

Material Dynamics of OER Electrodes

Robert Schlögl

Fritz-Haber-Institut der MPG

www.fhi-berlin.mpg.de

Acknowledgements

Thanks to the group leaders: M. Behrens, (R. Horn), A. Knop-Gericke, J. Tornow, A. Trunschke, M. Willinger TUB: P. Strasser and group FHI:

M. Eiswirth and group

CEC: W. Lubitz, F. Neese

KOFO: F. Schüth and group

WWW.

fhi-berlin.mpg.de

HZB

CCC

- Regenerative energy is presently "peak load" with limited predictability: fossil is base load.
- Cannot continue with the targets of the "Energie-konzept".
- Saving is important but also not sufficient.
- Conversion of primary electricity into solar energy carriers is the critically missing technology.
- Chemical energy conversion using electro-photo-chemical devices and catalysis as core technology:
- Science of controlling chemical activation of small molecules.

Water splitting as load sink Power-to-gas in addition to short-term storage

Wu Xu et al J. Power Sources (2011)

HZB

elmholtz

Table 1 Specifications of HOGEN[®]RE PEM electrolyzer by Proton Energy Systems

Hydrogen output	0.5 or 1.0 Nm ³ /h
Max delivery pressure	200 bar
Hydrogen purity	>99.9% (optionally >99.999%)
Water usage	0.5 or 1.01/h
Water quality (min) required	deionized (ASTM Type II)
Power consumption	$6.6 \mathrm{kWh/Nm^3}$
Electrical supply required	AC: 190-240 VAC, 1 phase, 50/60 Hz, 7.2 or 12 kVA DC: 60-200 VDC, 150 A (max)
Operating environment	Indoor (optionally outdoor)
Dimensions	$97 \times 105 \times 106$ cm
Weight	220 kg
Installation	"Plug & play"
Controls and automation	Fully automatic and unattended

F. Barbir, Solar Energy (2005)

HZB Helmholtz

Oxidation electrodes Nanotechnology provides kinetic stability

elmholtz

www. cec.mpg.de

www. fhi-berlin.mpg.de

- Efficient operation under variable load.
- Stability against frequent power interruption.
- Better efficiency through lower OER overvoltage.
- No use of rare materials.
- Facile system design for mass production.

www.

fhi-berlin.mpa.de

H7R

Properties of RuO_x electrodes: a challenge for characterization

The electrode is a conducting oxide. CO TDS up to 550 K causes

reduction: no RuO_{2} , suboxide

Equilibrated CO TDS senses oxidic sites with traces of metallic sites: suboxide

www. cec.mpg.de

IrOx: electronic structure

IIII unicat

HZB

cec

IrOx: TDS Reaction dominates desorption

IrOx: TDS Reaction dominates desorption

entrum Berlin

www. cec.mpg.de

Pt electrodes at OER conditions Structure sensitivity

Impedance analysis: Chemistry in the double layer

What Pt oxide? By XRD no signature except textured Pt metal

What Pt oxide? By XRD no signature except textured Pt metal

- Pt forms a series of hydrated oxides from divalent ions in solution.
- Gas phase oxidation impossible at ambient pressure (8 bar O_2).
- If dissolved either complexes with electrolyte (perchlorate) counter-ions or auto-condensation: in base hydroxo-ion (octahedral).

HZB Helmholtz Zentrum Berlin

www. cec.mpg.de

XPS and TEM of anodically oxidized Pt

Anodically oxidized Pt-foil at 2.2 V vs. SHE

Formation of amorphous $PtO_x(OH)_y$ layer after anodic oxidation

www. cec.mpg.de

XPS and TEM of anodically oxidized Pt

Are NP of Pt enough? Are they more stable?

Are NP of Pt enough? Are they more stable?

elmholtz

- In OER dimensional instability for large surfaces unavoidable (different extent and kinetics for orientation).
- Complex reaction sequence from sub-surface oxide, to divalent and at high load tetravalent species with a large number of coordinated water molecules:
- Product is a hydrated oxide mix "metal black".
- Metastable with respect to re-formation of metal NP at open circuit conditions.
- Storage of peroxo-compounds in hydrated oxide.
- Operation above 373 K may stabilize electrode by avoiding formation of labile hydroxides (?).

A complex chemistry identical in green leafs and in electrolysis

Nucleophilic Attack (Messinger et al. 1995; Pecoraro et al. 1998; Vrettos et al. 2001)

Radical in S₃ state (Yachandra et al. 1996; Haumann and Junge 1999; Siegbahn 2000, Messinger 2000)

Redox dynamics seen by in-situ EPR

Zein S et al. Phil. Trans. R. Soc. B 2008;363:1167-1177

Imholtz

Electrolysis without noble metals: learning from nature

Electrolysis without noble metals: learning from nature

HZB

Dem Anwenden muss das Erkennen vorausgehen

Max Planck

Thank You

