
The Effect of Micrococcal Nuclease Digestion on
Nucleosome Positioning Data
Ho-Ryun Chung1*, Ilona Dunkel2, Franziska Heise3, Christian Linke4, Sylvia Krobitsch4, Ann E.

Ehrenhofer-Murray3, Silke R. Sperling2, Martin Vingron1

1 Department of Computational Molecular Biology, MPI für Molekulare Genetik, Berlin, Germany, 2 Group Cardiovascular Genetics, Department of Vertebrate Genomics,

MPI für Molekulare Genetik, Berlin, Germany, 3 Abteilung für Genetik, ZMB, Universität Duisburg-Essen, Essen, Germany, 4 Neurodegenerative Disorder Group, Otto

Warburg Laboratory, MPI für Molekulare Genetik, Berlin, Germany

Abstract

Eukaryotic genomes are packed into chromatin, whose basic repeating unit is the nucleosome. Nucleosome positioning is a
widely researched area. A common experimental procedure to determine nucleosome positions involves the use of
micrococcal nuclease (MNase). Here, we show that the cutting preference of MNase in combination with size selection
generates a sequence-dependent bias in the resulting fragments. This strongly affects nucleosome positioning data and
especially sequence-dependent models for nucleosome positioning. As a consequence we see a need to re-evaluate
whether the DNA sequence is a major determinant of nucleosome positioning in vivo. More generally, our results show that
data generated after MNase digestion of chromatin requires a matched control experiment in order to determine
nucleosome positions.
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Introduction

The genomes of eukaryotic organisms are packaged into

chromatin, whose basic repeating unit is the nucleosome [1].

The nucleosome forms by the association of two copies each of the

four core histones, H2A, H2B, H3 and H4 forming the histone

octamer and ,147 base pairs of DNA. The DNA adopts a flat left

handed superhelix with ,1.65 turns around the histone octamer

[2]. All processes acting with and on the DNA are taking place in a

chromatinized environment. For example, the histone octamer

competes with transcription factors for access to the DNA,

suggesting that the positioning of nucleosomes relative to cis-

regulatory sequences plays a major role in transcriptional

regulation. Thus, ‘‘Unraveling the rules and factors that determine

how nucleosomes are positioned and how they influence gene

activity and evolution is one of the central questions in biology

today.’’ [3]

Key to answer these questions is the identification of

nucleosome positions on a genome wide scale. A common

experimental approach to identify nucleosome positions involves

the use of Micrococcal nuclease (MNase). MNase preferentially

cuts linker DNA connecting two nucleosomes, while the

nucleosomal DNA is at least partially protected against MNase

digestion [4,5]. Given these properties, MNase has been used to

map nucleosomes on a small scale by the indirect labeling

approach [6,7]. However, MNase cuts DNA in a sequence-

dependent manner [8,9], suggesting that the cutting frequency can

vary even in the absence of a nucleosome. To control for this

feature of MNase subsequent studies included a control digestion

of naked DNA [10,11,12,13]. In recent genome-wide studies on

nucleosome positioning the paradigm shifted from the identifica-

tion of nucleosomal DNA fragments directly by means of a

reduced cutting frequency to a more indirect one that measured

the abundance of recovered nucleosome sized DNA fragments

by microarrays [14,15,16,17,18,19] or by deep sequencing

[20,21,22,23,24,25,26,27,28].

These studies provide rich datasets to unravel the determinants

of nucleosome positioning (reviewed in [3,29]). For example, it has

been found that nucleosome positions depend on the action of

ATP-dependent remodeling complexes [18], the binding of

transcription factors [20,30], RNA-polymerase [27,31]. Moreover,

it has been found that budding yeast nucleosome occupancies

measured in vivo by deep sequencing are accurately predictable

using the genomic sequence only, indicating that the DNA

sequence plays a major role in positioning nucleosomes in vivo [23].

Recently, the important role of the DNA sequence in

nucleosome positioning has been called into question. It has been

found that fission yeast utilizes different sequence-dependent

positioning rules than budding yeast [15], a finding which is not

compatible with the notion of a general (eukaryotic) nucleosome

positioning code. Moreover, it has been argued that the number of

recovered DNA fragments is not necessarily proportional to the

nucleosome occupancy due to systematic errors introduced by the

MNase digestion and/or the deep sequencing [32,33]. Here, we

will assess the impact of MNase digestion on the number of DNA

fragments by measuring the abundance of DNA fragments

recovered after MNase digestion of naked DNA and size selection

of ,150 base pair fragments. We will show that the resulting
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coverage profile is very similar to the one obtained by digesting

chromatin, suggesting that MNase digestion and the size selection

indeed leads to a systematic measurements bias, which explains

both the high correlation between in vitro and in vivo nucleosome

occupancy profiles and the good predictive power of the

computational model.

Results and Discussion

Nucleosomal DNA sequences tend to be enriched in GC base

pairs, implying that GC-richness promotes nucleosome formation

[34,35,36]. Accordingly, the log2 transformed and normalized

GC-content within 147 base pairs correlates with the in vitro

reconstituted (Pearson correlation r = 0.80), in vivo (r = 0.64), and

predicted nucleosome occupancies (r = 0.89; Figure 1), implying

that the GC content is a major nucleosome positioning

determinant and contributes significantly to the prediction.

However, MNase cuts almost exclusively at AT base pairs [8,9]

and is able to cut nucleosomal DNA [4,37]. We hypothesized that

the size selection step prior to end-sequencing might enrich for

GC-rich DNA fragments, because those have a lower probability

of internal cuts (and vice versa AT-rich DNA fragments might be

depleted due to their higher probability of internal cuts). To test

whether the use of MNase combined with the size-selection biases

the measured nucleosome positions, we digested naked yeast DNA

with MNase, size-selected ,150 bp fragments and deep se-

quenced one of the two ends of the recovered fragments (see

Materials and Methods for details).

An exemplary region is shown in Figure 2. The three profiles

are similar but not identical. It can be seen that whenever the

coverage in the naked DNA digestion profile is very low (or very

high), the corresponding in vitro and in vivo profiles are very low (or

very high) as well. For example, the in vivo occupancy profile

(shown in blue) has a very pronounced peak in the vicinity of the

start codon of YAL053W (marked with an arrow in Figure 2),

which presumably corresponds to the +1 nucleosome immediately

downstream of the transcriptional start site of this gene. A similar

peak can be seen in the in vitro (shown in green) as well as the naked

DNA digestion profile (shown in gray), suggesting that the high

occupancy is at least in part due to systematic measurement biases.

In line with the idea that the experimental procedure leads to an

enrichment of GC-rich sequences, there is also a peak in the GC-

content (shown in black) centered on the +1 nucleosome of

YAL053W. Upstream of the +1 nucleosome, there is a nucleosome

depleted region in the in vivo and in vitro profile (marked with a gray

box in Figure 2). The same region also shows low coverage in the

naked DNA digestion profile accompanied with AT-richness (or

GC depletion), suggesting that the apparent nucleosome depletion

measured both in vivo an in vitro can at least in part be explained by

the sequence preferences of MNase in conjunction with the size

selection step.

In order to get a systematic measure of similarity genome wide,

we calculated the Pearson correlation coefficient r between the

different profiles (after taking the binary logarithm). This analysis

shows that the resulting log2 transformed and normalized coverage

Figure 1. The GC content in 147 base pair windows is strongly
correlated to nucleosome occupancy. Density plot comparison
between the normalized centered GC content in 147 base pair windows
(x axis) and (A) the in vitro reconstituted, (B) the in vivo (YPD) and (C)
the predicted nucleosome map (y axis). The color of each point
represents the density of base pairs mapping to it, where the density-
color relationship is shown at the right of each plot. The Pearson
correlation coefficients r between the data sets is indicated.
doi:10.1371/journal.pone.0015754.g001

Micrococcal Nuclease and Nucleosome Positioning
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per base pair is strongly correlated to the in vitro reconstituted

(r = 0.78; Figure 3A), in vivo (YPD, r = 0.70; Figure 3B) and

predicted nucleosome occupancies (r = 0.76; Figure 3C). The

Pearson correlation coefficients are very similar to the ones

obtained by comparing the in vitro to in vivo (r = 0.74), the predicted

to in vitro (r = 0.89) and predicted to in vivo data (r = 0.75) [23].

In line with our hypothesis that MNase digestion coupled to size

selection leads to an enrichment of GC-rich sequences, we found

that genome wide the GC-content of the DNA fragments

recovered after MNase digestion of naked DNA exhibit an

increase of GC-content in the fragments like the in vitro and in vivo

experiments. However, these lack the 10 base pair oscillatory

signal in the GC-content present in both the in vitro and in vivo data

(Figure 3D), suggesting that the former is MNase-, while the latter

is nucleosome-specific. In support for this idea, there is a much

weaker but very well visible 10 base pair oscillatory signal just

upstream of the sequenced and size-selected DNA fragments in

vitro and in vivo, which is not accompanied by an increase in GC-

content.

Furthermore, we found that when looking at the genome-wide

relative nucleosome occupancies over sequences of length 5, our

data almost perfectly recapitulates both the in vitro (r = 0.97) and

the in vivo (r = 0.96) data (Fig. 4). In particular, the 5mers AAAAA/

TTTTT, proposed to be a nucleosome exclusion signal [38], have

the lowest average coverage in all three data sets.

Our results, suggest that MNase digestion together with size

selection leads to an enrichment of GC-rich and a depletion of

AT-rich sequences. In line with this interpretation of our result it

was found that sequence signatures associated with nucleosomes

are also recovered upon considering control data in which

genomic DNA was either sonicated or digested with MNase in

the absence of nucleosomes (see http://arxiv.org/abs/1003.4044).

Another study revealed that the depletion of nucleosomes at the 39

termini of genes seen in MNase dependent experiments cannot be

reproduced by a MNase-independent approach [39]. 39 termini of

genes are AT-rich, suggesting that the depletion of nucleosomes

seen in MNase dependent experiments are likely to be the

consequence of the sequence preferences of MNase.

In the worst case scenario some GC-rich DNA fragments can be

recovered even without protection by the histone octamer. In

order to check whether this is a possibility we focused on the Gal1-

10 locus. For this locus, nucleosome positions have been

determined by cutting chromatin with bleomycin [40]. Using this

method it has been found that the upstream activating sequence

(UAS) common to the divergently transcribed Gal1 and Gal10

genes is nucleosome depleted when culturing yeast in rich medium

containing 2% glucose. This nucleosome depleted region is

flanked by a two highly positioned nucleosomes and the degree

of positioning decreases with increasing distance to the UAS,

consistent with a statistical nucleosome positioning scenario [41].

Figure 2. Exemplary profiles in a region of chromosome I. Shown is an exemplary region (40,000 to 50,000 base pairs) of chromosome I of S.
cerevisiae. The blue boxes mark the open reading frames of annotated genes, where the direction of the arrowheads correspond to the direction of
transcription. The profiles of the in vivo (blue), in vitro (green) and the MNase digestion of naked DNA (gray) are shown underneath. The y axes of
these profiles correspond to the nucleosome occupancy/coverage per base pair normalized by dividing by the genome wide average. The dashed
line at 1.0 therefore corresponds therefore to the genome wide average. The last track shows the GC-content (black) in percent in 147 base pair
windows centered around the central base pair. The arrow indicates the presumable +1 nucleosome of YAL053W and the gray box marks the
nucleosome depleted region immediately upstream (see Text for details).
doi:10.1371/journal.pone.0015754.g002
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Moreover, it has been shown that this UAS is DNAse I [42,43]

and (methiumpropyl2EDTA)iron(II) sensitive [44]. Finally, it has

been shown that this region is bound by GAL4 and GAL80 [45].

A comparison of the occupancy/coverage profiles is shown in

Figure 5. The nucleosome occupancy profile measured in YPD in

vivo (shown in blue) shows no marked depletion at the UAS, but

reveals even a well positioned nucleosome covering the UAS.

Thus, the nucleosome depletion at the UAS cannot be reproduced

by the MNase digestion, size selection and deep sequencing

approach. The reason for this becomes evident by looking at the

other profiles. The in vitro profile (shown in green) shows a peak at

the UAS region, which is also present in the naked DNA profile

(shown in gray), suggesting that the nucleosome signal covering the

UAS in vivo might originate from the MNase bias. In line with the

idea that MNase digestion together with size selection leads to an

enrichment of GC-rich sequences, the UAS is indeed very GC rich

(see Figure 5 shown in black). Thus, it seems that a well established

nucleosome depleted region, the UAS of Gal1 and Gal10, cannot

be reproduced by MNase digestion, size selection and deep

sequencing due to the systematic sequence-dependent measure-

ment biases.

Our results indicate that the increase of GC-content in the

recovered fragments can be attributed to the sequence preference

of MNase in conjunction with the size selection step, explaining to

some degree the correspondence between the in vitro, in vivo and

predicted nucleosome occupancy maps. However, our results

cannot explain that the predicted nucleosome occupancy, which is

largely dependent on the GC content, correlates also with

nucleosome occupancies derived by MNase independent ap-

proaches [23,46]. These studies support the claim that the histone

octamer prefers GC-rich sequences. If true, MNase might just

prefer sequences which are disfavored by the histone octamer,

explaining the high correlation between the profiles obtained by

digesting in vitro reconstituted chromatin and naked DNA.

However, the nucleosome occupancies measured by these MNase

independent approach have been derived from material that has

been reconstituted in vitro by a method called salt-gradient dialysis.

This method has been shown to select sequences that are well

bound by the H3/H4 tetramer but not necessarily by the full

octamer. In fact, it has been shown that the H2A/H2B dimers

contribute only very little to the total binding energy [47]. In line

with this finding it has been observed that the H3/H4 tetramer

binds DNA at very high salt concentrations, while the H2A/H2B

dimers bind at lower salt concentrations [48]. Moreover, it has

been shown that the H3/H4 tetramer prefers GC-rich sequences

in high salt conditions [48]. Given that DNA is a polyelectrolyte,

its physical properties, like bendability and curvature, will depend

on the salt concentration. Thus, at this point it is unclear whether

the GC preference of the H3/H4 tetramer at high salt

concentrations is also present at physiological salt conditions.

Finally, it has been shown that the full histone octamer minimally

prefers AT-rich sequences [49]. In light of these results it seems

likely that nucleosomes assembled by salt gradient dialysis form at

sequences that are GC-rich due to the preference of GC-rich

Figure 3. MNase digestion leads to systematic measurement bias. (A–C) Density plot comparison between the normalized coverage per
base pair in the MNase generated map on naked DNA (x axis) and (A) the in vitro reconstituted, (B) the in vivo (YPD) and (C) the predicted
nucleosome map (y axis). The color of each point represents the density of base pairs mapping to it, where the density-color relationship is shown at
the right of each plot. The Pearson correlation coefficients r between the data sets are indicated. (D) The GC-content profile in percent (3 base pair
moving average) around the start coordinate of the reads. The gray filled curve corresponds to the profile obtained by digesting naked DNA with
MNase and the blue and green curve represent the profile for the in vitro and in vivo (YPD) data, respectively. The dashed horizontal line indicates the
average GC content in the yeast genome (38.3%) and the box indicates the selected fragment (0–149 base pairs).
doi:10.1371/journal.pone.0015754.g003
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sequences by the H3/H4 tetramer at high salt concentrations.

Thus, the correlation between predicted and MNase indepen-

dently measured nucleosome occupancy may be due to two

unrelated biases which both enrich for GC-rich sequences.

In an earlier study, we have proposed that the GC-content is

one of the major sequence-dependent determinant of nucleosome

positioning [34]. In this study, we analyzed nucleosome position-

ing data obtained by MNase digestion, chromatin immunopre-

cipitation, size selection and sequencing. Thus, the GC-content

increase in the recovered DNA fragments observed also in this

dataset is likely to be due to the sequence preferences of MNase in

combination with size selection.

Taken together, we showed that the nucleosome positioning

data generated by MNase digestion might reflect some aspects of

the real nucleosomal landscape. But in the absence of a suitable

control experiment, i.e. similar MNase activity to DNA ratio and

similar size-selection, the measured nucleosome positions are

biased by the experimental procedures. Thus, we conclude that

the MNase generated nucleosome positioning data alone is

insufficient to determine nucleosome positions and holds only

limited evidence to claim that the DNA sequence is a major

determinant of nucleosome positioning.

Materials and Methods

Datasets
The normalized occupancies per base pair were downloaded

from http://genie.weizmann.ac.il/pubs/nucleosomes08/nucleo

somes08_data.html and the predicted occupancies from http://

genie.weizmann.ac.il/software/nucleo_genomes.html. The ge-

nome sequence was downloaded from http://genie.weizmann.

ac.il/software/data/S0106.fa.gz. This is the genome version used

in [23] and should ensures comparability to the data reported in

[23] The raw reads for the in vitro reconstituted nucleosomes were

downloaded from the Short Read Archive at NCBI using the

accession numbers SRR023798 and SRR023799. The raw reads

for the in vivo (YPD) nucleosomes were downloaded from NCBI

using the accession numbers SRR023800 to SRR023805.

Deep sequencing of MNase treated naked yeast genomic
DNA

We followed closely the experimental procedures described in

[23] for the parallel sequencing of nucleosomes reconstituted in

vitro on yeast genomic DNA, with some modifications. Briefly, S.

cerevisiae genomic DNA was isolated from strain BY4741 (MATa

his3D1 leu2D0 met15D0 ura3D0) using standard methods and RNA

was removed by an additional RNase A treatment for 30 min at

37uC. The pellet was resuspended in TE and passed 10 times

through a 25 gauge needle and then 10 times through a 27 gauge

needle. The DNA was run on a 22616 cm, 0.8% agarose TAE gel

for 7h at 100V at 4uC. The genomic DNA band was excised from

the gel and the DNA was eluded by electrophoresis in a dialysis

bag (Spectra/Por Dialysis Membran MWCO: 3,500 18mm,

Spectrum Laboratories, Inc). The DNA was precipitated and the

pellet was resuspended in 10mM Tris pH 8.0, 1mM CaCl2. The

Figure 4. Comparison of the average genome wide relative
coverage of sequence of length 5. (A) the MNase generated map
on naked DNA (x axis) and the in vitro reconstituted nucleosome map (y
axis); (B) the MNase generated map on naked DNA (x axis) and the in
vivo (YPD) nucleosome map (y axis); (C) the in vivo (YPD) nucleosome
map (x axis) and the in vitro nucleosome map (y axis). The Pearson
correlation coefficients r between the data sets are indicated.
doi:10.1371/journal.pone.0015754.g004
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DNA was digested with 661023 units micrococcal nuclease

(Sigma Chemical Company) per 10 mg genomic DNA at 37uC for

5 min. The reaction was stopped by the addition of 1 ml 0.5M

EDTA. The DNA was precipitated and after resuspension in

10mM Tris pH 8.0, 1mM CaCl2 electrophoresed on a 6%

polyacrylamide TBE gel for 30 min at 200 V and a band

corresponding to 140 to 170 base pairs was excised. The DNA

was eluded. Library preparation and end-sequencing was

performed by the NGS service facility at the Max-Planck-Institut

für molekulare Genetik.

Mapping of the sequencing reads
The reads were mapped to the yeast genome using RazorS [50].

We also mapped the raw reads for the in vitro reconstituted as well

as the in vivo nucleosomes to determine the GC content profile. For

the micrococcal nuclease digested naked DNA 10,988,458 reads

out of the 18,717,648 reads mapped to the yeast genome. For each

genomic coordinate the number of reads mapping to the + strand

and the 2 strand were determined.

Determination of the average fragment length
A histogram of the distances between every + strand read and 2

strand read in a window of 300 base pairs was generated and the

average fragment size was determined by summing the distances

weighted by their abundance.

Normalized coverage map
The normalized coverage map was generated by extending each

+ strand read to by +150 base pairs and each 2 strand read by

2150 base pairs and summing the values for each base pair in the

yeast genome. Thereafter, the counts were transformed by taking

the binary logarithm. The values were normalized by setting the

Figure 5. Nucleosome positioning in the Gal1-10 Locus. Shown is the Gal1-10 locus on chromosome II (277,554 to 279500). The blue boxes
mark the open reading frames of annotated genes, where the direction of the arrowheads correspond to the direction of transcription. The
transcription factor binding sites are from Harbison et al. (2004) [45]. The DNAse I tag numbers are from Hesselberth et al. (2009) [42], shown on the y
axis is the number of tags for each position. Nucleosome positions determined by Li and Smerdon (2002) are denoted as black boxes [40]. The
profiles of the in vivo (blue), in vitro (green) and the MNase digestion of naked DNA (gray) are shown underneath. The y axes of these profiles
correspond to the nucleosome occupancy/coverage per base pair normalized by dividing by the genome wide average. The dashed line at 1.0
therefore corresponds therefore to the genome wide average. The last track shows the GC-content (black) in percent in 147 base pair windows
centered around the central base pair. The gray box denotes the UAS of Gal1 and Gal10.
doi:10.1371/journal.pone.0015754.g005
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genome wide average to zero by subtracting the mean transformed

counts.

Normalized GC content in a window 147 base pairs
The GC content was determined in windows of 147 base pairs

and assigning the value to the central base pair, i.e. the value

found at position 74 corresponds to the GC content of a sequences

starting at position 1 and ending at position 147. The values were

transformed by taking the binary logarithm. The values were

normalized by setting the genome average to zero by subtracting

the mean transformed GC content.

Density plots
For the density plots, we extracted the values for each data set

that were common to all data sets. In total there were 10,727,725

value pairs.

GC content profiles
The GC content profiles were computed by aligning all reads at

their start coordinate (the 2 strand reads were reverse comple-

mented) and counting the occurrences of the bases at each position

starting from 22000 and ending at +2000 base pairs. The

resulting GC content profile had a strong 3 base pair periodic

component (due to the codons). Therefore, a 3 base pair moving

average was applied on the GC frequencies.

Average normalized coverage over sequences of length
5

The average normalized coverage over sequences of length 5

was computed by averaging the mean coverage value over the

corresponding 5 base pairs, only sequences of length 5 were

considered that had values for each of the 5 base pairs.
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