2R2 for the operator is thought to be low and we

assumed ki2ron%kron and ki2roff &kroff . Values for the rate

constants were obtained by fitting the model with experimental

LacY distributions from single cells, as presented in Results.

Figure 2. Overview of the lac genetic circuit in E. coli. (A) In the
absence of inducer, the lac repressor (LacI) binds to the lac operator
preventing transcription of genes in the lac operon. (B) Following an
increase in the extracellular inducer concentration, inducer enters the
cell via both diffusion across the membrane and active transport by
lactose permease (LacY). Once inside, inducer binds free LacI molecules
preventing them from binding to the operator. (C) After the intracellular
inducer concentration reaches a threshold, any bound repressor is
‘‘knocked-off’’ the operator leading to expression of the lac genes. (D)
At high intracellular inducer concentrations the genes for lactose
metabolism are fully induced. (E) After inducer is removed, repressor
rebinds to the operator preventing further expression of the lac operon
and the enzymes for lactose metabolism are either degraded or diluted
through cellular division.
doi:10.1371/journal.pcbi.1002010.g002

Noise in a Whole-Cell Gene Switch
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Transcription, translation, and degradation. In the cell

both transcription and translation are multistep processes

involving numerous intermediates. Knowledge of the rate

constants for each step of these processes in vivo is limited. We

therefore assumed that each process was controlled by a single

rate-limiting event and used pseudo first order rate equations with

effective transcription and translation rates in the model. Such an

approximation is reasonable as long as i) the concentration of the

transcription and translation machinery is high and constant and

ii) the non-Poissonian time delays missed by modeling such multi-

step processes as a single step are not significant. For our model

these conditions appear to be satisfied as the components of

transcription and translation are among the most abundant in the

cell and even though some, such as ribosomes, diffuse quite slowly

there should nevertheless be a ready supply available at all times.

Also, the times delays in these processes are on the order of

seconds [27], while the dynamics of the cell response (here

determined by the protein lifetime) is on the order of an hour.

Transcription of a LacY messenger RNA (mRNA) (mY) from

the lac operon was modeled as a first order process dependent on a

free operator:

O
ktr

OzmY : ð4Þ

The effective transcription rate constant (ktr) was a free

parameter determined during model fitting.

Decay of and translation from mY were modeled as a

competition between RNase E enzymes [65] and ribosomes for

an mY’s ribosomal binding site (RBS). The rate of degradation

of mY by RNase E was chosen to result in a mean lifetime (tmY )

of 90 s, as reported by Yu et al. [21]. The effective translation

rate was chosen to produce a mean of four LacY proteins over

the lifetime of an average mY messenger, also as reported in

[21]:

Table 1. Reactions and rate constants used in the stochastic model of the lac circuit.

Reaction Param Stochastic Rate Units Sourcea Pub. in vitro Rate

Lac operon regulation

R2zO?R2O kron 2.43e+06 M{1s{1 M 4.0-20.0e+08b

IR2zO?IR2O kiron 1.21e+06 M{1s{1 M –

I2R2zO?I2R2O ki2ron 2.43e+04 M{1s{1 M –

R2O?R2zO kroff 6.30e-04 s{1 S 1.4-2.3e-02b

IR2O?IR2zO kiroff 6.30e-04 s{1 S –

I2R2O?I2R2zO ki2roff 3.15e-01 s{1 M –

Transcription, translation, and degredation

O?OzmY ktr 1.26e-01 s{1 M –

mY?mYzY ktn 4.44e-02 s{1 S –

mY?1 kdegm 1.11e-02 s{1 S –

Y?1 kdegp 2.10e-04 s{1 M –

Inducer–repressor interact. TMG IPTG TMG IPTG IPTG

IzR2?IR2 kion 2.27e+04 9.71e+04 M{1s{1 M K 9.2-9.8e+04c

IzIR2?I2R2 ki2on 1.14e+04 4.85e+04 M{1s{1 M K 4.6-4.9e+04c

IzR2O?IR2O kiopon 6.67e+02 2.24e+04 M{1s{1 M K 2.0-2.3e+04c

IzIR2O?I2R2O ki2opon 3.33e+02 1.12e+04 M{1s{1 M K 1.0-1.2e+04c

IR2?IzR2 kioff 2.00e-01 s{1 K 2.0e-01c

I2R2?IzIR2 ki2off 4.00e-01 s{1 K 4.0e-01c

IR2O?IzR2O kiopoff 1.00e+00 s{1 K 0.5-1.0e+00c

I2R2O?IzIR2O ki2opoff 2.00e+00 s{1 K 1.0-2.0e+00c

Inducer transport

Iex?I kid 2.33e-03 s{1 K 2.3e-03-1.4e-01d

I?Iex kid 2.33e-03 s{1 K 2.3e-03-1.4e-01d

YzIex?YI kyion 3.03e+04 M{1s{1 K –

YI?YzIex kyioff 1.20e-01 s{1 K –

YI?YzI kit 1.20e+01 s{1 K 1.2e+01e

aS = in vivo single molecule experiment, K = in vitro (kinetic) experiment, M = model parameter fit to single-molecule distributions.
b[92],
c[74,75],
d[69,93],
e[70].
doi:10.1371/journal.pcbi.1002010.t001

Noise in a Whole-Cell Gene Switch

PLoS Computational Biology | www.ploscompbiol.org 4 March 2011 | Volume 7 | Issue 3 | e1002010



mY
kdegm

1, ð5Þ

mY
ktn

mYzY , ð6Þ

with the effective rates given by kdegm~1=tmY and ktn~4=tmY .

The loss of membrane proteins in E. coli is primarily from

dilution as a result of cellular growth over the cell cycle [66].

Therefore, degradation of LacY was modeled as a first order

reaction with a half-life corresponding to the cell doubling time

(tcell),

Y
kdegp

1, ð7Þ

where kdegp~
ln 2

tcell

.

Lac repressor/inducer kinetics. LacI rapidly dimerizes

with very high affinity and the dimers further associate to form

tetramers with a Kd in the nanomolar range [67]. The tetrameric

form enhances repression by binding multiple lac operators

simultaneously [68]. However, modeling the DNA loops formed

by this process would require additional inactive kinetic states, and

as the focus of the current study is a two-state switch, we assumed a

mutant form of LacI that did not tetramerize. This assumption

allowed us to connect our model to single cell data from lac

operator mutants incapable of DNA looping [22]. Furthermore,

we assumed that the dimerization Kd was sufficiently low that LacI

only existed in the dimer state, the species R2. Ten molecules of

R2 were placed in the cell, and we assumed the cell regulated this

number to be constant, so that the noise from the transcription/

translation of the repressor gene was ignored. Although noise from

expression of LacI has been shown to have an effect on the

induction rate [63], we chose to ignore this effect here to focus on

the noise originating in the circuit itself.

The inducer molecules, isopropyl b-D-1-thiogalactopyranoside

(IPTG) and thiomethyl-b-D-galactoside (TMG), are small sugar-

like solutes that can either passively diffuse or be actively

transported by LacY across the cellular membrane using an

electrochemical proton gradient for energy. Inducer molecules in

the extracellular space (Iex) and those in the intracellular space

(I,Iin) can diffuse across the membrane freely in both directions.

The diffusive influx and efflux are modeled as first order reactions

with the same kinetic constants,

Iex '
kid

kid

I ,

where kid = 2:33:10{3 s{1 [58,69]. The active transport of

inducer molecules into the cell from the extracellular space is

modeled as an irreversible Michaelis-Menten reaction,

YzIex '
kyion

kyioff

YI
kit

YzI :

The value of kit has been reported to be 12 s{1 [70] and the

Michaelis constant KM for the reaction with TMG to be ,500

mM [71]. Similarly, the intracellular TMG concentration has been

reported to be ,70-fold higher than the extracellular concentra-

tion in fully induced cells [63,72]. Under pseudo steady state

conditions, the ratio of I to Iex is related to KM by the expression

Ri=e~1z
kit

kid

: ½Y �
½Iex�zKM

. In our model a maximal enrichment

ratio of 70 corresponded to a KM of 400 mM, which is the value

we used for TMG. The active influx of inducer molecules through

the membrane is given by the standard Michaelis-Menten

expression vit~kit
:½Y �T :

½Iex�
KMz½Iex�

, with ½Y �T~½Y �z½YI � and

KM~
kitzkyioff

kyion

. However, for simulations of stochastic kinetics,

we need unique values for kyioff and kyion. As long as the

relationship between kyioff and kyion corresponds to the required

KM value, the influx of inducer will be correct irrespective of the

values used. Only fluctuations in the external environment will be

affected by the choice. In particular, a large value for kyioff relative

to kit would require a correspondingly large value for kyion, which

would produce many unproductive inducer binding events outside

the cell. These small fluctuations in the external inducer

environment are expected to have little to no effect on gene

expression dynamics inside the cell, but can have a significant

impact on simulation cost. In the absence of any experimental data

regarding the actual kinetic rates, we chose to make the kyioff rate

be 1% of the kit rate to improve simulation performance by

minimizing the calculation of such non-productive binding events.

The value of kyion was then fixed by the relationship

KM~
kitzkyioff

kyion

.

Upon entering the cell, inducer molecules can bind to free LacI

and the repressor-operator complex, albeit with a much lower

affinity. As each LacI monomer binds a single inducer molecule,

there are three possible repressor dimer species, R2, IR2 and I2R2,

which interconvert according to the following reactions:

IzR2 '
kion

kioff

IR2, ð8aÞ

IzIR2 '
ki2on

ki2off

I2R2: ð8bÞ

In vitro kinetic data suggests non-cooperative binding (Hill

coefficient of 1) of inducer to R2 in the absence of lac operator

DNA [64,73,74], corresponding to ki2on~
1

2
kion and ki2off ~

2:kioff (see Supporting Text S1).

Although there is some equilibrium data suggesting the binding

to the complex is cooperative with a Hill coefficient of 1.45 [74],

such cooperativity was not observed in kinetic measurements of

binding and unbinding [75]. For simplicity, a non-cooperative

model was assumed:

IzR2O '
kiopon

kiopoff

IR2O, ð9aÞ

IzIR2O '
ki2opon

ki2opoff

I2R2O, ð9bÞ

with ki2opon~
1

2
kiopon and ki2opoff ~2:kiopoff .

Experimentally, different aspects of the lac circuit have been

investigated using the inducers IPTG and TMG. To make use of

the data one has to take into account the differences in their C50

Noise in a Whole-Cell Gene Switch
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value, defined as the inducer concentration at which half of the

LacI monomers are bound with an inducer. Kinetic and

equilibrium binding measurements [74,75] were available for

IPTG binding to both free repressor and the repressor-operator

complex. From the kinetic measurements, the rate constants for

inducer binding and unbinding were 4:85:104 M{1s{1 and 0.2

s{1 for the free repressor and 1:12:104 M{1s{1 and 1.0 s{1 for

the repressor-operator complex. This yielded a C50{op for binding

to the repressor-operator complex (89 mM) that is ,20 times

higher than for free repressor (4.1 mM). Figure 3 shows the results

of using these rate constants in stochastic simulations of inducer

binding; good agreement between simulations and experiments

were seen for both kinetic and equilibrium measurements. TMG

has been reported to have a C50 for binding to free repressor

greater than that for IPTG by a factor of ,10 [76]. However,

since neither kinetic data nor detailed equilibrium studies were

available, we assumed the same unbinding rate constants for TMG

as IPTG and left binding to both the free repressor and repressor-

operator complex as free parameters in the model to be fitted from

single molecule experimental data.

Well-stirred and spatially resolved simulations
Since the stochastic switch model is more complex than can be

solved using analytic methods, we used computational Monte

Carlo methods to sample the master equation and estimate the

probability distributions. Two stochastic approaches were used to

simulate the lac kinetic model: a well-stirred method using the

CME and a spatially resolved method based on the reaction-

diffusion master equation (RDME). The RDME model of the lac

circuit can be thought of as a superset of the CME model in that

all of the kinetic rates used for modeling reactions in the CME

based model are also used in the RDME model, but with

additional parameters regarding the spatial localization of particles

and their diffusion in three-dimensional space.

Well-stirred model. The well-stirred model was sampled using

a version of Gillespie’s SSA algorithm [16] implemented in CUDA

and running on the GPU. The lac model includes independent

volumes for the extra- and intracellular space. These were tracked

separately during the simulations and, to balance the flux of inducer

across the membrane at equilibrium, the internal and external

volumes were taken to be equal. Inducer in the extracellular space

was maintained at a constant concentration for the propensity

calculations by holding the number of Iex molecules fixed. Unless

otherwise noted, we ran 10,000 replicates of each simulation to obtain

sufficient sampling of the probability distributions.

Spatial model. The RDME model was sampled using our

lattice microbe method. The multi-particle, in vivo diffusion

operator for this method, based on that of Karapiperis and

Blankleider [77], has been presented previously [37] and the

reaction operator is provided in Supporting Text S1. Complete

implementation details will be presented in a forthcoming publi-

cation. The method discretizes space onto a three-dimensional

lattice of uniform spacing and time into uniform time steps.

Chemical species randomly diffuse and react on the lattice

according to rules defined using spatially dependent stochastic

rate constants. A virtual microbe is constructed on a lattice by

placing particles and obstacles on the lattice and specifying the

reaction and diffusion properties of the lattice sites to mimic the

spatial organization of the cell. The lattice microbe method uses

the GPU as a computational coprocessor and the whole-cell

simulations performed for this study were run for one hour of

simulation time (slightly longer than a cell cycle of 55 min) using a

time step of 50 ms and a lattice spacing of 16 nm. For each

external condition, 100 independent cell-scale simulations were

run. Simulations were carried out on the NCSA Lincoln Intel 64

Tesla Cluster containing two NVIDIA Tesla GPU accelerators per

node. Approximately 200 GPU-hours were required per hour of

simulation time. Simulations of a smaller volume using 5 ns time

steps and 2 nm lattice spacing were also performed to examine the

Figure 3. Fits of rate constants for IPTG binding to the lac
repressor. (A) Pseudo first order rate constants observed during
stochastic simulations of IPTG binding to (blue) repressor and (red)
repressor-operator complex. At each inducer concentration 1000
simulations starting with 2 free (or operator-complexed) repressor
dimers in a volume of 8:10{16 L were performed. The mean fraction of
free repressor monomers as a function of time was fit to a single
exponential to obtain the observed rate constant for binding at the
inducer concentration. x and o are data from Dunaway et al. [75]. (B)
Equilibrium binding of IPTG to (blue) repressor and (red) repressor-
operator complexes. In a stochastic simulation at each inducer
concentration, 20 free (or operator-complexed) repressor dimers in
8:10{16 L were first equilibrated with inducer to reach the steady state.
Following, 5 minutes of data were collected from which the equilibrium
fraction of inducer bound repressor monomers was calculated. x and o
are data from O’Gorman et al. [74].
doi:10.1371/journal.pcbi.1002010.g003
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variation in repressor rebinding as a function of packing density at

the operator site.

Spatial models were developed for two E. coli phenotypes: fast-

and slow-growth. For the fast-growth cells, the cellular volume was

constrained to a typical E. coli cell shape: a cylinder with spherical

end caps 2 mm long by 0.8 mm in diameter. The volume was

surrounded by an impermeable cytoplasmic membrane separating

the extracellular environment from the cytoplasm. We excluded the

outer membrane from the model as its permeability is not thought to

be a limiting factor for inducer transport. The intracellular space

was randomly filled with stationary, in vivo obstacles to 50% volume

fraction approximating the E. coli intracellular environment (see

Table 2). The model was then coarse-grained onto a 16 nm

resolution lattice, as described in Supporting Text S1.

For the slow-growth phenotype, we based the spatial model on

cryoelectron tomography (CET) of an E. coli cell undergoing slow

growth. The full cell was approximately 3 mm long by 0.4 mm wide

and tomograms encompassed approximately one-third of the cell

length. Ribosomes were matched and located in the tomograms as

described previously [50] as was a portion of the cytoplasmic

membrane. The position of the missing membrane was extrapo-

lated to form a contiguous surface and ribosomes were placed at

their measured positions in lieu of random placement. The

completed one-third cell model was then mirrored to produce the

opposite cell pole. The middle third was randomly generated using

ribosome densities from the adjacent CET data. Ribosomes were

not observed in the central volume of the cell, which we inferred to

be the condensed nucleoid. A random walk algorithm was used to

place a full-length E. coli chromosome in the nucleoid region.

Starting from the center of the nucleoid region, cylinders

representing DNA persistence lengths 50 nm in length and 2 nm

in diameter were randomly added end-to-end such that the angle

between successive cylinders was constrained to ƒ750. If the

random walk left the nucleoid region, the path was unwound a

number of steps and a new random path started. This process was

repeated until all 31,000 persistence lengths had been added. Since

later coarse graining of the model onto a 16 nm resolution lattice

spread out the nucleoid density, we did not constrain the

chromosome to be circular in this model. Following nucleoid

addition, the non-ribosomal in vivo obstacles were proportionally

placed in the model at random locations (including within free

space in the nucleoid region) to reach an occupied volume fraction

of 50% (Table 2). The final slow growth model was then coarse-

grained to a 16 nm lattice for simulation.

In E. coli, translation of an mRNA containing the sequence for

an integral membrane protein is thought to be coupled with

translocation of the resultant protein across the cytoplasmic

membrane by the Sec translocase [78], i.e., cotranslational

translocation. Specifically, LacY has been observed to require

the bacterial signal recognition particle (SRP) pathway for

functional membrane integration [79–81]. However, it is not

presently clear whether or not transcription and translation of

membrane proteins are also coupled such that the gene being

transcribed is also physically located near the site of translocation.

For this reason, we modeled two variants of operator placement

for comparison: in the fast-growth phenotype the operator site was

located in the center of the cell and in the slow-growth phenotype

the operator site was placed on the nucleoid near the membrane

(,32 nm away) close to a cell pole. These two different

configuration allowed us to compare the mRNA dispersions for

close versus far gene–translocation distances.

Messenger mY molecules were created at the location of the

operator following transcription and then allowed to diffuse in the

cytoplasm with a diffusion constant of 0.1 mm2=s [82,83]; in the

slow growth model mY molecules were precluded from entering

the nucleoid. In the spatial model, then, mY was required to

diffuse to the membrane before translation could occur; Equation

6 was limited to membrane sites. Since ribosomes likely attach to

an mRNA’s RBS while transcription is still ongoing [84], the

model assumed that mY molecules were protected from

degradation by RNase E until after mY reached the membrane;

Equation 5 was also limited to membrane sites. Translation of mY
produced LacY proteins at the same location as the mRNA in the

membrane. LacY molecules were constrained to diffuse in the

membrane with a diffusion coefficient of 0.1 mm2=s.

R2 molecules were randomly placed in the cell and diffused at 1

mm2=s within the intracellular volume. Small inducer molecules

diffuse at ,1000 mm2=s in extracellular space and ,100 mm2=s in

intracellular space. However, in order to reach simulation times on

the order of the cell cycle the maximum diffusion coefficient in the

model, which depends on the lattice spacing and time step, was 1.28

mm2=s. Therefore, the diffusion coefficient of the inducer molecules

was set to 1.28 mm2=s. Since inducer molecules are present in large

numbers and they diffuse faster than the repressor this approxima-

tion was not expected to have a noticeable effect. The lattice was

connected to a infinite reservoir of Iex molecules through the use of

constant concentration boundary conditions to maintain the

extracellular space at a constant inducer concentration.

Maximum likelihood fitting of gene expression models
We analyzed the capability of the burst and two-state analytic

models of gene expression to recover parameters from our stochastic

simulations of an inducible switch by fitting molecular distributions.

We used a maximum likelihood method to estimate the model

parameters. Briefly, the likelihood L of the model parameters a

having produced a set of observations x1...n is given by

L ajx1, . . . ,xnð Þ~ P
n

i~1
p xijað Þ,

Table 2. Obstacle abundance in in vivo spatial models.

Fast Growtha,b Slow Growthb

Type
Radius
(nm)

Mass
(kDa) Count % Vol Count % Vol

Ribosome 10.4 2700 35005 17.8 3021 5.7

Generic
Protein

5.2 346 290908 18.6 96992 25.5

" 4.3 186 18610 0.7 6205 1.2

" 4.1 162 9907 0.3 3303 0.4

" 4.0 156 59862 1.7 19959 2.4

" 3.8 133 50261 1.2 16758 1.8

" 3.5 107 47365 0.9 15792 1.3

" 3.4 91 140212 2.5 46748 3.6

" 3.0 67 162894 2.0 54311 2.8

" 2.7 46 226358 2.0 75470 2.7

" 2.3 29 321118 1.8 107064 2.3

" 1.7 11 163939 0.4 54659 0.6

DNAc – 89 0 0 31000 8.8

aBased on data from Ridgway et al. [38].
bTotal occupied volume (excl. DNA) of 50%.
cPer cylindrical persistence length 2 nm in diameter and 50 nm long.
doi:10.1371/journal.pcbi.1002010.t002
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where p xjað Þ is the conditional probability of observation x
occurring given the parameters a. The parameters that maximize

this likelihood function are those that describe the best fit of the

model to the data, assuming a uniform prior distribution for the

parameter probabilities. To find the best parameters for a model

of gene expression, p(xja) was calculated using the model’s

steady-state probability density function with the x values being

the protein counts from the 10,000 simulations. The parameter

values that minimized the negative log of the likelihood function

were then found using downhill simplex minimization as

implement in the Matlab fminsearch function. We estimated

the confidence intervals for different sample sizes by taking 1000

random sets of either 50 or 200 cells from the full set of 10,000

and performed maximum likelihood estimation on each of these

data sets. The confidence range for each parameter was then

defined by the middle 95% of the values obtained during these

random resamplings.

The burst model was first expressed in terms of parameters

a and b by Friedman et al. [24] as the Gamma distribution.

However, since our stochastic simulations produced discrete

protein counts, we used the discrete formulation for the steady-

state probability density derived by Shahrezaei and Swain [25] in

terms of a negative binomial distribution

p(x)~
C(azx)

C(xz1)C(a)

b

1zb

� �n

1{
b

1zb

� �a

, ð10Þ

with parameter a being the burst frequency (bursts per mean

protein lifetime) and b being the burst size (proteins produced per

burst).

The two-state model was fit using the steady-state probability

density function derived by Shahrezaei and Swain [25]:

p(x)~

C(azx)C(bzx)C(k0zk1)

C(xz1)C(a)C(b)C(k0zk1zx)

b

1zb

� �n

1{
b

1zb

� �a ð11Þ

:
2F1 azx,k0zk1{b; k0zk1zx;

b

1zb

� �
: ð12Þ

In this expression the parameters are a~ktr

�
kdegp, b~ktn

�
kdegm,

k0 (the activation rate), and k1 (the inactivation rate), the latter two

being expressed in units of mean protein lifetime. Additionally,

a~
1

2
(azk0zk1zw), b~

1

2
(azk0zk1{w), w2~(azk0zk1)2

{4ak0, and 2F1 is Gauss’s hypergeometric function. Fitting with all

four parameters free often resulted in convergence in a local minima,

so we adopted a fitting procedure whereby we first constrained the a
and b parameters and fit only k0 and k1 to obtain initial estimates of

these two parameters. In the fully induced state k1?0ð Þ the above

probability density function reduces to a negative binomial

distribution with no dependence on k0 or k1, only a and b. Since

neither ktr nor ktn depend on inducer concentration, it is a

reasonable approximation to use the values for a and b in the fully

induced state as initial estimates for all inducer concentrations. After

obtaining an initial fit for k0 and k1, we then performed another fit

with a and b unconstrained and with k0 and k1 allowed to vary

65%. This procedure resulted in convergence at a higher likelihood

score than when all four parameter were fit simultaneously for all

distributions except one.

Results

Here we present the result of our study into the noise effects in

the inducible lac genetic switch. The first two sections describe the

fitting of model free parameters to data from single-molecule

fluorescence studies on E. coli populations. The next two sections

analyze noise in the well-stirred circuit due to its regulatory control

elements. The final two sections report on changes to the behavior

of the circuit from in vivo effects, using a model of a spatially

heterogeneous, crowded cell and then an experimentally deter-

mined cell structure under an alternate growth phenotype.

Linear relationship between transcriptional burst size and
inducer concentration

In a recent in vivo single-molecule fluorescence study, Choi et al.

measured the distributions of a fluorescent reporter protein under

control of the lac operator in individual E. coli cells at various

inducer (TMG) concentrations [22]. They performed the

measurements in the absence of LacY’s positive feedback by

replacing its gene with that of the membrane protein Tsr in the lac

operon. This enabled an accurate determination of the protein

distribution produced by the circuit at a given inducer concen-

tration without any confounding non-linear effects due to

enhancement of the internal inducer concentration by LacY. In

the absence of DNA looping, they were able to fit their observed

distributions to a gamma distribution p(x)~
xa{1e{ x

b

C(a):ba
, where a

was interpreted as the frequency of transcriptional bursts relative

to the protein lifetime and b as the mean number of proteins

produced per burst. They observed a relatively constant value for

the burst frequency of 3–4 and a linearly increasing relationship

between burst size and inducer concentration at low to

intermediates concentrations.

To understand the origin of the linear relationship between

burst size and inducer concentration and to reproduce this

behavior in our model, we derived an expression for the burst size

as a function of kinetic parameters in our model. As long as bursts

are infrequent relative to protein degradation, i.e. once a free

operator is bound with a repressor it remains bound for a

significant fraction of the cell cycle, transcriptional bursting from

the lac operon can be modeled as a Markov process with

competition between RNA polymerase (RNAP) and the various

LacI species for binding to the free operator (see Figure 4).

Transcription initiation by RNAP was modeled as a pseudo first

order process (Equation 4), with a rate constant of ktr. The two

repressor states with potentially significant binding affinity were

R2 and IR2, shown in Equations 1 & 2. Free repressor binds with

free operator with a rate constant of kron resulting in a pseudo first

order rate of ½R2�:kron. Given the current debate surrounding the

binding affinity of the IR2 state to the operator, we set the rate

constant kiron to be proportional to the free repressor binding

constant and analyzed the effect of varying the proportionality

constant a on the pseudo first order rate ½IR2�:a:kron. This model

of transcriptional bursting assumes that the binding of I2R2 to the

free operator is negligible at low inducer concentrations by

assuming ki2ron%kron and ignoring Equation 3. In practice, this

condition was satisfied when ki2ronƒ
kron

100
. We used the upper limit

ki2ron~
kron

100
in our model, which is within the range experimen-

tally reported [76].

Following the unbinding of a repressor from the repressor–

operator complex, the probability of transcription initiation (and

subsequent mRNA creation) occurring at the free operator as

opposed to a repressor re-binding is
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p~
ktr

ktrz½R2�:kronz½IR2�:a:kron

: ð13Þ

The probability of a given number of consecutive transcription

initiation events (the size of the mRNA burst) then follows a

geometric distribution with P(n)~pn(1{p) of which the mean isP?
n~0 P(n):n~

p

1{p
. However, repressor unbinding events that

produce no mRNA are not observable as a burst, therefore the

mean number of mRNA produced in a transcription bursts (B) is

B~mean(nw0)~

P?
n~1 P(n):nP?

n~1 P(n)
,

~

P?
n~0 P(n):n

1{P(0)
,

~
p

1{p
: 1

1{(1{p)
,

~
1

1{p
:

ð14Þ

Combining Equations 13 and 14 gives the expression for the mean

transcription burst size in terms of the rate constants for

transcription initiation and repressor binding

B~
ktr

kron ½R2�za:½IR2�ð Þz1: ð15Þ

Given the inducer mass balances (see Supporting Text S1) and

the expression for the total number of repressor dimers

R2T~½R2�z½IR2�z½I2R2�, one can derive the equilibrium

concentrations of the two repressor species

R2½ �~
C50ð Þ2:R2T

C50z I½ �ð Þ2
,

IR2½ �~ 2:C50
:R2T

: I½ �
C50z I½ �ð Þ2

,

where C50 is the inducer concentration at which half of the

repressor monomers are bound to an inducer molecule. Substi-

tuting ½R2� and ½IR2� into Equation 17 gives the expression for the

transcription burst size as a function of inducer concentration

B~
ktr C50z½I �ð Þ2

kron
:C50

:R2T C50z2:a:½I �ð Þz1: ð16Þ

From this last equation it is clear that the transcription burst size

will be linear over the entire range of inducer concentrations only

when a~
1

2
. Figure 5 shows the effect of varying a, of particular

interest are the very low values. When a%1, the transcription

burst size does not linearly increase over the range of inducer

concentrations for which this behavior has been reported (0–200

mM). In the model here formulated, a linear relationship between

size and inducer concentration exists only when the binding

affinity of IR2 for the free operator is comparable to that of R2.

For our simulations, we therefore chose a~
1

2
, such that

kiron~
kron

2
, as this value assumed no effect on the unbound

repressor monomer due to a single bound inducer and gave a

strictly linear relationship for all inducer concentrations.

Fitting transcription and inducer/repressor rate constants
to single-cell distributions

To obtain values for the model parameters ktr, kron, and C50,

we used the distributions for LacY reported by Choi et al. [22],

specifically the inferred burst frequency (bursts per cell cycle) and

size parameters (a and b) from their gamma distribution fits. From

Equation 18, the mean transcription burst size as a function of

inducer concentration is B~
ktr

kron
:R2T

: ½I �
C50

z1z
ktr

kron
:R2T

. This

equation is linear in inducer concentration and by fitting it

(multiplied by the mean number of proteins produced per mRNA)

to the experimental protein burst sizes, as shown in Figure 6, one

can constrain the kinetic parameters. The y-intercept of the line

fixes the ratio of transcription to repression in the uninduced state

(
ktr

kron
:R2T

) and the slope can then be used to obtain C50 = 17.6 mM

for TMG.

The linear fit, however, only fixes the ratio between ktr and kron.

To recover unique values for these two rate constants, we next

considered the mean duration of each transcription burst. The

interpretation of the shape parameter a of the gamma distribution

as the burst frequency is only meaningful if the burst duration is

short compared to the protein lifetime. In that case, individual

exponentially sized bursts can be considered exponentially

distributed in time and therefore act independently to give rise

to a gamma distribution of protein abundance. In setting rate

constants for the model, then, we wanted to ensure that the burst

duration was appropriately short.

The burst duration tB is simply the mean time for a repressor to

bind to a free operator. Given a constant ktr, a linear relationship

Figure 4. Markov diagram for transcriptional bursting in the lac
circuit. Under low-to-moderate inducer concentrations, a burst begins
when the operator enters the O state and ends when it transitions to a
repressor bound state. ktot~ktrz R2½ �:kronz IR2½ �:a:kron.
doi:10.1371/journal.pcbi.1002010.g004
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between burst size and inducer concentration also implies a linear

relationship between tB and inducer concentration as can be seen

from

tB~
1

kron ½R2�za:½IR2�ð Þ ,

~
C50z½I �ð Þ2

kron
:C50

:R2T C50z2:a:½I �ð Þ ,

~

1z
½I �
C50

kron
:R2T

,

ð17Þ

where a~
1

2
in the last step. For TMG, the linear relationship

between burst size and inducer concentration extended to at least

,200 mM, which is ,11 times the C50 value for TMG of 17.6

mM. From Figure 7 it can be seen that the interpretation of a as

the burst frequency begins to break down once tB is .5% of the

protein lifetime. Using 5% of the protein lifetime as tB for 200

mM, we can compute the value for kron that gives the appropriate

tB: kron~12
�

0:05:
tcell

ln2
:R2T

� �
~ 2:43:106 M{1s{1, using a cell

doubling time tcell of 55 minutes. With this value for the repressor

binding rate, a single repressor molecule in an E. coli cell would

take ,200 s to find a free operator. This is somewhat faster than

the 354 s reported by Elf et al. [51]. Using the above value for kron

and the ratio of ktr to kron from the linear fit of the experimental

data we obtained the value for the transcription rate

ktr = 1:26:10{1 s{1. This rate for transcription initiation resulted

in a steady state concentration of ,2500 LacY molecules per cell

in the fully induced state, within a factor of two of the ,1000–

1200 reported in the literature [22,26]. The value also falls within

the range of 1000–3000 seen for other highly expressed proteins in

E. coli [85]. Accurate measurements of the burst duration in the lac

system, particularly in the fully induced state, would increase the

accuracy of our model.

In order to reproduce a burst frequency of a over the mean

LacY lifetime in the model, the repressor should dissociate from

the operator with a frequency kroff ~
a:ln2

tcell

, assuming that each

dissociation event produces a burst and that tB % the cell cycle.

The burst frequencies inferred by Choi et al. for TMG levels #100

mM are relatively constant with a mean of ,3 bursts. This

corresponds to kroff = 6:30:10{4 s{1. Since the dissociation of a

repressor dimer is not thought to be significantly affected by the

binding of a single inducer molecule, kiroff = kroff . The affinity of a

repressor dimer with two bound inducer molecules, however, is

thought to be much lower, i.e., the binding of a second inducer

molecule essentially knocks the repressor off of the operator. In the

absence of this effect, the response to an increase in inducer

concentrations would take a significant fraction of the cell cycle.

Elf et al. reported a response time of ,60 seconds for addition of

IPTG to concentrations from 50 mM – 1 mM [51]. Therefore, we

fit ki2roff such that the response of the model to increase in IPTG

agreed with the published data. The best fit value was obtained for

ki2roff ~500:kroff (shown in Figure 8A).

Figure 5. Parameter space of repressor binding parameter a. (A)
Mean burst size as a function of inducer concentration for various
values of a, where kiron~a:kron. Parameters used were R2T = 2:08:10{8

M, C50 = 1:76:10{5 M, ktr = 1:26:10{1 s{1 , and kron = 2:43:106 M{1s{1 .
(B) The rate of change in the burst size with respective to the inducer
concentration.
doi:10.1371/journal.pcbi.1002010.g005

Figure 6. Linear fit of burst size to inducer concentration. x are
data from Choi et al. [22].
doi:10.1371/journal.pcbi.1002010.g006
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The final kinetic rates to be defined were those regarding the

binding of TMG to the repressor–operator complex (Equations 10

& 11). As discussed in Methods, we used the same dissociation

rates as for IPTG, leaving only the association rates kiopon and

ki2opon, both of which can be derived from the C50{op value,

which is the inducer concentration at which half of the repressor–

operator complexes have a bound inducer. Figure 8B shows the

effect of varying C50{op on the burst frequency. As C50{op

approaches C50, the burst frequency begins to diverge from its

expected value. This is due to the increasing occupancy of the

I2R2O state, which can decay much more quickly into a free

operator than the other repressed states; with operator free more

often, there are more bursts over the lifetime of a protein. A value

of 3 mM for C50{op gave the best agreement with the

experimental burst frequencies for TMG.

Population distributions without positive feedback
Using the derived rates, we performed well-stirred stochastic

simulations of the lac model in the absence of LacY positive

feedback (NPF model), obtaining the stationary LacY distributions

as a function of internal inducer concentration shown in Figure 9.

Compared to the intrinsic noise of the two-state model, the NPF

model contains additional noise contributions from the non-

constant rates for transitioning between active and inactive

transcriptional states. The distributions showed the widest cell-

Figure 7. Burst analysis of stochastic simulations of a simple
two-state process. The two-state process was described by:
X'Y ,Y?Z,Z?1. Rate constants were chosen such that on average
asim bursts of Z with a constant burst size bsim were produced during Z’s
mean lifetime with the mean duration of each burst lasting for the
indicated fraction of the lifetime. At each point, 250 stochastic
simulations were run until the probability density was stationary and
then the distributions of Z were fit to gamma distributions to obtain the
afit and bfit parameters. The ratios of (A) afit/asim and (B) bfit/bsim as a
function of the burst duration show the range of burst durations for
which a gamma distribution fit can reliably recover the original
parameters. In this example asim~3 and bsim~100.
doi:10.1371/journal.pcbi.1002010.g007

Figure 8. Parameter fitting for inducer–repressor–operator
interactions. (A) Fraction of operator regions bound by a repressor
as a function of time following an increase of IPTG to the indicated
concentration. In these simulations, ki2roff ~500:kroff . (B) Number of
bursts over the mean protein lifetime as a function of inducer
concentration for a variety of values of the C50{op parameter. x are
data from Choi et al. [22].
doi:10.1371/journal.pcbi.1002010.g008
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to-cell variability due to the intrinsic noise of the system at

intermediate inducer concentrations of 50–400 mM. At high

inducer concentrations the population migrated toward a less

variable distribution, as expected. Up to 100 mM, the population

distributions agreed well with those reported by Choi et al. but at

200 mM the agreement began to break down. This discrepancy at

concentrations .100 mM was caused by two primary factors: the

burst duration and the action of inducer knocking repressor off of

the operator. Increasing the repressor binding rate would improve

the fit by decreasing the duration of each burst, but would cause a

large increase in the total number of LacY molecules in the fully

induced state, which is not supported experimentally. Alternative-

ly, one could increase the C50{op value, causing less inducer

instigated dissociation of the repressor–operator complex, but this

would decrease the responsiveness of the circuit to addition of

inducer, which is also not supported experimentally. Clearly, in

order for the model to have greater predictive power, additional

features would be necessary. For example, adding a delay between

production of mRNA to account for the steps of RNAP open

complex formation or more detailed modeling of translation. But

lacking the in vivo experimental results to validate any additional

complexity, we chose to ignore these effects and analyzed the

model as described.

The gene regulation function (GRF) of an genetic system

describes the relation between the activity of a gene and its

regulatory control elements [86–88]. In the steady state, protein

production is balanced by protein degradation/dilution. The

mean protein count as a function of the control elements provides

a method to analyze a GRF. The mean number of LacY per cell

as function of the TMG concentration (Figure 9D) and the fraction

of time spent in the transcriptionally active state (Figure 9F) show

the regulatory behavior of the NPF model. We saw a typical

sigmoidal regulatory response that was well fit by a Hill equation

with an inflection at 312 mM and a Hill coefficient of 2.11. In a

stochastic system, though, the mean rate of gene expression is just

one piece of information. As important for a stochastic GRF is

how the distribution changes with inducer concentration. The

Fano factor (variance/mean) provides a measure of the variation

of the distribution. For reference, the Fano factor of a Poisson

process is 1. For the NPF model (Figure 9E) the Fano factor

monotonically increases until 100–200 mM where it peaks at a

value of ,60 and then begins to decrease ending at a lower value

of relative noise than at zero inducer.

Noise due to positive feedback
Next we investigated noise in the inducible genetic switch when

the positive feedback regulatory link was active (PFB model). The

lacY gene located in the lac operon codes for the integral

membrane protein LacY, which actively imports inducer

molecules (lactose/Hz co-transport) establishing a positive feed-

back loop as shown in Figure 1C. The presence of active LacY in

the membrane creates a concentration gradient enriching the

intracellular environment with inducer molecules relative to

extracellular space. For a fixed Iex concentration, the underlying

GRF for the lac operon therefore operates not only at an

increased inducer concentration but, since the number of LacY is

different for each cell, across a distribution of internal inducer

concentrations.

We calculated the population distributions for the PFB model

using well-stirred stochastic simulations at various Iex concentra-

Figure 9. Steady state LacY distributions from the well-stirred NPF model. Distributions at inducer concentrations of (A) 0, (B) 100, and (C)
200 mM TMG. Shown are (gray bars) histograms from 10,000 Gillespie trajectories and (red dash) gamma distributions from Choi et al. [22]. (D) Mean
LacY as a function of inducer concentration along with 95% ranges. (E) The noise in the LacY distributions as quantified by the Fano factor (variance
over the mean). (F) The fraction of time spent in the transcriptionally active state.
doi:10.1371/journal.pcbi.1002010.g009
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tions. Starting from a stationary population distribution in the

absence of inducer, each population of 10,000 cells was subject to

an instantaneous increase in Iex and simulated for twenty-four

hours. Above an Iex concentration of ,10 mM, cells in the

population began to switch to an induced state in which LacY

expression was near its maximum value (see Figure 10A and B).

Above ,25 mM the transition to full expression was relatively

concerted throughout the population. In the range of 10–25 mM,

though, there were two transiently stable subpopulations, one

uninduced and the other induced – the overall population was

bimodal for a time.

To quantify the switching behavior of the population, we classified

cells at regular time intervals as uninduced with ,400–600 LacY

(best fit for each Iex) or induced with .1750 LacY. Each sub-

population was then analyzed separately. The mean and variance of

the distributions (Figure 10C) show that, after an initial response

phase, the distribution of the uninduced subpopulation was stable

over time. This was true even as the total number of cells in the

uninduced population was decreasing as cells within it were switching

to the induced state. At intermediate inducer concentrations, the

uninduced cell population appeared to reach a stationary distribution

from which cells independently and stochastically transitioned to the

induced state. In contrast, at higher inducer concentrations the

population migrated as a whole in a more downhill-like manner.

Noise in a GRF can be expressed in terms of its effect on the

phenotypic variance in a population under identical environmen-

tal conditions. To compare noise between the NPF and PFB

models, we first mapped Iex concentrations to mean Iin con-

Figure 10. Response of an uninduced PFB population to the addition of external inducer. (A) Probability density p(Y ,t) (arbitrary units,
darker = higher) of the number of LacY in a cell over the course of 24 hours. Shown are representative responses for populations in the uninduced
range (0–10 mM; left), the bimodal range (10–25 mM; center), and the concerted induction range (.25 mM; right). Lines show the mean value of the
(green) uninduced and (red) induced subpopulations. (B) Fraction of the cells in each of the subpopulations. (C) The (solid) mean and (dotted)
variance of LacY in the uninduced subpopulation.
doi:10.1371/journal.pcbi.1002010.g010
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centrations in the uninduced and induced subpopulations (in the

NPF model Iin = Iex). We then compared both the mean of the

LacY distributions and the Fano factor for the two models. The

mean values for the LacY distributions (Figure 11) were similar but

the noise in the uninduced subpopulation was significantly higher

in the model with positive feedback. Since the underlying GRF is

equivalent between the two models, it is the action of the GRF on

the distribution of Iin concentrations that gives rise to the increase

in intrinsic noise in the PFB model.

Differences in circuit behavior due to in vivo crowding
Having established the well-stirred PFB stationary distribution,

we next evaluated the effect of in vivo molecular crowding on the

distributions, the PFB+IV model. One obvious reaction subject to

spatial effects is the rebinding of the repressor to the operator

following an unbinding event. Immediately after unbinding, a

repressor is necessarily localized near the operator, i.e. it has a

memory of its location. As was shown by van Zon et al. [27], this

memory effect increases the probability of repressor rebinding at

very short times compared to a well-stirred approximation.

Previous studies only considered the effect of normal diffusion

following unbinding but there is an additional effect caused by

anomalous diffusion due to in vivo crowding.

To investigate repressor rebinding in an in vivo environment, we

performed reaction-diffusion simulations of a 128 nm|128 nm|

128 nm volume centered on an operator immediately following

unbinding of a repressor. We varied the packing density of the

approximated in vivo environment to study its effect on rebinding.

Figure 12A and B shows that there is an anomalous effect at short

time scales (,1 ms). Repressor diffusion at very short time scales is

normal at the in vitro rate, but between 1–100 ms there is a period

of anomalous behavior, and at very long time scales repressor

diffusion returns to normal diffusion behavior with a lower

diffusion coefficient D. Brownian dynamics simulations of proteins

in a virtual in vivo environment [39] show a similar anomalous

behavior when including only steric constraints with a minimum in

the time exponent of ,0.8 for proteins slightly larger than the

75 kDa repressor dimer. When electrostatic effects are included in

the Brownian dynamics simulations, however, the apparent

diffusion coefficient as well as the anomalous exponent change

greatly, so our results should only be considered an upper bound

on the in vivo effects. Including further electrostatically driven

interactions such as non-specific binding, will increase the

anomalous behavior of the repressor.

The anomalous behavior of the repressor causes it to spend

more time near the operator following unbinding than would be

expected for purely Brownian diffusion, leading to more

encounters with the operator and a potentially greater probability

of rebinding. To measure the change in rebinding probability, we

counted the number of repressors that rebound to the operator

following unbinding versus the number that escaped into bulk

solution, defined here as leaving the simulation volume. As can be

seen in Figure 12C, as the density of in vivo crowding increases,

the probability of rebinding goes up. Compared to an in vitro

unpacked environment at 15% probability of rebinding, at 50%

packing the probability of rebinding is ,24%. The distribution of

escape times also broadens (Figure 12D) with particles in general

taking longer to diffuse away. The anomalous memory effect

resulted in the duration of some bursts being significantly shorter

than expected.

To study the effect of burst duration differences on the

stationary LacY distributions in a population, we used our lattice

microbe method to generate PFB+IV trajectories of spatially

resolved rapid-growth E. coli cells (see Methods). Beginning with

the stationary distribution from the well-stirred PFB population,

100 cells were simulated at five internal inducer concentrations

for one hour, slightly longer than the duration of a cell cycle (55

minutes), see Video S1. Over the course of the simulations,

distributions in the in vivo models gradually migrated to lower

mean values and lower noise, as can be seen in Figure 13. Two

factors caused this migration: First, the shorter burst durations

due to the anomalous diffusion effect described above resulted in

fewer proteins being produced per burst and more time spent in

the inactive state led to more frequent bursts and less noise.

Second, the effective increase in repressor due to the decreased

reaction volume. In contrast to spatial effects in an in vitro

environment [27], it appears that in vivo crowding lowers both the

mean value and the noise in distributions of observables. Since

bacterial cells such as E. coli are known to have packing density

changes during different portions of the cell cycle and/or growth

conditions, this presents the possibility of measuring these in vivo

effects on living cells if the observable distributions can be

accurately quantified as a function of the cell cycle or growth

conditions.

Figure 11. Effect of positive feedback on GRF noise. (A) Mapping of the mean internal inducer concentration for a given external
concentration for the (green) uninduced and (red) induced subpopulations. (black dotted) The values for the lac circuit without positive feedback are
shown for reference. (B) The mean number of LacY in the subpopulations as a function of internal inducer concentration. (C) The noise in the LacY
distribution.
doi:10.1371/journal.pcbi.1002010.g011
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Figure 12. The effect of in vivo crowding on repressor rebinding. Each line represents the mean of 5000 trajectories. (A) The observed
diffusion coefficient, D~Sr2T

�
6t, as a function of time scale for a repressor diffusing in a volume with the indicated fraction occupied by in vivo

obstacles. (B) a–exponent arising from fitting Sr2T to a model of anomalous diffusion, Sr2T~6Dta . (C) The probability for a repressor to rebind with
the operator before diffusing into the bulk (64 nm from operator) following unbinding, as a function of the in vivo packing. (D) The distribution of
escape times for repressors that diffuse to bulk rather than rebind, at three packing values.
doi:10.1371/journal.pcbi.1002010.g012

Figure 13. LacY PFB+IV in vivo distributions. (A) The distribution of LacY in (orange bars) 100 modeled E. coli cells at 13 mM TMG concentration
compared with (green dotted) the PFB well-stirred distribution. (B) Mean number of LacY proteins in the (circles) PFB+IV and (green dotted) PFB
models. (C) The noise in the distributions.
doi:10.1371/journal.pcbi.1002010.g013
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Whole-cell modeling using experimentally determined
cell architecture

As a first attempt at addressing how changes in the cellular

environment due to growth conditions affect gene expression

noise, we used CET of E. coli cells under slow growth to build a

whole-cell model of an individual bacteria (Figure 14A). Under

conditions of slow growth in minimal media E. coli B/r K grows as

elongated cylinders with diameter ,400 nm [89], which are

amenable for CET [50]. The tomograms were used to identify the

membrane-enclosed volume of an individual cell along with the

three-dimensional position of ribosomes within it. The E. coli B/r

K cell under slow growth had only *
1

3
of the volume of typical

fast growing cells. A central region of the cell was devoid of

ribosomes and inferred to be the location of the condensed

nucleoid.

We studied the operation of the lac circuit in the slow-growth

phenotype (PFB+IV+CET) using 100 random replica cells. Each

replica used the same experimentally measured cellular geometry

and ribosome positions, but a random distribution of other

molecules including a condensed chromosome (see Methods for

details). Cells were simulated using the lattice microbe method in

15 mM external TMG, starting with LacY and mRNA counts

sampled from the uninduced stationary distribution of the well-

stirred PFB model, see Video S2. Simulations were run for either

one hour or until the cell had induced, whichever came first.

There were clear differences between the slow- and fast-growth in

vivo models. Of the 100 slow-growth cells, 11 induced within one

hour whereas only a single fast-growth cell induced in the same

time period. Also, the mean number of LacY molecules in the

uninduced slow-growth population increased ,15% over the

course of one hour, compared to the fast-growth population which

decreased ,15%.

Analysis of the simulation trajectories revealed that the primary

cause of the differences in LacY distributions between the slow-

and fast-growth models was an increased mean inducer concen-

tration in the smaller cells, 100 mM versus 42 mM. For a given

number of LacY proteins, the cells with the smaller volume had an

increased internal inducer concentration. The increased levels of

inducer caused a slight lengthening of the mean duration of free

operator events, 68 seconds versus 64 seconds, and a correspond-

ing larger burst size. A bigger change was observed in the mean

lifetime of the repressor–operator complex, which decreased to

430 seconds from 730 seconds (Figure 14B,C). The decrease

effected an increase in the mean number of transcription bursts

per hour, to 4.3 from 2.6.

The slow-growth model provides a first approximation as to the

effect of differences in cellular architecture on stochastic gene

expression. The model assumed the same number of repressor

molecules for smaller cells, which may not be accurate as repressor

is known to regulate its own expression. However, since the largest

effect was due to an increased rate of repressor unbinding due to

elevated inducer levels, which is independent of repressor

concentration, we consider the general result of increased burst

frequency and rate of induction in smaller cells to be intriguing. It

implies that there might be a difference in the switching properties

during the first part of the cell cycle following division when a large

burst of LacY would have an increased influence on switching due

to the reduced cellular volume. Such an effect could potentially be

measured using cell synchronization techniques. Although specific

ribosome placement likely also influenced repressor rebinding in

the slow-growth model, any differences were overshadowed by the

effect of the cell volume change. Nevertheless, in a situation where

the placed macromolecules are involved in the reaction kinetics,

we anticipate accurate (non-uniform) placement will take on much

greater importance.

Another large difference between the slow- and fast-growth

models arose due to the presence of a condensed nucleoid coupled

with the smaller cell diameter. In the fast-growth cells the

chromosome was assumed to be diffuse and not an obstacle for

Figure 14. Analysis of cryoelectron tomography based cell model. (A) Slow growth E. coli cell model based in part on data from a
tomographic reconstruction. Shown are (orange) ribosomes, (light gray) membrane, (dark grey) condensed nucleoid, and (red) lac operator. (B+C)
Distribution of repressor–operator complex lifetimes for the fast and slow growth models, respectively. Curves show fits to an exponential
distribution with the given mean. (D) Position of mRNA–membrane contact after diffusion of mRNA produced at the lac operon in (blue x) fast
growth and (red o) slow growth models. Dotted lines show the length of the respective cells.
doi:10.1371/journal.pcbi.1002010.g014
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mRNA diffusion. In the slow-growth cells, the chromosome was

randomly placed in the ribosome-excluded region observed in the

tomograms and it represented an obstruction for mRNA diffusion.

Additionally, the operator was positioned in the center of the fast-

growth cells and at the edge of the nucleoid in the slow-growth

cells. As can be seen in Figure 14D there was a dramatic increase

in localization of mRNA in the slow-growth cells as a result of this

arrangement. A recent report of mRNA localization in bacteria

[90] suggests that the relative locations of transcription and

translation in bacteria may indeed be correlated. If that is

generally true, then in systems where the location of protein

synthesis affects the reaction kinetics it will be important to know

the actual position of the gene in the cell and measurement of the

dispersion of the transcripts might be one way to quantify whether

the gene is physically located near the site of translation and

translocation.

Discussion

Fitting population distributions to models of stochastic
gene expression

Fitting protein population distributions to gene expression

models will be a key step in developing simulations of other

stochastic cellular systems with predictive power. Parameters

obtained from fitting the distributions will drive the computations.

Our stochastic simulations of the inducible lac switch provide an

opportunity to test the process of extracting parameters from a

population distribution arising from a complex gene expression

system using simplified but analytically tractable models. To do so,

we fit the stationary population distributions from our simulations

to both the burst and two-state models (Figure 1A & B) and

evaluated their capability to recover the stochastic rate constants

used in the simulations (e.g. ktr, ktn, etc). The analysis was

performed for each of the different noise variations described

above, corresponding to the NPF, PFB, and PFB+IV simulations.

We excluded the PFB+IV+CET simulations from this study as

they were not performed over a range of inducer conditions. The

best fit parameter values were obtained by maximum likelihood

estimation using the stationary probability density function (PDF)

for the burst and two-state models, Equations 12 & 14 in Methods.

Fits were performed using 10,000 cells for NPF and PFB

simulations and 100 cells for PFB+IV simulations.

Figure 15A & B show parameter estimates obtained from fitting

using the burst model’s gamma distribution PDF (Equation 12).

The aB and bB parameters (the B subscript indicates parameters

for the burst model) reliably recover the burst frequency and burst

size, respectively, in the NPF simulations at low inducer

concentrations, but diverge from the simulation values above

,100 mM. This is as expected as the model is only valid when the

duration of each burst is short enough that sequential bursts can be

considered as occurring independently, ,5% of the protein

lifetime as shown in Results. In particular the divergence occurs

near the switching threshold, making this model most suitable for

analyzing the system in the uninduced state with low expression

levels. However, the clearness of the biological interpretation for

the model parameters as the burst frequency and size make the

model extremely valuable over the regime it is valid.

Fitting the NPF simulation data to the stationary PDF of the

two-state model (Figure 1B; Equation 14) provides good parameter

estimates over a wider range of inducer concentrations. The fits

are shown in Figure 15C–F for the parameters aTS (ktr

�
kdegp; the

TS subscript indicates two-state), bTS (ktn

�
kdegm), k0 (the rate

constant for operator activation), and k1 (the rate constant for

operator inactivation), respectively. As the inducer concentration

increases, though, many more cells are required to obtain reliable

estimates. Using even 10,000 cells, we were unable to obtain good

fits for the highest expression levels. At these inducer levels so little

time is spent in the inactive state that the difference in likelihood

values for different switching rates is insufficient to find a unique

maximum using 10,000 samples. However, as the time spent in the

inactive state approaches zero (k1?0) the probability distribution

approaches a negative binomial distribution without dependence

on k0 or k1, so it is possible to estimate the aTS and bTS

parameters in the fully induced state by fitting to a negative

binomial.

The two-state model therefore appears to be a reasonable

method for fitting the NPF simulations. Using the fitting

parameters (along with known or estimated mRNA and protein

degradation rates), one can readily recover the transcription and

translation rates as well as the rates of the operator switching

between active and inactive states at a given inducer concentra-

tion. Even though switching between active and inactive states in

the lac switch is not a first order process – it is controlled by 14

reactions – at a given inducer concentration the steady state

switching times are reasonably well-approximated by a single

exponential. A further improvement in the two-state model would

allow k0 and k1 to depend on the inducer concentration using, e.g.,

a Hill function. An analytic solution to such a model would allow

extraction of parameters from a multivariate fit using data across

all inducer concentrations. However, to the best of our knowledge,

the analytic form of such a model has not been derived.

Using the steady state distributions from the PFB simulations,

neither model achieves good fits. For the two-state model, the aTS

and bTS parameters are recovered correctly, but the fits for the k0

and k1 parameters are lower than expected. The poor fit for these

parameters is due to noise in the switching rates of the cell

population caused by differences in internal inducer concentra-

tions. With positive feedback, it will be very difficult to reliably

estimate model parameters from population distributions due to

non-linear noise. Fitting to experimental data should be done in

the absence of positive feedback, such as by using gene knock-outs

to eliminate circuit components responsible for positive feedback.

However, if an analytic model were developed including positive

feedback effects, comparison of systems with and without these

effects could provide estimates of positive feedback parameters, e.g.

inducer transport rates.

Fits to the PFB+IV simulations as well show deviations from the

expected values; in vivo crowding noise changes the parameter fits.

For these simulations, an additional source of discrepancies with

the models is the non-Poissonian behavior of repressor rebinding –

there is a positional memory in the system for a short time

following unbinding. In our simulations the effect from in vivo

conditions due to excluded volume is modest, but there are other

in vivo factors still not accounted for in them, especially non-specific

binding as recently reported by McGuffee and Elcock [39], which

would have an even larger effect on repressor rebinding. Also,

repressor rebinding most likely occurs via a series of 1D sliding and

3D hopping steps, the effect of which on rebinding in a crowded

environment is not known. Accounting for in vivo effects when

deriving parameter from experimental population distributions,

which would include in vivo noise contributions, will be difficult.

Possibly an iterative process of refinement may be required,

starting with model estimates and proceeding through multiple

rounds of spatial simulation.

Overall, it appears that fitting population distributions to the

two-state model could prove to be an effective way of obtaining

rate constants for stochastic simulations of gene regulation.

Single-molecule in vivo fluorescence imaging provides a way to
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experimentally measure these distributions. Measurements over a

range of regulatory conditions could then be used to build a

stochastic gene regulation function, provided the actual proba-

bility distributions from single-molecule experiments were

available at each condition. However, it is important to

acknowledge that our simulations did not include a contribution

from global extrinsic noise. Noise in our simulations under

conditions of high expression approaches Poissonian, as expected

from the intrinsic noise of an uncorrelated random process. A

recent study has clearly shown, though, that there is a constant

level of global extrinsic noise in gene expression in E. coli,

maintaining population heterogeneity even at high levels of gene

expression [85]. This implies that a way to correct for the global

extrinsic noise will be needed in order to fit experimental

population distributions at high expression levels.

Probability landscape of an inducible lac switch
The probability distribution for a stochastic biochemical system

to be in a particular state represents the totality of information

about the system. From it various measures of the behavior of the

system such as the mean first passage time between two states or

their relative population at the steady state can be obtained. For

models of stochastic gene expression, two relevant reaction

coordinates are the number of protein and mRNA molecules in

the system. We used our stochastic simulations to reconstruct the

two-dimensional probability landscapes (negative log of the PDF)

of the NPF and PFB models at two external TMG concentrations

(Figure 16).

The steady-state landscape of the NPF simulations at 500 mM
inducer shows a bistable mRNA distribution that has been

reported by others [25,91]. One minima is located near 0 mY/

1700 LacY and the other near 10 mY/1800 LacY. Note that the

stable 10/1800 point does not imply that 180 LacY were produced

per mY, as the degradation rates of the two molecules differ. At

500 mM inducer, the net time some cells stochastically spend in the

inactive state is greater than the typical lifetime of the mRNA

bursts. These cells then drift to a zero mRNA abundance. The

higher density is caused by an accumulation of these cells near the

zero mRNA level until their next mRNA burst pushes them back

into a random cycle around the mean mRNA burst size.

Interestingly, though, the protein distributions at the two mRNA

minimum are different, with the protein abundance being slightly

lower in the lower mRNA minimum. This means that the protein

and mRNA probability distributions are not completely indepen-

dent of each other; the joint probability distribution has cross

terms. While not a large difference, it is nevertheless possible that

the joint protein–mRNA distribution could be used to obtain

better parameter fits for the two-state model with fewer cells, if the

mRNA counts were known.

The bimodal distributions seen in the LacY distributions from

the PFB simulations (Figure 10) are recapitulated in the probability

landscape for switching. The two-dimensional landscape allows

classification of both the uninduced and induced states in terms of

their relative protein and mRNA abundances. Additionally, the

landscape reveals the transition path for switching from the

uninduced to the induced state. One can imagine two possible

scenarios for the transition, either the gradual build-up of protein

by a series of small bursts, or alternatively, by the random

occurrence of a small number of larger bursts. For the lac system

with DNA looping, Choi et al. [26] have persuasively argued for

Figure 15. Maximum-likelihood fitting of two models for gene expression to stochastic simulations of an inducible genetic circuit.
(A and B) Parameter fits from the burst model. (C–F) Parameter fits from the two-state model. Shown are fits for (black dotted) NPF simulations,
(green dotted) PFB simulations, and (orange circles) PFB+IV simulations. Also shown are (blue solid) actual parameter values calculated from the
simulation data. Shaded areas indicate the 95% confidence intervals for ML fits using distributions from 50 and 200 NPF cells.
doi:10.1371/journal.pcbi.1002010.g015
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the random large bursts as the switching initiator. The switching

mechanism of the stochastic system in the absence of looping,

however, is not so clear. The probability landscape of our lac

model suggests that it is actually the occurrence of several large

mRNA bursts, on the order of .10 molecules, in quick succession

that is responsible for putting the cell on the path to induction.

Cells can spend a significant amount of time in a high LacY but

low mY state without inducing. This behavior is apparent in the

cell trajectory plotted in Figure 16B. Switching therefore is a

process in which not only a protein threshold must be crossed, but

also an mRNA threshold.

Conclusions
Our goal with this study was to go beyond previous stochastic

simulations of the lac circuit by using information from single

molecule protein distributions and experimentally determined

cellular architecture to constrain the kinetic parameters and

estimate the effect of spatial heterogeneity on the response of the

switch. The kinetic model of the inducible lac genetic switch

presented in this study illustrates the utility of incorporating single-

molecule, single-cell data when modeling cellular biochemical

systems. The model was derived using a kinetic framework

reproducing a linear relationship between protein burst size and

inducer concentration at low concentrations, as has been reported

experimentally. Analysis of the linear relationship in terms of

inducer–repressor–operator interactions suggests that the stoichi-

ometry of repressor binding is such that repressor dimers with one

bound inducer still have significant affinity for the lac operator.

Furthermore, single-cell population distributions were used to

obtain estimates of the effective rate constants for transcription and

repression in the cell. With future increases in performance of the

lattice microbe simulation method it should be possible to iteratively

refine the kinetic rate constants to account for the effects of cellular

architecture, such as we obtained here from CET experiments, and

cytoplasmic crowding. Using such in vivo adjusted rate constants the

in vivo models should then more accurately reproduce experimental

population distributions, which are after all measured under in vivo

conditions, than the well-stirred models.

The lac model without positive feedback provided a baseline for

the noise in the regulation of the lac operon. Intrinsic noise at low

gene expression was significantly higher than Poissonian and

peaked when the promoter was active 10–30% of the time. The

model with positive feedback produced similar mean values for a

given intracellular inducer concentration, but the noise was

substantially greater. We attribute this effect to the non-linear

gene regulatory function operating on a distribution of intracel-

lular inducer levels. Global extrinsic noise in the transcription/

translation machinery is a large contributor to population

heterogeneity at high levels of expression, but we excluded such

noise from the current study.

Fitting of data from stochastic simulations of the lac switch with

the burst and two-state models of gene expression showed both the

potential and limitations of these models to interpret stochastic

gene regulation. The burst model described the data well under

conditions of low expression, when the gene was active for #5% of

the mean protein lifetime, but diverged for increasing expression

levels. The two-state model better described the data at higher

levels of expression, but near full induction the error in the

activation and inactivation rates became significant. Additionally,

the fits provided estimates of the number of cell measurements

necessary to produce reliable parameter estimates. With 50 cells

the worst-case relative error was 690%, but with 200 cells it

dropped to 632%. Fitting to joint mRNA–protein distributions

might improve parameter estimation. Fits to data with positive

feedback indicated that both models were unable to reliably

extract parameters from populations with such feedback.

Switching of cells from the uninduced to the induced state was

observed in the positive feedback model without DNA looping

over a range of low inducer concentrations. During switching, the

uninduced population maintained a stable stationary distribution

while cells stochastically transitioned to the induced population.

The probability landscape showed that both an mRNA and a

protein threshold must be crossed for a cell to switch to the

induced state. The probability landscape for the DNA looping case

is likely different, but additional model states would be required to

accurately represent DNA looping.

Figure 16. Probability landscape of protein–mRNA abundances
in the inducible lac switch model. (A) Steady-state probability
landscape (arbitrary units, darker = higher) for the NPF model at 500 mM
TMG. The dotted line shows the trajectory of a representative cell
during a ,3 hour interval starting at the open circle and ending at the
closed circle. (B) Probability landscape of the PFB circuit over a period of
24 hours following the addition of external TMG to 16 mM. The line
follows a single cell switching from the uninduced to the induced state
over the course of ,13 hours.
doi:10.1371/journal.pcbi.1002010.g016
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Finally, we have presented what we believe to be the first whole-

cell simulations of stochastic gene expression using experimentally

obtained cellular architecture. These simulations showed that in vivo

conditions can impact the stochastic noise in biological systems.

Positional memory of transcription factors following unbinding,

amplified by anomalous diffusion due to molecular crowding,

introduces non-Poissonian statistics. In the case of our lac model in

fast-growth cells, this effect caused a decrease in the mean value of

the LacY distribution by up to 10% and its noise by up to 20%, for a

given environmental condition. In a slow-growth cell phenotype we

saw a large increase in burst frequency due to the smaller cell size, as

determined from cryoelectron tomography. From this difference we

infer that changes in cellular size and/or shape during the cell cycle

can have an impact on stochastic processes. Since spatial noise can

vary from cell-to-cell or even during the cell cycle so we consider it a

type of extrinsic noise. The necessary computational resources and

experimental data are becoming available such that computational

biologists should consider adding spatial degrees of freedom into

physical models of cellular biochemical networks.

Supporting Information

Text S1 Supporting methods. Further methods describing the

derivation of the rate constant relationship for non-cooperative

ligand binding, the lattice microbe reaction operator, and the

lattice coarse-graining technique.

(PDF)

Video S1 Simulated colony of E. coli cells responding to inducer.

Video composite of trajectories from six spatial PFB+IV

simulations at 15 mM inducer. Yellow circles are LacY proteins

and red circle are mY mRNA molecules. Two cells begin the

process of switching to the induced state.

(MOV)

Video S2 Trajectory of a PFB+IV+CET cell responding to

inducer. Visualization of a single slow-growth CET modeled cell

responding to 15 mM inducer. Gray spheres are ribosomes and the

blue region the nucleoid. Yellow circles are LacY proteins and red

circles are mY mRNA molecules. The repressor–operator

complex is green and the free operator is white.

(MOV)
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