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ABSTRACT
Objective Renal transplantation has dramatically
improved the survival rate of hemodialysis patients.
However, with a growing proportion of marginal organs
and improved immunosuppression, it is necessary to
verify that the established allocation system, mostly
based on human leukocyte antigen matching, still meets
today’s needs. The authors turn to machine-learning
techniques to predict, from donorerecipient data, the
estimated glomerular filtration rate (eGFR) of the
recipient 1 year after transplantation.
Design The patient’s eGFR was predicted using
donorerecipient characteristics available at the time of
transplantation. Donors’ data were obtained from
Eurotransplant’s database, while recipients’ details were
retrieved from Charité Campus Virchow-Klinikum’s
database. A total of 707 renal transplantations from
cadaveric donors were included.
Measurements Two separate datasets were created,
taking features with <10% missing values for one and
<50% missing values for the other. Four established
regressors were run on both datasets, with and without
feature selection.
Results The authors obtained a Pearson correlation
coefficient between predicted and real eGFR (COR) of
0.48. The best model for the dataset was a Gaussian
support vector machine with recursive feature
elimination on the more inclusive dataset. All results are
available at http://transplant.molgen.mpg.de/.
Limitations For now, missing values in the data must
be predicted and filled in. The performance is not as
high as hoped, but the dataset seems to be the
main cause.
Conclusions Predicting the outcome is possible with
the dataset at hand (COR¼0.48). Valuable features
include age and creatinine levels of the donor, as well as
sex and weight of the recipient.

INTRODUCTION
Compared with hemodialysis, renal trans-
plantation has dramatically improved the survival
rate of patients with end-stage renal disease
(ESRD). Due to demographic changes, ESRD’s
incidence has increased in most Western countries,
and a growing number of grafts are required. In
Austria, Belgium, Croatia, Germany, Luxembourg,
The Netherlands and Slovenia, the organization
Eurotransplant is responsible for organ procure-
ment.1 Donorerecipient allocation is performed via
Eurotransplant’s kidney allocation system
(ETKAS2), a scoring system based on the number of
human leukocyte antigen (HLA) mismatches, the
time on dialysis, the distance from the explant site
to the transplantation center and additional factors
that favor balanced national import/export rates.
Particular groups of patients, such as children and
patients in a critical condition or with a low chance

of finding an adequate organ, receive extra points.
Specific allocation procedures were further added
for highly sensitized patients (Acceptable
Mismatch Program) and for the elderly (Euro-
transplant Senior Program). The latter has led to
a remarkable increase in available donors,3 but the
number of marginal organs has grown equally.
A broad range of factors are known to influence

the allograft survival, such as the number of HLA
mismatches,4 the cold ischemia time (CIT),5 the
number of previously received transplants,6 the age
of the donor7 and a history of hypertension,8

diabetes,9 or obesity10 in the recipient. However,
there is still no technique to predict an allograft
outcome reliably, and the clinical decision of
accepting an organ is in the physician’s hands.
The future challenge for organ procurement is to

predict the outcome of transplantation with high
accuracy using the donorerecipient data available
in order to allocate an adequate organ to each
patient.

BACKGROUND
A number of authors, generally with the same
mathematical methods, have tried to predict the
outcome of transplantation and have reported very
different performances, indicating a strong vari-
ability in the quality of the datasets. Most litera-
ture predicts a binary outcome using logistic
regression and neural networks (NNs) on the same
core of features: donor ’s and recipient’s clinical
details (age, sex, weight, medical/viral history, etc),
CIT, and HLA mismatches.11 12 The origin of the
data, the number of samples, a few extra features
and the chosen outcome make up most of the
difference. As an example, Shoskes et al13 had 100
training transplantations with extensive medical
data from donors and recipients, as well as CITand
HLA matching to predict delayed graft function
(DGF). They tested their NN on 20 trans-
plantations, and achieved 80% accuracy. However,
the number of parameters seems far too high for
the model to be trained properly. Brier et al14 also
predicted DGF using 198 transplantations with the
following variables: donor ’s sexerace, recipient’s
ageesexeheighteweightebody surface areaerace,
CIT and HLA matching. They tested their NN on
106 transplantations, and achieved 30% sensitivity
and 70% specificity. Shadabi et al15 used 896
transplantations and 23 variables: extensive
medical data from donor and recipient, as well as
CIT and HLA matching, to predict rejection after
two years. They tested their NN on 448 trans-
plantations, and achieved about 62% accuracy. Lin
et al16 predicted graft survival after 1 year with
57 389 transplantations using 10-fold cross-valida-
tion and 71 variables: extensive medical data from
donor and recipient, as well as CIT and HLA
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matching. They achieved an area under the curve (AUC) of 0.73.
This is probably the largest database used in this kind of
application. Krikov et al17 predicted the allograft survival after
a different number of years using decision trees trained on about
60 000 transplantations. Based on 30 000 test transplantations,
they achieved an AUC of 0.64 for 3-year graft survival. Akl et al18

predicted 5-year graft survival of living-donor kidney transplants
using NNs trained on 1500 transplantations with 11 features
including donors’ and recipients’ ages, HLA haplotype, and
number of acute rejections. On 319 test transplantations, they
achieved an AUC of 0.88. Note that most studies found in the
literature predict a binary variable, denoting success or failure of
the transplant.

In this work, the goal is to establish a link between the data
available before transplantation (measurements on the donor
and the recipient) and the estimated glomerular filtration rate
(eGFR) of the recipient one year after surgery, and to identify
which method performs best. It is worth mentioning that the
eGFR is real-valued, making the task harder, however predicting
an interpretable real quantity may be more helpful than a binary
success / failure prediction. A principled machine-learning
approach is considered, and a thorough study is conducted.
Our data comprise 707 transplantations performed at Charité-
Universitätsmedizin Berlin (Campus Virchow-Klinikum)
between 1998 and 2008. To predict the eGFR after one year, we
use linear regression (LR), support vector machines (SVMs) with
a Gaussian kernel (G-SVMs), NNs and random forests (RFs).

METHODS
Datasets
Donors’ data were obtained from Eurotransplant’s database2

using all the features available at the time of allocation.
Recipients’ and outcomes’ data were retrieved from Charité’s
transplant database. All (first or repeated) single renal trans-
plantations performed between 1998 and 2008 were listed, but
for an optimal simulation of organ-procurement procedures,
grafts from living donors were excluded from the analysis.

Transplantations were labeled with the eGFR of the recipient,
that is, the volume of fluid filtered by the renal glomerular capil-
laries into the Bowman capsule per time unit, one year after the
transplant was received. The eGFR was computed using the
Modification of Diet in Renal Disease (MDRD) formula.19 This
quantity is real-valued so regression is performed, as opposed to
classification. Since each patient’s sex and age are already known
before surgery, what is effectively predicted is the level of creatinine.

All the features with more than 50% missing values (except
diabetes information) and all the transplantations for which the
patient’s eGFR was missing were removed, leaving in total 707
transplantations described by 56 features, listed in table 1.
Missing values were filled in with predictions, and the
completed data were subsequently standardized, that is, every
feature has its mean set to 0 and its variance set to 1. Exact
details can be found in appendix section 1.

Out of this matrix, two datasets were created. The full
dataset, with all 56 features, has dimensions of 707375. The
robust dataset, with the 36 features that originally contained
<10% missing values, has dimensions of 707348. The difference
between the number of features and the number of columns
stems from the discrete features being binarized.

Regressors
To learn a model that predicts the eGFR, four different regressors
were considered. The first two, LR and NNs, are the most

commonly used in this kind of application, though NNs were
reported to perform better.
< LR is a linear model that assumes the targets follow

a Gaussian distribution. A prediction on a transplantation

Table 1 Variables

Variable Type Missing values

Estimated glomerular filtration rate (outcome) Real 0

1 Donor’s age Real 0

2 Donor’s sex Binary 0

3 Donor’s blood type Discrete 0

4 Donor’s weight (kg) Real 0

5 Donor’s height (cm) Real 1 (0.1%)

6 Donor’s hepatitis B Binary 4 (0.6%)

7 Donor’s hepatitis C Binary 4 (0.6%)

8 Donor’s cytomegalovirus Binary 7 (1%)

9 Donor’s sodium (mmol/l) Real 3 (0.4%)

10 Donor’s potassium (mmol/l) Real 1 (0.1%)

11 Donor’s glucose (mg/dl) Real 28 (4%)

12 Donor’s creatinine (mg/dl) Real 4 (0.6%)

13 Donor’s urea (mg/dl) Real 14 (2%)

14 Donor’s cause of death Discrete 4 (0.6%)

15 Recipient’s age Real 0

16 Recipient’s sex Binary 0

17 Recipient’s blood type Discrete 0

18 Recipient’s weight (kg) Real 20 (2.8%)

19 Recipient’s height (cm) Real 10 (1.4%)

20 Recipient’s hepatitis B Binary 2 (0.3%)

21 Recipient’s hepatitis C Binary 3 (0.4%)

22 Recipient’s cytomegalovirus Binary 7 (1%)

23 Recipient’s previous transplants Real 71 (10%)

24 Recipient’s previous heart transplants Real 71 (10%)

25 Recipient’s previous liver transplants Real 71 (10%)

26 Recipient’s previous lung transplants Real 71 (10%)

27 Recipient’s previous kidney transplants Real 71 (10%)

28 Cold ischemia time Real 0

29 HLA mismatches (broad) Real 0

30 HLA mismatches (split) Real 0

31 HLA mismatches (A broad) Real 0

32 HLA mismatches (A split) Real 0

33 HLA mismatches (B broad) Real 0

34 HLA mismatches (B split) Real 0

35 HLA mismatches (DR broad) Real 0

36 HLA mismatches (DR split) Real 0

37 Donor’s smoking Binary 182 (25.7%)

38 Donor’s number of packs a year Real 348 (49.2%)

39 Donor’s diabetes Binary 402 (56.9%)

40 Donor’s diabetes treated Binary 408 (57.7%)

41 Donor’s diabetes duration Real 414 (58.6%)

42 Donor’s hypertension Binary 193 (27.3%)

43 Donor’s hypertension treated Binary 304 (43.1%)

44 Donor’s hypertension duration Real 414 (58.6%)

45 Donor’s days (intensive care unit) Real 202 (28.6%)

46 Donor’s last 24 h diuresis Real 230 (32.5%)

47 Donor’s urine erythrocytes Real 242 (34.2%)

48 Donor’s urine glucose Real 283 (40%)

49 Donor’s urine protein Real 283 (40%)

50 Donor’s kidney ultrasound Discrete 295 (41.7%)

51 Donor’s Hb (g/dl) Real 221 (31.3%)

52 Donor’s leucocytes (nl) Real 219 (31%)

53 Donor’s C-reactive protein (mg/dl) Real 267 (37.8%)

54 Donor’s pH Real 281 (39.7%)

55 Donor’s O2 pressure (mm Hg) Real 279 (39.5%)

56 Donor’s O2 saturation Real 286 (40.5%)

The 56 imput variables, together with the outcome variable (estimated glomerular filtration
rate). Details are provided in appendix section 1.
HLA, human leucocyte antigen.
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x is made using y(x)¼wTx, where w is the weight vector
being learned. LR was implemented using the R function lm.

< NNs20 can be represented mentally by a layered loop-free
network of linear models. This alleviates the linearity of LR,
thereby allowing any function to be learned. NNs were
implemented using the R package nnet.
The other two, SVMs and RFs, are relatively new in the field

of transplantation.
< SVMs21 are also related to linear models. However, instead of

building networks, they suppress linearity by changing the
space of action.22 Indeed, if we apply a transformation f to
our data before training the regressor, then the function is
linear in f (x) but no longer in x. The space can be changed
explicitly by defining f or implicitly via a kernel. We chose
a Gaussian kernel. The similarity between two points is given
by Kðx;x’Þ¼exp(� k x-x’ k2 =s2), where s is the width of
the kernel. G-SVMs were implemented using the toolbox
shogun.23

< RFs24 are also non-linear regressors. A random forest is
a collection of binary trees, where each node is associated
with a test on a feature, and each leaf contains a different
eGFR prediction. In each tree, a datapoint falls into
a particular leaf depending on its features, and is assigned a
prediction. The datapoint’s different predictions are then
averaged. RFs have a built-in feature-selection system, and
allow for joint features (it is not only an additive model but
also a multiplicative one). RFs were implemented using the R
package randomForest.
Since data were scarce, we used 10-fold cross-validation to

obtain a better estimate of the performance. A resulting
regressor is therefore made of 10 subregressors, each tested on
a different 10% of the data (and trained on the remaining 90%).
Moreover, each sub-NN and sub-G-SVM had parameters that
needed tuning, so we used nested cross-validation, which is
thought to be a solid estimator of the true error when param-
eters have to be selected.31 Details on (nested) cross-validation
may be found in appendix section 2. It is important
to understand that every subregressor is tested on unseen data,
and that this unseen data is different for each subregressor. The
regressor ’s performance is the average of these 10 test perfor-
mances.

In addition to RFs, we investigated two regressors that allow
for joint features: SVMs with a polynomial kernel (P-SVMs) and
multivariate adaptive regression splines (MARSs). MARSs also
have the advantage of performing piecewise regression, thereby
accounting for potential subgroups in the data. The results for
these two regressors are only reported in appendix section 8.

Feature selection
Several subsets of features were used, some preselected by hand,
some preselected automatically, and some selected automatically
during training. The subsets preselected by hand are:
< The donor ’s age, because it is the most informative variable.
< The number of HLA mismatches and the CIT, because they

are the main variables used by ETKAS. This set of variables
performed very poorly.
To preselect features automatically, principal-component

analysis (PCA) and regressional Relief-F were run:
< PCA is a statistical method used to reduce dimensionality. It

aims at finding the subspace of dimension M<D that
preserves the most variance in the data (thereby also reducing
noise). The data are then projected onto this subspace, which
gives a new representation using M variables instead of D.
PCA was run on each dataset, and M was chosen so as to

retain at least 65% of the total variance (34 for the full
dataset, 23 for the robust one).

< Relief-F is a filter method and selects features that take
different values in different classes and similar values within
the same class, in other words features that are discriminant.
Regressional Relief-F25 is the version of Relief-F for regression
problems. Note that Relief-F uses the information of the
targets so, unlike unsupervised methods such as PCA, it
cannot be run on the whole dataset. Instead it is run on the
training set, separately for each fold.
To select features automatically during training, forward

feature selection (FFS), recursive feature elimination (RFE) and L1
regularization were implemented. Because cross-validation was
performed, feature selection was repeated for each fold on the
training set only, using another level of cross-validation. Each fold
therefore induced a different subset of variables, which came in
handy when assessing the reliability of these selected variables.
< FFS is a wrapper method and was performed on LR. Indeed,

being the simplest, LR was the most likely to bear insufficient
data and greedy algorithms, and thus to select reliable
features. Once chosen, the features were used to train any
type of regressor (referred to as as LR-selected features). The
principle of FFS and pseudo-code are given in appendix
section 3.

< RFE26 is an SVM-specific wrapper method and was
performed on G-SVM. A G-SVM a is learned so as to
minimize the margin-related cost function aTKa, where K is
the Gaussian kernel. An irrelevant feature is expected not to
change the cost function much (ie, not to degrade the margin
much). For each feature f in F, a kernel K9 is built on F\{f}, and
the feature minimizing aT Ka�aT K9a is then discarded. The
principle of RFE and pseudo-code are given in appendix
section 4.

< L1 regularization penalizes the L1-norm of a vector, essen-
tially forcing its entries to be 0 except where absolutely
necessary. This technique combined with LR is called Lasso
and penalizes the regression weights. For G-SVMs, L1
regularization was used via multikernel learning,27 whereby
one subkernel per feature is created. The resulting kernel is
then a weighted sum of all subkernels, where the weights are
subject to the L1-norm.

Performance evaluation
All models were trained to minimize the mean square error
between predictions and real targets (given eGFR). However, for
clarity, the Pearson correlation coefficient between predictions
and real targets (COR) is reported. Reporting the performance of
our cross-validated regressors means averaging the performance
of each subregressor on its test set over the 10-folds, and plotting
it with error bars representing the standard deviation of this
performance. All results are therefore reported on test sets, that
is, on data that were not used for training.

RESULTS
The goal of this study is to predict the eGFR of a patient one year
after transplantation, and to identify which model can do it best.
The workflow is summarized in figure 1. A different model was
trained for each combination of dataset/regressor, once with all
features, once with LR-selected features, once with RFE when
available (G-SVMs), once with L1 regularization when available
(LR and G-SVMs), once with PCA, Relief-F, once with HLA+CIT
and once with the most predictive feature (donor ’s age).
The combination HLA+CIT is studied because it has the main
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variables used by ETKAS. Although ETKAS does not aim at
predicting the eGFR, it allocates a graft to a patient, so its features
constitute a very reasonable base to compare our dataset with.
However, HLA+CIT performed so poorly (maximum correlation
of 0.11) that it was discarded from the plots.

The results, shown in appendix sections 5 and 6 show that:
< It is unclear which dataset should be preferred, indicating

that variables with many missing values do not bring much.
< Unlike previously reported results, LR and G-SVMs consis-

tently perform best.

A few features are sufficient
Figure 2 shows the impact of feature selection on performance.
HLA+CIT did so poorly (maximum correlation of 0.11) that
they are not reported.

In the case of LR and G-SVM, feature selection with
a wrapper is clearly the better choice: FFS for LR, and RFE for G-
SVM. In the case of NN and RF, using all features is the best
option, but they do more poorly.

LR and G-SVM benefit from feature selection, suggesting that
only a few factors actually influence the outcome as investigated
in section Relevant features. In particular, donor ’s age, which is
the best feature, carries most of the predictive power. However,
it never performs best, indicating that it is not the only factor.

G-SVM with RFE is very effective. In fact, on the full dataset,
it is the best regressor we could produce (COR¼0.48). In the rest
of the article, we will refer to it as full (F)-G-SVM-RFE. Figure 3
and appendix section 7 summarize all the information about
F-G-SVM-RFE.

Note that using PCA or Relief-F as a filter for the features does
not seem a good idea at all, since it consistently performs worse.
PCA does not aim at making predictions easier though; it simply
tries to retain as much variance as possible in a lower-dimen-
sional space, so it is not necessarily beneficial.

Relevant features
Figure 2 shows that the best model is F-G-SVM-RFE (COR¼
0.48), which strongly suggest that only a few variables are really
necessary for the bulk of prediction. It is worth looking at these
features in detail.

FFS was performed using LR and nested cross-validation on
both datasets. The webpage shows, for the various training/test

splits, the performance of the growing feature subset against the
number of features. A different subset of features was obtained
for each fold. The features appearing in at least 5 of these subsets
are listed, which gives one list for the full dataset and one list for
the robust dataset. The intersection of both lists contains the
following robust features:
� for the donor: age (10/10), weight (10/10), glucose (10/10),

hepatitis C status (10/10), creatinine (9/10) and hepatitis B
status (9/10);

� for the recipient: weight (10/10), sex (10/10), number of
previous heart transplants (10/10) and cytomegalovirus (7/10);

� CIT (10/10) and HLA mismatches (DR-broad and total-split)
(9/10).
None of the non-robust features were found more than 5

times in the full dataset’s list.
RFE was performed using G-SVM and nested cross-validation

on both datasets. Following the procedure above, the following
robust features were retrieved:
� for the donor: age (10/10) and death code (5/10);
� for the recipient: weight (8/10), height (5/10) and sex (5/10).
Additionally, among the non-robust features, the donor ’s

ultrasound was found 5 times.
A ranking of the variables by importance is provided by the

RFs. Every variable is taken in turn and permuted. This induces
a new error for each variable, supposedly higher than the normal
error. The feature leading to the highest difference with the
normal error disrupts the regressor the most and therefore
should be the most important. Features that came out 5 out of
10 times within the top 25/15 for the full/robust datasets were
extracted:
� for the donor: age (10/10), death code (10/10), creatinine (10/

10), height (9/10), sodium (9/10), urea (6/10) and weight (6/10);
� for the recipient: age (10/10), weight (10/10), height (9/10)

and sex (5/10);
� HLA mismatches (B-broad (9/10) and total-split (6/10)).
Additionally, among the non-robust features, the donor ’s

hypertension status (10/10), O2 pressure (10/10), O2 saturation
(10/10), leukocytes (9/10), pH (8/10), C-reactive protein (7/10),
diabetes status (6/10), and Hb (5/10) were found more than
5 times. However, RFs perform more poorly than the other
regressors, therefore care must be taken when interpreting those
results.

Figure 1 Workflow. Out of the
complete data, two datasets are built
and referred to as full and robust, and
two subsets of features are extracted:
human leucocyte antigen (HLA)+cold
ischemia time (CIT) and donor’s age
(middle row). The four regressors are
run on each of these datasets (bottom
row, rightmost box). Additionally, the
four regressors are applied on the full
and robust datasets with principal
component analysis (PCA) and Relief-F,
L1 regularization (bottom row, third
box), recursive feature elimination (RFE)
(bottom row, second box), and linear
regression (LR) feature selection
(bottom row, first box). Note that PCA
and Relief-F are pretreatments, as
opposed to L1 regularization, RFE, and
LR feature selection that are part of the
training. G-SVM, support vector machine
with a Gaussian kernel; NN, neural
network; RF, random forest.
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In all cases, the most important variable is the age of the
donor. It is known to influence outcomes,7 28 but in our dataset
it surprisingly outweighs the influence of the other established
factors by far. Other variables that are present in all three
selection methods, or that appear many times (>8 times) in at
least two selection methods, are the donor ’s creatinine as well as
the recipient’s weight and sex.

DISCUSSION
The analysis presented here simulates the process of decision-
making that takes place when an organ is allocated, and is based
exclusively on data provided by Eurotransplant at the time of
organ allocation. As a result, it is very similar to what happens in
reality and could be implemented in a clinical setting without
much effort. A few differences with a physician’s decision can be
found. For example, some factors most probably influencing
allograft function (such as recipient presensitization to alloan-
tigen) were not taken into account. Moreover, while commonly
used in kidney studies, the eGFR is biased by the influence of
muscle mass on creatinine production. Even though the MDRD
formula for eGFR reduces this bias, it cannot be said whether the

recipient’s variables (age, sex, height and weight) have a stronger
impact on allograft function or on muscle mass. Clinicians have
to consider a large number of parameters that may carry
conflicting information, and an automatic prediction based on
the most relevant factors may be of help when taking the
decision. We hope to have made this help more valuable by
keeping the experimental setting as close as possible to the real
situations experienced at hospital. Our study identified the
donor ’s age as the most important factor on allograft function.
This may directly influence medical decision-making, if alloca-
tion programs were to increase the impact of this feature.
We performed a thorough analysis of the data at hand using

four established regressors and different subsets of features, and
were able to build a regressor that achieved a 0.48 correlation on
our dataset. First, we want to emphasize the great care that was
taken to ensure the machine learning was sound. Every experi-
ment was carried out using 10-fold cross-validation, that is, each
reported performance is an average and comes with error bars, so
the results are much more reliable in this study than in most of
the literature. Moreover, data that were used for selecting
features or for tuning parameters were never used for testing.

A B

C D

Figure 2 Effects of feature selection. The y-axis shows the Pearson correlation coefficient between predicted and given estimated glomerular
filtration rate (eGFR). HLA+cold ischemia time (the ’Eurotransplant’s kidney allocation system features’) performed so poorly (COR¼0.11) that they
were discarded from the plots. In the case of linear regression (LR) (A) and support vector machines with a Gaussian kernel (G-SVMs) (C), feature
selection with a wrapper is clearly the better choice: forward feature selection (FFS) for LR and recursive feature elimination (RFE) for G-SVM. In the
case of neural networks (NNs) (B) and random forests (RFs) (D), using all features is the best option, but they do more poorly. LR and G-SVM benefit
from feature selection, suggesting that only a few factors actually influence the outcome as investigated in section “Relevant features”. In particular,
the donor’s age, which is the best feature, carries most of the predictive power. However, it never performs best, indicating that it is not the only
factor. Using principal-component analysis (PCA) or Relief-F as a filter for the features does not seem a good idea, since it consistently performs
worse.
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Indeed, features and parameters were chosen using cross-vali-
dation on the training set only, so each reported performance
range should reflect the real performance.

We would also like to point out the benefits of running such an
extensive analysis. When data are scarce, models might not
behave as expected and it is not obvious which regressor should
perform best, so it is more informative to show all the results
rather than to report the best performance only. Our particular
case shows that, even if we could identify a superior model, there
is actually not much difference between the various set-ups,
indicating that non-linearity is not critical for this dataset. For
example, F-G-SVM-RFE is not significantly better than LR on the
robust dataset with FFS (COR¼0.48 vs COR¼0.45; one-tailed
Steiger test29: p¼0.08) or than G-SVM on the robust dataset with
RFE (COR¼0.48 vs COR¼0.45; one-tailed Steiger test: p¼0.394).
The models with a similar performance to F-G-SVM-recursive
feature elimination are highlighted in appendix section 9.

Choosing the best outcome parameter is critical for the design
of such a study. In renal transplantation, a variety of outcome

parameters are regularly used, such as acute rejection, DGF, graft
survival and renal functions (estimated GFR or, more rarely,
measured GFR). Here the GFR estimated with the MDRD
formula was chosen, because this formula is the base for the
classification of chronic kidney diseases, and is associated with
morbidity and mortality in ESRD. Additionally, the eGFR is
a valid surrogate parameter for long-term graft survival.
The correlation obtained between predicted and real eGFR is

0.48 (R2¼0.23), and the scatter plot in figure 3 looks very
encouraging. The analysis only includes information available at
the time of surgery, which means a small subset of all the possible
parameters. Indeed, after transplantation, the patient is subject to
a large number of influencing factors, such as occurrence of acute
rejection, patient’s adherence level to therapy, adverse effects of
immunosuppression, infections, and so on. A perfect performance
therefore can not be achieved. Additionally, the analysis only
includes the grafts that were accepted for transplantation. Since
Charité rejects roughly 10e20% of kidneys (due to organ quality,
safety reasons, etc), our dataset is a biased selection.

Figure 3 Best model. This figure summarizes all the performance information on F-G-SVM-RFE, the model using a support vector machine with
a Gaussian kernel (G-SVM) and recursive feature elimination (RFE) on the full dataset (F). To provide a more straightforward measure of performance of
this regressor, the test data were divided according to the estimated glomerular filtration rate (eGFR) into two balanced classes: one with eGFR<45
ml/min and the other with GFR>45 ml/min, and the targets replaced by labels representing the classes. The task is now classification, and all common
measures can be applied. A) scatter plot of real eGFR against predicted eGFR, together with the regression line. The correlation achieved is
0.48660.12. B) receiver-operating characteristic (ROC) curve, together with the random performance (diagonal line). The achieved area under the ROC
curve is 0.72660.08. C) precision-recall (PR) curve for failure detection (eGFR<45 ml/min), together with the random performance (horizontal line).
The area obtained under the PR curve is 0.65660.12. D) PR curve for success detection (eGFR>45 ml/min), together with the random performance
(horizontal line). The area obtained under the PR curve is 0.78660.07. Additional performance measures: the accuracy is 0.68660.07. For
transplantation failure detection (eGFR<45 ml/min), the sensitivity is 0.51660.08, the specificity 0.8660.08, and the precision 0.65660.13. For
transplantation-success detection (eGFR>45 ml/min), the sensitivity is 0.8660.08, the specificity 0.51660.08, and the precision 0.69660.06. Details
on these measures and the PR curve may be found in appendix section 7.
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It is tricky to compare our results to others’. The methods used
in the literature (linear models and NNs) are also investigated
here, but the critical differences between the various contribu-
tions lie in the data and in the outcome parameter which is
usually binary as opposed to real-valued. Moreover, most
published results are unclear, it is often hard to find critical details
(such as which samples were included, whether the results are
reported on training or test data, how many samples were in each
set, etc), and every author uses a different measure of perfor-
mance. However, when recast into a classifier (see figure 3 or
appendix section 7 for details), our model had an area under the
ROC curve of 0.7260.08, which is fairly close to that of Lin et al16

(0.73), but with much fewer samples. It also achieved an accuracy
of 0.6860.07, which is better than that of Shadabi et al15 (0.62).
For transplantation failure detection (eGFR<45 ml/min), which
is the usual point of view in this kind of application, it achieved
a sensitivity of 0.5160.08 and a specificity of 0.860.08, which is
better than that of Brier et al14 (0.3/0.7).

Part of the interest of this work was to extract important
features. The variables that came out as important are known to
influence the eGFR after transplantation. While donor ’s age and
creatinine are directly related to the donor ’s renal function
before transplantation, the influence of the recipient’s weight is
less evident. Some data suggest an adverse impact of donor/
recipient weight mismatch.30 Our analysis reveals that the age
of the donor is by far the strongest factor (included in the data)
for allograft function. This is consistent with earlier published
data.28 The clinical relevance of this variable suggests paying
special attention to it when adapting allocation strategies. The
minor impact of the HLA mismatches, which used to be
regarded as one of the most important factors, probably reflects
the higher efficiency of modern immunosuppressive agents in
preventing graft rejection.

The dataset is the source of two limitations, which leaves
room for improvement and hope for the future. First, the infor-
mation content seems quite low. Indeed, the age of the donor
contains much of the predictive power, which is odd in itself.
Consequently, the flexibility of the model becomes optional
rather than necessary, and G-SVMs are only neck and neck with
LR. Furthermore, some error bars are quite wide, showing that
performance is sensitive to a particular subset of the data. High
variance is usually a sign of insufficient amounts of data. This
can be fixed, as time will provide more samples.

Another limitation of this analysis lies in the imputation
method. For now, missing values are predicted with linear
models using complete variables. In our case, imputation should
not be too harmful, though, as the robust dataset contains at
least 90% real values. However, a much better and more elegant
way would be to design a generative probabilistic model that
would suppress the need for imputation. There are too many
features and too few samples to design such a model reliably just
yet, but as datasets grow larger, and dependencies between
variables are better understood, generative graphical models
should lead the way.

CONCLUSION
We obtained data from Eurotransplant and Charité to create a
learning database in order to predict the outcome of a transplant
for a given donor-patient pair. We had 707 transplantations, for
which targets were the estimated glomerular filtration rate of
the recipient one year after the transplantation. Each transplant
was described using classic clinical data (weight, size, age, etc) as
well as data specific to this kind of application (number of
previous transplantations, creatinine levels, etc).

We built a regressor (COR¼0.48) that performs much better
than random (COR¼0, one-tailed t test: p¼2.87310�7), than
the features used by ETKAS (COR¼0.11, one-tailed Steiger test:
p¼1.34310�20) and than linear regression on all features
(COR¼0.4, one-tailed Steiger test: p¼0.001), and we were able
to extract a subset of features that were consistently picked up
by several models, indicating that they may be the main factors
influencing the outcome.
Renal function is subject to many factors after surgery,

therefore perfect performance is unlikely to be achieved, even if
all the presurgery factors were available. The accuracies reported
in the literature are not high enough to be convincing to
humans, but it is very hard to estimate how much better or
worse clinicians perform, so the computational community
should not be discouraged in its efforts. Additionally, more and
more transplantations will be performed, and datasets will
become larger and larger. This is hopeful for machine-learning
techniques that generally benefit from a large amount of data, it
should increase their performance, perhaps even to a level
acceptable to humans.
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