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Zusammenfassung 

Adipositas und damit assoziierte Krankheitsbilder haben sich zu einem erheblichen 

Gesundheitsrisiko entwickelt. Auf Grund der Einwanderung von Makrophagen in das 

Fettgewebe, kommt es dort zu einer chronischen Entzündung. Suganami, et al. (1) 

konnten zeigen, dass ein parakriner Kommunikationsweg zwischen Adipozyten und 

Makrophagen besteht, welcher die, in einer in vitro Co-Kultur beobachteten, Effekte 

verstärkt. Darüber hinaus wurden freie Fettsäuren und der Tumornekrosefaktor α 

(TNFα) als zentrale Bestandteile des Teufelskreises identifiziert. 

Das Ziel dieser Masterarbeit war es, die Zell-Zell-Kummunikation in einem in vitro  

Co-Kultursystem aus 3T3-L1 Adipozyten und RAW264.7 Makrophagen zu 

untersuchen. Das entsprechende Co-Kultursystem wurde für mehr-Kapazität-Formate 

etabliert und entsprechend erweitert, um die Untersuchung und Quantifizierung von 

Proteinen zu ermöglichen. Ein Schwerpunkt der Arbeit lag dabei auf der Proteom-

weiten Erfassung der Zell-Zell-Kommunikation mittels Massenspektrometrie. Des 

Weiteren erwiesen sich 24 Stunden als optimale Inkubationszeit der Co-Kultur, um 

massenspektrometrisch Veränderungen zu quantifizieren. Mit Hilfe von biomolekularen 

Indikatoren, wie z.B. Adiponectin, TNFα, MCP-1, IL-6, Cox-2 und freien Fettsäuren, 

konnten Veränderungen in der RNS-Expression und auf metabolischer Ebene 

nachgewiesen werden. Außerdem wurde die Phosphorylierung von dem 

inflammatorischen Schlüsselmolekül JNK und seiner Effektorproteine (cJun und IRS-1) 

mittels Western Blot näher betrachtet.  

Basierend auf den durchgeführten Experimenten, konnte gezeigt werden, das die  

Co-Kultur von Adipozyten und Makrophagen grundlegende Auswirkungen auf die RNS 

Expression und das Proteom hat. In einem elektrophorese-basierten Ansatz wurden im 

Durchschnitt 235 Proteine pro Gelstück ermittelt, darunter LPL, Perilipin, Cyp2f2 und 

TLR2. Des Weiteren wurden zahlreiche metabolische Stoffwechselwege, wie  

z.B. oxidative Phosphorylierung und Pentose-Phosphatweg indentifiziert. Weiterhin war 

es möglich, die Co-Kultur mit der Methode „stable isotope labeling with amino acids in 

cell culture“ (SILAC) zu kombinieren. Auf diese Weise wurden 3 Enzyme der 

Glykolyse ermittelt, welche in co-kultivierten RAW264.7 Zellen hochreguliert waren. 
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Summary 

Obesity and its co-morbidities have developed into a major health threat. Due to the 

infiltration of macrophages, obese adipose tissue is characterized by chronic low-grade 

inflammation. Suganami, et al. (1) suggested the existence of a paracrine loop between 

adipocytes and macrophages, which aggravates coculture-induced changes. Moreover, 

free fatty acids and TNFα were identified as major components of this vicious cycle. 

The aim of this master thesis was to use an in vitro coculture system comprising  

3T3-L1 adipocytes and RAW264.7 macrophages in order to study the cell-cell 

communication. This coculture system was established successfully for multiple well 

formats and up-scaled for protein harvest. A particular emphasis lay on enabling a 

proteome-wide detection of intra-cellular communication by mass spectrometry. 

Moreover, 24 hours of incubation proved to be optimal for MS analysis. Furthermore, 

biomarkers including Adiponectin, TNFα, MCP-1, IL-6, Cox-2 and FFAs were used to 

study the adipocyte-macrophage communication on the RNA expression and metabolic 

level. In Addition, the phosphorylation state of JNK, an inflammatory key molecule, 

and its target molecules including cJUN and IRS-1 were studied by western blotting. 

Based on the performed experiments, it was proven that coculture of adipocytes and 

macrophages resulted in major changes concerning RNA expression and protein levels. 

A set of biomarkers was established to study coculture-induced effects. Furthermore, 

phosphorylation of JNK and cJun, was induced under cocultural conditions. In a  

SDS-Page-based approach on average 235 proteins were identified per slice. Several 

important proteins including LPL, perilipin, Cypf2f2 and TLR2 and various metabolic 

pathways (TCA cycle, pentose phosphate pathways, oxidative phosphorylation) were 

identified. Coculture experiments in an up-scaled system were successfully combined 

with stable isotope labeling with amino acids in cell culture (SILAC). Thereby, three 

glycolytic enzymes were found up-regulated in RAW264.7 macrophages after  

8 hours of coculture. 
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1. Introduction 

1.1. Obesity as a growing health problem 

Obesity and its co-morbidities as type 2 diabetes, liver steatosis and atherosclerosis (2) 

are a major problem of modern days. Obesity belongs to a metabolic disease cluster, 

termed metabolic syndrome (Figure 1). In general the term metabolic syndrome stands 

for the constellation of visceral fat obesity, insulin resistance, atherogenic dyslipidemia, 

and hypertension (3-5).  

 
Figure 1: Metabolic disease clusters. Obesity is suggested to increase the risk for various diseases 

although the linking mechanisms are only poorly understood (5).  

As the incidence of obesity is increasing dramatically worldwide, this disease cluster 

developed to a serious health threat. Not only the total amount of fat, but also the 

distribution of adipose tissue is very important for the course of obesity. In particular 

visceral fat depots are considered as main contributors to insulin resistance (6).  

In general, obesity, insulin resistance and type 2 diabetes are closely associated with a 

state of chronic low-grade inflammation (3-5, 7), which can be further characterized by 

abnormal cytokine production and activation of various inflammatory signaling 

pathways (8). While a termination program could resolve acute inflammation, chronic 

inflammation is characterized by persistent stress without termination (9). Therefore 

chronic inflammation results in functional mal-adaption and in case of obesity in tissue 

remodeling (10). Moreover, obese adipose tissue is characterized by several dynamic 

changes that concern the cellular composition and function (Figure 2). Hypertroph 



Introduction  
Insulin resistance and insulin signalling 

7 

 

 
 

adipocytes induce infiltration of immune cells (3, 5, 11), a process termed adipose tissue 

remodeling (9). Macrophages can invade adipose tissue and activate inflammatory 

pathways (12-15).  

 
Figure 2: Adipose tissue remodeling (adapted from Suganami and Ogawa (16)). 

Markedly increased macrophage infiltration is the main cause for the chronic and low-

grade inflammation state of obese adipose tissue (17), which in the end results in a 

decreased insulin sensitivity of adipocytes (18). This suggests that infiltrated 

macrophages may play an important role in adipose tissue inflammation and insulin 

resistance. Recently Suganami, et al. (1) showed, that the paracrine loop, involving 

saturated fatty acids derived from adipocytes and tumor necrosis factor-α derived from 

macrophages, aggravates obesity-induced adipose tissue inflammation.  

The fat storing tissue is nowadays known as regulator of several processes and source of 

adipokines (17). Adipokines are bioactive substances secreted by the adipose tissue. An 

unbalanced production of pro- and anti-inflammatory adipokines, which is the case in 

obese adipose tissue, can contribute to the development of the metabolic syndrome  

(3-5). Mohamed-Ali, et al. (19) showed that obesity gives rise to quantitative and 

qualitative alterations in adipose tissue signaling.  

1.2. Insulin resistance and insulin signalling 

Several abnormalities are associated with insulin resistance, including a decreased 

glucose uptake into the skeletal muscle and adipose tissue (20). Insulin resistance is a 

pathologic state in which metabolic target tissues fail to respond to normal insulin 
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levels, and is furthermore a key predictor for the development of a variety of metabolic 

diseases such as type 2 diabetes or the metabolic syndrome (21). 

The insulin receptor belongs to the so-called receptor tyrosine kinase family, which 

possesses an intrinsic tyrosine kinase activity and commonly uses a docking protein for 

signal mediation. The insulin receptor substrate (IRS) proteins, comprising 6 isoforms, 

are generally tyrosine phosphorylated due to insulin signalling. IRS-1 gets 

phosphorylated as result of insulin receptor (IR) signalling and impairs further 

signalling. IRS-1 itself contains various potential tyrosine and serine/threonine 

phosphorylation sides. Several molecules and cytokines including TNFα and free fatty 

acids (FFAs) target this phosphorylation process, in order to mediate an inhibitory 

phosphorylation of IRS-1 at a serine residue (5). Moreover various IRS-modifying 

enzymes including c-Jun-N-terminal kinase (JNK) are known to serine-phosphorylate 

IRS-1 (22), which interrupts the insulin signalling and further blocks insulin action (5). 

Gual, et al. (23) identified the phosphorylation of serine residues like Ser307 or Ser632, 

as a major mechanism in negative feedback. Due to phosphorylation, the association of 

IRS-1 and the insulin receptor is impaired and thus downstream insulin signalling (23, 

24). While IRS-1 is phosphorylated at a tyrosine residue to establish insulin signalling, 

phosphorylation at serine residue terminates the signalling process.  

1.3. Adipose tissue remodelling in obesity 

In general, adipose tissue comprises lipid-loaden mature adipocytes and stromal cells, 

which are preadipocytes, endothelial cells, fibroblasts and immune cells. The dynamic 

changes during adipose tissue remodeling result in an unbalanced production of  

pro- and anti-inflammatory adipokines (3, 5, 11, 19). The importance of macrophages 

infiltrating the obese adipose tissue is emphasized by the finding that macrophage 

infiltration and inflammation-related gene expression precedes the development of 

insulin resistance in animal models (12, 13).  

Recently a paracrine loop between adipocytes and macrophages was identified to 

aggravate inflammatory changes (1). Moreover secreted factors, including TNFα and 

FFAs, were identified as the major source of inflammatory changes (Figure 3). 



Introduction  
Adipose tissue remodelling in obesity 

9 

 

 
 

 
Figure 3: Paracrine loop between adipocytes and macrophages in a coculture system. RAW264.7-

deprived TNFα stimulates free fatty acid release by 3T3-L1 adipocytes. RAW264.7 sense free fatty acid 

and secrete TNFα. 

As shown by Weisberg, et al. (12), adipose tissue is usually populated with 5% - 10% 

macrophages whereas macrophage constitution can increase up to 60% in obese mice. 

Moreover, the further recruitment of macrophages into the obese adipose tissue is 

implicated to the increased chemokine production (12). 

 
Figure 4: Inflammation of obese adipose tissue. Adipocytes secrete TNFα and MCP-1, which stimulates 

surrounding cells to produce MCP-1 themselves. Finally, macrophages are recruited into the adipose 

tissue and mark the starting point of the cell-cell communication. MCP-1, monocyte chemoattractant 

protein 1; TNFα, tumor necrosis factor α; FFA, free fatty acid; VEGF, vascular endothelial growth 

factor; JNK, c-Jun amino-terminal kinase; IL-6, Interleukine 6; IL-1β, Interleukin 1β. (25) 

The development of adipose tissue remodeling is depicted in Figure 4. At first 

adipocytes secrete low levels of TNFα, which in turn stimulate preadipocytes to 
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produce monocyte chemoattractant protein-1 (MCP-1) (13). Concomitantly surrounding 

cells e.g. endothelial cells begin to secrete MCP-1. As a result, macrophages accumulate 

in the adipose tissue. Nevertheless the initial stimulus for macrophage recruitment 

remains unknown. The presence of macrophages in the adipose tissue marks the starting 

point of a vicious cycle comprising macrophage recruitment, enhanced production of 

pro-inflammatory markers, and abolishment of adipocyte function (25). 

1.3.1. Adiponectin  

The 244-amino acids large protein was isolated from 3T3-L1 adipocytes during 

differentiation and is known under several names including AcrP30, AdipiQ, apM1 and 

gelatin binding protein. Moreover the anti-inflammatory cytokine is markedly down-

regulated in obesity. Thus supplementation of adiponectin provided an effective 

treatment to reverse insulin resistance in the skeletal muscle and liver of obese mice  

(26, 27). Furthermore, adiponectin modulates various metabolic processes such as 

glucose regulation and fatty acid metabolism (28).  

1.3.2. Resistin 

Resistin was first described in 2001 and is basically a 114-amino acid polypeptide  

(in mouse) containing a 20-amino acid signal sequence. Resistin expression is induced 

during adipocyte differentiation but only mature adipocytes secrete resistin as a 

disulfide-linked dimmer. Moreover expression of resistin is increased by interleukins, 

lipopolysaccharides (LPS) and in insulin-resistant mice (29-31). Thiazolidinediones 

(TZD) influence resistin secretion, furthermore insulin action is antagonized by resistin 

(29). Additionally, resistin was linked to an increased expression of pro-inflammatory 

markers such as interleukin 1 (IL-1), interleukin 6 (IL-6) and tumor necrosis factor α 

(TNFα) (32, 33). Recently resistin was suggested as link between inflammation and 

insulin resistance (8). 

1.3.3. Free fatty acids (FFAs) 

Free fatty acids (FFAs) are an important energy source generated from triglycerides. 

Adipose tissue mobilizes triglycerides, particularly under starvation conditions. 

Moreover, FFAs released during fasting are at least partly responsible for macrophage 
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recruitment into adipose tissue. It is suggested that during fasting conditions, lipolysis 

occurs as a regulator of metabolic homeostasis rather than a danger signal (34). 

However, under over-nutrition conditions increased free fatty acid concentrations 

activate inflammatory pathways in order to maintain adipose tissue homeostasis such as 

tissue repair and metabolism regulation. Nevertheless due to excessive or sustained 

celluar or tissue stress an adaptive response is no longer possible, resulting in prolonged 

inflammatory response (chronic inflammation) and diseased tissue remodeling (10). In 

2002, Boden and Shulman (35) described a physiological and pathophysiological effect 

of FFAs on glucose homeostasis, which provides further evidence of their metabolic 

functions. Recently FFAs were identified as a major component of the paracrine loop 

between adipocytes and macrophages and further as amplifier of the mentioned vicious 

cycle (1). Furthermore FFAs are natural ligands for the toll-like receptor (TLR) 4 

(Figure 5).  

1.3.4. Triglycerides (TGs) 

Adipose tissue markedly expresses triglyceride synthetic enzymes in order to quickly 

re-esterify released free fatty acids (FFAs). Inflammatory processes promote lipolysis 

and increase free fatty acid mobilization by decreasing intracellular fatty acid re-

esterification. In general the expression of triglyceride biosynthetic enzymes including 

acyl-CoA synthetase, glycerol-3-phosphate acyltransferase, 1-acyl-glycerol-3-phosphate 

acyltransferase, lipin 1, monoacylglyceride acyltransferase and diacylglyceride 

acyltransferase is decreased (36, 37). Nevertheless the major pathway being accountable 

for about 90% of triglyceride glycerol synthesis is gluceneogenesis (38). One of the key 

regulator enzymes is phosphoenolpyruvate carboxykinase (PEPCK) (37). Recently 

Feingold, et al. (39) showed that PEPCK expression is influenced by inflammation. In 

inflamed adipose tissue, PEPCK is decreased as a kind of rapid response in order to 

increase the availability of fatty acids for export. Hence the serum FFA concentration is 

increased. 

1.3.5. Tumor necrosis factor α (TNFα)  

Tumor necrosis factor α (TNFα) is synthesized as 26kDa transmembrane pro-hormone, 

but secreted as a 17kDa soluble molecule (40). It functions as a pro-inflammatory 
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cytokine which is able to activate several signaling pathways. In cell culture, it is mostly 

derived from macrophages, while in adipocytes, TNFα is predominantly unsecreted and 

membrane-bound (12). Studies indicated that TNFα levels are increased in obese 

adipose tissue (12, 13) and a lack of TNFα function can improve insulin sensitivity and 

glucose homeostasis at least in obese mouse models. Moreover, TNFα is capable to 

inhibit the uptake of free fatty acids (FFAs) and to decrease the expression of key 

enzymes used for lipogenesis (1, 40). Suganami, et al. (41) showed that  

TNFα/TNF receptor signaling results in the induction of pro-inflammatory cytokine 

production and adipocyte lipolysis via nuclear factor-κB (NF-κB) signal cascade  

 (Figure 5). Recently TNFα was identified as the component initiating the paracrine 

loop between adipocytes and macrophages and further as aggravator of the adipocyte-

macrophage communication (1). The coculture of 3T3-L1 adipocytes and  

RAW264.7 macrophages increased TNFα mRNA expression (1). 

1.3.6. Monocyte chemoattractant protein 1 (MCP-1) 

Kanda, et al. (42) showed that monocyte chemoattractant protein 1 (MCP-1) gene 

expression is induced in adipose tissue and that MCP-1 plasma concentration is 

increased in obese mice. Moreover, MCP-1 is required for macrophage recruitment into 

adipose tissue (43). Transgenetic Mcp-1 expression increases macrophage infiltration, 

inflammation and insulin resistance in adipose tissue (42, 43). Therefore it seems to be 

important for pathogenesis of macrophage infiltration into adipose tissue (Figure 4 and 

Figure 5), insulin resistance and hepatic steatosis (42). In obese adipose tissue MCP-1 is 

secreted by adipocytes and macrophages (12, 13). Subsequently MCP-1 aggravates 

adipose tissue inflammation and can induce insulin resistance in skeletal muscle and 

liver (42-44). Due to its abilities, MCP-1 is suggested to act as an endocrine hormone 

(43, 44). 

1.3.7. Interleukin 6 (IL-6) 

Interleukin 6 (IL-6) is a cytokine with both pro- and anti-inflammatory properties. In 

general it is variably glycosylated, with a size of 22 to 27kDa, and secreted by many 

cell types, including immune cells, fibroblasts and adipocytes. As a matter of fact, 

adipose tissue secretes 10% to 35% of the basal circulating IL-6 (45). Production of  
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IL-6 is stimulated by Interleukin-1β and tumor necrosis factor α (TNFα). Furthermore 

IL-6 increases the release of free fatty acids from adipose tissue and is correlated with 

human obesity and insulin resistance. Coculture of 3T3-L1 adipocytes with  

RAW264.7 macrophages markedly up-regulated Il-6 mRNA expression (1). 

1.3.8. Toll-like receptor 4 (TLR4) and NF-κB signaling 

The Toll-like receptor 4 (TLR4) belongs to the family of pattern-recognition receptors, 

which are essential for the recognition of lipopolysaccharides (LPS). Recently it was 

shown, that TLR4 plays an important role in obesity-related inflammation and lipid 

metabolism (41). The receptor is expressed in macrophages, where it functions as a 

sensor for saturated fatty acids (FFAs), which are released from adipocytes and induce 

chronic inflammatory responses in macrophages (41, 46, 47). FFAs released from 

adipocytes are naturally occurring ligands for the TLR4 complex and induce an 

inflammatory response in macrophages (48). Activation of this complex results in the 

induction of the NF-κB signaling cascade in macrophages (Figure 5, (41)). In summary, 

TLR4 could provide a link between nutrition, lipids and inflammation (48). 

Already in 2007 Suganami and colleagues demonstrated that coculture of  

3T3-L1 adipocytes and RAW264.7 macrophages activates NF-κB. Moreover, a 

pharmacological inhibition of NF-κB strikingly suppressed the observed production of 

pro-inflammatory cytokines and lipolysis in coculture. Recently phenylmethimazole 

(C10) was shown to block TLR-mediated activation of inflammatory pathways in  

3T3-L1 adipocytes and RAW264.7 macrophages (49).  
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Figure 5: Suggested role of TLR4/NF-κB signaling. Macrophage deprived TNFα, interacts with its 

receptor (TNFR) and induces inflammatory signaling in adipocytes. FFAs deprived from adipocyte 

activate TLR4/NF-κB signal cascade in macrophages and induce further TNFα production. TLR4,  

toll-like receptor 4; TNFα, tumor necrosis factor α; TNF-R, TNFα receptor; MAPKs, mitogen-activated 

protein kinases, MCP-1, monocyte chemoattractant protein 1. (41) 

1.3.9. Macrophage-inducible C-type lectin (Mincle) 

The macrophage-inducible C-type lectin, also known as Mincle, Clec4e or Clecsf9 

functions as a pathogen sensor for pathogenic fungi and Mycobacterium tuberculosis. 

Moreover, Mincle is induced in obese adipose tissue macrophages partly through 

saturated fatty acid/TLR4/NF-κB pathway. Ichioka, et al. (50) suggested a 

pathophysiologic role in obese adipose tissue inflammation for Mincle. Furthermore, it 

is suggested to act as pathogen sensor and to induce pro-inflammatory cytokine and 

chemokine expression (50). Recently Yamasaki, et al. (51) showed, that Mincle serves 

as receptor for SAP130 (51), a component released from damaged cells, which 

suggested that Mincle plays a role as sensor of cell death. Due to the fact that in obese 

adipose tissue (human and mice) dead adipocytes are surrounded by macrophages  

(11, 52), Mincle might be used to sense adipocyte death, macrophages activation due to 

FFAs and influence adipose tissue remodeling. 
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1.4. ER stress and JNK 

The adipose tissue is an endocrine organ, capable to secrete biologically active 

substances, so-called adipokines, which include adiponectin, monocyte chemoattractant 

protein 1 (MCP-1) and tumor necrosis factor α (TNFα) (3-5, 53-55). Inflammatory 

changes in the adipose tissue caused by obesity result in a dysregulation of the 

adipokine production. Furthermore, obese adipose tissue secretes TNFα, interleukin 1 

(IL-1) and resistin in order to suppress insulin signalling (29, 53, 56). Characteristically 

TNFα and MCP-1 are up-regulated in obese adipose tissue, while adiponectin is 

downregulated (14, 53, 54). Moreover, obesity is associated with endoplasmatic 

reticulum (ER) stress especially in the adipose tissue and the liver. Hence, ER stress 

could play an important role in adipose tissue inflammation due to obesity (57). In 

addition several signaling pathways are activated in obese adipose tissue, resulting in 

activation of mitogen-acitvated protein kinase (MAPK) and stress-activated c-Jun 

amino-terminal kinase (JNK) (58). 

1.4.1. Endoplasmatic reticulum stress 

The endoplasmatic reticulum (ER) is a membrane network and the place where all 

secretory and membrane proteins are assembled. In general unfolded or misfolded 

proteins are detected and degraded. Nevertheless, various disturbances lead to the 

accumulation of unfolded proteins, resulting in cellular stress which in case of the ER 

activates the unfolded protein response (UPR) mechanism. Obesity was linked to  

ER stress especially in adipose tissue and the liver (57). Probably, the ER functions as 

sensor of metabolic stress and translates it into an inflammatory response. Recently it 

was shown that ER UPR signaling interferes with several inflammatory pathways 

including JNK- and TLR-mediated signaling (59). 

1.4.2. c-Jun amino-terminal kinase (JNK) signalling 

The family of stress-activated c-Jun amino-terminal kinases (JNKs) belongs to the 

mitogen-acitvated protein kinases (MAPK). Of the three isoforms occurring in 

mammalians, JNK1 and JNK2 are ubiquitously expressed while JNK3 is restricted to 

the brain, pancreatic islet cells, testes and heart (60). Furthermore, JNKs have been 
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shown to interfere with insulin signaling (22). Activation of JNK can be a result of 

inflammatory cytokines, FFAs, ER stress or hyperlipidemia, which are hallmarks of 

obesity and type 2 diabetes (8, 22, 40, 57, 61). Hirosumi, et al. (58) substantiated a 

striking increase in JNK activity, which is predominantly provided by JNK1, in both 

obese adipose and liver tissue. Moreover, they provide the link between increased JNK 

activation and inhibitory phosphorylation of IRS-1 at Ser307. Phosphorylation of cJun 

is commonly used as marker of JNK activity (57). 

1.5. PPARγ and thiazolidinediones 

Peroxisome proliferator-activated receptor γ (PPARγ) influences various metabolic 

pathways and is involved especially in fat cell biology (62). As a member of the nuclear 

receptor family, PPARγ is activated by direct binding of steroids, vitamins and lipid 

metabolites (63). In order to interact with the DNA, PPARγ binds the  

retinoic X receptor (RXR) and forms a heterodimer. In general the expression and 

activation of PPARγ is sufficient to stimulate adipogenesis (64). There are two PPARγ 

isoforms, called γ1 and γ2, with PPARγ2 being of higher molecular weight. While both 

isoforms can be found in adipocytes, only PPARγ1 is abundant in macrophages (63).  

Thiazolidinediones, including rosiglitazone and pioglitazone, (TZDs) are anti-diabetic 

drugs, which function as strong synthetic PPARγ ligands. In general TZDs decrease the 

expression of adipokines as TNFα, IL-1 and resistin, which are associated with insulin 

resistance; the expression of adiponectin is increased by TZDs (65, 66). Nevertheless 

adverse long-term effects such as increased body weight, fluid retention and an 

increased risk of heart failure have been observed (67). 

PPARγ stimulates the M2 polarization of adipose tissue macrophages (ATMs) and 

therefore influences insulin sensitivity (68). Moreover, activation of PPARγ by 

pioglitazone improves the unbalanced M1/M2 phenotype ratio of macrophages (69, 70) 

and leads to anti-diabetic effects. For further information, the reader is referred to the 

following publications: Lumeng, et al. (71), Bouhlel, et al. (69) and Fujisaka, et al. (70). 

Furthermore, PPARγ is a genetic sensor for free fatty acids (FFAs) (62, 63). 
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Using western blotting analysis FFAs, TNFα and IL-6 were identified as potent 

inducers of PPARγ phosphorylation. Moreover cyclin-dependent kinase 5 (Cdk5) was 

identified as inducer of PPARγ Ser273 phosphorylation (72), which results in the 

dysregulation of the expression profile of various genes. Furthermore, phosphorylation 

induced changes are comparable to gene expression profiles seen in obesity. A total of 

17 genes was altered due to differential PPARγ phosphorylation.  

1.6. Proteomics 

Changes in the cellular conditions are reflected in alterations of gene expression which 

manifest on mRNA and protein level (73). Proteomics focus on proteins and especially 

on their structure and function. In the field of mass spectrometry the so-called ‘shotgun’ 

approach is quite common. While in a ‘shotgun’ approach, spectra from all detectable 

proteins are generated, the mass spectrometer is programmed to analyze only a 

preselected group of proteins in targeted proteomics. Quantitative proteomics requires 

the usage of stable labels, which can be brought in chemically or metabolically. Some 

of the commonly used techniques for labeling are isotope-coded affinity tags (ICAT), 

isobaric tags for relative and absolute quantitation (iTRAQ) and stable isotope labeling 

with amino acids in cell culture (SILAC). As the latter is going to be explained in detail, 

the reader is referred to the following publications for the former: Gygi, et al. (74)  

Ong and Mann (71), Mann (75) and Zieske (76). 

1.6.1. Mass spectrometry 

The workflow in mass spectrometry during a shotgun approach is depicted in Figure 6. 

In general, complex protein samples are digested to peptides which are further separated 

using reverse phase liquid chromotagraphy (RPLC) (Figure 6B). Before separation by 

column, peptides can be segregated using polyacrylamide gel electrophoresis and 

further processed by in-gel digestion. In order to trace posttranslational modifications 

such as phosphorylation, digested proteins can be enriched (Figure 6A). After 

separation by reverse phase chromatography, peptides are ionized by electrospray (ESI) 

directly in front of the mass spectrometer (Figure 6B). Afterwards the peptides are 

analyzed by mass spectrometry, which comprises two units (Figure 6C). At first a MS 

scan determines peptide intensity and mass to charge ratios (m/z). Moreover peptide 
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precursor ions are isolated and fr

peptides are fragmented for each MS scan. Finally the peptides are identified using an 

amino acid sequence database. For detailed information on peptide sequencing the 

reader is referred to Steen and Mann (77

Figure 6: Workflow in mass spectrometry. (A) E

peptides. Specific post-translational

peptides are separated by reverse phase chromatography and ionized by electrospray (ESI)

front of the mass spectrometer

containing mass spectrometer

resolution. Moreover, some peptide ions and fragments are selected for MS/MS scan. The results for 

stable isotope labeling by amino acids in cell culture (SILAC) are depicted in the 

(adapted from Choudhary and Mann (78

precursor ions are isolated and fragmented in MS/MS scans (77). Typically five to ten 

peptides are fragmented for each MS scan. Finally the peptides are identified using an 

amino acid sequence database. For detailed information on peptide sequencing the 

Steen and Mann (77). 

Workflow in mass spectrometry. (A) Extracted proteins are separated and ‘in

translational modifications can be enriched for quantification. (B) 

peptides are separated by reverse phase chromatography and ionized by electrospray (ESI)

front of the mass spectrometer, after eluting from the column. (C) The ions are transferred to vacuum

eter. The mass spectrometry (MS) mode is used to measure all ions at high 

resolution. Moreover, some peptide ions and fragments are selected for MS/MS scan. The results for 

stable isotope labeling by amino acids in cell culture (SILAC) are depicted in the 

Choudhary and Mann (78)) 
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peptides are fragmented for each MS scan. Finally the peptides are identified using an 

amino acid sequence database. For detailed information on peptide sequencing the 

 

are separated and ‘in-gel digested’ into 

uantification. (B) Purified 

peptides are separated by reverse phase chromatography and ionized by electrospray (ESI), directly in 

from the column. (C) The ions are transferred to vacuum-

The mass spectrometry (MS) mode is used to measure all ions at high 

resolution. Moreover, some peptide ions and fragments are selected for MS/MS scan. The results for 

stable isotope labeling by amino acids in cell culture (SILAC) are depicted in the inset in the MS panel. 
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1.6.2. Stable-isotope labeling by amino acids in cell culture (SILAC) 

Stable-isotope labeling by amino acids in cell culture (SILAC) was first described in 

2002 (79) and is a method to metabolically label cells (Figure 7). In general two 

populations are grown, with one grown in ‘normal’ medium (‘light’) and the other 

grown in ‘heavy’ medium. The so-called ‘heavy’ medium is supplemented with heavy 

amino acids which were generated using 13C or 13N. In order to ensure the incorporation 

of the labeled amino acids, only essential amino acids (lysine or arginine) are chosen. 

Moreover, cells are grown in dialyzed medium and completely SILAC-labeled after five 

divisions. Fully labeled cells are mixed, their proteomes extracted and measured by MS. 

If lysine and arginine are used for labeling and trypsin is used for digestion, almost all 

peptides are labeled and can be used for further quantification. The incorporation of 

heavy amino acids into proteins results in a mass shift in the peptides. Therefore, 

peptides appear in pairs in mass spectra with the lower mass containing the light amino 

acid. A SILAC-ratio of one-to-one indicates, that there are no differences in the peptide 

abundance between both proteomes. Thus a higher heavy peak indicates more abundant 

peptides in the heavy labeled sample. 

SILAC provides a way of metabolic labeling with stable isotopes without radioactivity 

where all samples can be processed together. Nevertheless SILAC was limited to whole 

proteome labeling via protein turnover. Furthermore, the point of mixture plays an 

important role for the quantitative accuracy since the latter is decreasing with the time 

after which samples are mixed. In order to overcome this limitation Geiger, et al. (80) 

suggested using a SILAC-labeled spike-in standard (see 1.6.2.1.SILAC as spike-in 

standard). Nowadays, SILAC has developed into a broadly used technique. Furthermore 

a combination of different SILAC-labeled cell lines, which is called super-SILAC mix, 

enables to simulate whole tissues (81). At the moment entirely SILAC-labeled tissues, 

organs and even mice are available (82). For further reading the following reference is 

recommended: Mann (75).  
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Figure 7: Relative quantification using stable-isotope labeling in cell culture (SILAC). One cell 

population is cultured in medium supplemented with a stably labeled amino acid (‘heavy’ arginine), 

which is incorporated into proteome. Furthermore a second population of cells is grown in normal media. 

After combination of both cell lysates, the sample is purified and the proteins digested. The peptide ratio 

is obtained for each mass spectrum and allows relative quantification. (77) 

1.6.2.1. SILAC as spike-in standard 

The general workflow of the recently published technique called spike-in SILAC (80) is 

depicted in Figure 8. The SILAC standard functions as ‘heavy’ SILAC component, 

whereas the sample functions as ‘light’ component. The standard is spiked into each of 

the samples, which are further processed together. As depicted in Figure 8 the standard 

can be produced separately and completely independent of the experiment. Therefore all 

experimental samples can be prepared without any restrictions in normal media and 

amino acids. Moreover the number of samples is no longer restricted to three as in 

classical SILAC, as the standard can be aliquotted and used multiple times. As the 
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standard is present in all samples, the peptide fold-change ratio between the samples is 

the ‘ratio of ratios’ (Figure 8). The mass shift has to be at least 4Da to prevent partially 

overlapping SILAC-pair.  

 
Figure 8: Workflow during spike-in SILAC. The spike-in SILAC standard enables a separation of 

labeling process and biological experiment. After the experiment the SILAC standard is mixed with each 

sample, each mix is analyzed separately. The difference between two experimental samples is obtained by 

dividing the ratio of one sample to the ratio of the other sample (both ratios relative to the standard). (80) 

1.6.3. MaxQuant analysis 

The MaxQuant software (version 1.0.13.13) is used to analyze large high-resolution 

mass spectrometric data sets. The LTQ Orbitrap software generated raw files, which are 

loaded into the so-called ‘Quant’ module. This module assembles the isotope patterns 

into SILAC pairs and generates two kinds of output files. Already processed MS/MS 

spectra are bundled together in ‘msm’ files whereas search engine parameters are 
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contained in ‘par’ files. Mascot is used as search engine. Finally the ‘identify’ module 

combines the search engine results with the raw file in order to assemble the peptides 

into proteins, quantify the proteins and write several tables containing the results. For a 

more detailed description the reader is referred to Cox and Mann 

(84). 

1.7. Aims of this master thesis

The aim of this master thesis is to use an 

3T3-L1 adipocytes and RAW264.7 macrop

between these cell types. A schematic diagram of the utilized transwell coculture system 

is depicted in Figure 9. In general, 3T3

the well while RAW264.7 macrophages were seeded into the transwell insert.

Figure 9: Schematic diagram of the coculture system.

A particular emphasis lies on enabling a proteome

communication by mass spectrometry. This includes the development of a suitable cell 

culture system and mass spectrometry detection. Furthermore, the adipocyte

macrophage communication shall be studied on the RNA

metabolic level using specific marker molecules. 

A workflow overview for the coculture experiments is depicted in 

6-well plate shall be used to determine optimal culture conditions using biomarkers 

such as free fatty acids and tumor necrosis factor α. Moreover, mRNA shall be extracted 

in order to study coculture

6-well experiments shall be used to establish a coculture system using 50cm² dishes. 

Aims of this master thesis

contained in ‘par’ files. Mascot is used as search engine. Finally the ‘identify’ module 

nes the search engine results with the raw file in order to assemble the peptides 

into proteins, quantify the proteins and write several tables containing the results. For a 

more detailed description the reader is referred to Cox and Mann 

Aims of this master thesis 

The aim of this master thesis is to use an in vitro coculture system composed of 

L1 adipocytes and RAW264.7 macrophages in order to study the communication 

between these cell types. A schematic diagram of the utilized transwell coculture system 

. In general, 3T3-L1 adipocytes were seeded onto the bottom of 

the well while RAW264.7 macrophages were seeded into the transwell insert.

Schematic diagram of the coculture system. 

A particular emphasis lies on enabling a proteome-wide detection of cell

communication by mass spectrometry. This includes the development of a suitable cell 

culture system and mass spectrometry detection. Furthermore, the adipocyte

cation shall be studied on the RNA-protein expression and 

metabolic level using specific marker molecules.  

A workflow overview for the coculture experiments is depicted in 

well plate shall be used to determine optimal culture conditions using biomarkers 

such as free fatty acids and tumor necrosis factor α. Moreover, mRNA shall be extracted 

in order to study coculture-induced changes on RNA level. The knowledge from the 

well experiments shall be used to establish a coculture system using 50cm² dishes. 
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well plate shall be used to determine optimal culture conditions using biomarkers 

such as free fatty acids and tumor necrosis factor α. Moreover, mRNA shall be extracted 
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These can be facilitated to investigate coculture-induced changes on protein level by 

mass spectrometry and western blotting.  

system culture extraction of  

6-well 

control 

mRNA coculture 

coculture + palmitate 

50cm² dish 
control 

protein 
coculture 

Table 1: Workflow for the coculture experiments. 
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2. Material and methods 

2.1. Material  

2.1.1. Chemicals and Enzymes 

chemical/enzyme company 

3-Isobutyl-1-methylxanthine (IBMX) Sigma-Aldrich (Taufkirchen, Germany) 

Acetic acid Merck (Darmstadt, Germany) 

Acetonitrile Roth (Karlsruhe, Germany) 

Ammonium acetate Merck (Darmstadt, Germany) 

Ammoniumcarbonate Sigma-Aldrich (Taufkirchen, Germany) 

BSA Sigma-Aldrich (Taufkirchen, Germany) 

c-Jun (L70B11) Mouse mAb 
Cell Signalling Technology (Danvers, 
USA) 

Coomassie Brillant Blue R250 
Bio-Rad Laboratories (München, 
Germany) 

Dexamethasone Sigma-Aldrich (Taufkirchen, Germany) 

Dithiothreitol (DTT) Sigma-Aldrich (Taufkirchen, Germany) 

dNTP Promega (Mannheim, Germany) 

EGTA Sigma-Aldrich (Taufkirchen, Germany) 

Ethanol Merck (Darmstadt, Germany) 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich (Taufkirchen, Germany) 

Formic acid Merck (Darmstadt, Germany) 

Glycerol Sigma-Aldrich (Taufkirchen, Germany) 

Glycin Sigma-Aldrich (Taufkirchen, Germany) 

Goat anti-mouse IgG-HRP: sc-2005 Santa Cruz (Heidelberg, Germany) 

Goat anti-rabbit IgG-HRP: sc-2004 Santa Cruz (Heidelberg, Germany) 

Insulin solution Sigma-Aldrich (Taufkirchen, Germany) 

Iodoacetamide Serva (Heidelberg, Germany) 

Isopropanol Merck (Darmstadt, Germany) 

JNK1 (2C6) Mouse mAb 
Cell Signalling Technology (Danvers, 
USA) 

Leupeptin Serva (Heidelberg, Germany) 

MagicMark (TM) XP Western Invitrogen (Karlsruhe, Germany) 
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chemical/enzyme company 

Milk powder Roth (Karlsruhe, Germany) 

NuPAGE® MES SDS RunningBuffer 
(20X)  

Invitrogen (Karlsruhe, Germany) 

P-c-JUN (Ser63/73): sc-16312 Santa Cruz (Heidelberg, Germany) 

Pepstatin A Serva (Heidelberg, Germany) 

Phosphatase Inhibitor Cocktail 2 (5 mL, 
100x) 

Sigma-Aldrich (Taufkirchen, Germany) 

P-JNK (G-7): sc-6254 Santa Cruz (Heidelberg, Germany) 

Polyoxyethylenesorbitanmonolaurate 
(Tween) 

Sigma-Aldrich (Taufkirchen, Germany) 

PPARγ (E-8): sc-7273 Santa Cruz (Heidelberg, Germany) 

Precision Plus Protein all blue standards 
Bio-Rad Laboratories (München, 
Germany) 

Protease Inhibitor Cocktail Tablets Roche (Mannheim, Germany) 

Restore™ Plus Western Blot Stripping 
Buffer 

Thermo Scientific (Bonn, Germany) 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich (Taufkirchen, Germany) 

Trichloroacetic acid (TCA) Roth (Karlsruhe, Germany) 

Trishydroxymethylaminomethane (Tris) Sigma-Aldrich (Taufkirchen, Germany) 

TrypLE™ Express Gibco (Invitrogen, Karlsruhe, Germany) 

Trypsin Sequencing Grade Roche (Mannheim, Germany) 

Western Lightning Plus ECL Perkin Elmer (Rodgau, Germany) 

β-Mercaptoethanol Sigma-Aldrich (Taufkirchen, Germany) 

2.1.2. Instruments  

instrument/software company 

ABI Prism 7900HT System 
Applied Biosystems (Darmstadt, 
Germany) 

Bright-Line Counting Chamber Hausser Scientific (Horsham, USA) 

LTQ XL Orbitrap Thermo Scientific (Bonn, Germany) 

Nanodrop ND-1000 Nanodrop (Peqlab, Erlangen, Germany) 

Nanoflow reverse phase liquid 
chromotagraphy (RPLC) 

Agilent Technologies (Santa Clara, USA) 
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instrument/software company 

PCR cycler (PTC-200) MJ Research, GMI Inc. (Ramsey, USA) 

PicoFrit analytical column New Obejectives (Woburn, USA) 

POLARstar Omega  BMG LABTECH (Offenburg, Germany) 

SDS 2.1 
Applied Biosystems (Darmstadt, 
Germany) 

Speed Vac Concentrator 
Savant, Thermo Scientific (Bonn, 
Germany) 

 

2.1.3. Consumables 

consumable company 

24mm Transwell with 0.4µm Pore 
Polycarbonate Membrane Insert 

Corning (Schwerte, Germany) 

384-well plate (white, clear) 
Greiner Bio-One (Frickenhausen, 
Germany) 

384-well Plate, PS, Small Volume™, 
HiBase 

Greiner Bio-One (Frickenhausen, 
Germany) 

75mm Transwell with 0.4µm Pore 
Polycarbonate Membrane Insert 

Corning (Schwerte, Germany) 

96-well MultiScreen Ultracel filter plate Millipore (Schwalbach, Germany) 

Biozym LE Agarose Biozym (Hessisch Oldendorf, Germany) 

C 18 resin (Reprosil-AQ Pur) 
Dr. Maisch (Ammerbuch-Entringen, 
Germany) 

cell culture flask T150 Corning (Schwerte, Germany) 

cell culture flask T25 Corning (Schwerte, Germany) 

Costar® 6-well Clear TC-Treated 
Multiple Well Plates 

Corning (Schwerte, Germany) 

Dulbecco's Modified Eagle's Medium 
(DMEM) 

ATCC (Wesel, Germany) 

FBS Superior Biochrom (Berlin, Germany) 

low protein binding tube Eppendorf (Hamburg, Deutschland) 

MicroAmp Optical 384-Well Reaction 
Plate  

Applied Biosystems (Darmstadt, 
Germany) 
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consumable company 

Nitrocellulose membrane GE Healthcare (München, Germany) 

NuPAGE Novex® 4-12% Bis-TrisGels Invitrogen (Karlsruhe, Germany) 

Pierce C18 Tips 100 µL (8-80 µg 
capacity) 

Thermo Scientific (Bonn, Germany) 

2.1.4. Molecular biological Kits 

kit company 

CellTiter-Glo Luminescent Cell Viability 
Assay 

Promega (Madison, USA) 

Fatty acid quantification Kit BioVision (Mountain View, USA) 

High Capacitiy Rev.Transcription Kit, 
1000 reactions 

Applied Biosystems (Darmstadt, 
Germany) 

Mouse TNF-α Ready-SET-Go! ELISA 
Kit 

eBioscience (Frankfurt, Germany) 

NE-PER Nuclear and Cytoplasmic 
Extraction Reagents 

Thermo Scientific (Bonn, Germany) 

Power SYBR® Green PCR Master Mix 
Applied Biosystems (Darmstadt, 
Germany) 

RNeasy® 96 Qiagen (Hilden, Germany) 

Triglyceride quantification Kit BioVision (Mountain View, USA) 
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2.2. Methods 

2.2.1. Cultivation of 3T3-L1 adipocytes 

The L1 substrain of the Swiss 3T3 mouse cell line (85) was utilized as adipocyte model 

system. Cells were kindly provided from Prof. Dr. Dr. H.-G. Joost (Deutsches Institut 

für Ernährunfsforschung (DIfE), Potsdam). 

The 3T3-L1 cell line has a fibroblastic morphology and is one of the best characterized 

models of adipogenesis. Upon differentiation, confluent 3T3-L1 cells re-enter the cell 

cycle and adopt a rounded phenotype accompanied by the accumulation of lipid in 

droplets (86).  

Preconfluent 3T3-L1 preadipocytes in a 150cm² flask were washed twice with  

20ml PBS buffer after the medium was removed. Afterwards the cells were detached by 

adding 2ml TrypLE Express and incubated for 8 minutes at 37°C and 5% CO2. 

Subsequently digestion was stopped by adding Dulbecco's Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) Superior. The cell 

suspension was centrifuged for 5 minutes at 180g. After discarding the supernatant the 

cell pellet was resuspended in 5ml DMEM/10% FBS. The 3T3-L1 cells were incubated 

at 37°C and 5% CO2 until they reached confluence. Differentiation was initiated 1 day 

after 100% confluence was reached.  

Confluent 3T3-L1 cells preadipocytes were treated with 50ml initiation medium 

containing 500µM IBMX, 10µM Dexamethasone, 10µg/ml insulin in  

DMEM/10% FBS. The 3T3-L1 cells were incubated with initiation medium for 2 days 

at 37°C and 5% CO2. Afterwards, medium was changed to 40ml progression medium 

consisting of DMEM/10% FBS supplemented with 10µg/ml insulin. The 3T3-L1 cells 

were incubated with progression medium for 2 days at 37°C and 5% CO2. 

Subsequently, medium was changed at day 6 and day 8 to 50ml fresh DMEM/10% FBS 

followed by another 2 day incubation at 37°C and 5% CO2. Ten days after the initiation 

of differentiation, 3T3-L1 cells were ready for seeding or could be further cultivated in 

DMEM/10% FBS at 37°C and 5% CO2.  
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2.2.2. Cultivation of RAW264.7 macrophages  

As a macrophage model RAW264.7 mouse monocyte cells were purchased from 

Sigma-Aldrich Chemie GmbH. The utilized cell line was established from tumor 

ascites, which were induced in male mice by injection of Abselon Leukemia Virus  

 (A-MulV). RAW264.7 cells are able to pinocytose neutral red and phagocytose 

zymosan. Furthermore, this cell line is capable of lysozyme production and growth 

inhibited by addition of 0.5ng/ml lipopolysaccharides (LPS, Figure 10). In addition 

RAW264.7 cells are tumorgenic when placed in mice (87). 

 
Figure 10: LPS induced growth inhibition of macrophage cell line RAW264.7. RAW264.7 were 

inhibited at 105 cells/ml, numbers indicate amount of LPS (µg(ml) added to the culture. Viability of the 

cells was determined on a daily basis. (87) 

RAW264.7 macrophages were grown and cultured in DMEM/10% FBS at 37°C and  

5% CO2. In order to split the cells, they were scratched in 10ml DMEM/10% FBS and 

afterwards centrifuged for 5 minutes at 150g. After discarding the supernatant the pellet 

was resuspended in 10ml fresh medium (DMEM/10% FBS) and cells were seeded into 

a 150cm² flask. After 2 days RAW264.7 macrophages were scratched in  
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10ml DMEM/10% FBS and afterwards centrifuged for 5 minutes at 150g. After 

discarding the supernatant the pellet was resuspended in 10ml fresh medium  

(2*106 cells/ml).  

2.2.3. Coculture of adipocytes and macrophages 

For the coculture system, differentiated 3T3-L1 adipocytes were cocultured with 

RAW264.7 macrophages in DMEM/10% FBS for a maximum of 24 hours using 6-well 

plates containing transwell inserts with a 0.4m² porous membrane. Additionaly, 50cm² 

dishes containing transwell inserts were used as coculture system.  

RAW264.7 macrophages and 3T3-L1 adipocytes of equal numbers to those in the 

coculture were cultured separately as control cultures. The 6-well plate was used to 

determine optimal culture conditions in order to observe cocultural effects. Finally, 

these conditions were transferred to the 50cm² dishes. The conditions for the 6-well 

plates were the following: 3T3-L1 adipocytes were seeded with 50% confluence on the 

bottom of the well. Moreover, 1.1*104 RAW264.7 macrophages/cm² were seeded into 

the insert and as control culture. After 4 hours, 8 hours and 24 hours of incubation, 

supernatants were collected, centrifuged for 10 minutes at 10,000g and 4°C; samples 

were stored at −20°C for further analysis. Furthermore, mRNA was collected at equal 

time points. While 3T3-L1 adipocytes were washed twice, RAW264.7 macrophages 

were only washed once with PBS. Afterwards 350µl RLT buffer were added to lyse the 

cells and the total volume was pipetted into a Eppendorf tube containing  

3.5µl mercaptoethanol. The solution was vortexed and stored on ice until centrifugation 

for 10 minutes at 10,000g at 4°C. The sample was stored at -80°C until mRNA 

extraction. 

The conditions for the 50cm² dishes were the following: 3T3-L1 adipocytes were 

seeded with 50% confluence; varying amounts of RAW264.7 macrophages  

(1.7*104 to 4.5*104 macrophages per insert and cm²) were seeded into the insert while  

7.5*105 RAW264.7 macrophages per ml were seeded as control culture. After 8 hours 

and 24 hours of incubation, supernatants were collected, centrifuged for 10 minutes  

at 10,000g and 4°C; samples were stored at −20°C for further analysis. The results of 

the supernatant analysis were normalized to 1*106 RAW264.7 macrophages seeded. 

Furthermore, proteins were collected at equal time points. Therefore, the remaining 



Material and methods  
Methods 

31 

 

 
 

medium was discarded and RAW264.7 macrophages were scratched off the membrane 

before centrifugation at 500g and 4°C for 5 minutes. Afterwards, the pellet was 

resuspended in ice cold PBS supplemented with protease inhibitor (1x) and phosphatase 

inhibitor (1x). Subsequently, the pellet was centrifuged for 5 minutes at 500g and 4°C. 

Finally, the pellet was resolved in ice cold PBS supplemented with protease inhibitor 

(1x) and phosphatase inhibitor (1x) and transferred into an low protein binding 

Eppendorf tube. At last, the tube was centrifuged at 10,000g for 5 minutes at 4°C;  

after discarding the supernatant the pellet was stored at -80°C. 3T3-L1 adipocytes were 

washed twice with PBS before being scratched off in ice cold PBS supplemented with 

protease inhibitor (1x) and phosphatase inhibitor (1x). Subsequently the pellet was 

centrifuged for 5 minutes at 500g and 4°C before the supernatant was discarded once 

more. Finally the pellet was resolved in ice cold PBS supplemented with protease 

inhibitor (1x) and phosphatase inhibitor (1x) and transferred into a low protein binding 

Eppendorf tube. At last the tube was centrifuged at 10,000g for 5 minutes at 4°C;  

after discarding the supernatant the pellet was stored at -80°C. 

2.2.4. CellTiterGlo® Luminescent Cell Viability Assay 

In order to monitor the viability of RAW264.7 macrophrages in presence of free fatty 

acids (FFAs) the CellTiter-Glo® Luminescent Cell Viability Assay was used. The 

number of viable cells in culture was assessed via the quantification of  

adenosine-5'-triphosphate (ATP), which is characteristic for metabolically active cells. 

The generated luminescence signal is proportional to the amount of ATP present (88). 

At first 25µl DMEM/10% FBS containing 2.5*103 RAW264.7 macrophages were 

pipetted per well of a 384-well plate. The next day additional 25µl DMEM/10% FBS 

containing a certain FFA concentration were added to each well and followed by a  

24 hour incubation. The visual condition of the macrophages was documented, before 

the plate was equilibrated for 30 minutes at room temperature. After addition of  

20µl CellTiter-Glo® reagent to each well, the plate was centrifuged for 1 minute at 10g. 

Moreover, the 384-well plate was shaken for 2 minutes using the POLARstar Omega 

and afterwards centrifuged for 1 minute at 10g before luminescence measurement with 

the POLARstar Omega. Data are presented in mean ± S.D., furthermore statistical 

analysis was performed by using a two-tailed Student’s t test. 
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2.2.5. Tumor necrosis factor α (TNFα) quantification 

Tumor necrosis factor α (TNFα) is a multifunctional cytokine with the ability to 

interfere especially with the adipocyte metabolism. TNFα influences various sites 

including transcriptional regulation, glucose and fatty acid metabolism (40). 

In order to assess the amount of TNFα the Mouse TNF-α Ready-SET-Go! ELISA Kit 

from eBioscience was utilized. The assay allows measuring TNFα levels in the 

supernatant via performing a quantitative enzyme linked immunosorbent assays 

(ELISA). In detail, a Corning Costar ELISA plate was coated using a mixture of capture 

antibody and coating buffer. Afterwards the plate was sealed and incubated at 4°C  

over night. The following day all wells were aspirated and washed 5 times with wash 

buffer; to increase the effectiveness of the washes all wells were incubated 1 minute 

before starting another wash. The plate was blotted on absorbent paper to remove 

residual buffer. After blocking the wells using blocking buffer, the plate was sealed 

once more and incubated for 1 hour at room temperature. Afterwards all wells were 

aspirated and washed 5 times with wash buffer; to increase the effectiveness of the 

washes all wells were incubated 1 minute before starting another wash. The plate was 

blotted on absorbent paper to remove residual buffer. After adding the samples the plate 

was incubated 3.5 hours at room temperature. Next the plate was aspirated and washed 

five times as previously described. Afterwards detection buffer was added and the plate 

was incubated for 1 hour at room temperature before aspirating and further washes  

 (five times as previously described). Subsequently enzyme buffer was added and the 

sealed plate was incubated at room temperature for 30 minutes before all wells were 

aspirated and washed (7 washes, 2 minutes incubation time for each wash). After adding 

the substrate solution the plate was incubated for 30 minutes prior to stopping the 

reaction by adding stop solution. Finally the absorbance was measured at 470nm using 

the POLARstar Omega. In order to reduce the background, absorbance values at 570nm 

were subtracted from those at 450nm prior to data analysis. All samples were run as 

triplicate. Data are presented in mean ± S.D.  
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2.2.6. Free fatty acid quantification 

Free fatty acids (FFAs) play a very important role in normal metabolism and in the 

development of many diseases. They are precursors of numerous bioactive compounds 

and have been reported to play a role in inflammation response.  

In order to assess the amount of free fatty acids the Free Fatty Acids Quantitation Kit 

was utilized according to the manufacturer’s protocol. The enzyme-based assay enables 

the detection of long-chain FFAs. After converting the fatty acids into their CoA 

derivative, the oxidization of the derivative generates a colorimetric signal. In detail the 

protocol included the following steps: ACS reagent was diluted with assay buffer and 

aliquotted according to the number of samples. Afterwards the samples as well as the 

standards were added to the mix. The solutions were vortexed and centrifuged for  

30 seconds at 1,000rpm at room temperature. Subsequently samples were incubated for 

30 minutes at 37°C using the PCR cycler. During incubation time a second mix 

consisting of assay buffer, fatty acid probe, enzyme mix and enhancer was prepared, 

which was then added to each sample. The samples were centrifuged for 30 seconds  

at 1,000rpm at room temperature before incubating for 30 minutes at 37°C using the 

PCR cycler. Finally the samples were transferred into a Greiner bio-one 384-well plate 

(Small Volume™, HiBase). After 30 seconds of centrifugation at 1,000rpm the 

absorbance was measured at 570nm using the POLARstar Omega. In order to reduce 

the background, absorbance values at 670nm were subtracted from those at 570nm prior 

to data analysis. All samples were run as triplicate. Data are presented in mean ± S.D. 

2.2.7. Triglyceride quantification 

Triglycerides (TG) serve as energy source and can be broken down into fatty acids and 

glycerol; both are known substrates for energy producing and metabolic pathways. In 

order to assess the amount of triglycerides the Triglyceride Quantitation Kit from 

BioVision was utilized according to the manufacturer’s protocol. The enzyme-based 

assay enables the detection of triglycerides. After converting the triglycerides into free 

fatty acids and glycerol, the oxidization of the glycerol generates a colorimetric signal.  

In detail the protocol includes the following steps: Lipase was diluted with assay buffer 

and aliquotted according to the number of samples. Afterwards the samples as well as 
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the standards for the standard curve were added to the mix. The solutions were vortexed 

and centrifuged for 30 seconds at 1,000rpm at room temperature. Subsequently the 

samples were incubated for 20 minutes at room temperature. During incubation time a 

second mix consisting of assay buffer, triglyceride probe and enzyme mix was prepared, 

which was then added to each sample. The samples were centrifuged for 30 seconds at 

1,000rpm before incubating for 60 minutes at room temperature. Finally the samples 

were transferred into a Greiner bio-one 384-well plate (Small Volume™, HiBase). After 

30 seconds of centrifugation at 1,000rpm the absorbance was measured at 570nm using 

the POLARstar Omega. In order to reduce the background, absorbance values at 670nm 

were subtracted from those at 570nm prior to data analysis. All samples were run as 

triplicate. Data are presented in mean ± S.D. 

2.2.8. Real-time polymerase chain reaction 

Gene expression analysis provides specific information concerning molecular effects of 

the crosstalk between 3T3-L1 adipocytes and RAW264.7 macrophages. This is due to 

the fact, that stimulating or inhibiting signals result in changes of gene transcription 

(40). Therefore putative changes in gene expression were examined for important genes 

using real-time polymerase chain reaction (qPCR). The total mouse RNA from  

3T3-L1 adipocytes and RAW264.7 macrophages was isolated using the  

RNeasy 96 Kit according to the manual. RNA was eluted in 45µl RNase-free water. 

To determine the amount of isolated RNA the light absorbance at 260nm was 

determined using a Nanodrop 1000. RNA quality was assessed by the absorbance ratios 

of 260nm/280nm and 260nm/230nm. Isolated RNA was stored at -70°C. Furthermore, 

cDNA of the extracted mRNA, was produced by reverse transcription using the High 

Capacity cDNA Reverse Transcription Kit according to the manufacturer’s instructions. 

In detail, reverse transcription was carried out with 1µg RNA template, 10x RT buffer, 

10x RT random primers, 25x dNTP mix (100mM), MultiScribe™ Reverse 

Transcriptase and RNase Inhibitor. The following program was performed:  

10 minutes at 25°C, 120 minutes at 37°C, 5 seconds at 85°C and afterwards cool down 

to 4°C. cDNA was stored at -20°C.  
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Real-time PCR was performed with Power SYBR® Green PCR Master Mix, according 

to the manufacturer's protocol on an ABI Prism 7900 HT Fast Real-Time PCR System. 

In order to prevent variations within the assay, the sample cDNA was premixed with 

Power SYBR® Green PCR Master Mix and afterwards distributed equally to each well. 

Moreover, 0.5µM of each primer pair was used. Real-time PCR was performed in  

5µl with the following cycling parameters: 95°C for 10 minutes, 40 cycles of PCR 

(95°C for 15 seconds, 60°C for 1 minute), 95°C for 15 seconds, 60°C for 15 seconds 

and 95°C for 15 seconds. As a reference gene, the mRNA level of β-actin was 

determined in real-time PCR for each RNA sample and further used to normalise gene 

expression levels. Quantification was done using the 2-∆∆Ct method (89). All samples 

were run as technical triplicate. Relative gene expression values describe up- (>1) or 

downregulation (<1) of RNA expression. Data are presented in mean ± S.D., 

furthermore statistical analysis was performed by using a two-tailed Student’s t test. The 

PCR primers used are listed in Table 2.  
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gene sense strand antisense strand 

Acyl 5'-CAGCCAAGGCAATTTCAGAGC-3' 5'-CTCGACGTTTGATTAACTGGTCT-3' 

Adipo 
(Adiponectin)  

5'-AGGAAAGGAGAGCCTGGAGA-3' 5'-CGAATGGGTACATTGGGAAC-3' 

Adipsin 5'-CATGCTCGGCCCTACATGG-3' 5'-CACAGAGTCGTCATCCGTCAC-3' 

Aplp2 5'-GTGGTGGAAGACCGTGACTAC-3' 5'-TCGGGGGAACTTTAACATCGT-3' 

Car3  5'-TGACAGGTCTATGCTGAGGGG-3' 5'-CAGCGTATTTTACTCCGTCCAC-3' 

Cd24a 5'-GTTGCACCGTTTCCCGGTAA-3' 5'-CCCCTCTGGTGGTAGCGTTA-3' 

Cidec 5'-ATGGACTACGCCATGAAGTCT-3' 5'-CGGTGCTAACACGACAGGG-3' 

Cox-2 5'-CCCTGCTGCCCGACACCTTC-3' 5'-CCAGCAACCCGGCCAGCAAT-3' 

Cyp2f2 5'-GTCGGTGTTCACGGTGTACC-3' 5'-AAAGTTCCGCAGGATTTGGAC-3' 

Ddx17 5'-TCTTCAGCCAACAATCCCAATC-3' 5'-GGCTCTATCGGTTTCACTACG-3' 

Fabp4 5'-TGATGCCTTTGTGGGAACCT-3' 5'-GCAAAGCCCACTCCCACTT-3' 

Glut4 5'-GCGGATGCTATGGGTCCTTA-3' 5'-GTCCGGCCTCTGGTTTCA-3' 

Il-1b 5'-GGACCCCAAAAGATGAAGGGCTGC-3' 5'-GCCACAGCTTCTCCACAGCCA-3' 

Il-6 5'-TCTGCAAGAGACTTCCATCCAGTTGC-3' 5'-AGGCCGTGGTTGTCACCAGC-3' 

Mcp-1 5'-CCAGCACCAGCACCAGCCAA-3' 5'-TGGGGCGTTAACTGCATCTGGC-3' 

Mincle 5'-ACCAAATCGCCTGCATCC-3' 5'-CACTTGGGAGTTTTTGAAGCATC-3' 

Nr1d1 5'-TACATTGGCTCTAGTGGCTCC-3' 5'-CAGTAGGTGATGGTGGGAAGTA-3' 

Nr1d2 5'-TGAACGCAGGAGGTGTGATTG-3' 5'-GAGGACTGGAAGCTATTCTCAGA-3' 

Nr3c1 5'-AGCTCCCCCTGGTAGAGAC-3' 5'-GGTGAAGACGCAGAAACCTTG-3' 

Peg10 5'-TGCTTGCACAGAGCTACAGTC-3' 5'-AGTTTGGGATAGGGGCTGCT-3' 

Rarres2 5'-GCCTGGCCTGCATTAAAATGG-3' 5'-CTTGCTTCAGAATTGGGCAGT-3' 

Resistin 5'-CCTCTGCCACGTACCCACGG-3' 5'-ACAGTGGCATGCTGGAGCCC-3' 

Rybp 5'-CGACCAGGCCAAAAAGACAAG-3' 5'-CACATCGCAGATGCTGCATT-3' 

Selenbp1 5'-ATGGCTACAAAATGCACAAAGTG-3' 5'-CCTGTGTTCCGGTAAATGCAG-3' 

Tnfα 5'-AGCCCACGTCGTAGCAAACCA-3' 5'-CATGCCGTTGGCCAGGAGGG-3' 

Txnip 5'-TCTTTTGAGGTGGTCTTCAACG-3' 5'-GCTTTGACTCGGGTAACTTCACA-3' 

β-actin 5'-CGTGAAAAGATGACCCAGAT-3' 5'-CCATCACAATGCCTGTGGTA-3' 

Table 2: Primers utilized for real-time polymerase chain reaction (PCR). 

2.2.9. Western blotting 

Each sample was mixed with 4x NuPAGE® LDS sample buffer and dithiothreitol 

(DTT) according to the manufacturer’s protocol. Afterwards samples were incubated in 

the PCR cycler for 10 minutes at 70°C. Furthermore running buffer using  

20x NuPAGE® MES SDS Running Buffer was prepared following manufacturer’s 

protocol. As marker equal volumes of MagicMarkTM XP Western Protein Standard and 

Precision Plus Protein Dual Color Standard were mixed. Moreover, 5µl marker and  

10µl per sample were loaded on a NuPAGE gradient gel (4%-12% Bis-Tris gel). The 

gel was run at ~100V while the blotting buffer containing glycin and 

trishydroxymethylaminomethane (tris) was prepared. A nitrocellulose membrane from  
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GE Healthcare with 0.45µm pore size was utilized for blotting and treated according to 

the manufacturer’s protocol. After 2 hours of blotting at 400mA in the cold room, the 

membrane was stained with PonceauS and the gel was stained with Coomassie brilliant 

blue. Afterwards the membrane was destained by several washes with water. For each 

antibody a specific blocking solution was utilized (Table 3) to which phosphatase stop 

(1x) was added. The membrane was incubated for 1 hour at room temperature. The first 

antibody (Table 4) was incubated over night at 4°C in blocking solution. Before 

applying the secondary antibody, the membrane was washed with TBS  

(50mM Trishydroxymethylaminomethane, 150mM sodium chloride, pH 7.6) 

supplemented with Polyoxyethylenesorbitanmonolaurate (Tween). The washing 

procedure lasted 10 minutes and was repeated two times.  

 JNK cJun IRS-1 β-actin 

Blocking 

solution 

5% milk 

powder in 1x 

TBS + 0.05% 

Tween 

5% milk 

powder in 1x 

TBS + 0.1% 

Tween 

5% milk 

powder in 1x 

TBS + 0.1% 

Tween 

1.5% milk + 

1.5% BSA in 

1xTBS + 0.1% 

Tween 

Washing 

solution 

1x TBS + 

0.05% Tween 

1x TBS + 0.1% 

Tween 

1x TBS + 0.1% 

Tween 

1xTBS + 0.1% 

Tween 

Table 3: Blocking and washing solution utilized for western blotting. 

The secondary antibody was incubated for 1 hour at room temperature in blocking 

solution. Before the detection, the membrane was washed with TBS+Tween for  

10 minutes which was repeated two times. Western Lightning Chemiluminescence Plus 

and the Fuji-LAS-1000 were used for detection. Afterwards the membrane was washed 

for 15 minutes with TBS+Tween. In order to strip the membrane and enable application 

of the next antibody, the membrane was incubated for 10 minutes at room temperature 

in Restore™ Plus Western Blot Stripping Buffer. The membrane was washed with 

TBS+Tween for 10 minutes, which was repeated two times, before stripping 

effectiveness was tested via detection for 30 minutes. Finally, the membrane was 

blocked once more and the next antibody could be applied. The intensity of the detected 

bands was analyzed using the Freeware Software GelAnalyzer 2010. 
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antibody supplier trade name 

1
st

 
JNK Cell signaling mouse JNK1 (2C6) 

P-JNK Santa Cruz mouse p-JNK (G-7) 

cJun Cell signaling mouse c-Jun (L70B11) 

P-cJun Santa Cruz rabbit p-c-JUN (Ser63/73) 

IRS-1 Cell signaling rabbit IRS-1 

P-IRS-1 Santa Cruz rabbit p-IRS-1 (Ser307) 

β-Actin Santa Cruz mouse b-Actin (C4) 

2
n

d
  Santa Cruz goat anti-rabbit IgG-HRP 

 Santa Cruz goat anti-mouse IgG-HRP 

Table 4: Antibodies utilized for western blotting. 

2.2.10. Mass spectrometry analysis 

The protein pellet deprived from 50cm² cultures was resuspended in a appropiate 

volume of complete UEES lysis (9 M Urea, 100 mM EDTA/EGTA, 4% SDS) buffer 

(pH 7.5), furthermore protease inhibitor (1x) and phosphatase (1x) stop were added 

before sonification. The lysates were sonificated using the MS 73 sonification tip and a 

Brandelin plus sonificator. The settings were the following 40% power, cycle 5 and  

5 seconds. The sonification process was performed twice; samples were placed on ice in 

between. Finally all samples were stored at -20°C until further treatment.  

2.2.10.1. In-gel digestion 

At first 7µl of each sample was run on a 10% SDS Page and three evenly sized gel 

pieces per lane were cut out at random. Each slice was cropped into small pieces not 

larger than 1mm³ and placed into a low protein binding Eppendorf tube. The in-gel 

trypsin digestion was conducted according to the protocol of Kaiser, et al. (90). In brief, 

25mM NH4HCO3 in 50% (v/v) acetonitrile (ACN) was added, in order to cover the gel 

pieces, which were further vortexed for 10 minutes. Subsequently the gel pieces were 

pelleted via centrifugation at 16,000g for 1 minute. After discarding the supernatant the 
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procedure was repeated twice, before the pieces were completely dried using the Speed 

Vac Concentrator. Subsequently 10mM DTT in 25mM NH4HCO3 was added, vortexed 

and centrifuged at 16,000g, before allowing the reduction reaction to process at 56°C 

for 1 hour. Afterwards the supernatant was removed and 55mM iodoacetamide was 

added to cover the gel pieces. Subsequently, the samples were vortexed and centrifuged 

at 16,000g previous to allowing the alkylation reaction to proceed in the dark at room 

temperature for 45 minutes. The samples were vortexed and centrifuged occasionally 

during the incubation. Afterwards the supernatant was discarded and the pieces were 

washed in NH4HCO3 while vortexing for 10 minutes. Subsequently, the samples were 

centrifuged at 16,000g for 30 seconds; the supernatant was discarded and  

25mM NH4HCO3 in 50% (v/v) ACN was added to cover the gel pieces. After vortexing 

for 5 minutes the samples were centrifuged 16,000g for 30 seconds and the procedure of 

adding 25mM NH4HCO3 in 50% (v/v) ACN was repeated once more. Finally, the gel 

pieces were dried completely before 5µl–10µl trypsin (10ng/µl) and 10% (v/v) ACN 

were added to each sample. After the gel pieces rehydrated a few minutes, 25mM 

NH4HCO3 was added to cover them. Before the pH was adjusted to pH 8, the samples 

were vortexed for 5 minutes and centrifuged for 30 seconds at 16,000g. Subsequently 

the samples were incubated at 37°C over night. The next morning, the gel pieces were 

centrifuged at 16,000g for 30 seconds and water was added prior to vortexing for  

10 minutes followed by 30 seconds of centrifugation at 16,000g. The supernatant 

(digest solution) was transferred into a new low protein binding Eppendorf tube while 

50% (v/v) ACN/5% (v/v) formic acid were added to the gel pieces to cover them. 

Afterwards the gel samples were vortexed for 10 minutes, before centrifugation at 

16,000g for 30 seconds. The supernatant was transferred into the low protein binding 

Eppendorf containing the digest solution. The procedure of 50% (v/v) ACN/5% (v/v) 

formic acid addition was repeated once more. Finally, 100% (v/v) ACN was added to 

cover the gel pieces previous to vortexing for 5 minutes and centrifugation at 16,000g 

for 30 seconds. The supernatant was transferred into the low protein binding Eppendorf 

tube containing the digest solution. Subsequently, the digest solution was centrifuged at 

16,000g for 30 seconds and the volume was reduced to 5µl–10µl using the Speed Vac 

Concentrator. Finally, the samples were centrifuged at 16,000g for 10 minutes and the 

supernatant was transferred into a new low protein binding Eppendorf tube. Each 
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sample was dissolved in 0.1% (v/v) formic acid and (5µl of 20µl) were utilized for LC-

MS analysis. Each sample was run twice without a wash in between.  

2.2.10.2. SILAC quantification 

For the quantitative analysis the recently published method of SILAC-labeled spike-in 

standard (80) was utilized. This method provides the opportunity to decouple the 

coculture experiments from the labeling process. Therefore fully SILAC-labeled 

RAW264.7 macrophages and 3T3-L1 adipocytes were used as internal SILAC standard. 

Both standards contained Lys4 and Arg6. Therefore a mass shift of 4Da, 6Da or 10Da 

and multiples was expected. The internal standards were processed in the same way as 

the samples. 

In order to reduce the sample 50µl were taken and 50mM ammonium bicarbonate was 

added to a total volume of 80µl. Afterwards 1M DTT was added and the samples were 

boiled for 5 minutes with the help of the shaker. All samples were placed one ice for  

2 minutes, further 500mM iodoacetamid was added and the alkylation was allowed to 

progress for 30 minutes in the dark at room temperature. Subsequently, the samples 

were precipitated using 50% trichloroacetic acid (f.c.20% in bidest., TCA) and stored 

on ice for 15 minutes. After a 10 minute centrifugation at 20,000g at room temperature 

the supernatant was discarded. In order to wash the pellet 10% TCA was added before 

another centrifugation at 20,000g for 5 minutes at room temperature. The supernatant 

was discarded once more and Millipore water was added to wash the pellet. After 

centrifugation at 20,000g for 5 minutes the supernatant was discarded and the whole 

washing procedure was repeated twice. The samples were digested using trypsin 

solution, the reaction took place over night for at least 18 hours at 37°C in the shaker. 

The pH was monitored at the beginning of the digestion and measured the next day in 

the morning. In order to stop trypsination 0.5% formic acid was added to all samples. 

Furthermore, all samples were processed using 100µl C18 Tips. At first the tip was 

wetted using 100% ACN, the solvent was discarded afterwards and the procedure was 

repeated twice. The tip was equilibrated with 0.1% formic acid, which was discarded 

afterwards; the procedure was repeated twice. Subsequently the sample pipetted up and 

down before the tip was washed with 0.1% formic acid/5% ACN. The procedure was 

repeated twice. Finally, the sample was eluted into 0.1% formic acid in  
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80% ACN. After drying, the sample via Speed Vac Concentrator, the peptides were 

resolved in 5% ACN/2% formic acid. It was important to dissolve the peptides for at 

least  

10 minutes in order to prevent precipitation on the column. In the end, the low protein 

binding Eppendorf tube was centrifuged 10 minutes at 10,000g and 4°C before the 

supernatant was transferred into a new low protein binding Eppendorf tube. After 

mixing each sample with the corresponding internal SILAC standard they were ready 

for LTQ Orbitrap measurement. 

2.2.10.3. LTQ Orbitrap measurement 

MS analysis was performed using a nanoflow reverse phase liquid chromotagraphy 

(RPLC) system which was coupled online to a Linear Ion Trap (LTQ) Orbitrap XL 

mass spectrometer. 

The peptides were separated using a PicoFrit analyital column (75µm ID x 150mm 

long, 15µm Tip ID), which was in-house packed with a 3µm C18 resin. Peptides were 

eluted using a non-linear gradient over 160min at a flow rate of 200nl/min  

(solvent A: 97.9% H2O, 2% acetonitrile, 0.1% formic acid; solvent B:  

97.7% acetonitrile, 2% H2O, 0.1% formic acid). For nanoelectrospray generation 1.8kV 

was applied. One full FT scan mass spectrum (300-2,000 m/z, resolution of 60,000 at 

m/z 400) was followed by 10 data-dependent MS/MS acquired in the linear ion trap 

with normalized collision energy (setting of 35%). All target ions already selected for 

MS/MS were dynamically excluded for 60 seconds. 

2.2.10.4. Data analysis 

Raw files generated by the LTQ Orbitrap were analyzed with MaxQuant version 

1.0.13.13 (83). MS/MS spectra were searched using the Mascot search engine (version 

2.2.2, Matrix Science) against the decoy International Protein Index (IPI)-mouse 

database (version 3.48). In order to be 99% confident at the peptide level, the cutoff 

value was set to 1%. As SILAC modifications 2H4-labeled lysine (Lys4) and  
13C6-labeled arginine (Arg6) were used. The search included the following variable 

modification: protein N-terminal acetylation and methionine oxidation; further 
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carbamidomethylation at cycteine was included as fixed modification. Trypsin was set 

with a maximum of 2 missed cleavage sites. Two peptides, one of them being unique, 

were sufficient for identification. For quantification 2 unique peptides were necessary. 

A quantitative up- or down-regulation of protein (H/L ratio) between the samples was 

calculated as following: 
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 (ratio of ratios).  
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3. Results 

3.1. Cytotoxicity assay 

In order to assess the influence of free fatty acids on the viability of  

RAW264.7 macrophages a cytotoxicity assay was conducted using a 384-well plate 

(clear, white). Therefore RAW264.7 macrophages were incubated for 24 hours with 

varying palmitate concentrations (Figure 11). Afterwards the viability of the cells was 

determined using the CellTiterGlo Luminescent Cell Viability Assay (Promega). 

Results are depicted in Figure 11A.  

 
Figure 11: Dose-dependent decrease of viability of RAW264.7 macrophages after 24 hours treatment 

with palmitate. (A) Results of the cytotoxicity assay for 2.5*103 RAW264.7 macrophages per well 

seeded. (B) Non-linear curve fit. pal, palmitate; error bars, S.D.; (n=4). 

A decrease in cell viability was monitored depending on the palmitate concentration. 

Using a non-linear curve fit the palmitate concentration, where the viability is reduced 

to 90% was determined with 30.65 ± 1.04µM palmitate (Figure 11B). The goodness of 

the fit was verified using the coefficient of determination (R²), which ranges from  

0 to 1.  

In accordance to the cytotoxicity assay, a maximum of 30µM palmitate was added in 

cell culture in order to stimulate the paracrine loop between adipocytes and 

macrophages (1). 
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Figure 12: Dose-dependent decrease of RAW264.7 macrophages (2.5*103

 cells per well seeded) viability 

after 24 hours of treatment with palmitate. (A) Control population of RAW264.7 macrophages. (B) 

Incubation of RAW264.7 macrophages in presence of 25µM palmitate resulted in a slightly decreased 

cell number. (C) Addition of 75µM palmitate resulted in markedly decreased cell number. Additionally, 

cell shape and integrity are disturbed (indicated by arrows). (D) Exposure of RAW264.7 macrophages to 

250µM palmitate resulted in an enormous decrease in cell number as well as accumulation of 

disturbances in cell shape and integrity (indicated by arrows). pal, palmitate.   

The results of the cytotoxicity assay correspond to microscopial observations  

 (Figure 12). While there seems to be only a slightly decreased cell number after  

24 hours of treatment with 25µM palmitate (Figure 12B), the cell number is 

considerably decreased in presence of 75µM palmitate (Figure 12C). Additionally, cell 

shape is changed due to less adhesion and the integrity of the unit is lost because of cell 

death (indicated by arrows in Figure 12C). In presence of 250µM palmitate  

 (Figure 12D), the maximal concentration tested, cell number is decreased even further 

and the majority of the macrophages is no longer adherent (indicated by arrows in 

Figure 12D). 
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3.2. Cocultural effects 

3.2.1. Experimental set-up in small dimension (6-well plate) 

Using the 6-well plate coculture experiments can be conducted in small dimensions. 

Due to the conditions in the transwell system, 3T3-L1 adipocytes and  

RAW264.7 macrophages are seeded in the following ratio: 
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The conditions in the 6-well plate were studied by microscopy and by using biomarkers 

such as the free fatty acid and triglyceride concentration in the supernatant. Moreover, 

the tumor necrosis factor α level was assessed by a quantitative enzyme linked 

immunosorbent assays (ELISA). In addition, mRNA was extracted in order to study 

coculture-induced changes on RNA level.  

Due to the influence of free fatty acids (FFAs) on the macrophage viability, it is 

important to monitor the RAW264.7 cells microscopically. Moreover, supposed 

lipolysis events can be examined in 3T3-L1 adiopocytes or in coculture. Microscopial 

observations of RAW264.7 macrophages, 3T3-L1 adipocytes and cocultured  

3T3-L1 adipocytes are depicted in Figure 13. All pictures were taken after  

24 hours of incubation.  

3T3-L1 adipocytes can be identified by their characteristic appearance. The most 

striking feature is the large number of lipid droplets of different sizes, which are located 

within each cell (Figure 13A). The addition of 30µM palmitate causes only minor 

optical changes; in general the lipid droplets seem slightly bigger compared to the 

control (Figure 13B). The changes caused by the addition of 250µM palmitate are very 

obvious, as the lipid droplets increase markedly in size (Figure 13C). These findings 

suggest that 3T3-L1 adipocytes took up palmitate in order to store it in lipid droplets. 

RAW264.7 macrophages exhibit only minor optical changes in presence of  

30µM palmitate (Figure 13E); the cell number seems to be slightly decreased. The 

addition of 250µM palmitate resulted in a noticeably decreased cell number. These 

results are in agreement with the cytotoxicity assay. 
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Coculture of 3T3-L1 adipocytes with RAW264.7 macrophages led to a larger number of 

small-sized lipid droplets suggesting that triglycerides were mobilized and secreted as 

FFAs (Figure 13G). The admixture of 30µM palmitate masked cocultural effects and 

resulted in a size of lipid droplets comparable to 3T3-L1 (Figure 13H). These findings 

suggest that 3T3-L1 adipocytes took up palmitate to store it in lipid droplets. 

Nevertheless, compared to 3T3-L1, lipid droplet size is reduced in coculture indicating 

lipolysis. The presence of 250µM palmitate resulted in a further enlargement of lipid 

droplets (Figure 13I), suggesting that 3T3-L1 adipocytes took up even more palmitate. 

Nonetheless, coculture reduced the lipid droplet size compared to 3T3-L1, suggesting 

triglyceride mobilization. Unfortunately it was not possible to monitor  

RAW264.7 macrophages under coculture conditions. The transwell membrane prevents 

microscopical observations, thus a definite statement concerning the condition of the 

RAW264.7 macrophages under cocultural conditions was not possible. 
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Figure 13: 3T3-L1 adipocytes (A–C), RAW264.7 macrophages (D–F) and 3T3-L1 adipocytes cocultured 

with RAW264.7 macrophages (G–I) after 24 hours of incubation in absence or presence of palmitate. co, 

coculture; pal, palmitate. 
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3.2.1.1. Tumor necrosis factor α quantification 

Tumor necrosis factor α (TNFα) is a well-known marker of inflammation and increased 

in obese adipose tissue (12, 13). Moreover, macrophage deprived TNFα plays an 

important role in the induction of inflammatory changes in adipocytes (1). The TNFα 

concentration was measured in the supernatant of 3T3-L1 adipocytes,  

RAW264.7 macrophages and the coculture; results are depicted in Figure 14.  

In the absence of palmitate, a time-depended increase in TNFα concentration can be 

observed for adipocytes, macrophages and the coculture (Figure 14A). In general the 

TNFα level is higher in RAW264.7 macrophages than in 3T3-L1 adipocytes. These 

results suggest that, in contrast to RAW264.7 macrophages, 3T3-L1 adipocytes do not 

secrete high amounts of TNFα. Therefore, the majority of TNFα is  

macrophage-deprived. Furthermore, RAW264.7 cells stimulate themselves under stress 

condition or at high desity to produce TNFα, which results in continuously increasing 

TNFα concentration (Figure 14).  

In coculture, over time a continuous increase of the TNFα level can be observed. 

Nevertheless, the concentration is comparable to the one in RAW264.7 cells until  

24 hours of incubation. These findings suggest that TNFα is induced in coculture but 

not as a result of adipocytes-macrophage communication since  

RAW264.7 macrophages appear to be a more likely source.  

 

Figure 14: TNFα levels measured in supernatant of samples incubated without (A) or in presence of 

30µM palmitate (B). pal , palmitate; error bars, S.D.; (n=3). 
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In the presence of palmitate, a time-dependent increase in TNFα is observed for 

adipocytes, macrophages and the coculture (Figure 14B). Compared to Figure 14A, 

macrophage TNFα concentration is markedly reduced, suggesting a beneficial effect of 

palmitate. This effect was not observed in the cytotoxicity assay and therefore remains 

unclear.  

Under coculture conditions and in presence of palmitate, TNFα levels increase 

continuously over time, although slightly decreased compared to Figure 14A. These 

findings suggest that TNFα is induced in coculture as a result of adipocyte-macrophage 

communication, despite the self-stimulating effect of the macrophages. 

3.2.1.2. Free fatty acid quantification 

3T3-L1 adipocytes are known to secrete free fatty acids (FFAs), especially palmitate, 

e.g. under inflammatory conditions (1). It is thus important to monitor the FFA 

concentration in the supernatant, as FFAs activate inflammatory pathways in 

macrophages (1). The FFA concentration was measured in the supernatant of  

3T3-L1 adipocytes, RAW264.7 macrophages and the coculture; results are depicted in 

Figure 15. 

In 3T3-L1 adipocytes, an increased concentration of FFA can be observed after 4 hours 

before decreasing continuously (Figure 15A). These results suggest that 3T3-L1 cells 

took up FFAs in order to store them as triglycerides. For RAW264.7 macrophages and 

under coculture conditions, the FFA concentration is decreasing continuously, 

suggesting that FFAs are taken up. After 24 hours of incubation, FFA levels are almost 

comparable (Figure 15A). In compliance to Suganami, et al. (1), these findings suggest 

that under mentioned conditions, the interaction of adipocytes and macrophages is not 

sufficient to induce lipolysis. 
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Figure 15: Measured free fatty acid (FFA) concentration of the supernatant without (A) or in presence of 

30µM palmitate (B). pal, palmitate; error bars, S.D.; (n=3). 

The addition of 30µM palmitate leads to changes in the FFA concentration  

 (Figure 15B). For 3T3-L1 adipocytes the FFA concentration is considerably decreased 

after 4 hours, suggesting that 3T3-L1 cells took up FFAs in order to metabolize them. 

Nevertheless, the distinct increase after 8 hours of incubation is symptomatic of 

lipolytic processes. The reason for these contrary observations is currently unknown. 

The time-dependent decrease of FFA concentration can be observed for both 

RAW264.7 macrophages and the coculture in presence of palmitate. After 24 hours, the 

FFA level is likewise for 3T3-L1 adipocytes and RAW264.7 macrophages, whereas it 

differs for the coculture (Figure 15B), indicating a coculture-specific effect. 

3.2.1.3. Triglyceride quantification 

Triglycerides (TGs) are a natural storage component of FFAs; in obese adipose tissue, 

triglyceride biosynthetic enzymes are decreased (36, 37). The development of the TG 

concentration was measured in the supernatant of 3T3-L1 adipocytes,  

RAW264.7 macrophages and the coculture in absence (Figure 16A) and presence of 

palmitate (Figure 16B).  

The TG concentration for RAW264.7 macrophages is decreased after 4 hours  

of incubation and remains constant afterwards. These findings suggest that macrophages 

are not able to metabolize TGs. For 3T3-L1 adipocytes and coculture conditions, the TG 

concentration is increased after 24 hours of incubation (Figure 16A), suggesting an 
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enlarged secretion of TGs. The effects observed in coculture are most likely  

3T3-L1-deprived indicating that under these conditions the cell-cell communication is 

not sufficient to induce visible effects. Therefore, the measured TG concentration is 

most likely adipocyte-deprived. 

 
Figure 16: Measured triglyceride (TG) concentration of the supernatant without (A) or in presence of 

30µM palmitate (B). pal , palmitate; error bars, S.D.; (n=3). 

The addition of 30µM palmitate induces major changes in the TG level (Figure 16B). 

While the TG concentration remains constant for RAW264.7 macrophages, it slightly 

increases for 3T3-L1 adipocytes after 24 hours of incubation. These results suggest that 

RAW264.7 macrophages are unable to metabolize TGs, both in absence and presence of 

palmitate. Moreover, 3T3-L1 cells secrete TGs after 24 hours of incubation, 

independent of the presence of palmitate. In coculture, there is a distinguished peak 

after 8 hours of incubation (≈ 300µM TG). As already observed for the FFA 

concentration, the addition of 30µM palmitate leads to smaller TG concentrations 

compared to the values retrieved in absence of palmitate (Figure 16A). These findings 

suggest that in coculture, TG biosynthetic pathways are influenced leading to changes in 

TG concentration as monitored.  

3.2.1.4. Induced changes on the mRNA level 

The real-time polymerase chain reaction (real-time PCR) method was utilized to take a 

closer look at the expression level of cell markers (e.g. Adiponectin) or cyto- and 

chemokines (Tnfα, Mcp-1) of 3T3-L1 adipocytes and RAW264.7 macrophages. 
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Coculture 

In general, single cell cultures of 3T3-L1 adipocytes and RAW264.7 macrophages were 

used as controls for cocultured cells. For cocultured 3T3-L1 adipocytes, the expression 

levels of the following genes were monitored: Adiponectin (Adipo), Fabp4, Mcp-1, 

Glut4, Resistin (Figure 17A).  

While time-dependent changes are only of minor extent for Adiponectin, Resistin and 

Glut4, Fabp4 and Mcp-1 are influenced in a more apparent way. Fabp4 is expressed at a 

minimum after 8 hours of incubation, while Mcp-1 expression is increased 4-fold  

after 24 hours of incubation (Figure 17A). These findings suggest that expression of 

Mcp-1 is specifically up-regulated in coculture.  

 
Figure 17: Relative gene expression for cocultured 3T3-L1 (A) and RAW264.7 (B). Adipo, Adiponectin; 

error bars, S.D.; *P<0.05, **P<0.01, ***P<0.001, (n=3). 

For cocultured RAW264.7 macrophages, the expression levels of the following genes 

were monitored: Cox-2, Il-1b, Il-6, Tnfα and Mcp-1 (Figure 17B). In contrast to  

3T3-L1 adipocytes, the time-dependent changes are more striking for  

RAW264.7 macrophages.  

Expression of Il-1b and Mcp-1 is continuously increasing with incubation time, whereas 

the expression of Cox-2 and Il-6 is at a minimum after 8 hours, right before they 

increase (Figure 17B). These findings suggest that expression of Il-1b, Mcp-1 and 

TNFα is specifically up-regulated in coculture. 

The expression pattern (after 24 hours of incubation) is slightly influenced by the 

addition of 30µM palmitate (Figure 18). In general, 3T3-L1 adipocytes are less 

impaired by palmitate than RAW264.7 macrophages. These results suggest that addition 
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of palmitate to cocultured 3T3-L1 cells does not induce considerable changes in the 

expression profile.  

 
Figure 18: Relative gene expression for cocultured 3T3-L1 adipocytes (A) and RAW264.7 macrophages 

(B) in absence or presence of 30µM palmitate after 24 hours of incubation. Adipo, Adiponectin; pal, 

palmitate; error bars, S.D.; *P<0.05, **P<0.01, ***P<0.001, (n=3). 

In cocultured RAW264.7 macrophages, addition of palmitate slightly reduced the gene 

expression (Figure 18B). Nevertheless, the expression pattern remained unchanged in 

presence of palmitate. These results suggest that the addition of 30µM palmitate did not 

aggravate the coculture-specific gene regulation. 

Phosphorylation of peroxisome proliferator-activated receptor γ 

Recently Choi, et al. (72) published a gene set comprising 17 genes regulated by the 

phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ) at Ser273. 

Using Western Blot analysis, Choi, et al. (72) showed that phosphorylation of PPARγ in 

3T3-L1 adipocytes can be induced by incubation with inflammation mediators such as 

IL-6 and TNFα, or FFA. As RAW264.7 macrophages produce high amounts of TNFα 

and IL-6 changes in the genes regulated by phosphorylation of PPARγ might be visible 

in cocultured 3T3-L1 adipocytes. This was investigated using real-time PCR. Results 

are plotted as a heat-map in Figure 19.  

The development of the gene expression level for 3T3-L1 adipocytes incubated in 

presence of 30µM palmitate is illustrated in Figure 19A. After 4 hours of incubation, 

only Cyp2f2 is up-regulated, while Car3, Acyl, Rybp, Txnip and Nr1d1 remain 

unregulated. All remaining genes are down-regulated. When compared to the suggested 
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regulation (72), eight out of 17 genes match. After 8 hours of incubation, major changes 

in the expression level are visible; except for Rybp all genes are up-regulated. When 

compared to the suggested regulation (72), one out of 17 genes matches. In the end 

(after 24 hours), the majority of genes is unregulated except for Peg10 and Cd24a. 

These results suggest that PPARγ phosphorylation as a result of local adipose tissue 

inflammation reaches a maximum within the first 4 hours and decreases afterwards. 

Therefore palmitate addition led to an acceleration of the inflammatory phosphorylation 

process. 

The development of the gene expression for cocultured 3T3-L1 adipocytes is illustrated 

in Figure 19B. After 4 hours of incubation, all genes are up-regulated. When compared 

to the suggested regulation (72), none of the genes match. After 8 hours of incubation 

minor changes in the expression level are visible. While Cyp2f2, Rarres2, Selenbp1 and 

Adipsin are down-regulated, Peg10, Cidec and Rybp remain unregulated.  

After 24 hours about half of the genes are down- or upregulated, whereas Acyl and 

Nr3c1 and Nr1d1 remain unregulated. When compared to the reported regulation  

 (72), eight out of 17 genes match. These findings suggest that PPARγ phosphorylation 

is induced in coculture. Moreover, complete phosphorylation is not reached within  

24 hours of incubation – and probably even later. 
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Figure 19: Heat-map of the relative expression of the gene set regulated by peroxisome proliferator

activated receptor γ (PPARγ) phosphorylation. The suggested gene set was tested for 3T3

incubated with 30µM palmiate

3T3-L1 adipocytes incubated with 30µM palmiate (C). pal, palmitate; (n=3)
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Nr3c1 and Nr1d1 remain unregulated. In comparison to 

genes matches. These findings suggest that PPARγ phosphorylation is already 

decreasing after 4 hours of incubation; thus the phosphorylation is induced almost 

immediately. Hence, palmitate addition led to rapid acceleration of the phosphorylation 

process. 
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Palmitate-induced inflammation in RAW264.7 macrophages 

Free fatty acids (FFAs) act as inducer of inflammation in RAW264.7 macrophages (1). 

The expression of several pro-inflammatory chemo- and cytokines as response to 

palmitate addition was measured using real-time PCR (Figure 20). Expression of all 

pro-inflammatory markers tested is increasing due to palmitate addition in a dose-

dependent manner. Nevertheless, there is no distinct induction of TNFα expression until 

addition of 250µM palmitate (Figure 20C). In contrast, Il-1b and Il-6 (Figure 20A) and 

B) are already induced at 125µM palmitate and MCP-1 even at 30µM palmitate  

 (Figure 20D). These findings suggest that palmitate induces inflammatory responses in 

macrophages in a dose-dependent manner. 

 
Figure 20: Palmitate induced gene expression of pro-inflammatory chemo- and cytokines in RAW264.7 

macrophages. pal, palmitate; error bars, S.D.; *P<0.05, **P<0.01, ***P<0.001, (n=3). 

The type II transmembrane c-type lectin Mincle, which is also known as  

macrophage-inducible C-type lectin, Clec4e or Clecsf9, is selectively induced in 

macrophages due to the interaction with adipocytes (50, 91). Furthermore, Matsumoto, 

et al. (92) identified Mincle as transcriptional target of the CCAAT/enhancer binding 
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protein β (CEBPβ), which is present in macrophages due to inflammatory stimuli. 

Recently Ichioka, et al. showed that the addition of palmitate induced Mincle mRNA 

expression in macrophages (50). To assess whether Mincle is a suitable marker of 

macrophage inflammation, the induction of mRNA expression after a 24h palmitate 

treatment was analyzed using real-time PCR. As depicted in Figure 21A, palmitate 

treatment resulted in a dose-dependent Mincle mRNA expression in  

RAW264.7 macrophages. Moreover, real-time PCR confirmed a highly selective 

mRNA expression of Mincle in RAW264.7 macrophages compared to  

3T3-L1 adipocytes (Figure 21B). In addition, Mincle expression was up-regulated in 

RAW264.7 macrophages through addition of 75µM palmitate, coculture with  

3T3-L1 adipocytes and the combination of both treatments (Figure 21A and C). These 

results suggest that Mincle is an appropriate macrophage-specific marker and is able to 

illuminate FFA-induced macrophage activation. 
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Figure 21: Mincle mRNA expression. (A) Palmitate induced expression of Mincle in RAW264.7 

macrophages. (B) Selective expression of Mincle in RAW264.7 macrophages. (C) Expression of Mincle 

in RAW264.7 macrophages after 24 hours of coculture in absence or presence of 30µM palmitate. co, 

coculture; pal, palmitate; error bars, S.D.; *P<0.05, **P<0.01, ***P<0.001, (n=3). 

3.2.2. Up-scaling of the coculture system for proteomics (50cm² dish) 

Using the knowledge of the 6-well experiments, the coculture system was scaled up in 

order to study changes on the protein level. Due to the RNA-protein-delay and the 

results of the 6 well experiments, the incubation time was adapted. Hence, only the 

following incubation times were considered: 0 hours, 8hours and 24 hours. The 

conditions were studied by microscopy and by using already established biomarkers 

such as free fatty acid content, triglyceride concentration and tumor necrosis factor α 

amount. Moreover, protein was extracted in order to study coculture-induced changes 

by western blotting mass spectrometry.  
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Microscopical observations of RAW264.7 macrophages, 3T3-L1 adipocytes and 

cocultured 3T3-L1 adipocytes are depicted in Figure 22. All pictures were taken after  

24 hours of incubation.  

3T3-L1 adipocytes are characterized by numerous lipid droplets within each cell  

 (Figure 22A). Coculture of 3T3-L1 adipocytes with RAW264.7 macrophages led to 

small-sized lipid droplets suggesting that triglycerides were mobilized and secreted as 

FFAs (Figure 22B). Moreover, compared to 3T3-L1, size and abundance of lipid 

droplets are of smaller scale in coculture, indicating lipolysis. These results are in 

agreement with the observations of the 6-well experiment. 

 
Figure 22: 3T3-L1 adipocytes (A) and 3T3-L1 adipocytes cocultured with RAW264.7 macrophages (B) 

after 24 hours of incubation. co, coculture. 

3.2.2.1. Tumor necrosis factor α quantification 

The tumor necrosis factor α (TNFα) concentration was measured in the supernatant of 

25cm² flasks and 50cm² dishes. The flasks were used as controls, whereas dishes with 

transwell inserts were utilized for coculture experiments. For the larger dishes the 

incubation time was adapted, as 4 hours was too short to observe major changes on the 

protein level. Markedly coculture-induced are protein changes are expected after  

24 hours of incubation. 

The TNFα concentration in the flask (Figure 23A) remained unchanged for  

3T3-L1 adipocytes. RAW264.7 cells stimulate themselves to produce TNFα which 
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results in a 3-fold increased TNFα concentration (Figure 23A). The TNFα concentration 

in coculture (Figure 23B) increased time-dependently. These findings suggest that 

TNFα is induced in coculture. 

 
Figure 23: TNFα levels measured in the supernatant of flasks (A) or dishes (B). TNFα concentrations for 

RAW264.7 macrophages and coculture normalized to 1*106
 RAW264.7 macrophages seeded. Error bars, 

S.D.; (n=1-2). 

3.2.2.2. Free fatty acid quantification 

The free fatty acid (FFA) concentration was measured in the supernatant of  

3T3-L1 adipocytes and RAW264.7 macrophages, which were cultured in a 25cm² flask. 

Furthermore, the FFA level was measured in the supernatant of the coculture. The flasks 

were used as controls, while the dishes were utilized for coculture experiments. 

The FFA concentration in the flask (Figure 24A) decreased similarly in both cell lines 

after 24 hours of incubation, suggesting that both cell lines are capable of FFA 

metabolization. In coculture (Figure 24B), the FFA level remained unchanged until  

24 hours of incubation. These results suggest that the free fatty acid uptake is abolished 

in coculture. 
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Figure 24: Free fatty acid (FFA) levels measured in the supernatant of flasks (A) or dishes (B). FFA 

concentrations for RAW264.7 macrophages and coculture normalized to 1*106
 RAW264.7 macrophages 

seeded. Error bars, S.D.; (n=1-2). 

3.2.2.3. Triglyceride quantification 

The triglyceride (TG) concentration was measured in the supernatant of the coculture. 

Furthermore, the TG level was measured in the supernatant of 3T3-L1 adipocytes and 

RAW264.7 macrophages, which were cultured in a 25cm² flask. The flasks were used 

as controls, while the dishes were utilized for coculture experiments. 

The TG concentration in the flask (Figure 25A) decreased similarly in both cell lines, 

indicating that both cell lines are able to metabolize TGs. In the coculture (Figure 25B), 

the TG level did not increase markedly. The results for RAW264.7 macrophages and 

the coculture are contrary to those in the 6-well formats. 

 
Figure 25: Triglyceride (TG) levels measured in the supernatant of flasks (A) or dishes (B). TG 

concentrations for RAW264.7 macrophages and coculture normalized to 1*106
 RAW264.7 macrophages 

seeded. Error bars, S.D.; (n=1-2). 
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3.2.2.4. Protein samples 

Proteins were obtained from 50cm² dishes and in general isolated for proteomic analysis 

and western blotting.  

Western blotting 

Protein phosphorylation is a central modification used for cell regulation and signaling, 

thus, one out of three eukaryotic proteins is phosphorylated (93). Furthermore, 

phosphorylation is often utilized as a fast response to e.g. cellular stress (57-59). The 

phosphorylation state of JNK, cJun and IRS-1 were measured under cocultural 

conditions using western blotting. 

JNK 

JNK is a key participant of several signaling pathways such as inflammation, insulin 

signaling and endoplasmatic reticulum stress, and is commonly phosphorylated under 

stress conditions (8, 22, 40, 57, 61). Western blot analysis confirmed larger magnitudes 

of JNK in RAW264.7 macrophages compared to 3T3-L1 adipocytes. Thus, cocultured 

RAW264.7 macrophages were used instead of the 3T3-L1 adipocytes for monitoring 

the phosphorylation state. 

The development of JNK phosphorylation is documented in Figure 26; results of the 

densitometric analyses are depicted in Figure 26B and Figure 26C. Coculture with  

3T3-L1 adipocytes led to a continuous increase of JNK phosphorylation in  

RAW264.7 macrophages. After 24 hours of incubation, compared to its 

unphosphorylated counterpart, twice the amount of modified JNK was detected. 

Corresponding to these findings, the amount of JNK (compared to β-actin (Figure 26C)) 

is only slightly raised until 8 hours of incubation, before a roughly increase (≈1.5 fold) 

can be observed after 24 hours. This indicates that coculture of adipocytes and 

macrophages results in an increased JNK phosphorylation due to cellular stress.  
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Figure 26: Induction of JNK phosphorylation under cocultural conditions. (A) Western blot analysis. (B-

C) Densitometric analyses. (C) Relative amount of JNK. (n=1). 

cJUN 

As a downstream target of JNK, cJun gets phosphorylated under stress conditions (57). 

Western blot analysis confirmed large quantities of cJun in RAW264.7 macrophages 

compared to 3T3-L1 adipocytes. Hence, cocultured RAW264.7 macrophages were used 

instead of 3T3-L1 adipocytes in order to monitor the state of phosphorylation. 

 
Figure 27: Induction of cJun phosphorylation under cocultural conditions. (A) Western blot analysis. (B-

C) Densitometric analyses. (C) Relative amount of cJun. (n=1). 

Figure 27 depicts the development of cJun phosphorylation and the results of the 

densitometric analyses (Figure 27B and C). Coculture with 3T3-L1 adipocytes led to an 

almost instant increase of cJun phosphorylation in RAW264.7 macrophages (≈2-fold). 

Moreover, the phosphorylation level remained constantly high under cocultural 

conditions. The amount of cJun (compared to β-actin (Figure 27C)) is only slightly 

regulated until 8 hours of incubation, before markedly increasing  
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after 24 hours (≈1.5 fold). This indicates that under cocultural conditions, cJun 

phosphorylation is induced.  

IRS-1 

IRS-1 is a key molecule in insulin signaling and impairs insulin signaling when 

phosphorylated at Ser307 (22, 23, 94). Western blot analysis confirmed large amounts 

of IRS-1 in 3T3-L1 adipocytes (data not shown). Due to the abundance of IRS-1 in 

adipocytes, cocultured 3T3-L1 adipocytes were used instead of to  

RAW264.7 macrophages to monitor the state of phosphorylation. 

 
Figure 28: Induction of IRS-1 phosphorylation under cocultural conditions. (A) Western blot analysis. 

(B-C) Densitometric analyses. (C) Relative amount of IRS-1. (n=1). 

The development of IRS-1 phosphorylation is documented in Figure 28; results of the 

densitometric analyses are depicted in Figure 28B and Figure 28C. Coculture with  

RAW264.7 macrophages did not increase IRS-1 phosphorylation (Figure 28B). 

Moreover, the amount of IRS-1 protein (compared to β-actin) is constant during the 

whole experiment (Figure 28C). These findings suggest that 24 hours of coculture are 

not sufficient to induce IRS-1 phosphorylation in the current coculture setup. 

3.2.2.5. Mass spectrometry analysis 

Analysis of in-gel digested samples 

The in-gel digestion was performed for two reasons. At first to verify that the purified 

samples from the coculture dishes contained enough material for MS analysis and 

second to estimate whether a quantitative approach would be worthwhile. Therefore, all 

samples were run on a 10% SDS gel. Afterwards, 3 bands were cut out and an in-gel 
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digestion with trypsin was performed. The samples were analyzed using the LTQ 

Orbitrap XL. Results are summarized in Table 5. 

sample 3T3-L1 24h 3T3-L1 co 24h RAW 24h RAW co 24h 
g

el
 s

li
ce

 1 117 264 237 299 

2 224 362 370 424 

3 365 444 452 474 

average 235 357 353 399 

Table 5: Number of identified proteins per gel slice after in-gel digestion. (n=1). 

These results indicate that a sufficient number of proteins can be identified. Moreover, a 

combination of coculture experiments with mass spectrometry is possible. In case of the 

24 hours cultured 3T3-L1 adipocytes 235 proteins per gel slice were identified on an 

average. Since this was only a pilot experiment, with 3 slices cut out, a total of about 

3760 identified proteins is expected under ‘normal’ conditions, where 16 slices are cut. 

Due to space constraints, full protein lists are not included in this thesis. Therefore, only 

some of the identified proteins shall be mentioned in extracts.  

For 3T3-L1 adipocytes only Cyp2f2, perilipin, Carnitine-O-palmitoyltransferase 1 and 

Lipoprotein lipase (LPL) shall be enlisted. Cytochrome oxydase P450 (Cyp2f2) is a 

member of the gene set regulated by PPARγ phosphorylation (72). While perilipin coats 

adipocyte lipid droplets, Carnitine-O-palmitoyltransferase 1 (CPT1) is a mitochondrial 

transferase enzyme responsible for the CoA import. Recentyl CTP1A was identified to 

attenuate FFA-induced insulin resistance and inflammation through JNK inhibition 

(95).  

Lipoprotein lipase is a central enzyme of the glycerolipid metabolism and hydrolyzes 

triglycerides. Moreover, proteins belonging to the following pathways were identified: 

glycolysis metabolism, oxidative phosphorylation, tricarboxylic acid cycle and 

glycerolipid metabolism.  

For RAW264.7 macrophages, TLR2 shall be mentioned which functions, similar to 

TLR4, as FFA sensor. Moreover, proteins belonging to the following pathways were 
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identified: oxidative phosphorylation, tricarboxylic acid cycle and pentose phosphate 

pathway.  

These findings suggest that a quantitative approach is worthwhile, since in the three 

analyzed slices numerous proteins were identified. Moreover, several references to 

metabolic pathways and coculture-induced changes were gained.  

Analysis of the SILAC quantification 

The SILAC approach was used as pilot experiment to assess the applicability of  

SILAC-labeling and coculture experiments. Thus, all samples were reduced, alkylated 

and digested before purification with a C18 Tip. Finally, the samples were mixed at a 

1:1 ratio with the corresponding standard and were analyzed using the LTQ Orbitrap 

XL.  

Due to the small overlap between sample and SILAC-standard, a quantitative analysis 

was impossible for 3T3-L1 adipocytes (data not shown). However, some results  

 (ratio of ratios) could be gained for RAW264.7 macrophages All three enzymes 

regulated are part of the glycolysis. Phosphoglycerate kinase is a transfer enzyme, 

responsible for ATP generation while the pyruvate kinase isoenzyme utilizes ATP to 

generate phosphoenolpyruvate (PEP).  

 
Figure 29: Quantitative analysis of SILAC-labeled samples. (n=1). 

All three glycolytic enzymes were markedly up-regulated after 8 hours of coculture 

suggesting an up-regulation of glycolysis. Although in this pilot experiment quantitative 

analysis was possible only for a few identified proteins, these finding suggest that the 

spike-in SILAC technique is practicable using the system set up introduced in this 

thesis.  
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4. Discussion 

4.1. FFA induced cytotxicity 

In the cytotoxicity assay, a reduction of RAW264.7 viability was observed due to 

palmitate addition (Figure 11A). The palmitate concentration, where the viability is 

reduced to 90% was determined with 30.65 ± 1.04µM palmitate. This level is quite low, 

considering the circumstance that in some publications, RAW264.7 macrophages were 

treated with up to 500µM palmitate (1, 41, 48, 96). Nevertheless, in order to amplify 

cocultural effects a maximum of 30µM palmitate was added. The amount of palmitate is 

enough to induce an inflammatory response in RAW264.7 macrophages without a 

significant reduction of viability. The findings of the cytotoxicity assay are in agreement 

with microscopic observations depicted in Figure 12. The addition of 30µM palmitate to 

RAW264.7 macrophages did not influence the optical conditions of the cells, although 

the cell number was reduced. Therefore, 30µM palmitate is sufficient to slightly disturb 

RAW264.7 metabolism without inducing a massive stress response.  

4.2.  Cocultural effects 

The 6-well plate was used as a small-scale system for coculture experiments to evaluate 

changes on the RNA level. In coculture, lipolysis could only be detected 

microscopically but not via FFA quantification. Moreover, an increase of TNFα 

concentration and a palmitate-influenced TG metabolism was observed. Summarizing 

the 6-well plate works fine as a starting system and is easier to handle when checking 

different conditions and time points using biological replicates. Furthermore, it provides 

useful insights for the design of the dish coculture system. 

The 50cm² dishes were used as an up-scaled coculture system, to determine coculture-

induced changes of the proteasome. Due to being a large-scale version of the  

6-well setup, all previously mentioned remain valid. With the help of the 6-well 

experiments, time points could be determined where coculture-induced changes are 

detectable. In contrast to its 6-well pendant, the larger dishes enable us to culture 

enough cells for protein extraction. Overall, the 50cm² dish system appears to be less 
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susceptible and more stable than the 6-well plate system, which is why I am 

recommending it for further investigations. 

4.2.1.1. Microscopical observations in coculture systems 

Unfortunately, it was impossible to observe cocultured RAW264.7 macrophages 

microscopically. After being seeded into the transwell insert, the cells are more or less 

indiscernible. Hence, coculture-induced changes have to be monitored in cocultured 

3T3-L1 adipocytes (Figure 13G – I, Figure 22B). An alternative would be to switch cell 

lines, such as 3T3-L1 being cultured in the insert while RAW264.7 being seeded into 

the bottom of the well. 

In the small-scale system (6-well plate) 3T3-L1 adipocytes took up palmitate and stored 

it in form of triglycerides in their lipid droplets (Figure 13B and 13C).  

3T3-L1 adipocytes seem to be able to handle even very high palmitate concentrations 

(Figure 13C). Cocultured 3T3-L1 adipocytes depicted a reduced lipid droplet size even 

in presence of 30µM palmitate, suggesting free fatty acid secretion and lipolysis  

 (Figure 13G and 13H, Figure 22B). Thus coculture of adipocytes and macrophages 

induced lipolysis in adipocytes. Therefore an increase in free fatty acid concentration 

should be measurable. Although the addition of palmitate seems to compensate lipolytic 

processes at least to a certain extent, palmitate does not circumvent lipolysis. These 

observations support recent publications of a paracrine loop between adipocytes and 

macrophages and coculture-induced lipolysis (1). 

4.2.1.2. Coculture-induced increase of TNFα concentration 

Although the majority of TNFα is macrophage-deprived (1), 3T3-L1 adipocytes are 

capable of TNFα secretion as well (Figure 14, Figure 23).  

In both coculture systems, TNFα is continuously increasing (Figure 14A, Figure 23A), 

indicating that TNFα production is increasing in RAW264.7 macrophages under 

cocultural conditions (1). One reason for TNFα induction might be the inert ability of 

RAW264.7 macrophages to produce TNFα triggered by confluence stimuli. 

Nevertheless, the significant increase after 24 hours of incubation is most likely 
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coculture-induced. Hence, coculture of RAW264.7 macrophages and  

3T3-L1 adipocytes led to an increased TNFα level.  

In the small scale system, the addition of 30µM palmitate points out the coculture-

specific TNFα induction (Figure 14B). Moreover palmitate addition reduced the  

TNFα concentration in RAW264.7 supernatant, suggesting a reduction of inflammatory 

responses. These observations indicate a beneficial impact of palmitate on macrophages 

and corresponding to Paracelsus’ prediction: ‘Dosis sola venenum facit’. Nevertheless, 

an advantageous effect of palmitate was not observed in the cytotoxicity assay. 

Therefore the main cause for a reduced TNFα production in RAW264.7 cells remains 

currently unknown. In agreement to the microscopic observations, addition of palmitate 

did not influence 3T3-L1 adipocytes (Figure 14B). These results reinforce the important 

role of TNFα in the communication of adipocytes and macrophages (1). Furthermore, 

free fatty acid addition seems to be necessary in order to guarantee obesity-like 

conditions. 

4.2.1.3. Free fatty acid concentration 

In both culture systems, adipocytes and macrophages were capable to metabolize FFAs 

(Figure 15A, Figure 24A). Furthermore, in small-scale coculture the FFA content was 

decreasing time-dependently, whereas in the large-scale coculture the FFA content was 

constant over 24 hours. These findings prefigure lipogenesis for 3T3-L1 adipocytes and 

RAW264.7 macrophages. Nevertheless, lipolysis is the expected metabolic pathway, 

especially under cocultural conditions.  

Even in the presence of 30µM palmitate, FFAs are taken up and metabolized in 

RAW264.7 macrophages and coculture. 3T3-L1 adipocytes absorbed almost all FFAs 

before secreting them after 8 hours of incubation (Figure 15B), suggesting lipolytic 

events between 4 and 8 hours of incubation. Hence, lipolysis was induced due to limited 

storage capacities and an overstimulation of the hormone sensitive lipase (97). Hormone 

sensitive Lipase is the enzyme responsible for the convertion of triglycerides to FFAs in 

adipose tissue. The overstimulation leads to an immense FFA release Figure 15B) 

which marks the initial event of lipid deposition in non-adipose tissue (97).  
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nomenclature GPR43 (FFAR2) GPR41 (FFAR3 GPR120 

Natural agonist 
(FFA) 

short 
C2 – C4 

Short 
C2 – C4 

Medium 
C10 – C22 

expression Adipose tissue Adipose tissue Macrophages 

Table 6: FFA receptors (adapted from Hara, et al. (98)) 

An early response mechanism of macrophages to FFAs involves lipid-handling 

mechanisms including storage in lipid droplets, β-oxidation and cholesterol efflux (97). 

Nuclear receptors peroxisome, proliferator-activated receptors (PPARs) and fatty acid 

binding proteins (FABPs) are known to function as sensors for FFAs. Furthermore free 

fatty acid receptors (FFARs) have been indentified in macrophages (GPR120) and 

adipocytes (GPR43, GPR41) (98). A short overview is given in Table 6. A chronic lipid 

exposure results in the collapse of these lipid-handling mechanisms and induction of 

lipotoxic events, such as disproportionate secretion of pro-inflammatory cytokines and 

cell death (97). Probably, 3T3-L1 cells did not secrete enough FFAs and 30µM palmiate 

are not considered as a signal of danger for macrophages. Due to the missing free fatty 

acid feedback, the vicious cycle was intercepted, thus lipolytic events are not visible. 

Furthermore the microscopically observed lipolysis could not be confirmed by the FFA 

quantification assay. Obviously the paracrine loop between adipocytes and 

macrophages is not sufficient to induce FFAs secretion in 3T3-L1 cells. Lipolysis is 

observed in neither of the coculture systems. 

4.2.1.4. Triglyceride concentration 

In the small-scale system, RAW264.7 macrophages in contrast to 3T3-L1 adipocytes 

seem to unable to metabolize TGs (Figure 16A). In coculture and for 3T3-L1 adipocytes 

TG concentration markedly increases after 24 hours of incubation. These observations 

suggest that the increased TG level is likely to be attributed to 3T3-L1 deprivation 

rather than a cocultural effect. Under normal conditions 3T3-L1 convert TGs into FFAs 

which are taken up. Obviously the TG storage limit is reached after 24 hours in  

3T3-L1 cells and in coculture. In the presence of palmitate, the TG profile remains 

unchanged for 3T3-L1 adipocytes and RAW264.7 macrophages (Figure 16B). In 
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coculture, palmitate addition led to a peak in TG concentration after 8 hours of 

incubation suggesting metabolic changes induced by coculture. The exact reasons for 

the observed TG changes remain unknown. 

In the up-scale system, RAW264.7 macrophages and 3T3-L1 adipocytes were able to 

metabolize TGs, whereas in coculture the TG concentration remains unchanged  

 (Figure 25). These observations suggest that TG uptake was inhibited in coculture. 

Furthermore, another reason could be a decreased expression of triglyceride 

biosynthetic enzymes due to coculture-induced inflammatory changes (36, 37). 

4.2.1.5. Gene expression 

In general, single cell cultures of 3T3-L1 adipocytes and RAW264.7 macrophages were 

used as controls for cocultured cells. For cocultured 3T3-L1 adipocytes, the expression 

levels of the following genes were monitored: Adiponectin (Adipo), Fabp4, Mcp-1, 

Glut4, Resistin (Figure 17A). In obese adipose tissue Adiponectin and Glut4 are down-

regulated while Fabp4, Mcp-1 and Resistin are up-regulated (1, 72). Under cocultural 

conditions, this regulation could only be noticed for Mcp-1. These observations suggest 

that RAW264.7 macrophages are only partly able to induce inflammatory changes in 

3T3-L1 cells. For cocultured RAW264.7 macrophages, the expression levels of the 

following genes were monitored: Cox-2, Il-1b, Il-6, Tnfα and Mcp-1 (Figure 17B). In 

obese adipose tissue, pro-inflammatory macrophage markers are up-regulated due to the 

chronic low-grade inflammatory state (Figure 20). Under cocultural conditions, this 

regulation is true for almost all markers, except for IL-6 which is down-regulated after 

24 hours. These findings indicate that coculture with 3T3-L1 adipocytes induce 

inflammatory changes in RAW264.7 cells. In general Mcp-1 expression is increased 

further in cocultured 3T3-L1 cells rather than in cocultured RAW264.7 macrophages 

(1). 

The addition of 30µM palmitate decreases the expression fold but not the expression 

profile (Figure 18). Therefore, palmitate, at least at the concentration tested, is not able 

to aggravate inflammatory conditions in both cell lines. 
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PPARγ phosphorylation  

Choi, et al. (72) identified a gene cluster of 17 genes to be regulated depending on the 

phosphorylation of PPARγ at Ser273. Some of these genes were sorted according to 

their function as depicted in Figure 30. 

According to Choi, et al. (72), PPARγ phosphorylation is induced in 3T3-L1 adipocytes 

in presence of palmitate and in cocultured 3T3-L1 adipocytes (in absence and presence 

of palmitate). While for cocultured 3T3-L1 adipocytes the maximum high point was 

already passed after 4 hours of incubation in presence of 30µM palmitate. In absence of 

palmitate, it was not reached within 24 hours of incubation (Figure 18B and 17C). 

These observations suggest that coculture induced phosphorylation of PPARγ. 

Moreover, in the absence of palmitate, incubation time should be extended in order to 

guarantee phosphorylation. The addition of palmitate markedly accelerated the 

phosphorylation process. Genes regulated by differential PPARγ phosphorylation are 

clustered according to their function in Figure 30. Nevertheless, gene expression 

clusters observed in qPCR are not related to the function of the gen. 

receptors  binding proteins 

retinoic acid receptor responder (Rarres2 )  selenium binding protein 1 (Selenbp1) 

nuclear receptor (Nr1d2, Nr3c1, Nr1d1)  RING1 and YY1 binding protein (Rybp) 

   

lipid droplet formation  interacting proteins 

cell death-inducing DFFA-like effector c (Cidec)  thioredoxin interacting protein (Txnip) 

   

immune components  glucose homeostasis 

cluster of differentiation 24 antigen (Cd24a)   amyloid beta (A4) precursor-like protein 2 (Aplp2) 

complement factor D (Adipsin)  Adioponectin 

   

enzymes   

cytochrome P450 family (Cyp2f2)   

carbonic anhydrase (Car3)   

RNA helicase (Ddx17)   

 

Figure 30: Members of the gene set regulated by PPARγ phosphorylation at Ser273. 
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Mincle as macrophage-specific marker of FFA-induced inflammation  

Mincle is up-regulated in a dose-dependent manner for palmitate concentrations 

exceeding 75µM (Figure 21A). Moreover it is specifically expressed in  

RAW264.7 macrophages and increasingly expressed in coculture (Figure 21B and 

21C). These findings are in agreement with recently published data (50). Due to the 

linkage of expression fold to FFA content, Mincle expression was compared to TNFα, 

the inflammatory marker in RAW264.7 macrophages. Furthermore, TNFα was 

identified as member of the paracrine loop comprising FFA.  

The expression level in macrophages is comparable for both genes at small palmitate 

concentrations (0 – 30µM). Nevertheless, Mincle proved to be more sensible at 

palmitate levels exceeding 30µM (Figure 31A). However, under cocultural conditions 

the differences are more obvious. Although the general course of regulation is identical, 

the degree of is slightly diverse (Figure 31B). Due to the specific expression 

mechanism, Mincle might be the more suitable marker for cocultural effects. 

Nevertheless, Mincle is a newly identified target and therefore much remains to be 

unknown. Hence, I recommend the use of both markers, TNFα and Mincle in order to 

analyse coculture effects. 

 
Figure 31: Comparison of Mincle and TNFα expression levels. (A) Expression of Mincle and TNFα in 

RAW264.7 macrophages incubated in presence of palmitate for 24 hours. (B) Expression of Mincle and 

TNFα in coculture and RAW264.7 macrophages in absence and presence of palmitate. co, Coculture; pal, 

palmitate; error bars, S.D.; (n=3). 
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4.2.1.6. Western blots 

In order to determine the optimal time point for maximal changes on protein level, 

western blots were done. Moreover, characteristic targets of cellular stress (JNK, cJun) 

were utilized to determine coculture effects. 

JNK and cJun 

In coculture, a time-depended increase of JNK phosphorylation was observed  

 (Figure 26). As phosphorylation of JNK is induced by inflammatory cytokines, FFAs, 

ER stress or hyperlipidemia (8, 22, 40, 57, 61), these findings suggest that the 

interaction between 3T3-L1 adipocytes and RAW264.7 macrophages is sufficient to 

induce inflammatory changes. Moreover, increased JNK activation is linked to the 

inhibitory phosphorylation of IRS-1 at Ser307 (58), indicating that an increased IRS-1 

phosphorylation might be induced and even visible in coculture. 

As a downstream target of JNK, cJun phosphorylation should increase in coculture. 

Anyhow, phosphorylation of cJun was induced almost instantly in coculture  

 (Figure 27). These findings are in agreement with recently published data (57). 

IRS-1 

IRS-1 is a key player in insulin resistance. An increased JNK activation is linked to the 

inhibitory phosphorylation of IRS-1 at Ser307 (58). Nevertheless, there was no 

induction of IRS-1 phosphorylation during 24 hours of coculture (Figure 28). These 

findings indicate that phosphorylation of IRS-1 might take longer as IRS-1 is not a 

primary target of JNK. Moreover, the termination of insulin signaling due to IRS-1 

phosphorylation at Ser307 results would induce major changes in various signaling 

pathways. Hence, 24 hours of coculture might not be long enough to induce such severe 

reactions. 

4.2.1.7. Mass spectrometry analysis 

In-gel digested samples 

Numerous proteins, including several indicator proteins, could be identified. 

Extrapolating the findings of this experiment, a total of about 3,500 proteins is expected 



Discussion  
Cocultural effects 

75 

 

 
 

to be identified, when processing 16 gel slices of a SDS-Page. The up-scale coculture 

system provides enough material for mass spectrometry analysis and the high protein 

amount, indicate that a quantitative approach will be the next step. 

SILAC quantification 

Results (ratio of ratios) could only be gained for RAW264.7 macrophages (Figure 29). 

All three enzymes are part of the glycolysis and were markedly up-regulated after  

8 hours of coculture. This pilot experiment verified, that the spike-in SILAC technique 

can be combined with the coculture system set up in this thesis. Although western 

blotting suggested major changes at the protein level to be happening after 24 hours  

of incubation, major impacts in glycolytic enzymes were observed earlier. This 

observation emphasizes the necessity and advantage of a quantitative proteomics using 

mass spectrometry. 
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4.3. Outlook 

Further assignment is needed to determine factors mediating the adipocyte-macrophage 

communication. This will be done by confirming the findings from the 50cm² dishes. 

Therefore, mRNA and protein extraction need to be done in larger (50cm²) dishes.  

For proteomic analysis, 24 hours of incubation seem to be the best choice, as several 

coculture-induced effects could be observed.  

Moreover, the phosphorylation of PPARγ at Ser273 already observed on mRNA level 

has to be verified by western blotting. Besides, the findings concerning phosphorylation 

states for JNK and cJun have to be confirmed. Since IRS-1 phosporylation was not 

induced after 24 hours of cocultural incubation, an extended time frame would be 

necessary. 

Since spike-in SILAC proved to be worthwhile, further work should focus on mass 

spectrometric analysis. Thus, the purification and extraction protocol has to be adapted 

and the overlap between sample and spike-in standard has to be looked into. 

In order to understand mechanisms of cell regulation, it is important to examine 

posttranslational modifications, which control many biological processes.  

Mass spectrometry provides the opportunity to map and quantify changes in covalent 

modifications (99).  
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