Structures of interfaces

relevant in chemical energy conversion

Robert Schlögl

Fritz-Haber-Institut der MPG

www.fhi-berlin.mpg.de

Acknowledgements

HUB
J. Sauer and group

FHI
H.J. Freund and group
M. Scheffler and group

Thanks to the group leaders:

The standard model (Langmuir, Ertl)

- A heterogeneous catalysts can be approximated by a single crystal surface.
- The terminating atoms are all equal and active.
- Adsorption strength may change this: perimeter of islands in CO oxidation; (dynamics).
- Surface atoms can be defined precisely with atom co-ordinates.
- They can be studied by surface science structural tools.
- Single crystal approach.

More complexity: Active sites

Catalyst dynamics: lattice oxygen an early manifestation

Catalysis is a multi-scale phenomenon HZB Helmholtz Zentrum Berlin We exclude much of it here!

Energy systems: from requirements rather than from the past

- Sustainable: closed material flows for all harmful species.
- Scalable: use processes and materials working on abundant resources without open risks.
- Subsidiary: address challenges locally where they arise.
- Stable: interconnect solutions to ensure system stability where necessary.
- The consequence is an increase in complexity and a change in our target function (complete economics).
- Time scales are long (lifetime of infrastructure systems)
 also long transition periods: chance for novel approaches.

Energy storage: Two ways one target: pack sunlight into a tank

The "renewables" power station

Inter-industry systems approach: Power-to-gas

Dynamics of Pt in OER

Nature of the Pt rust

Properties of RuO_x electrodes: a challenge for characterization

The electrode is a conducting oxide.

CO TDS up to 550 K causes reduction: no RuO₂ suboxide

Equilibrated CO TDS senses oxidic sites with traces of metallic sites: suboxide

Summary Pt in water splitting

- Pt is not the best of all materials but conclusions hold also for Ru and Ir systems.
- In OER dimensional instability for large surfaces unavoidable.
- Complex reaction sequence from sub-surface oxide, to divalent and at high load tetravalent species with a large number of coordinated water:
- Product is a hydrated oxide mix "metal black".
- Metastable with respect to re-formation of metal NP at open circuit conditions.
- Storage of peroxo-compounds in hydrated oxide.

www.fhi-berlin.mpg.de

Power to gas:

reaction network of a "simple" hydrogenation

Unicat
Unifying Concepts in Catalysis

Carbon deposition as prime problem

Deposition of carbon limits catalyst performance: loss of active phase through CNT formation.

Technical solution: operate under highly dilute conditions: stable but low productivity.

Protection through carbide formation: labile under reaction conditions: catalyst design allowing for facile carbon dissolution.

Operational reality: Dynamics of catalysts Ni under hydrogenation conditions

Batteries: an important component of new energy systems

Where is what type of Li? Structure

Where is what type of Li? Spectroscopy

[2] B. L. Henke et al., At. Data Nucl. Data Tables, 1993, 54, 181–342.

Summary Battery

- A severe material problem limits the performance of Li batteries (accumulators).
- Charge storage highly inhomogeneous in oxides such as iron- or cobaltates: is the bulk needed?
- Charge storage mechanism unclear: no evidence for Li ions by spectroscopy.
- No clean host-guest separation such as in Li graphite.
- Synthesis of homogeneous interfaces critical (also for Li air battery).

To take home

- Catalytic reactions are networks being activated by a catalyst in several routes simultaneously.
- Performing catalytic surfaces are dynamical in structure and composition.
- They react with reagents and form active phases not initially present.
- Nanostructuring allows rapid equilibration to the local chemical potential.
- Beware of directly correlating high performance data with those from extended model surfaces.

Non-noble metal electrolysis: practice the conclusions

Dem Anwenden muss das Erkennen vorausgehen

Max Planck

