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A Waiting Time Problem
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ABSTRACT

To gain a better understanding of the evolutionary dynamics of regulatory DNA sequences,
we address the following questions: (1) How long does it take until a given transcription factor
(TF) binding site emerges at random in a promoter sequence? and (2) How does the com-
position of a TF binding site affect this waiting time? Using two different probabilistic models
(an i.i.d. model and a neighbor dependent model), we can compute the expected waiting time
for every k-mer, k ranging from 5 to 10, until it appears in a promoter of a species. Our
findings indicate that new TF binding sites can be created on a short evolutionary time scale,
i.e. in a time span below the speciation time of human and chimp. Furthermore, one can
conclude that the composition of a TF binding site plays a crucial role concerning the waiting
time until it appears and that the CpG methylation-deamination substitution process probably
accelerates the creation of new TF binding sites. A screening of existing TF binding sites
moreover reveals that k-mers predicted to have short waiting times occur more frequently
than others. Supplementary Material is available at www.libertonline.com/cmb.

Key words: evolution, gene regulation, Markov model, transcription factor binding sites, waiting
times.

1. INTRODUCTION

WHILE THE EVOLUTION OF CODING DNA sequences has been intensively studied during the last years
and plenty of models have been derived to characterize their evolutionary dynamics (Kreitman and
Comeron, 1999), the evolution and structure of regulatory DNA sequences still remain poorly understood.
One reason for this is that the organization of promoters is much less understood. Promoters are typically
located upstream of the gene they regulate. They contain binding sites for regulatory proteins such as
transcription factors (TFs). The binding of a TF to a binding sites enables other factors to bind and finally
leads to the recruitment (transcriptional activation) or blocking (transcriptional repression) of the RNA
polymerase which is responsible for transcribing the corresponding gene (Wray et al., 2003). TF binding sites
are short stretches of DNA. They are distributed sparsely and unevenly and they may overlap partially but
sometimes the spacing between two binding sites may be tens of kilobases (kb) as stated by Wray et al.
(2003). So the length and composition of a promoter can vary considerably.

Due to these complications, developing a probabilistic model for promoter sequences and describing the
evolutionary dynamics of regulatory regions remains a challenge. However, there is growing body of
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experimental evidence that promoter regions are highly dynamic and that significant changes in gene
regulation can occur on a microevolutionary time scale. For example, using ChIP-chip technology, Odom
et al. (2007) inferred the binding sites of four tissue-specific TFs in human and mouse liver cells and found
that despite the conserved function and motif of these TFs, 41-89% of the binding events are species
specific. Taylor et al. (2006) investigated the evolutionary trends of mammalian promoters using large sets
of experimentally supported transcription start sites and concluded that the evolution within mammalian
promoters has been relatively rapid within approximately the last 25 Myrs.

In order to give a probabilistic explanation for the speed of cis-regulatory evolution, we address the
following two questions: (1) How long does it take until a given TF binding site appears at random due to
the evolutionary process of single nucleotide mutations? (2) How does the composition of a TF binding site
affect this waiting time?

Stone and Wray (2001) tried to answer the first question by simulating the evolution of a promoter region of
length 2,000 bp assuming a mutation rate of 10~° per nucleotide per generation. After having estimated the
waiting time for a 6-mer to emerge in a given promoter sequence, they divide this number by 10°-2
(=effective population size times two DNA strands) yielding that on average it takes 6,000 years until a 6-mer
appears in a promoter sequence of at least one individual in a human population. Their approach of simply
dividing by the number of individuals has been critized by MacArthur and Brookfield (2004) and by Durrett
and Schmidt (2007), especially because with this, Stone and Wray (2001) implicitly assume that the DNA
sequences in a population evolve independently from each other. But indeed, two randomly chosen individuals
differ only in 0.1% of their DNA as stated in Durrett and Schmidt (2007). Durrett and Schmidt (2007) tackeld
the problem by using a proper population genetics model (the Moran model) and (Poisson) approximated the
expected waiting time until a word of fixed length 6 or 8 appears in a promoter region of length 1000 bp in at
least one individual in a population of effective size 10%. Assuming a mutation rate of 10~°, Durrett and
Schmidt (2007) computed that the expected waiting time for words of length 6 is 100,000 years and 375,000
years for words of length 8 given that there is a 7 out of 8 letter match in the population consensus sequence.

These results are helpful for getting a general idea of how fast TF binding sites can emerge - at least for
binding sites of length 6 and 8. However, they rely on the assumption that once a TF binding site is created
in one individual, it will confer a substantial benefit and hence, will spread rapidly through the population.
But according to population genetics theory (Ewens, 2004) this event only occurs with a small probability:
Let us assume for simplicity, that there are only two different individuals A and B in a population of size N
where A symbolizes the individual with the new TF binding site appearing only once and B represents the
remaining N — 1 individuals without the new TF binding. The fixation probability of A is then given by

1—r!
Pa= TN (D

where r is the relative fitness of individual A, i.e., the average number of surviving progeny of A compared
to B after one generation; see e.g. section 6.3 in Nowak (2006). Setting N = 10* and assuming a relative
fitness of 2 (100% selective advantage), the probability that the new TF binding site will get fixed in a
population is only 0.5. Even when assuming a very high and unrealistic relative fitness of 10 the fixation
probability is just 0.9. Thus, their assumption that a TF binding site once created will spread throughout the
population is hard to justify.

In this work, we phrase the question differently. Instead of computing the waiting time until a given TF
binding site emerges in a promoter sequence in at least one individual in a population, we are interested in
determining the expected waiting time until a given TF binding site gets fixed in a species (assuming that
fixation only occurs at the nucleotide/dinucleotide level) - either in one given promoter sequence or in at
least one of several promoters, for example, in any or all of the human promoters. As mentioned above, two
randomly chosen individuals differ only in 0.1% of their DNA. Therefore, it is reasonable to refer, for
example, to the “human genome.” With this in mind, in our model a DNA sequence should not be
interpreted as a sequence of a single individual of a population but as a representative sequence of the
considered species. Hence, waiting times relate to appearance in the species instead of appearance in one
single individual. Starting with a muliple species alignment for the three species Homo sapiens, Pan
troglodytes and Macaca mulatta, we can estimate the evolutionary substitution rates (=fixed mutation
rates) for every nucleotide using the Maximum likelihood based tool developed by Arndt and Hwa (2005).
As a consequence, for every k-mer, k ranging from 5 to 10, we can (almost) exactly compute its expected
waiting time to appear in a species’ promoter of a given length in dependence of its composition.
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Since the CpG methylation-deamination process (CG — TG and CG — CA) is the predominant evolu-
tionary substitution process, as a second step, we also incorporate neighbor dependent substitution rates
into our model. For example, Wang et al. (1998) pointed out that single-nucleotide polymorphisms occur
about 10 times more often at CpG dinucleotides than at other dinucleotides in the human DNA. Our
approach of calculating waiting times in dependency of the promoter’s and TF binding site’s composition
sheds new light on the process of TF binding site emergence and therefore, extends the previous knowledge
about the dynamics of promoter sequence evolution.

As a last step, we compare k-mers which are predicted to appear rapidly according to our model with
existing TF binding sites from the database JASPAR (Portales-Casamar et al., 2010). We show that k-mers
with short waiting times are used more frequently as TF binding sites than those with long waiting times.

This article is organized as follows: in Section 2.1 we introduce two probabilistic models - an i.i.d. model
(model M0) and a model taking the neighbor dependencies of nucleotides into account (model M1). Section
2.2 is devoted to the computation of the expected waiting time under our given models, and in Section 2.3,
we explain how one can estimate the model parameters. Utilizing these parameter estimations, in Section 3
we provide the expected waiting times for k-mers, k ranging from 5 to 10, for model MO and then present
the more interesting results for model M1 in detail. Additionally, we relate these k-mers to existing TF
binding sites from the database JASPAR (Portales-Casamar et al., 2010). Section 4 discusses the results and
explains the impact of our findings.

2. METHODS
2.1. The probabilistic model

In order to formalize the problem, one has to model two components: the initial promoter sequence
X1(0), ..., X,(0) and the time evolution (X(?), ..., X,(t))>o of this sequence.

2.1.1. Modelling the initial promoter sequence. Let A={A,C,G,T} contain the four different
bases and let X;(0), ..., X,(0) be a random promoter sequence of length n which is either modelled by an
independent, identically distributed sequence (model M0) or a homogeneous stationary Markov chain of
order 1 (model M1).

In model MO, the probability of observing a sequence (xi, ...,x,) is given by

Wxy, o x) =v(xy) - v(X). 2)

where v(x) = P(X,(0) =x).
In model M1, when X;(0), ..., X,(0) is a homogeneous stationary Markov chain with stationary dis-
tribution v and transition probabilities 7, 5, a,b € A, this probability can be computed by

,Lt()C], ce sxn) - V(xl)nxl,xz e Ty X (3)

2.1.2. Modelling the time evolution of the promoter sequence. The promoter sequence evolution
X1(®), ..., Xu(D);>0 is modelled according to the nucleotide substitution model by Arndt et al. (2003) -
either taking the CpG methylation-deamination rates into account (model M1) or not (model MO).

In model MO, one only considers the independently evolving nucleotides (12 substitution rates). Since
nucleotide substitutions on one strand of the DNA go along with nucleotide substitutions on the com-
plementary strand in order to guarantee correct Watson — Crick base pairing, the number of free parameters
is6(A—->T/T—>A, C>G/G>C,A>C/T—>G, C—>A/G>T,A>G/T>C,G—oA/C>T).IfQ
denotes the 4 x4 rate matrix, the matrix [P(f) containing the transition probabilities of a evolving into b in
finite time >0, a,b € A, is then given by the matrix exponential P(¢) = ¢'?; see e.g. Karlin and Taylor

(1975). In this model, the probability of sequence (xy, ...,x,) evolving into (y;, ...,y,) is given by
Pt @ = [ [ o - “)
i=1

In model M1, we incorporate one particular neighbor dependent substitution process: the CpG
methylation-deamination process. That is, apart from the 12 substitution rates mentioned above (given by 6
parameters), one also has 2 other rates (CG — TG and CG — CA) which are assumed to be the same. This
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results into looking at trinucleotides (nucleotide plus left and right neighbor) whose dynamics are governed
by a 64 X 64 rate matrix Q(3); for details see Duret and Arndt (2008). For 7> 0, the matrix

PO = Payasas, bybabs D), ... bred )

is given by PO (1) =2, Applying this, one can compute the probability of a, flanked by a; and a3
evolving into b, in finite time 7 > 0 by marginalizing over b, and b3:

pa1a2a3,b2(t) = Z palagag,b1b2b3(t)- (6)
bl,b3€.A

In model M1, referring to Arndt and Hwa (2005), Duret and Arndt (2008) the probability of sequence
(x1, . ..,x,) evolving into (yy, ...,y,) where x; is preceded by x, and x,, is followed by x,,,; in finite time
t >0 can then very reliably be approximated by

n
p(xo, s Xn 4 1)— 15 ...,y,t)(t) ~ pr,v,lx,-x,-ﬂ,y,-(t) (7)
i=1

2.2. The expected waiting time
Let

b=(bi, ...,by) where by, ...,bpc A (8)

be a TF binding site of length k. We want to answer the question: provided that the binding site is not
present in the initial sequence X;(0), ..., X,(0), how long does one have to wait for b= (by, ..., b;) to
occur randomly during the time evolution of the sequence? We assume a discrete time scale N corre-
sponding to the number of generations, i.e. we ask how many generations it takes for b to appear for the first
time. Thus, one has to determine the distribution of

T=inf{teN:3ie{l,...,n—k+1} such that (X;(t), ..., Xisx_ 1) = (b, ..., b0} 9)

given that b is not present in the initial sequence X;(0), ..., X,,(0). As shown in Supplementary Material S1
(for all Supplementary Material, see www.libertonline.com/cmb), the distribution of 7 is approximately a
geometric distribution with parameter

qg=P(b occurs in generation 1|b does not occur in generation 0). (10)

Especially, one obtains
1
ET) ~—. (11)
q

Let Bj={b does not occur in generation 0}. To compute g, one has to apply the inclusion-exclusion
principle, i.e.

n—k+1
CIZP< U {Xi(D), .. X1 (D)= (by, ..., b} BS)

i=1

n—

k+1
> (=pt! > P(ﬂ{(xi(l), X (D) =B, b)Y Bg>. (12)
— icl

=1 Ic{l,on—k+1}, 1| =¢

dgfl’/

In both models MO and M1, the probability p; indeed only depends on ¢ since we have assumed statio-
narity. It is the probability of b appearing at ¢ given positions in generation 1 under the condition that it was
not present in the generation before. Exact computation of p, becomes infeasible if the binding site can
overlap with itself since computing the probability that b appears ¢ times in generation 1 given that it did not
occur in generation O requires inspection of many possiblities: b can occur ¢ times with no overlap in
generation 1, b can occur £ times in one big overlapping clump, b can occur m times in one clump and ¢ — m
times in another clump etc. But, of course, for large ¢ the probability p, becomes very small, so ¢ is dominated
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by the first summands. Since overlaps can be neglected for small ¢, for ease of exposition, we neglect the
possibility of b occuring self-overlapping. Thus, we use the following approximation

P = P (ﬂ{(Xl(l)’ v 7Xi+k— 1(1)) = (bl’ s 7bk)}‘38> : ﬂ{\i*j\Zk for all ijel}: (13)
iel
Due to the assumption that b cannot appear self-overlapping, b can occur at most || times in the sequence.
The number of possible subsets 7 C {1,...,n—k-+1} with |i—j| >k for all i j€[I and |I|=¢ is
(”’(k’”'[) Thus
¢ . ’
& i (n—G—1)-1
gr ) (=1 pe 14
(=1 ¢

Now one can easily compute p,; separately for the models MO and M1 (notation: g, and g;).

2.2.1. The expected waiting time in model MO. 1f |i —j| >k for all i,j € I, the £ occurrences of b
are independent from one another and thus, applying (2) and (4), one obtains

L
pex (P(1(D, o XD = b, o bO|(IO) - XeO) # B, . b))

¢
= > way, -5 ax) - Py, .o a—br, b (1)
(a1, . a)€AN{(b1, ... b))}
¢
k def ¢
= > va) - ... v@) - [ pas(D | =pb.

(@, .o a)€AN{(B1, ... b))} i=1
Hence, we can summarize the result:

Theorem 1 (Expected waiting time in model MO). Under the model MO described in Section 2.1, the
expected waiting time until a binding site b of length k occurs in a promoter sequence of length n is
approximately given by

1 1
ET)~—~=~ 16
1) q0 Z/E%il(_1)1{+1(n—(k[—1)-[)p6 (16)
where
k
po= > via) ... var) - [ [ pa.s (D (17)

(@, oy a)€AN{(B1, ... b)} i=1

2.2.2. The expected waiting time in model MI1. For model M1, we make the simplifying as-
sumption that if b appears two or more times at once in generation 1, these occurrences of b are so far apart
from each other that one can consider them as independent. Therefore, applying (3) and (7), one gets

i=1

3 ¢
pe = (P <(X2(1), oo Xk 1(D) = (b, ~--,bk)‘ n{(Xi(O), o Xigk—100)) # (b, ---J%)}))

¢

= § ,u(aO,al» .. '5ak7 ak+1) 'p(ao,al,.4.,ak,ak+1)~>(b1,...,bk)(l)
(@, _ 1)@y, a),
(@, oty DEARN{(By ... )}

0
k def
C]
U@ Tapay * - Tagarr * | | Parrasar (1) | S 11 (18)

(aQs @ — 1) (@], i=1
(@g. a4 PEAR\{(by . ...bp)}

Q
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Thus, one obtains:

Theorem 2 (Expected waiting time in model M1). Under the model M1 described in Section 2.1, the
expected waiting time until a binding site b of length k occurs in a promoter sequence of length n is
approximately given by

1 1
KT~ =~ 13 41— 1)ty ¢ (19)
QN (=D
where
k
P1= Z V(aO)nag,a] e g apyy Hpﬂj,[[llaj+],bj(1)' (20)

(aQ. @ _ 1)@y g, i=1
(@ nag y DEARN{(By ... bp)}

2.2.3. Waiting times for several promoters. In order to get an understanding of how fast regulatory
regions can evolve, we do not only want to answer the question how long one has to wait until a new TF
binding site appears in one particular promoter of a given size but until it emerges in at least one of several
promoters, e.g. in one of all the human promoters. This might also induce a change in gene regulation
which, in principle, could be crucial for the evolution of the whole species. Let P={Py, ..., P,} be a set
of m independent and identically distributed promoters of the same size n and let

T,,=inf{t € N:3i € {1, ...,m} : b appears in generation t in promoter P;}. (21)

Analogously to Supplementary Material S1, one obtains that 7,, has approximately a geometric distribution
with parameter

gn="P (U {b occurs in generation 1 in P;} ﬂ {b does not occur in generation 0 in P,-}) ) (22)

i=1 i=1
Since the m promoters are independent and identically distributed, this yields

gm=1—(P(b does not occur in gen. 1 in Py|b does not occur in gen. 0 in Py))"
=1-(1-9" (23)

where ¢ is given by gq (see (16)) in model MO and by ¢; (see (19)) in model M1. Hence, for model M1,
i € {0, 1}, one obtains

1

R

(24)

2.3. Parameter estimation

For model MO, one has to estimate the parameters v(a) and p, ,(1) (see (17)) and for model M1, one has
to determine the parameters v(a), 7., and pu, ,q.,.5(1),a,b,a;_1,a,a;+1 € A={A,C ,G,T} (see
(20)).

The parameters v(a), a € A, can simply be estimated by the relative letter frequencies in the sequence.
As shown in Reinert et al. (2000), an estimator 7 for the transition probabilities in model M1 can be
obtained by counting dinucleotides:

— N(ab)
“ N e aN(ac)

where N(ab) = Z?;ll 1(x,0)=a.x.,,0)=»} denotes the number of occurences of the dinucleotide ab in the
observed DNA sequence.

To estimate the substitution probabilities p, ,(1) and pg, 44, ,,5(1), we used the Maximum likelihood
based tool developed by Arndt and Hwa (2005), which uses a multiple alignment as input and outputs either
the independent substitution rates (model MO) or the neighbor-dependent substitution rates (model M1) (the
Arndt and Hwa tool is available at http://evogen.molgen.mpg.de/server/substitution-analysis/).

(25)
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We downloaded multiple alignments to human DNA regions (hg18) of length 1 kb upstream of annotated
transcription start sites for RefSeq genes with annotated 5" UTRs from the USCS download server. For the
estimation of v(a) and 7, a,b € A we took the human 1kb upstream sequences. Out of the 17-species
multiple alignment, we then extracted the multiple alignments of chimp (panTrol) and macaque (rheMac2)
to the human upstream regions and applied the estimation procedures described above yielding the rate
matrices O = (Ga,»)q, pec4 (model MO) and 0% = (Gayaraz, b1b3b3)ay, ..., .4 (Model M1). Assuming a particular
speciation time s of human and chimp and a particular generation time of y years, one can then easily
caleulate P(1) = (pa,p(1)ase a0d PP(1) = Payasan.bybaby(Da.... by (@nd therewith paiazas, (1), see (6);
1 =1 generation) by

s (0)
P(1 generation) = P(y years) = el = Z z i (model MO),
1=0 :
, o (1. o®)!
P®(1 generation) = PP (y years) = 2" = Z# (model M1). (26)
1=0 :

Assuming a generation time of y=20 and a speciation time between man and chimp of s=4 Myrs
(Hobolth et al. (2007)), one finally obtains estimations for p,,(1) and ps 4., 5(1), a,b,a;_1,a;,
a;+1 € A. The estimators for the parameters are presented in Supplementary Material S2.

3. RESULTS

Due to the fact that the CpG methylation-deamination process plays an important role which should not
be neglected, model M1 is more general and realistic than model MO. Thus, we will concentrate on the
expected waiting times in model M1. The waiting times in model MO will be only stated briefly and will be
used to pinpoint the characteristics of model M1 in comparison to the more simplistic model MO.

3.1. Results for model MO

Applying Theorem 1 and using the estimations for the parameters v(a) and p, (1), a,b € A (see Sup-
plementary Material S2), one can compute the expected waiting times for all possible k-mers, 5 <k < 10, to
appear in a promoter of a given length n and rank these k-mers in ascending order according to their waiting
time till emergence. Throughout the paper, we choose n = 1000 bp. The results are depicted in Table 1.

In model MO, the expected emergence time of a k-mer only depends on the number of each nucleotide in
the k-mer and not on the order of the nucleotides, e.g., the 5-mer CCCCG has the same waiting time as
CCCGC, CCGCC and so on. In Table 1, it can be seen that for every k, 5 <k < 10, the k-mer only composed
of Cs is the fastest emerging one (followed by CG-rich k-mers) while the k-mer only composed of As is the
slowest one (preceded by AT-rich k-mers). For example, CCCCC is the fastest emerging 5-mer with an
expected waiting time of 6,303,945 generations (=126 Myrs) to appear in a promoter of length 1 kb while
AAAAA is the slowest emerging 5-mer with 7,653,814 generations (=153 Myrs). For 10-mers, the average
expected waiting time is 72 billion years, the minimal and maximal waiting times are 51 billion
(cceeccececce) and 99 billion years (AAAAAAAAAR).

3.2. Results for model M1

3.2.1. Waiting times for one promoter. Plugging in the estimators for the parameters v(a), 7, , and
Pai_raio,b(1) fora, b, ai_y,a;,a; 41 € A (see Supplementary Material S2) in equation (20), one obtains the
expected waiting times for all possible k-mers, 5 < k < 10, to appear in a promoter of length 1kb, and with
this, rankings according to their waiting time till emergence. In Table 2, we have summarized the results.

First of all, when looking at the minimal, maximal and average waiting time for k-mers, one realizes that
the expected waiting times increase exponentially with &, see Figure 1. Second, one observes the tendency
that k-mers containing TG or CA, i.e. CpG methylation-deamination products (CG — TG and CG — CA), in
combination with a high C-content are the fastest appearing TF binding sites. In contrast, k-mers containing
the dinucleotides CG or TA are characterized by very long waiting times. Thus, taking this neighbor-
dependent process into account changes the composition of the top ranking k-mers.



*dq 0001 = u st Y3ua] 1d0woad Ay} AIYM ‘O] > ¥ > G ‘SIoW-y JUISIOWD JSIMO[S U] Y} PuB ISASBJ U) Y} J0] (suonerouas) sown Junrem pjoadxyg

8CIS09Er6y  VYYVVVVVVYYY  LLLPLBOIET  VYVVVYVYVYY  ppppp6lSe  VYVYVYVYVVYY 86106656 ~ VYVYYVVVY  8S09CL9C  VWVVVVY  $[8ECOL  VVVVVY |
SOCIve8l6y  VVVLVVVYVYVYY — 688SOEVOEl  VVYLVVVVVY  OPIILIOSE  VVYVVVVVL  Ly[€0SS6 ~ VIVVVVYY  (06168S9C  LVVYVYYY  CIIVI9L  VWLVVY -
SOCIVO8I6y  VYYVVVVVVYVYL  688S0¢v0El  LVVVVYYVYVYY  QVIILIOSE  VVYVVVYVYLY  Lp[€0SS6 ~ LVVYVYVYY  (06[68S9C  WVIVVY  CIIVI9L  LVVVY €
SOTIV6816Y  VYYVYVYVYVVVYLY  688S0¢v0€]  VIVVYYYYY  OVIILI0SE  VVYVVYVYLVYY  LPI€0SS6  VYVYVYYVYL  (06168S9C  WIVVYVYY  CIIVI9L  VYVVLY v
SOCIve8I6y  VVVVVVVYLVYY  688SO0EVOEl  VVYVVVVVVL  OPIILIOSE  VVYVVLVVYVY  Ly[€0SS6 ~ VVYVVVIY  06168S9C  VYVVYVLY  CIIVI9L  VVLVY S—
SOCIVO8I6y  VYYVVVVLVVYY  688S0tv0El  VVYVVVVYVLY  QVIILIOSE  VVYVLVVYYY  [P[€0SS6 ~ VVVVLVY  (0616859C  VVVIVY  CIIVI9L  VVVVL 9—
SOCIV68l6y  VYYVVVLVYYY  688S0cvOEl  VVYVVVYVLVYY  QvIILIOSE  VVLVVYVVYY  LP[E€0SS6 ~ VVVLVVY  (06[6869C  VWVVVVL  8I9vLSL  LLVVY L—
SOCIve8l6y  VYYVVLVVYVYYY  688S0cvOEl  VVYVVVLVVYY  QVIILIOSE  VILIVVVVVYY  LP[€0SS6  VVILIVVVY  920¢SP9C  LVILVVY  8I9YLSL  LVLVVY 8—
COCIve8I6Y  YVILVVYVVYVVY  688C0¢vOEl  VYVYVVLVYYY  OVIILIOSE  LVVVVYYY  $LC8I0S6  VVWVVVLL  9C20¢S¥9C¢  LLVVYVYY  8[9yLCL  LVVLY 6—
SOCIVO8I6y  VIVVVVVYYYY  688S0ev0tl  VVYVLVVYVVYY  €6L90V8FE  VVYVVVVLL  $LE8I0S6 ~ VVVVLVL  9C0¢SP9C  VIVIVY  8I9pLSL  VYLLVY  Ol—
0€8LGS€8LST  DDDDDDDIDD  1S87680SL DDDDD0DDDD  699991+CC  DDIDDIDD  L66ITILY9  DODDODD  SG6CISOT  DODODID  686SPY9  DOIODD 01
0€8LSEBLST  DODDDDDDO0D0  168¥680SL 000002200 0PS90rICC  DOODDDDD  L66ITILY9  DDODODD  SC6CISOT  DOOD0D  686SPH9  ODDOD 6
0€8LG€8LST  DDDD0DDDIDD  158¥680SL D00D20000  0PS90YITe  DOD0DDD0  LLISIEY9  DDODODD  CC6CISOC  DDDDDD  6865HY9  ODD0D 8
0€8LSE8LST  DDDDDDDIDD  1S87680SL ODDDODODDD  0PS90PITC  DDOIODDDDD  LLISTE99  DODODDD  #8EPLTOT  DDDIDD  686SHY9  DODID L
0€8LSEBLST  DODDDDD0D0  1S8¥680SL DODDDD2020  OPS90rITe  ODODODODDD  LLISIEY9  DODDD00D  ¥8EPLCOT  DDIDOD  9eSpLE9  DDOODO 9
0€8LGE8LST  DDDDDDDIDD  1S87680SL D0DDD220D  O¥S90FICC  DDDDDDDD  LLISIE99  DDDDIDD  +8evLT0C  DODDDD  9¢CHL€9  DDDID ¢
0€8LSE8LST  DDDDDDDIDD  1S87680SL DDDDDDDDD  0FS90PITC  DDODODDDD0D  LLISTE99  DDDDODDD  #8EPLTOT  DODDDDD  9€6pLe9  DODID 14
0€8LSEBLST ~ DODD0DDDD0D  1S8¥680SL 000000920 OrS90¥ICC  DDDDDD0DO0  LLISIE99  DODODDD0D  ¥8EPLCOC  DODDDOD  9eGpLE9  DODDDD €
0€8LGE8LST  DDDDDDDDDD  1S87680SL D0DDDDIDD  OPS90FICC  DDDDDDDD  LLISIEY9  DIDIDDD  +#8EPLC0C  DDDDID  9¢6hL€9  DIDDD C
GG809SSHST  DDDDDDDIDD  LELOSYIVL DDDDDDDDD  GPEIYIBIC  DDOIDDDDD  LTPSISSY9  DDDDDDD  CTPLBEOOT  DDDDDD  SH6£0€9  DDDDD I

Sdul-Q | S4oUl-6 SAUI- ey S4oUL-Q S4UL-G yun.a

OIN ‘TAdOJA NI SHINIL], ONLLIV A\

T 4714V ],

1598



*dq 0001 = u st I3u9[ 1oj0word Ay AdYM ‘O] > ¥ > ¢ ‘S1ow-y SUISIOW ISIMO[S U} AY) pue ISASe] ud) Ay} JoJ (suonerouad) sown Sunrem pjoadxg

LTER9ETLO6Y ~ DIOVIOIVIOD  8IS680VE6  YIOIVIOOY  LEb60PSI6]  OOVIOOYL  SILVT6ILE  DOVIOOY  6L66C86L YIVIVI  $9890691 VIVIY  [—
€€9180TLY6Y ~ YIOOVIOOVL  [86VTTh6C6  LOOVIOOVL  8068vPI16]  VIODOVIOD  €6196L89€  IOJOVIOD  €897€96L  VIOOVL  €78CC891  IVIVLI — ¢—
OLTIE0ZSLLY ~ DOVIODVIVLI  I€P86ETS06 DOVIVIOOY  9661€E€€98T  OOVIVIOD  €9L€STHOE  VWIVIOOY  19S6616L DOVIDD  66VPTE9l  DOVIV  €—
OLTIE0TSLLY ~ DOVIVIOOVL  S865L96706 DOVIOIVIV  691€9P8S8T  VIVIOOVI  SIHZTO9E  VIDOVIVY  v60FEI6L DOVIVI  0I8¥8T9l  VIDOY  H—
OVITS8YOSLY  VIVIOOVIOD  €S0861€L68  IOJDVIVIOD  691€9¥8S81  VIOOVIVI  09LIpT9€  IOOVIVL — 8S6TI6SL  YIVIDD 79990791  IVIDD  §—
OVITS8POSLY  VIOOWIVIOD  LLOOVEIS68  LYLOOVIOD  98GE8/8181  ODOVLYIVL  [1H0€TI9E  LVIOOVL  6VLE69TL  LIVIVLY  SP8I0T91  LIODYL — 9—
0011¥9786SF ~ DOVIVIVIOD  LT66LOTILS WIVIVIOOY  [60LI9CIST  YIVIVIOD  $90996LSE DOVIVIVY  9I€68C7L IVIOOY  [00688S] VIVID  L—
6L7S00979Sy ~ VIVIVIOOVLI  [498858898  VIODVIVIV — G9/8€IT8L]  VIVIVIVI — 09EPLLSSE  VIVIVIVY  SPp0STZL  IODVIV  0SE0€8ST OVIVLI — 8—
6L7S00979Sy ~ VIVIOOVIVLI  [498858898  VIVIOOVIV  98T6ESELLI  IOOVIOOY  L8SP60SSE  IVIVIOD  T6ET9989 OVIVIV  09SL8€ST  DOVID  6—
6L7S00979Sy ~ VIDDOVIVIVLI — +TTSEH8998  IODVIVIVI — €G6€8LTL91  IVIVIOOY  ST6VIOPSE  IVIVIVL — 7989SS89  IVIVID  98+867SI  OVIDD  0l—
¥79861L69 DDDOYIIIDD  S00SI09FC  DODOYIIDD  TTESOSLS DDDOYIDD  8086SPIE  DODOOVD  68TOI9IT  IDDDDD  60V9PPy  OIODD 01
YTSTS6£69 DDIDDDDDDD  ELIVLLYPT ~ DDIDDDIDD  00LTLYLS DDDIDDDD  GII9ZPIE  DODOVID  STLSOSIT  DDODID  TIT66EF  LODDD 6
THPES9E69 DDOYIDIDDD  OCISSLYPC ~— DODYIIIDD  OFLSSOLS DDOYIDDD  €OLL6ETE — DODIODD  TSSTOYIT  9DDOIDD  G8ISTEy  DO9OL 8
LEEITI069 DOYDDDDDDD  6L9LOSEFT  DOYIIIIDD  HTHETOLS DDIDDDDD  9IT66CIE  LODDDDD  OLYEGEIT  ¥WODDDD  LSTHETH  ¥ODDD L
966£67889 DYDDDD000D  LI0S86THC ~ DYIIDIIDD  LL¥80998 DDYIDDDD  8GSE9TIE  DDOVODD  €SI89EIT  DDDOVD  0SLOTCH  DOOIO 9
8L9L€8.89 DIODDDDD0D  0I8189THC  DODDDODOD  09TSHFI8 DYDDDDDD  0SESETIE  OOIODDD  THII9EIT  DDOVID  $79081F  DDIDD S
PP08SSES9 ¥DODDDDDDDD  6980€STHT  DIDDDIIDD  €8H16€98 ¥ODDDDDD  GYIOLIIE ~ ¥OODDDD  S6EEPEIT  DOIDDD  9S/891F  DOOYD b
S6€01¥SL9 DDDDDODDDD  [9LY961HT  ¥ODDDDDDD 18168198 DIDDD0DD  IH8I0IIE  DO¥DDDD  08SI0SII  DO¥IDD  109891F  DOYID €
L66290L99 IODDDDDDDD  LPESY6LET — LODDDDDDD  #HOTSLSS IDDDD0DD  SPIESOIE  OVWODDDD  89988TI1  D¥IDDD  [48S9IF  D¥IID z
£9L996019 DDDDDDDDDD  00S99PIET  DDDDDDDDD  99TT0LHS DDDDDDDD  8I66160€  DIDDDDD  OY9ITZIT  DIDIDD  $9E€TEIY  DIDID I

%&N:TQN u{NSuQ Hkmstl% SAout-/ Mkmsub SA4U-¢ v\tBk

TN TAAOJA NI SHIWI[, ONLLIVA\ ‘7 d14V],

1599



1600 BEHRENS AND VINGRON

o

g 4 - - Minimal waiting time o

v [ — Average waiting time ’
Maximal waiting time

o] o

o

74 °

L]

Ie]

FIG. 1. Minimal, maximal, and
average waiting times in model M1
(log scale). These waiting times
(generations) are computed based
on the results in Table 2.
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Let us focus on 5- and 10-mers. CCCTG is the fastest appearing 5-mer with an expected waiting time of
4,132,368 generations (/83 Myrs) while ATATA is the slowest emerging 5-mer with a number of
16,906,864 generations (=338 Myrs). This shows that incorporating the CpG methylation-deamination
process into our model increases the variance in waiting times: on the one hand, the minimal waiting time
for 5-mers in model M1 is much shorter than in model MO (83 versus 126 Myrs) but, on the other hand, the
maximal waiting time is much larger than in model MO (338 versus 153 Myrs).

This variance is so high that for some (k+ 1)-mers the waiting times are shorter than for some other
k-mers. For example, the waiting time for the 5-mer ATATA is 338 Myrs and for the 6-mer CCCCTG it is
only 224 Myrs. This confirms our approach of not just looking at waiting times in dependency of the length
k of the TF binding site but also taking its composition into account. The effect gets even stronger for large
k as can be seen in Figure 2: for small k, 5 <k <7, the waiting times for k- and (k + 1)-mers are separated
more clearly, for bigger k, 8 <k < 10, they overlap considerably.

3.2.2. Waiting times for several promoters. The waiting times presented in the preceding section are
quite long and by itself seem not to explain rapid evolutionary changes in regulatory regions. But answering
the question how long one has to wait for one particular binding site to appear in one particular promoter may
be too restrictive. Thus, we ask how long it takes until a new TF binding site emerges in at least one of all the
human promoters. This could induce a change in gene regulation and hence, could be important for the
evolution of the whole species (see Section 2.2.3). Assuming that there are around 20,000 human promoters,
we computed the minimal, maximal and average waiting times E(7},) for k-mers to appear in at least one of m
promoters, m ranging from 1 to 20,000. For k=5 and k= 10, the results are depicted in Figure 3.

The waiting times E(7},) decrease with m:

E(T,) ~ O (l> . @7)
m

The expected waiting times for k-mers to be created in at least one of all 20,000 human promoters are
shown in Table 3. For example, on average, it only takes 7,467 years for a 5S-mer to emerge (minimally
4,142 years and maximally 16,917 years). For 8-mers, on average one has to wait 341,104 years - a time
span far below the speciation time of e.g. human and chimp (Hobolth et al. (2007)). And for 10-mers, the
average waiting time is 4.8 Myrs implying that in a time comparable to the human-chimp split, on average
one expects a given TF binding site of length 10 to be created at random in at least one of all the human
promoters. But even after 700,000 years some particular new TF binding sites of length 10 are expected to
be created (e.g. CCCCCCCCCC, CCCCCCCCCA, CCCCCCCCTG).

3.2.3. Comparison with existing TF binding sites. Given lists of k-mers ranked according to their
waiting time till emergence, we are interested if one can observe top ranking k-mers in existing TF binding
sites. We downloaded the non-redundant JASPAR CORE database for vertebrates, Version 4, (Portales-
Casamar et al., 2010) and extracted all the human TF binding site position count matrices (PCMs) of
length k, 5 <k <10, i.e., 37 PCMs. In order to compare PCMs with k-mers, we converted a given PCM into



A WAITING TIME PROBLEM 1601

Histogram of the waiting times for 5-,6—- and 7-mers

o
8-
= 5-mers
6-mers
=<y = 7-mers
<
= 84
g3
[
=)
g
i 84
()
o
8
o
r T T T T T 1
0.0e+00 5.0e+07 1.06\4/—\([)8.{ t.1.56208 t.2.Oe]+08 2.5e+08 3.0e+08 FIG. 2. Histograms of the waiting
alting times |generations . .
9 g times in model M1. The expected
Histogram of the waiting times for 8-, 9- and 10-mers waiting times (generations) are ta-
ken from Table 2.
o = 8-mers
S. 9-mers
< = 10-mers
o
o
8+
o> ®
c
S
g8
i 87
(3]
o
o
o
=
o
) T T 1
5.0e+09 1.0e+10 1.5e+10 2.0e+10

Waiting times [generations]

a set of k-mers via the following procedure: after having computed a maximal score of a PCM by summing
over the maximal column entries, we set a threshold of 0.95 of the maximal score and extracted all 10-mers
with a score above this threshold.

For example, in case of the SP1 binding site (Fig. 4), 273 is the maximal score (CCCCGCCCC), the
score threshold is 260 and the resulting 10-mer set of putative SP1 binding sites is given by
{ccceaccecc, cceeeececee, cceeaeececee, cceercecccc). This set contains the top ranking
10-mers, e.g. CCCCCCCCCC is even the number 1 top ranking 10-mer, i.e. the fastest emerging 10-mer
(see Figures 2 and 4). We repeated this procedure for all the PCMs extracted from the JASPAR database,
also including the reverse complement for every k-mer since the TF could also bind to the comple-
mentary DNA strand. To test if these observed k-mers are among the top ranking k-mers according to our
model, we assigned the corresponding ranks to them (as illustrated in Figure 4) and normalized the ranks
by dividing by 4 in order to look at all k-mers simultaneously. The null hypothesis that the waiting times
according to our model do not affect the appearance of real TF binding sites can then be formulated as

Hy : the relative ranks assigned to the real TF binding sites stem from (28)
a uniform distribution on [0, 1].

We performed Pearson’s y>-goodness-of-fit test yielding a p-value <2.2¢ — 16, i.e. one can reject the null
hypothesis. The mean relative rank for the k-mers taken from JASPAR is 0.425 while the mean of the
uniform distribution on [0, 1] is 0.5. Thus, k-mers with shorter waiting times are used more frequently as TF
binding sites than other ones and as can be seen in Figure 5, a high proportion of existing TF binding sites
belongs to the top ranking k-mers (around one quarter of them are among the top 10% ranks).
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In this approach, for every TF, we have taken all of the possible k-mers (above a certain threshold) into
account and thus, also included potentially slowly evolving k-mers. Hence, as a second step, we only
looked at the rank of the fastest evolving binding site per TF. For every JASPAR TF we determined the
k-mer with the smallest rank. Afterwards, we sorted all of the JASPAR TFs according to these minimal
ranks. The results are depicted in Figure 6.

So under our model, the binding sites of the TFs SP1, TFAP2A, MZF1 5-13, REL, MZF1-4, NF-kappaB,
RELA, ETS1, ELK1, BRCAI, SPIB and NFATC2 can be generated quickly while the appearance of
binding sites like GATA2, FOXL1, MIZF and NKX3-1 binding sites requires long waiting times. Most of
the TFs whose binding sites are predicted to be generated rapidly like BRCA1, NFKB, REL, RELA and

TABLE 3. WAITING TIMES FOR ALL HUMAN PROMOTERS IN MODEL M1

5-mers 6-mers 7-mers 8-mers 9-mers 10-mers
Min 4,142 11,232 30,930 84,711 231,477 640,977
Max 16,917 79,840 371,935 1,918,419 9,340,903 49,972,266
Average 7,467 25,903 92,911 341,104 1,274,206 4,824,591

Minimal, maximal, and average waiting times (years) for k-mers, 5 <k <10, to appear in at least one of all human promoters.
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FIG. 4. Example. Assuming that
the SP1 motif is the set of 10-mers
(and their reverse complements)
with a score of at least 95% of the
maximal score, we can derive
the ranks for this 10-mer set, i.e.,
the ranks among all 10-mers in as-
cending order according to their
waiting time until emergence and
normalize them.

SP1 are widely expressed and have been shown to interact with a lot of other proteins: e.g. BRCAI has 225
interaction partners, REL 104, RELA 297, NFKB1 156, NFKB2 214 and SP1 has 156 interaction partners;
numbers taken from the database UniHI (Chaurasia et al., 2007). In contrast, the binding sites of TFs which
appear slowly according to our model are only expressed in certain tissues, e.g. the slowest evolving TF
NKX3-1 is largely prostate and testis-specific, and have fewer interaction partners, e.g. NKX3-1 has 4,
MIZF 11, FOXL1 30 and GATA?2 21 interaction partners (numbers taken from UniHI).
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FIG. 5. Histogram of the relative
ranks of k-mers contained in JAS-
PAR PCMs. For all JASPAR ma-
trices of length k, 5 <k <10, we
assigned relative ranks to the k-
mers with a relative score threshold
of 0.95 (according to the procedure
illustrated in Fig. 4). The horizontal
line represents the uniform case,
i.e., the case where the relative
ranks would be distributed uni-
formly.
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4. DISCUSSION

We have developed a probabilistic approach to study the evolution of regulatory regions allowing us to
predict how long one has to wait for a given TF binding site of length k, k ranging from 5 to 10, to be
created at random in the human species - either in one promoter of length 1 kb or in at least one of all the
human promoters. Our results indicate that new TF binding sites can indeed appear on a small evolutionary
time scale: for example, given that model M1 is an appropriate choice, on average around 7,500 years may
be sufficient for a given 5-mer to emerge in at least one of all the human promoters, for 8-mers around
350,000 years and for 10-mers around 4.8 Myrs (model M1). But for some TF binding sites of length 10
like, for example, the SP1 binding site, a duration of 700,000 years may be enough. This reveals that new
TF binding sites of length k, kK < 10, can easily appear in a time span significantly below or around e.g. the
divergence time of human and chimp which is around 4 Myrs as stated by Hobolth et al. (2007).

According to our model, on average the expected waiting times increase exponentially with the length of the
binding site. This suggests that in the evolution of primates, there should be a bias towards many short motifs
instead of one long TF binding site in regulatory sequences. This is what one actually observes in eukaryotes;
for example Wray et al. (2003) pointed out that promoters containing 10-50 binding sites for 5-15 different
transcription factors are not uncommon. By computing the information content of eukaryotic TF binding sites,
Wunderlich and Mirny (2009) found that in contrast to bacteria, single eukaryotic TF binding sites are too short
and imprecise to guarantee specific binding which is compensated for by TF binding site clustering.

Furthermore, our results suggest that the composition of TF binding sites and not only their length play a
crucial role concerning the waiting times for appearance: sometimes it is even more favorable” to wait for
a particular (k + 1)-mer instead of waiting for another k-mer. For example, the waiting time for the 9-mer
ACGTACGTA to appear in one of all promoters has been estimated to be around 1.3 Myrs and the one for
the 10-mer CCCCCCCCCC to be only around 650,000 years. In consideration of the fastest and slowest
emerging k-mers, one observes that k-mers containing products of the CpG methylation-deamination
process (TG and CA) can rapidly appear in promoter sequences while TA- or CG-rich k-mers need a lot of
time to be created at random. Hence, the CpG methylation-deamination process is probably a major
determinant in generating new TF binding sites. It accelerates the emergence of some k-mers - which
becomes obvious when comparing waiting times from the models MO and M1. Simply assuming inde-
pendently evolving nucleotides like Durrett and Schmidt (2007), Stone and Wray (2001), does not unveil
the importance of this neighbor dependent substitution process for the creation of new TF binding sites.
Thus, the more general model M1 should be preferred over the model MO.

We have tested whether our results are consistent with existing TF binding sites, i.e. if these TF binding
sites are top ranking among all k-mers ranked in ascending order according to their waiting time till emer-
gence. Based on PCMs from the database JASPAR (Portales-Casamar et al., 2010), we showed that this
holds true for most of the cases. On the other hand, our model of predicting waiting times for the appearance
of TF binding sites could be also used as a null model to detect TF binding sites which emerge slowly under



A WAITING TIME PROBLEM 1605

the model but which are still observed. For example, the TATA-binding protein recognizes a motif containing
TATA. But when looking at the waiting times in Table 2 (model M1), one surprisingly observes that k-mers
containing TATA are among the slowest emerging k-mers. In this case, we speculate that due to the fact that
the TATA-motif is probably one of the most crucial cis-regulatory elements, it ’has to” be quite rare and
therefore ”should” not appear rapidly by the time passing to avoid drastic changes in gene regulation.
Additionally, for future research it would be interesting to characterize the TFs with fast (resp. slowly)
emerging binding sites with regard to biological properties (e.g. GO categories) similar to our approach in
section 3.2.3. where we have examined the connection between the speed of binding site emergence and
tissue-specificity/interaction partners. So far, we could observe that ubiquitous TFs are usually associated with
fast emerging binding sites, while tissue-specific TFs are linked to slower emerging TF binding sites.

In summary, one can conclude that new TF binding sites are expected to emerge rapidly when taking all
human promoter sequences as a basis. Apart from having computed the speed of de novo creation of
k-mers, our approach now also reveals how the composition of a TF binding site as well as of the promoter
sequence can influence the process of TF binding site emergence and therefore, extends the previous
knowledge about the dynamics of promoter sequence evolution.
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