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At each round of infection, viruses fall apart to release their genome for replication, and then reassemble into stable particles
within the same host cell. For most viruses, the structural details that underlie these disassembly and assembly reactions are
poorly understood. Cryo-electron tomography (cryo-ET), a unique method to investigate large and asymmetric structures at
the near molecular resolution, was previously used to study the complex structure of vaccinia virus (VV). Here we study the
disassembly of VV by cryo-ET on intact, rapidly frozen, mammalian cells, infected for up to 60 minutes. Binding to the cell
surface induced distinct structural rearrangements of the core, such as a shape change, the rearrangement of its surface spikes
and de-condensation of the viral DNA. We propose that the cell surface induced changes, in particular the decondensation of
the viral genome, are a prerequisite for the subsequent release of the vaccinia DNA into the cytoplasm, which is followed by its
cytoplasmic replication. Generally, this is the first study that employs whole cell cryo-ET to address structural details of
pathogen-host cell interaction.
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INTRODUCTION
When viruses enter cells they undergo a programmed sequence of

events that finally leads to the production of new infectious

progeny. They fall apart to release their genome for replication

and then assemble into stable structures many hours later within

the same host cell. To coordinate disassembly and assembly viruses

rely on specific signals that program them towards uncoating;

these can be receptor binding, reducing or low pH environment of

the cytoplasm or endosomes, respectively. These cellular cues

activate and induce conformational changes to critical viral factors

required for virus-disassembly and the subsequent release of the

viral genome [1,2]. The structural details underlying these

controlled events are, however, poorly understood for most

viruses.

Vaccinia Virus (VV), the prototype member of the poxviridae

a family of complex DNA viruses, encodes for more than 200

proteins. VV was used successfully to eradicate variola virus, the

cause of smallpox. Although officially eradicated in 1979, smallpox

is presently considered a threat, because of its potential use as bio-

weapon [3]. The life cycle of VV is initiated upon entry into the

cell, resulting in the penetration of viral cores into the cytoplasm.

A viral transcription machinery inside these cores then carries out

the process of early transcription, in which about 100 mRNAs are

transcribed inside cores and then extruded into the cytoplasm for

translation. The synthesis of the early proteins is necessary to

initiate core-uncoating and the release of the parental DNA into

the cytoplasm for cytoplasmic DNA-replication. Replication is

followed by the assembly of new virions, which results in two

infectious forms, the mature viruses (MVs; previously called

intracellular mature virus or IMV) and the extracellular enveloped

viruses (EEVs) [4].

The structure and assembly of the MV is only partially

understood and controversial [5]. One model predicts that MVs

are surrounded by a single membrane [6,7] made de novo in the

cytoplasm [8]. The opposing model postulates that a cisternal

membrane derived from the smooth ER forms the MVs and that

the particles are surrounded by two membranes [9–11] reviewed

in [5]. Similarly, the single membrane model predicts that entry

occurs by fusion at the plasma membrane [12–15] whereas the

opposing model implies an unprecedented entry mechanism that

does not involve fusion [5,16]. It is generally accepted, however,

that entry results in the delivery of the viral cores into the

cytoplasm, free of outer membrane layers [17]. We have

previously analyzed the structure and molecular composition of

cytoplasmic cores in some detail both biochemically and by

conventional transmission EM (TEM; [18,19]). The genome is

surrounded by an oval core, composed of at least two major core

proteins, the gene products of A3L and A10L. The surface of the

cores are studded with spikes, likely composed of the A4L gene

product [18]. By TEM at later times post-infection we also

recorded core uncoating; it opens on one side releasing the

genome onto the cytoplasmic side of the endoplasmic reticulum

where DNA-replication subsequently occurs [19,20].

High-resolution studies to address the structural rearrangements

of viruses, or subviral particles, upon entry or receptor binding

commonly relies on X-ray analyses [21] or single particle

reconstruction using cryo electron microscopy (cryo-EM) [22–

24]. Generally, such studies relied on the in vitro incubation of

viruses under conditions that mimic cell surface binding, rather

than incubation with live cells. Moreover, the latter techniques are

not suitable for a large and complex particle such as VV that lacks

clear symmetry. In contrast, cryo-electron tomography (Cryo-ET)

is an emerging imaging technique which allows for three
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dimensional structural studies of non-repetitive objects over a wide

range of size-from molecules to cells, and under close-to-life

conditions [25]. It relies on recording multiple 2D images of an

object at different angles that are subsequently back-projected into

a 3D tomographic reconstruction. ET can furthermore be applied

to cells and is able to provide insights into the complex way cellular

structures are arranged and connected within the cytoplasm [26].

If the specimen is preserved by rapid freezing, the technique of

cryo-EM is the only method that reveals structural details of fully

hydrated cells in their native state. Like any other transmission-

EM technique, however, cryo-EM/ET is limited by the thickness

of the sample, which should not exceed 0.5-1 mm and thus cannot

be applied to all parts of the cell without sectioning [26].

Nevertheless, as shown recently by Medalia et al. [27], parts of

intact cells of the thickness within acceptable limits can be revealed

by cryo-ET with unprecedented detail.

The structure of the intact VV was recently studied in some

detail by cryo-ET [28]. The viral core appears dumbbell-shaped

and is composed of a membrane layer (see also [10,11])

interrupted by distinct pore-like structures. The latter were

postulated to mediate the release of core-transcribed early mRNAs

into the cytoplasm, early in infection. The outer aspect of the cores

is studded with spikes [29,30] that were shown to be arranged into

hexagonal patches consisting of 15-24 spikes [28]. The viral DNA

aligns the inner aspect of the core in a condensed form, whereas

the most central part of the virion is filled with material of low

electron density (Figure 1A). The core is surrounded by tightly

wrapped membrane layers, connected to the core at its middle,

most narrow part by lateral bodies (Figure 1A) [28].

In the present study we take the cryo-ET analysis of VV one

step further by studying its disassembly intermediates at short

times after infection. We use PtK2 cells grown on EM grids

infected for short times, followed by rapid freezing to gain ultra-

structural insights into the VV core upon its disassembly. The

particular flat morphology of PtK2 cells provide extended areas (of

10–20 mm2) that are less than 500 nm thick, and are therefore

amenable to intact, whole mount, cell imaging. Our study shows

that cell attachment induces several rearrangements of the viral

core to form a distinct disassembly intermediate. These structur-

ally altered cores are subsequently seen in the cytoplasm where

they open up to release the previously relaxed DNA.

RESULTS

Whole cell cryo-ET
In this study we used PtK2 cells, a cell line of particular flat

morphology. Disassembly of VV early in infection occurs at or

close to the plasma membrane in thin regions of the cell and are

thus accessible to cryo-ET. We took advantage of this to study the

structure of VV further, focusing on structural details of the core

during virion disassembly. PtK2 cells were grown on formvar-and

carbon-coated gold grids (see Materials and Methods) and an even

flatter morphology was induced by incubation overnight in serum-

free medium. We ascertained that this incubation in serum-free

Figure 1. Schematic representation of VV disassembly. The colour code used applies to all figures. The cores and virions are fenestrated in the front
to visualize the inner components. A, In intact virus the viral core is dumbbell shaped, the spikes are arranged into small hexagonally arranged
crystallites, the DNA is condensed and aligns along the core membrane, the outer membranes are tightly wrapped around the core. The lateral
bodies (LB) are seen on both sides of the core. A’, upon detachment of the outer membranes by spontaneous rupture or DTT-treatment, the core
changes its shape, the spikes appear disordered, but the DNA remains condensed. In disrupted cores the condensed pieces of DNA seemingly pass
through openings in the core. B, upon interaction with the plasma membrane the outer membranes and lateral bodies detach from the core. The
core becomes ovoid-shaped, the DNA detaches from the core membrane and spreads throughout the core-space. C, upon delivery in to the
cytoplasm the core size, shape as well as spikes and DNA do not visibly change their structure as compared to B. We presume that at this stage early
transcription may occur. D, the core opens up on one side and the DNA is released as whole in the cytoplasm, a process that is preceded by early
transcription and early protein synthesis.
doi:10.1371/journal.pone.0000420.g001
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medium did not affect virus-entry (see also [16]). Figure 2A and B

show light microscopy images of PtK2 cells on EM grids prior to

infection. A virus dilution (the equivalent of a multiplicity of

infection (MOI) of 500) was then prepared in serum-free medium

and the grid incubated at 37uC topped with a small drop of the

diluted virus. After 30 to 60 min at 37uC the grid was briefly

blotted, followed by rapid freezing in liquid ethane [31]. Figure 2C

shows an EM image at low magnification of an entire cell showing

that the central part of the cell is not accessible for imaging by EM

due to specimen thickness. However, at high magnification the

peripheral regions revealed unexpected structural details with

many viruses aligning at the plasma membrane, often along cell

surface-derived filopodia (Figure 2D; see also [16]. These areas

were then used to study the structure of the VV core upon cell

surface binding and shortly after penetration into the cytoplasm.

Throughout this study we focused on the viral core only. The

number of membranes surrounding the cores, including their

structural appearance during virion entry, is the focus of a separate

study, which is currently in preparation.

Upon cell attachment the viral core undergoes

major structural rearrangements
We collected a series of successive cryo-tomograms at distinct stages

prior to, and after delivery of the core into the cytoplasm. Prominent

changes were apparent in the outer membranes and the viral core

prior to internalization, compared to intact, isolated virions

(Figure 3A and Movie S1). An obvious change was the detachment

of the outer membrane layers, as well as the lateral bodies from the

underlying core at the cell surface. Occasionally, we recorded images

of contact points between the viral outer membranes and the plasma

membrane (Figure 3A and C). Whereas the core is dumbbell-shaped

in intact particles, it became ovoid-shaped when the virus contacted

the cell surface (Figure 1B, 3A, B and Movie S1). This change in

shape coincided with an expansion of the core, in particular at its

Figure 2. Overview of PtK2 cells grown on EM grids. Light microscopy
images of Ptk2 cells grown on EM-grids. A, shows several EM grid bars,
whereas B is a higher magnification. Bars: 20 mm. C, low magnification
electron microscopy images of Ptk2 cells cultivated on an EM-grid. Bar:
2 mm. D, intermediate magnification (typically used for recording
tomographic tilt series) EM images of the Ptk2 cells, infected with VV for
5 min. arrows–actin, arrowheads-extracellular virions. Bar: 200 nm
doi:10.1371/journal.pone.0000420.g002

Figure 3. Structural changes of VV at the cell surface prior to entry. PtK2 cells were grown on gold grids, coated on one side with 1% formvar and
on both sides with carbon. Cells were infected at a multiplicity of infection of 500 for 30 min at 37uC, before vitrification in liquid ethane. A, a section
(12 nm thick) through a tomogram (see Movie S1) with an extra-cellular virion (V) attached to the plasma membrane (PM); in the tomograms the DNA
is randomly distributed (arrow–contact sites of the outer viral membranes with the PM–magnified in C). B, surface rendered representation of the
particle in A (green-actin). C, surface rendered representation of the area marked by an arrow in A, showing close contact sites (yellow) between the
outer viral membrane and the plasma membrane (magnification 36as in A and B). D, the virion reveals tubular membrane structures inside the core.
E, one of the pore-like structures (arrow) in the core of the particle seen in A (cross-section and surface rendered). Bars-100 nm
doi:10.1371/journal.pone.0000420.g003
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middle, most narrow part, the diameter of which increased about 2-

fold (Table 1). The condensed arrangement of the viral DNA, seen in

the intact particle, was lost upon cell attachment; the genome

‘relaxed’, apparently detaching from the surrounding core mem-

branes, thereby uniformly filling the entire core space (Figure 3A and

B). Within the core space we detected tubular structures, connected

to the core, likely representing tubular membranes (Figure 3D,

Movie S1; see also [10]). These tubular structures were absent from

the cores after their internalization (Figure 4A, B, E, F and Movies

S2, S3A and S3B). The periodic arrangement of the spikes, seen in

the intact virion, was lost and displayed no specific order at this stage

(Figure 4D). The pore-like structures, recently noted in the core

membrane of the intact particle by means of cryo-ET [28], were seen

through all disassembly stages (Figure 3E, 4C and G). This is

consistent with their proposed role in mediating the release of early

transcripts from the core into the cytoplasm. Importantly, none of

these changes were apparent in a virion located at the opposite side

of the grid devoid of cells, implying that they were not induced by

incubation at 37uC in medium (Table 1, condition 1’).

Thus, the whole cell cryo-ET revealed unprecedented details of

the core that apparently underwent distinct structural rearrange-

ments prior to its delivery into the cytoplasm.

Figure 4. The fate of intra-cellular cores. PTK2 cells were grown and infected as described under Figure 3 and vitrified at 60 min post-infection. A,
a 30 nm thick section through the tomogram (see Movie S2) showing a virion (V) attached to the extracellular side of the plasma membrane as in
Figure 3A; and a core (C) in the cytoplasm. After internalization all of the core-features (including arrangement of spikes and DNA) are similar to
particles seen before internalization. Actin stress fibers and microtubules (MT) are in the vicinity of the core, (PM–plasma membrane). B, surface
rendered core seen in A. C, the pores (arrow) in the core membrane (section and surface rendering). D, a section through the face view of the viral
core reveals the random distribution of the spikes in the palisade layer. E and F, a section (30 nm thick) (see Movie S3A) and surface rendered views
(see Movie S3B) of the cytoplasm 60 min. after infection. The VV core is opened on one side and releases the genome (arrow, DNA) as an entity.
Around the core a number of cellular structures can be observed (PM-plasma membrane, MT-microtubules, ER-endoplasmic reticulum, if-
intermediate filaments). G, cross-section and surface rendered views through the core showing one of the 7 nm pores. Bars-100 nm
doi:10.1371/journal.pone.0000420.g004
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Cell attachment is required to induce

decondensation of the viral DNA
The core changes occurred as the particle contacted the cell

surface, before the core was delivered into the reducing

environment of the cytoplasm. To determine whether cell surface

binding was responsible for these changes, we also collected

tomograms of particles that were uncoated in a cell-independent

way. First, within isolated virus preparations we searched for

virions that had spontaneously lost their outer membranes

(Figure 5A and C). In such particles the cores had lost their

dumbbell-shape, had increased in volume (Table 1) and lacked the

hexagonal arrangement of the spikes (Figure 1A’, 5C and compare

Figure 5G and H), similar to the disassembling particles at the cell

surface. Statistical analyses of the changes in core diameter under

different conditions (cell surface binding, DTT treatment and

spontaneous loss of the outer membranes) demonstrated that these

were significant with p values of less than 0.001 (not shown). The

DNA, however, remained condensed and aligned along the inner

aspect of the core membrane. Second, we artificially relaxed the

outer membranes by treating intact particles for 30 min. at 37uC
with 40 mM DTT. As shown before [30,32], DTT resulted in the

detachment of the outer membranes, including the lateral bodies,

from the underlying core, in a way similar to cell surface binding

(Figure 5D; Table 1). This treatment additionally revealed that

the outer membrane layers opened up at the lateral bodies

that were seemingly located at the ends of these membranes

(Figure 5D; see also [30]). Similar to cell surface binding the

relaxation of the outer membrane layers induced by DTT resulted

in an expansion of the core to become ovoid-shaped and

a rearrangement of the surface spikes. Importantly, however, the

DNA remained condensed implying that this strong reducing

treatment was not a trigger for its decondensation (Figure 5D, E

and F; Table 1; see discussion).

Thus, whereas the shape and size of the core and the arrange-

ment of the spikes may rely on tightly wrapped outer membrane

layers, the decondensation of the viral DNA critically depended on

cell surface binding.

Later stages of infection reveal how the viral DNA is

released into the cytoplasm
The tomograms of whole cells also revealed unprecedented details

of the peripheral cytoplasm where cellular structures such as actin,

microtubules, ER and ribosomes were readily revealed (Figure 4A

and E). In such peripheral regions we were also able to follow the

fate of cytoplasmic incoming cores over time. Compared to cores

at the cell surface, intracellular cores did not show obvious

additional structural changes (Figure 1C, 4A, B and Movie S2).

However, in a tomogram recorded at 60 min. post-infection we

observed how the DNA leaves the core. The core opens on one

side, releasing the previously ‘relaxed’ genome as a whole into the

cytoplasm (Figure 4E, F, Movies S3A and S3B). Similar to

previous TEM images [19], this core opening occurred on one of

its broad sides to release the viral DNA. Within isolated virus

preparations (not shown), or DTT-treated particles we also

detected cores with small openings (Figure 5E and F). However,

these ‘artificial’ holes were generally smaller and their location

within the core seemed random (Figure 5E and F). Occasionally

small pieces of DNA could be seen extruding through such a core

opening (Figure 5E and F). Apparently cell surface binding was

required to detach the viral DNA from the core membrane and

de-condense it, such that it could be released as a whole into the

cytoplasm for subsequent cytoplasmic DNA-replication.
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Conventional thin section EM confirms the size and

shape changes
We finally sought to confirm some of the changes to the core seen

by cryo-ET using conventional TEM. The latter allows for larger

sampling thus to generate more data for quantification. PtK2 cells

were infected for 30 min, fixed and processed for EPON

embedding. Concentrated intact virus was embedded in parallel

to compare its structure to that of cell-associated virions.

Conventional plastic embedding of cells infected under the same

conditions failed to reveal most of the structural details seen by

cryo-ET. However, prominent changes of the core shape and size

were readily seen upon cell surface binding of the virions

(Figure 6A–C) Similar to the cryo-ET images we readily noted

the detachment of the outer membrane layers including the lateral

bodies from the underlying core (Figure 6B), which apparently

resulted in an expansion of the core. Using standard stereological

methods we confirmed that the core-volume of virions attached to

the cell surface or of incoming/cytoplasmic cores was about 2-fold

larger than that of isolated, intact, particles (Table 2). Because of

larger sampling, the plastic sections enabled us to conclude that all

of the cores of virions attached to the cell surface or inside the

cytoplasm, underwent this expansion.

The conventional thin section TEM thus confirmed that cell

surface binding is accompanied by size changes of the core, but

otherwise failed to reveal all other changes of the core seen by

cryo-ET.

DISCUSSION
The present study is the first to report the use of cryo-ET to study the

disassembly of a virus in three dimensions. The whole cell cryo-ET

used in this study is unique in several respects. It enabled us to gain

insights into the structural details of VV uncoating, that could not

have been obtained using other imaging techniques. Since it relies on

rapidly frozen live cells, it moreover mimics in a closest possible way

native in vivo conditions. Our study confirms that the technique of

whole cell cryo-ET has a wide application in studying biological

processes that occur at the cellular periphery. It additionally shows

that the whole cell approach may be particularly revealing when

studying structural details of virus disassembly.

A recent cryo-ET study showed that the VV core appeared

dumbbell-shaped in the intact particle. It is surrounded by outer

membrane layers and lateral bodies that are located at the most

narrow part of the core. The surface of the cores is studded with

spikes that are periodically arranged. Finally, the genome aligns

the core membrane in a condensed form [28]. Our present study

now shows that cell surface binding or DTT-treatment results in

a relaxation of the outer membrane layers including the lateral

bodies (summarized in Figure 1). This relaxation is accompanied

Figure 5. Structure of intact, disrupted and DTT-treated VV. A, projection image of isolated particles after rapid freezing; V-intact virion, C-core
without outer membranes. B, Tomography-section (left half) and surface rendered view (right half, using AMIRA visualization program) showing an
intact virion from its broad side, exposing the dumbbell-shaped core (the colour code explained in Figure 1), studded with spikes. The virion is
surrounded by outer membrane layers connected to the core by the lateral bodies. C, reconstruction of the core in A, two views-perpendicular to
each other. The core is ovoid-shaped, the spikes display a random distribution but the DNA remains condensed and aligned along the inner core
membrane. D, an isolated particle treated for 30 min at 37uC with 40mM DTT, showing the outer membrane layers and two lateral bodies (arrows)
detached from the underlying core (c). The lateral body appears to mark the membrane boundaries. E, section through the tomogram and F, surface
rendering of a core obtained after DTT treatment. The core has an opening on one side (arrow) through which condensed DNA is extruded
(arrowhead). Insert: the core opening viewed from the outer surface of the core, through which a piece of DNA is extruded. G, a piece dissected from
the palisade layer of intact virions (SV; upper part); the periodic arrangement of the spikes is depicted graphically by dots in the lower panel. H,
random arrangement of spikes of cores (SC) with detached or released outer membranes. Bars-100 nm.
doi:10.1371/journal.pone.0000420.g005
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by an expansion and shape-change of the cores as well as the

rearrangements of the core’s surface spikes to display no specific

order. Apparently, the tight wrapping of the outer membrane

layers determines both of these structural features of the core in the

intact particle (Figure 1). Whereas these two core changes could

also be mimicked in vitro, DNA relaxation/decondensation

occurred upon cell surface binding only, suggesting that this is

a specific process induced by receptor binding. Conformational

changes induced by receptor binding is a common mechanism of

virus disassembly (reviewed in [1,2]. However, the structure of VV

is known to rely to on the formation of unusually stable disulfide

bonds of both viral membrane-and core proteins [32]. It seemed

therefore reasonable to expect major core rearrangements to occur

after penetration, upon contacting the reducing environment of

the cytoplasm. Penetration into the cytoplasm, however, did not

result in additional core rearrangements implying that cytoplasmic

factors play no role in the formation of this primary disassembly

intermediate of the core. Receptor binding rather than a reducing

environment as major trigger for initial disassembly, does aid at

explaining how, many hours later, stable virions are assembled

within the same reducing cytoplasm. Apparently, the reducing

environment of the cytosol is unable to affect the tightly packed

virion and requires cell surface binding instead. The latter is

consistent with our previous results showing that prolonged

incubation with 5 mM DTT added to the medium is required

to affect VV assembly. This incubation results in virus particles in

which the outer membranes are not tightly wrapped around the

viral core [32], in a way similar to the changes seen in this study.

Apparently, extreme reducing conditions are necessary to affect

the VV structure and assembly, and such conditions are normally

not present in the cytoplasm.

A number of recent studies on the entry on VV identified

a complex of at least 8 VV proteins that are required for entry.

Virions that lack one of those proteins are able to bind, but unable

to enter cells [33]. It would be interesting to see whether these

proteins play a role in the structural changes observed in this

study, such as perhaps the relaxation of the outer membrane layers

surrounding the viral cores that is obviously induced by binding to

the cell surface.

Our observations are consistent with previous biochemical

experiments aimed at following VV disassembly [34,35]. Both

studies, aimed at separating different disassembly intermediates by

sucrose density centrifugation, identified an early form distinct

from intracellular cores and intact particles. This form resembled

morphologically and biochemically whole virions but could be

separated from the latter because of its lower density [34,35]. We

propose that this viral disassembly intermediate represents

partially disassembled virions at the cell surface observed in this

study. Its sedimentation behavior, that is its lower density, can be

explained by the fact that this particle is less compact.

The cell surface triggered genome relaxation is likely a pre-

requisite for subsequent steps of the viral life cycle; early

transcription and DNA uncoating. DNA-relaxation could facilitate

the process of transcription by exposing/relaxing specific DNA

sequences for this process. Genome relaxation is, however, not

absolutely required for the viral early transcription process. VV

early transcription can efficiently be reconstituted in vitro using

detergent-and DTT-treated particles [36], conditions under which

the genome is condensed (our unpublished observations). It is

therefore more likely that genome relaxation is a prerequisite for

Figure 6. Structural change of the virus particle by conventional EM.
A, isolated and intact VV after embedding in Epon and sectioning. B, VV
attached to the plasma membrane (PM) and two intracellular cores (c).
The image shows two extracellular virions attached to two different
cells that lie next to each other (the plasma membrane (PM) of both
cells is indicated). Upon cell surface attachment the extracellular virions
changes their shape. In some profiles the detachment of the lateral
bodies (LB; arrows) from the underlying core becomes apparent. C,
intracellular cores after Epon embedding and sectioning. Shown is
a selection of an Epon section displaying a collection of intracellular
cores (c). Bar-200 nm.
doi:10.1371/journal.pone.0000420.g006

Table 2. Changes of core dimensions after binding of VV to
the cell surface and of intracellular cores measured on
sections of conventional Epon embedded samples.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Condition: intact VV1 extrac. core1 intrac. core1

Sum of squares 923 768 249

n 55 31 10

average 16.8 25.7 24.9

area: (61900 nm2) 32,000 49,000 47,000

volume(calc.) nm3 4,300,000 8,200,000 7,800,000

1concentrated purified VV or PtK2 cells infected for 30 min were embedded in
Epon and sectioned. The core dimensions of intact VV, of VV bound to the cell
surface (extrac. core) or of intracellular cores (intrac. core) was measured as
described in ‘Materials and Methods’.

n: the number of cores considered
doi:10.1371/journal.pone.0000420.t002..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

cryo-ET of Vaccinia Virus

PLoS ONE | www.plosone.org 7 May 2007 | Issue 5 | e420



the delivery of the viral genome into the cytoplasm. It may ensure

that the condensed genome that may interact tightly with the inner

aspect of the core, detaches and thus can be released as a whole

into the cytoplasm upon core uncoating. The fact that DNA

decondensation was mediated by cell surface binding may ensure

that this process occurs upon the early stages of infection only and

not upon assembly. In contrast to other DNA viruses, poxviruses

release and replicate their DNA in the cellular cytoplasm. We have

shown recently that VV-DNA replication is initiated in cytoplas-

mic foci that are located in the cellular periphery [37]. Thus, viral

changes required to release the genome at the site of replication

must rely on an early host/virus interaction rather than for

instance on the interaction of the viral capsid with nuclear pores.

The technique of cryo-ET, and in particular the whole cell

approach, was instrumental in observing these viral features. The

whole cell approach also allows for an analysis in time of distinct

entry intermediates, a study that is currently under investigation.

This method can now be used to study in three dimensions, over

time, the interactions of many pathogens with their hosts, to

observe structural and time-dependent cellular and viral rearran-

gements.

MATERIALS AND METHODS

Cell culture, virus infection and rapid freezing
Inert metal (gold or nickle) EM grids (Plano) were coated with 1%

formvar in chloroform in which the extended areas were sparsely

interrupted with small holes. After coating with 20 nm carbon

layer by evaporation, the formvar was removed by placing the

grids overnight on a filter paper stack soaked with acetone. Such

support provides extended areas for cells to grow and spread, with

the possibility of removing excess of medium by touching the filter

paper at the back-side of the grid, without disturbing the structure

of the cells. The grids were sterilized by soaking in 70% ethanol for

several seconds, followed by several rinses with MEM or by

overnight exposure to UV light. The grids were coated with poly-

L-lysine overnight.

The Ptk2 cells were cultivated on EM grids in MEM with 10%

heat inactivated fetal calf serum (FCS) and antibiotics, with

a parallel cultivation on classical plastic support for assessment of

culture quality. The cells were grown for 2 days in MEM/10%

FCS at 37uC, and 5% CO2, and reached a density of about 1 to

46104 cells/cm2. 12 h before virus infection the medium was

changed to MEM without FCS; this starving assured the

particularly flat morphology of the cells and large, up to 20 mm2

areas thinner than 500 nm. The cells were washed again with

serum-free MEM and inoculated with purified and concentrated

VV, strain western reserve (prepared as detailed in [38]). The virus

was diluted at the appropriate concentration in serum-free MEM

(reaching a multiplicity of infection of around 500; this MOI was

necessary in order to observe enough events that could be used for

tomographic reconstruction). The grid was held in a forceps, cells

facing up and a drop of 10 ml of virus dilution was applied on top

of the cells. The forceps with the grid was then incubated in

a humidifying chamber and incubated for 5, 10, 30 and 60 min at

37u, before the grids were harvested and preserved by rapid

freezing. After desired incubation time the forceps with the grid

were mounted in a plunging device. The laminar flow of

humidified air at 37uC was directed on the grid that assured the

evaporation free preparation and optimal temperature and solute

concentrations in the sample [39]. An aliquot of 3 ml of 10 nm PA

gold suspension (Sigma) in medium was applied on the grids for

about 30 seconds, to provide with adequate concentration of

fiducial markers for subsequent alignment of images in tilt series.

The excess of medium was removed by blotting with filter paper

(Whatman Nr 1) at the backside of the grids for 20–40 seconds.

The grids were plunged in liquid ethane cooled down by liquid

nitrogen virtually as described [31]. DTT treatment and rapid

freezing of DTT treated virus was essentially as described [30].

Electron microscopy and recording tomographic tilt

series
The cryo-preserved grids were mounted in Gatan 626 cryo-

specimen holder (high tilt 670u) and inserted in to the Philips

CM300 cryo-electron microscope equipped with the field-

emission-gun, Gatan–post column energy filter, and Gatan CCD

slow scan camera (204862048 pixels). The images were recorded

at the magnification of 43,000 (0.82 nm/pixel) or 52,000

(0.68 nm/pixel). The areas thinner than 500 nm were selected

for recording tilt series. The tomographic tilt series were recorded

under the above conditions using the ‘Digital Micrograph’ Image

Recording Package, [40]. The defocus of objective lens was

adjusted to either 28 or 212 micrometers. A very low electron

dose of ,50electrons/nm2/image was maintained; the focus was

adjusted for each image on the adjacent area located along the tilt

axis. Typically 60–80 images were recorded of the selected area

covering the tilt range of maximum 670u with 1.5u 22u tilt

intervals in a linear scheme (the Saxton scheme used for 1 tilt series

didn’t show much of increase in tomogram quality). The

illumination was adjusted to 1/cos of the actual tilt angle. The

cumulative dose of electrons for the entire series of 60–70 images

was thus within acceptable limits of 5000 electrons/nm2 of the

specimen (that included the electron dose spent on searching for

suitable areas and for area tracking during data collection).

Image processing
The tilt series were further processed on the SGI (Unix) and HP

(Linux) workstations using the EM Image Processing Package [41].

The images were aligned centering on several 10 nm gold fiducial

markers on the images, weighted, and merged in a 3D re-

construction by back projection. Altogether 17 tilt series were

recorded and processed of the selected thin areas of cells, and

typically show one to several virus particles in a field of view,

captured at various stages of infection, as determined by

experimentally set incubation times. 3D reconstructions of viral

particles and adjacent cytoplasmic features were processed using

AMIRA Visualization Package (TSG Europe, Merignac, France)

by surface rendering and thresholding. For that, some volumes

were denoised using the non-linear anisotropic diffusion filtering

[42]. Denoised volumes were used only for producing the surface

rendered masks, whereas the final analyses and representations

were done using undenoised data (either masked or unmasked).

The figures in text show surface-rendered representations

usually with top part removed computationally for better

visualization of the inner parts of the viruses and the cells.

TEM of conventionally embedded samples
PtK2 cells were infected at a MOI of 500 with purified and

concentrated VV for 60 min at room temperature followed by

30 min at 37uC in serum-free MEM. After three washes with

MEM, the cells were fixed in 1% glutaraldehyde in 100 mM Na-

cacodylate (pH 7.4). In parallel purified virus was fixed in 1% GA

in the same buffer. Purified virus and cells were pelleted and then

embedded in Epon using standard protocols (post-fixation with 1%

osmium in Na-cacodylate, dehydration in increasing ethanol

concentration, contrasting ‘en-block’ with saturated uranyl-acetate

in 70% ethanol, dehydration to 100% ethanol, further de-
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hydration in propylene-oxide and slow infiltration with increasing

concentrations of Epon diluted in propylene-oxide until 100%

Epon. The embedded samples were then incubated overnight at

65uC, followed by sectioning of 50–100 nm thick sections). The

volume of the core was determined by taking random pictures of

embedded virus or extra-cellular virions and intracellular cores.

Digitized images were overlaid with a square grid, and the cross

sections overlapping with viral core and entire virions were

counted. As result the average surface areas were calculated and

then referred to the volumes (!(averaged area/p)3*4p/3). The

averaged volume of the cores at the plasma membrane and those

within cytoplasm of infected cells didn’t differ significantly, and

were 1.8 times larger than the cores within intact virions. Within

the intact particle the volume of the compacted core is about 1/3

to 1/4 of the entire virus.

SUPPORTING INFORMATION

Movie S1 Tomogram of VV bound to the cell surface. This

movie shows a tomogram of a VV particle attached to the cell

surface, a section of which is shown in Figure 3A. Each frame of

the movie corresponds to 1.62 nm thick section through the

tomogram moving along the tomographic Z-axis. Upon cell

surface attachment the outer membrane layers detach from the

underlying core, the core expands and the DNA decondenses.

Found at: doi:10.1371/journal.pone.0000420.s001 (10.23 MB

AVI)

Movie S2 Tomogram of a cytoplasmic incoming core This

movie shows a tomogram with a fragment of an intact Ptk2 cell

and a VV core shortly after internalization into host cell

cytoplasm. A section of the tomogram is shown in Figure 4A.

Each frame of the movie corresponds to a 1.62 nm thick section

through the tomogram moving along the tomographic Z-axis.

After internalization the cores do not change their size or any

other detectable morphological feature, when compared to cores

inside particles attached to the cell surface prior to internalization.

Found at: doi:10.1371/journal.pone.0000420.s002 (7.19 MB AVI)

Movie S3A Tomogram of core uncoating in the cytoplasm. This

movie shows a tomogram of an extended flat area of a Ptk2 cell

grown on an EM grid and an intracellular core in the process of

delivering the genome in to the cytoplasm. A section of the

tomogram is shown in Figure 4E. Each frame of the movie

corresponds to a 1.62 nm thick section through the tomogram

moving along the tomographic Z-axis. The core opens up on one

side through which the viral DNA is released as a whole for

subsequent cytoplasmic replication. Apart from the core rupture,

no further changes could be detected when compared to cores of

particles attached to the cell surface. Around the core several

organelles and cytoskeletal elements can be seen.

Found at: doi:10.1371/journal.pone.0000420.s003 (8.29 MB

MOV)

Movie S3B Reconstruction of the uncoating process This movie

is a surface rendered view of the core seen in the tomogram in

Movie S3A. Figure 4F represents a section of this movie. The viral

core opens up and releases its DNA through the opening. Note the

accumulation of cellular components (light blue dots: likely

representing ribosomes or proteasomes) near the viral core. Actin

filaments (red lines) partially surround the viral core without

getting in direct contact with it, and tend to accumulate at the

substrate side of the cytoplasm.

Found at: doi:10.1371/journal.pone.0000420.s004 (2.91 MB

MOV)
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