
Research Articles

Studying the Evolution of Promoter Sequences:

A Waiting Time Problem

SARAH BEHRENS and MARTIN VINGRON

ABSTRACT

To gain a better understanding of the evolutionary dynamics of regulatory DNA sequences,
we address the following questions: (1) How long does it take until a given transcription factor
(TF) binding site emerges at random in a promoter sequence? and (2) How does the com-
position of a TF binding site affect this waiting time? Using two different probabilistic models
(an i.i.d. model and a neighbor dependent model), we can compute the expected waiting time
for every k-mer, k ranging from 5 to 10, until it appears in a promoter of a species. Our
findings indicate that new TF binding sites can be created on a short evolutionary time scale,
i.e. in a time span below the speciation time of human and chimp. Furthermore, one can
conclude that the composition of a TF binding site plays a crucial role concerning the waiting
time until it appears and that the CpG methylation-deamination substitution process probably
accelerates the creation of new TF binding sites. A screening of existing TF binding sites
moreover reveals that k-mers predicted to have short waiting times occur more frequently
than others. Supplementary Material is available at www.libertonline.com/cmb.

Key words: evolution, gene regulation, Markov model, transcription factor binding sites, waiting

times.

1. INTRODUCTION

While the evolution of coding DNA sequences has been intensively studied during the last years

and plenty of models have been derived to characterize their evolutionary dynamics (Kreitman and

Comeron, 1999), the evolution and structure of regulatory DNA sequences still remain poorly understood.

One reason for this is that the organization of promoters is much less understood. Promoters are typically

located upstream of the gene they regulate. They contain binding sites for regulatory proteins such as

transcription factors (TFs). The binding of a TF to a binding sites enables other factors to bind and finally

leads to the recruitment (transcriptional activation) or blocking (transcriptional repression) of the RNA

polymerase which is responsible for transcribing the corresponding gene (Wray et al., 2003). TF binding sites

are short stretches of DNA. They are distributed sparsely and unevenly and they may overlap partially but

sometimes the spacing between two binding sites may be tens of kilobases (kb) as stated by Wray et al.

(2003). So the length and composition of a promoter can vary considerably.

Due to these complications, developing a probabilistic model for promoter sequences and describing the

evolutionary dynamics of regulatory regions remains a challenge. However, there is growing body of
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experimental evidence that promoter regions are highly dynamic and that significant changes in gene

regulation can occur on a microevolutionary time scale. For example, using ChIP-chip technology, Odom

et al. (2007) inferred the binding sites of four tissue-specific TFs in human and mouse liver cells and found

that despite the conserved function and motif of these TFs, 41–89% of the binding events are species

specific. Taylor et al. (2006) investigated the evolutionary trends of mammalian promoters using large sets

of experimentally supported transcription start sites and concluded that the evolution within mammalian

promoters has been relatively rapid within approximately the last 25 Myrs.

In order to give a probabilistic explanation for the speed of cis-regulatory evolution, we address the

following two questions: (1) How long does it take until a given TF binding site appears at random due to

the evolutionary process of single nucleotide mutations? (2) How does the composition of a TF binding site

affect this waiting time?

Stone and Wray (2001) tried to answer the first question by simulating the evolution of a promoter region of

length 2,000 bp assuming a mutation rate of 10�9 per nucleotide per generation. After having estimated the

waiting time for a 6-mer to emerge in a given promoter sequence, they divide this number by 106 � 2
(¼effective population size times two DNA strands) yielding that on average it takes 6,000 years until a 6-mer

appears in a promoter sequence of at least one individual in a human population. Their approach of simply

dividing by the number of individuals has been critized by MacArthur and Brookfield (2004) and by Durrett

and Schmidt (2007), especially because with this, Stone and Wray (2001) implicitly assume that the DNA

sequences in a population evolve independently from each other. But indeed, two randomly chosen individuals

differ only in 0.1% of their DNA as stated in Durrett and Schmidt (2007). Durrett and Schmidt (2007) tackeld

the problem by using a proper population genetics model (the Moran model) and (Poisson) approximated the

expected waiting time until a word of fixed length 6 or 8 appears in a promoter region of length 1000 bp in at

least one individual in a population of effective size 104. Assuming a mutation rate of 10�8, Durrett and

Schmidt (2007) computed that the expected waiting time for words of length 6 is 100,000 years and 375,000

years for words of length 8 given that there is a 7 out of 8 letter match in the population consensus sequence.

These results are helpful for getting a general idea of how fast TF binding sites can emerge - at least for

binding sites of length 6 and 8. However, they rely on the assumption that once a TF binding site is created

in one individual, it will confer a substantial benefit and hence, will spread rapidly through the population.

But according to population genetics theory (Ewens, 2004) this event only occurs with a small probability:

Let us assume for simplicity, that there are only two different individuals A and B in a population of size N

where A symbolizes the individual with the new TF binding site appearing only once and B represents the

remaining N� 1 individuals without the new TF binding. The fixation probability of A is then given by

qA¼
1� r� 1

1� r�N
(1)

where r is the relative fitness of individual A, i.e., the average number of surviving progeny of A compared

to B after one generation; see e.g. section 6.3 in Nowak (2006). Setting N¼ 104 and assuming a relative

fitness of 2 (100% selective advantage), the probability that the new TF binding site will get fixed in a

population is only 0.5. Even when assuming a very high and unrealistic relative fitness of 10 the fixation

probability is just 0.9. Thus, their assumption that a TF binding site once created will spread throughout the

population is hard to justify.

In this work, we phrase the question differently. Instead of computing the waiting time until a given TF

binding site emerges in a promoter sequence in at least one individual in a population, we are interested in

determining the expected waiting time until a given TF binding site gets fixed in a species (assuming that

fixation only occurs at the nucleotide/dinucleotide level) - either in one given promoter sequence or in at

least one of several promoters, for example, in any or all of the human promoters. As mentioned above, two

randomly chosen individuals differ only in 0.1% of their DNA. Therefore, it is reasonable to refer, for

example, to the ’’human genome.’’ With this in mind, in our model a DNA sequence should not be

interpreted as a sequence of a single individual of a population but as a representative sequence of the

considered species. Hence, waiting times relate to appearance in the species instead of appearance in one

single individual. Starting with a muliple species alignment for the three species Homo sapiens, Pan

troglodytes and Macaca mulatta, we can estimate the evolutionary substitution rates (¼fixed mutation

rates) for every nucleotide using the Maximum likelihood based tool developed by Arndt and Hwa (2005).

As a consequence, for every k-mer, k ranging from 5 to 10, we can (almost) exactly compute its expected

waiting time to appear in a species’ promoter of a given length in dependence of its composition.
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Since the CpG methylation-deamination process (CG?TG and CG?CA) is the predominant evolu-

tionary substitution process, as a second step, we also incorporate neighbor dependent substitution rates

into our model. For example, Wang et al. (1998) pointed out that single-nucleotide polymorphisms occur

about 10 times more often at CpG dinucleotides than at other dinucleotides in the human DNA. Our

approach of calculating waiting times in dependency of the promoter’s and TF binding site’s composition

sheds new light on the process of TF binding site emergence and therefore, extends the previous knowledge

about the dynamics of promoter sequence evolution.

As a last step, we compare k-mers which are predicted to appear rapidly according to our model with

existing TF binding sites from the database JASPAR (Portales-Casamar et al., 2010). We show that k-mers

with short waiting times are used more frequently as TF binding sites than those with long waiting times.

This article is organized as follows: in Section 2.1 we introduce two probabilistic models - an i.i.d. model

(model M0) and a model taking the neighbor dependencies of nucleotides into account (model M1). Section

2.2 is devoted to the computation of the expected waiting time under our given models, and in Section 2.3,

we explain how one can estimate the model parameters. Utilizing these parameter estimations, in Section 3

we provide the expected waiting times for k-mers, k ranging from 5 to 10, for model M0 and then present

the more interesting results for model M1 in detail. Additionally, we relate these k-mers to existing TF

binding sites from the database JASPAR (Portales-Casamar et al., 2010). Section 4 discusses the results and

explains the impact of our findings.

2. METHODS

2.1. The probabilistic model

In order to formalize the problem, one has to model two components: the initial promoter sequence

X1(0), . . . , Xn(0) and the time evolution (X1(t), . . . , Xn(t))t�0 of this sequence.

2.1.1. Modelling the initial promoter sequence. Let A¼fA, C, G, Tg contain the four different

bases and let X1(0), . . . , Xn(0) be a random promoter sequence of length n which is either modelled by an

independent, identically distributed sequence (model M0) or a homogeneous stationary Markov chain of

order 1 (model M1).

In model M0, the probability of observing a sequence (x1, . . . , xn) is given by

l(x1, . . . , xn)¼ �(x1) � . . . � �(xn): (2)

where �(x)¼P(X1(0)¼ x).

In model M1, when X1(0), . . . , Xn(0) is a homogeneous stationary Markov chain with stationary dis-

tribution n and transition probabilities pa, b, a, b 2 A, this probability can be computed by

l(x1, . . . , xn)¼ �(x1)px1, x2
� . . . � pxn� 1, xn

: (3)

2.1.2. Modelling the time evolution of the promoter sequence. The promoter sequence evolution

(X1(t), . . . , Xn(t))t�0 is modelled according to the nucleotide substitution model by Arndt et al. (2003) -

either taking the CpG methylation-deamination rates into account (model M1) or not (model M0).

In model M0, one only considers the independently evolving nucleotides (12 substitution rates). Since

nucleotide substitutions on one strand of the DNA go along with nucleotide substitutions on the com-

plementary strand in order to guarantee correct Watson – Crick base pairing, the number of free parameters

is 6 (A?T/T?A, C?G/G?C, A?C/T?G, C?A/G?T, A?G/T?C, G?A/C?T). If Q

denotes the 4 · 4 rate matrix, the matrix P(t) containing the transition probabilities of a evolving into b in

finite time t� 0, a, b 2 A, is then given by the matrix exponential P(t)¼ etQ; see e.g. Karlin and Taylor

(1975). In this model, the probability of sequence (x1, . . . , xn) evolving into (y1, . . . , yn) is given by

p(x1, ..., xn)!(y1, ..., yn)(t)¼
Yn

i¼1

pxi , yi
(t): (4)

In model M1, we incorporate one particular neighbor dependent substitution process: the CpG

methylation-deamination process. That is, apart from the 12 substitution rates mentioned above (given by 6

parameters), one also has 2 other rates (CG?TG and CG?CA) which are assumed to be the same. This
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results into looking at trinucleotides (nucleotide plus left and right neighbor) whose dynamics are governed

by a 64 · 64 rate matrix Q(3); for details see Duret and Arndt (2008). For t� 0, the matrix

P(3)(t)¼ (pa1a2a3, b1b2b3
(t))a1, ..., b32A (5)

is given by P(3)(t)¼ etQ(3)

. Applying this, one can compute the probability of a2 flanked by a1 and a3

evolving into b2 in finite time t� 0 by marginalizing over b1 and b3:

pa1a2a3, b2
(t)¼

X
b1, b32A

pa1a2a3, b1b2b3
(t): (6)

In model M1, referring to Arndt and Hwa (2005), Duret and Arndt (2008) the probability of sequence

(x1, . . . , xn) evolving into (y1, . . . , yn) where x1 is preceded by x0 and xn is followed by xnþ1 in finite time

t� 0 can then very reliably be approximated by

p(x0, ..., xnþ 1)!(y1, ..., yn)(t) �
Yn

i¼1

pxi� 1xixiþ 1, yi
(t): (7)

2.2. The expected waiting time

Let

b¼ (b1, . . . , bk) where b1, . . . , bk 2 A (8)

be a TF binding site of length k. We want to answer the question: provided that the binding site is not

present in the initial sequence X1(0), . . . , Xn(0), how long does one have to wait for b¼ (b1, . . . , bk) to

occur randomly during the time evolution of the sequence? We assume a discrete time scale N corre-

sponding to the number of generations, i.e. we ask how many generations it takes for b to appear for the first

time. Thus, one has to determine the distribution of

T ¼ infft 2 N : 9i 2 f1, . . . , n� kþ 1g such that (Xi(t), . . . , Xiþ k� 1(t))¼ (b1, . . . , bk)g (9)

given that b is not present in the initial sequence X1(0), . . . , Xn(0). As shown in Supplementary Material S1

(for all Supplementary Material, see www.libertonline.com/cmb), the distribution of T is approximately a

geometric distribution with parameter

q¼P(b occurs in generation 1jb does not occur in generation 0): (10)

Especially, one obtains

E(T) � 1

q
: (11)

Let Bc
0¼fb does not occur in generation 0g. To compute q, one has to apply the inclusion-exclusion

principle, i.e.

q¼P
[n� kþ 1

i¼ 1

f(Xi(1), . . . , Xiþ k� 1(1))¼ (b1, . . . , bk)g
���Bc

0

 !

¼
Xn� kþ 1

l¼ 1

(� 1)‘þ 1
X

I�f1, ..., n� kþ 1g, jIj ¼ ‘
P
\
i2I

f(Xi(1), . . . , Xiþ k� 1(1))¼ (b1, . . . , bk)g
���Bc

0

 !
:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

def
¼ p‘

(12)

In both models M0 and M1, the probability pl indeed only depends on ‘ since we have assumed statio-

narity. It is the probability of b appearing at ‘ given positions in generation 1 under the condition that it was

not present in the generation before. Exact computation of p‘ becomes infeasible if the binding site can

overlap with itself since computing the probability that b appears ‘ times in generation 1 given that it did not

occur in generation 0 requires inspection of many possiblities: b can occur ‘ times with no overlap in

generation 1, b can occur ‘ times in one big overlapping clump, b can occur m times in one clump and ‘�m

times in another clump etc. But, of course, for large ‘ the probability p‘ becomes very small, so q is dominated
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by the first summands. Since overlaps can be neglected for small ‘, for ease of exposition, we neglect the

possibility of b occuring self-overlapping. Thus, we use the following approximation

p‘ � P
\
i2I

f(Xi(1), . . . , Xiþ k� 1(1))¼ (b1, . . . , bk)g
���Bc

0

 !
� 1fji� jj�k for all i, j2Ig: (13)

Due to the assumption that b cannot appear self-overlapping, b can occur at most bn
k
c times in the sequence.

The number of possible subsets I � f1, . . . , n� kþ 1g with ji� jj � k for all i, j 2 I and jIj ¼ ‘ is
n� (k� 1)�‘

‘

� �
. Thus,

q �
Xbnkc
‘¼ 1

(� 1)‘þ 1 n� (k� 1) � ‘
‘

� �
p‘: (14)

Now one can easily compute pl separately for the models M0 and M1 (notation: q0 and q1).

2.2.1. The expected waiting time in model M0. If ji� jj � k for all i, j 2 I, the ‘ occurrences of b

are independent from one another and thus, applying (2) and (4), one obtains

p‘ � P
�

(X1(1), . . . , Xk(1))¼ (b1, . . . , bk)
���(X1(0), . . . , Xk(0)) 6¼ (b1, . . . , bk)

	� 	‘

¼
X

(a1, ..., ak)2Aknf(b1, ..., bk)g

l(a1, . . . , ak) � p(a1, ..., ak)!(b1, ..., bk)(1)

0
@

1
A‘

¼
X

(a1, ..., ak)2Aknf(b1, ..., bk)g

�(a1) � . . . � �(ak) �
Yk

i¼ 1

pai , bi
(1)

0
@

1
A‘

¼def
p‘0:

Hence, we can summarize the result:

Theorem 1 (Expected waiting time in model M0). Under the model M0 described in Section 2.1, the

expected waiting time until a binding site b of length k occurs in a promoter sequence of length n is

approximately given by

E(T) � 1

q0

� 1Pbn
k
c

‘¼ 1 (� 1)‘þ 1 n� (k� 1)�‘
‘

� �
p‘0

(16)

where

p0¼
X

(a1, ..., ak)2Aknf(b1, ..., bk)g

�(a1) � . . . � �(ak) �
Yk

i¼ 1

pai , bi
(1): (17)

2.2.2. The expected waiting time in model M1. For model M1, we make the simplifying as-

sumption that if b appears two or more times at once in generation 1, these occurrences of b are so far apart

from each other that one can consider them as independent. Therefore, applying (3) and (7), one gets

p‘ � P (X2(1), . . . , Xkþ 1(1))¼ (b1, . . . , bk)
��� \3

i¼ 1

f(Xi(0), . . . , Xiþ k� 1(0)) 6¼ (b1, . . . , bk)g
 ! !‘

¼
X

(a0, ..., ak� 1), (a1, ..., ak ),

(a2, ..., akþ 1)2Aknf(b1, ..., bk )g

l(a0, a1, . . . , ak, akþ 1) � p(a0, a1, ..., ak , akþ 1)!(b1, ..., bk)(1)

0
BB@

1
CCA
‘

�
X

(a0, ..., ak� 1), (a1, ..., ak ),

(a2, ..., akþ 1)2Aknf(b1, ..., bk )g

�(a0)pa0, a1
� . . . � pak , akþ 1

�
Yk

i¼ 1

pai� 1aiaiþ 1, bi
(1)

0
BB@

1
CCA
‘

¼def
p‘1: (18)

A WAITING TIME PROBLEM 1595



Thus, one obtains:

Theorem 2 (Expected waiting time in model M1). Under the model M1 described in Section 2.1, the

expected waiting time until a binding site b of length k occurs in a promoter sequence of length n is

approximately given by

E(T) � 1

q1

� 1Pbn
k
c

‘¼ 1 (� 1)‘þ 1 n� (k� 1)�‘
‘

� �
p‘1

(19)

where

p1¼
X

(a0, ..., ak� 1), (a1, ..., ak ),

(a2, ..., akþ 1)2Aknf(b1, ..., bk )g

�(a0)pa0, a1
� . . . � pak , akþ 1

�
Yk

i¼ 1

pai� 1aiaiþ 1, bi
(1): (20)

2.2.3. Waiting times for several promoters. In order to get an understanding of how fast regulatory

regions can evolve, we do not only want to answer the question how long one has to wait until a new TF

binding site appears in one particular promoter of a given size but until it emerges in at least one of several

promoters, e.g. in one of all the human promoters. This might also induce a change in gene regulation

which, in principle, could be crucial for the evolution of the whole species. Let P¼fP1, . . . , Pmg be a set

of m independent and identically distributed promoters of the same size n and let

Tm¼ infft 2 N : 9i 2 f1, . . . , mg : b appears in generation t in promoter Pig: (21)

Analogously to Supplementary Material S1, one obtains that Tm has approximately a geometric distribution

with parameter

qm¼P
[m
i¼ 1

fb occurs in generation 1 in Pig
��� \m

i¼ 1

fb does not occur in generation 0 in Pig
 !

: (22)

Since the m promoters are independent and identically distributed, this yields

qm¼ 1� (P(b does not occur in gen. 1 in P1jb does not occur in gen. 0 in P1))m

¼ 1� (1� q)m (23)

where q is given by q0 (see (16)) in model M0 and by q1 (see (19)) in model M1. Hence, for model M1,

i 2 f0, 1g, one obtains

E(Tm) � 1

1� (1� qi)
m : (24)

2.3. Parameter estimation

For model M0, one has to estimate the parameters n(a) and pa,b(1) (see (17)) and for model M1, one has

to determine the parameters n(a), pa,b and pai� 1aiaiþ 1, b(1), a, b, ai� 1, ai, aiþ 1 2 A¼fA , C , G , Tg (see

(20)).

The parameters n(a), a 2 A, can simply be estimated by the relative letter frequencies in the sequence.

As shown in Reinert et al. (2000), an estimator p̂p for the transition probabilities in model M1 can be

obtained by counting dinucleotides:

p̂pa, b¼
N(ab)P

c2A N(ac)
(25)

where N(ab)¼
Pn� 1

i¼ 1 1fXi(0)¼ a, Xiþ 1(0)¼ bg denotes the number of occurences of the dinucleotide ab in the

observed DNA sequence.

To estimate the substitution probabilities pa,b(1) and pai� 1aiaiþ 1, b(1), we used the Maximum likelihood

based tool developed by Arndt and Hwa (2005), which uses a multiple alignment as input and outputs either

the independent substitution rates (model M0) or the neighbor-dependent substitution rates (model M1) (the

Arndt and Hwa tool is available at http://evogen.molgen.mpg.de/server/substitution-analysis/).
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We downloaded multiple alignments to human DNA regions (hg18) of length 1 kb upstream of annotated

transcription start sites for RefSeq genes with annotated 50 UTRs from the USCS download server. For the

estimation of n(a) and pa,b, a, b 2 A we took the human 1 kb upstream sequences. Out of the 17-species

multiple alignment, we then extracted the multiple alignments of chimp (panTro1) and macaque (rheMac2)

to the human upstream regions and applied the estimation procedures described above yielding the rate

matrices Q¼ (qa, b)a, b2A (model M0) and Q(3)¼ (qa1a2a3, b1b2b3
)a1, ..., b32A (model M1). Assuming a particular

speciation time s of human and chimp and a particular generation time of y years, one can then easily

calculate P(1)¼ (pa, b(1))a, b2A and P(3)(1)¼ (pa1a2a3, b1b2b3
(1))a1, ..., b32A (and therewith pa1a2a3,b2(1), see (6);

1¼M 1 generation) by

P(1 generation)¼P(y years)¼ e
y
s
�Y ¼

X1
l¼ 0

y
s
� Q

� �l

l!
(model M0),

P(3)(1 generation)¼P(3)(y years)¼ e
y
s�Q(3) ¼

X1
l¼ 0

y
s
� Q(3)

� �l

l!
(model M1): (26)

Assuming a generation time of y¼ 20 and a speciation time between man and chimp of s¼ 4 Myrs

(Hobolth et al. (2007)), one finally obtains estimations for pa,b(1) and pai� 1aiaiþ 1, b(1), a, b, ai� 1, ai,

aiþ 1 2 A. The estimators for the parameters are presented in Supplementary Material S2.

3. RESULTS

Due to the fact that the CpG methylation-deamination process plays an important role which should not

be neglected, model M1 is more general and realistic than model M0. Thus, we will concentrate on the

expected waiting times in model M1. The waiting times in model M0 will be only stated briefly and will be

used to pinpoint the characteristics of model M1 in comparison to the more simplistic model M0.

3.1. Results for model M0

Applying Theorem 1 and using the estimations for the parameters n(a) and pa,b(1), a, b 2 A (see Sup-

plementary Material S2), one can compute the expected waiting times for all possible k-mers, 5� k� 10, to

appear in a promoter of a given length n and rank these k-mers in ascending order according to their waiting

time till emergence. Throughout the paper, we choose n¼ 1000 bp. The results are depicted in Table 1.

In model M0, the expected emergence time of a k-mer only depends on the number of each nucleotide in

the k-mer and not on the order of the nucleotides, e.g., the 5-mer CCCCG has the same waiting time as

CCCGC, CCGCC and so on. In Table 1, it can be seen that for every k, 5� k� 10, the k-mer only composed

of Cs is the fastest emerging one (followed by CG-rich k-mers) while the k-mer only composed of As is the

slowest one (preceded by AT-rich k-mers). For example, CCCCC is the fastest emerging 5-mer with an

expected waiting time of 6,303,945 generations (¼126 Myrs) to appear in a promoter of length 1 kb while

AAAAA is the slowest emerging 5-mer with 7,653,814 generations (¼153 Myrs). For 10-mers, the average

expected waiting time is 72 billion years, the minimal and maximal waiting times are 51 billion

(CCCCCCCCCC) and 99 billion years (AAAAAAAAAA).

3.2. Results for model M1

3.2.1. Waiting times for one promoter. Plugging in the estimators for the parameters n(a), pa,b and

pai� 1aiaiþ 1, b(1) for a, b, ai�1; ai; aiþ 1 2 A (see Supplementary Material S2) in equation (20), one obtains the

expected waiting times for all possible k-mers, 5� k� 10, to appear in a promoter of length 1 kb, and with

this, rankings according to their waiting time till emergence. In Table 2, we have summarized the results.

First of all, when looking at the minimal, maximal and average waiting time for k-mers, one realizes that

the expected waiting times increase exponentially with k, see Figure 1. Second, one observes the tendency

that k-mers containing TG or CA, i.e. CpG methylation-deamination products (CG?TG and CG?CA), in

combination with a high C-content are the fastest appearing TF binding sites. In contrast, k-mers containing

the dinucleotides CG or TA are characterized by very long waiting times. Thus, taking this neighbor-

dependent process into account changes the composition of the top ranking k-mers.
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Let us focus on 5- and 10-mers. CCCTG is the fastest appearing 5-mer with an expected waiting time of

4,132,368 generations (�83 Myrs) while ATATA is the slowest emerging 5-mer with a number of

16,906,864 generations (�338 Myrs). This shows that incorporating the CpG methylation-deamination

process into our model increases the variance in waiting times: on the one hand, the minimal waiting time

for 5-mers in model M1 is much shorter than in model M0 (83 versus 126 Myrs) but, on the other hand, the

maximal waiting time is much larger than in model M0 (338 versus 153 Myrs).

This variance is so high that for some (kþ 1)-mers the waiting times are shorter than for some other

k-mers. For example, the waiting time for the 5-mer ATATA is 338 Myrs and for the 6-mer CCCCTG it is

only 224 Myrs. This confirms our approach of not just looking at waiting times in dependency of the length

k of the TF binding site but also taking its composition into account. The effect gets even stronger for large

k as can be seen in Figure 2: for small k, 5� k� 7, the waiting times for k- and (kþ 1)-mers are separated

more clearly, for bigger k, 8� k� 10, they overlap considerably.

3.2.2. Waiting times for several promoters. The waiting times presented in the preceding section are

quite long and by itself seem not to explain rapid evolutionary changes in regulatory regions. But answering

the question how long one has to wait for one particular binding site to appear in one particular promoter may

be too restrictive. Thus, we ask how long it takes until a new TF binding site emerges in at least one of all the

human promoters. This could induce a change in gene regulation and hence, could be important for the

evolution of the whole species (see Section 2.2.3). Assuming that there are around 20,000 human promoters,

we computed the minimal, maximal and average waiting times E(Tm) for k-mers to appear in at least one of m

promoters, m ranging from 1 to 20,000. For k¼ 5 and k¼ 10, the results are depicted in Figure 3.

The waiting times E(Tm) decrease with m:

E(Tm) � O 1

m

� �
: (27)

The expected waiting times for k-mers to be created in at least one of all 20,000 human promoters are

shown in Table 3. For example, on average, it only takes 7,467 years for a 5-mer to emerge (minimally

4,142 years and maximally 16,917 years). For 8-mers, on average one has to wait 341,104 years - a time

span far below the speciation time of e.g. human and chimp (Hobolth et al. (2007)). And for 10-mers, the

average waiting time is 4.8 Myrs implying that in a time comparable to the human-chimp split, on average

one expects a given TF binding site of length 10 to be created at random in at least one of all the human

promoters. But even after 700,000 years some particular new TF binding sites of length 10 are expected to

be created (e.g. CCCCCCCCCC, CCCCCCCCCA, CCCCCCCCTG).

3.2.3. Comparison with existing TF binding sites. Given lists of k-mers ranked according to their

waiting time till emergence, we are interested if one can observe top ranking k-mers in existing TF binding

sites. We downloaded the non-redundant JASPAR CORE database for vertebrates, Version 4, (Portales-

Casamar et al., 2010) and extracted all the human TF binding site position count matrices (PCMs) of

length k, 5� k� 10, i.e., 37 PCMs. In order to compare PCMs with k-mers, we converted a given PCM into

FIG. 1. Minimal, maximal, and

average waiting times in model M1

(log scale). These waiting times

(generations) are computed based

on the results in Table 2.
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a set of k-mers via the following procedure: after having computed a maximal score of a PCM by summing

over the maximal column entries, we set a threshold of 0.95 of the maximal score and extracted all 10-mers

with a score above this threshold.

For example, in case of the SP1 binding site (Fig. 4), 273 is the maximal score (CCCCGCCCC), the

score threshold is 260 and the resulting 10-mer set of putative SP1 binding sites is given by

{CCCCACCCCC, CCCCCCCCCC, CCCCGCCCCC, CCCCTCCCCC}. This set contains the top ranking

10-mers, e.g. CCCCCCCCCC is even the number 1 top ranking 10-mer, i.e. the fastest emerging 10-mer

(see Figures 2 and 4). We repeated this procedure for all the PCMs extracted from the JASPAR database,

also including the reverse complement for every k-mer since the TF could also bind to the comple-

mentary DNA strand. To test if these observed k-mers are among the top ranking k-mers according to our

model, we assigned the corresponding ranks to them (as illustrated in Figure 4) and normalized the ranks

by dividing by 4k in order to look at all k-mers simultaneously. The null hypothesis that the waiting times

according to our model do not affect the appearance of real TF binding sites can then be formulated as

H0 : the relative ranks assigned to the real TF binding sites stem from

a uniform distribution on [0, 1]:
(28)

We performed Pearson’s w2-goodness-of-fit test yielding a p-value <2.2e� 16, i.e. one can reject the null

hypothesis. The mean relative rank for the k-mers taken from JASPAR is 0.425 while the mean of the

uniform distribution on [0, 1] is 0.5. Thus, k-mers with shorter waiting times are used more frequently as TF

binding sites than other ones and as can be seen in Figure 5, a high proportion of existing TF binding sites

belongs to the top ranking k-mers (around one quarter of them are among the top 10% ranks).

Histogram of the waiting times for 5−,6− and 7−mers
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FIG. 2. Histograms of the waiting

times in model M1. The expected

waiting times (generations) are ta-

ken from Table 2.
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In this approach, for every TF, we have taken all of the possible k-mers (above a certain threshold) into

account and thus, also included potentially slowly evolving k-mers. Hence, as a second step, we only

looked at the rank of the fastest evolving binding site per TF. For every JASPAR TF we determined the

k-mer with the smallest rank. Afterwards, we sorted all of the JASPAR TFs according to these minimal

ranks. The results are depicted in Figure 6.

So under our model, the binding sites of the TFs SP1, TFAP2A, MZF1 5-13, REL, MZF1-4, NF-kappaB,

RELA, ETS1, ELK1, BRCA1, SPIB and NFATC2 can be generated quickly while the appearance of

binding sites like GATA2, FOXL1, MIZF and NKX3-1 binding sites requires long waiting times. Most of

the TFs whose binding sites are predicted to be generated rapidly like BRCA1, NFKB, REL, RELA and

FIG. 3. Waiting times in depen-

dency of the number of promoters

in model M1 (log scale). Minimal,

maximal, and average waiting times

(generations) for 5- and 10-mers to

appear in at least one of several

promoters.
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Table 3. Waiting Times for All Human Promoters in Model M1

5-mers 6-mers 7-mers 8-mers 9-mers 10-mers

Min 4,142 11,232 30,930 84,711 231,477 640,977

Max 16,917 79,840 371,935 1,918,419 9,340,903 49,972,266

Average 7,467 25,903 92,911 341,104 1,274,206 4,824,591

Minimal, maximal, and average waiting times (years) for k-mers, 5� k� 10, to appear in at least one of all human promoters.
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SP1 are widely expressed and have been shown to interact with a lot of other proteins: e.g. BRCA1 has 225

interaction partners, REL 104, RELA 297, NFKB1 156, NFKB2 214 and SP1 has 156 interaction partners;

numbers taken from the database UniHI (Chaurasia et al., 2007). In contrast, the binding sites of TFs which

appear slowly according to our model are only expressed in certain tissues, e.g. the slowest evolving TF

NKX3-1 is largely prostate and testis-specific, and have fewer interaction partners, e.g. NKX3-1 has 4,

MIZF 11, FOXL1 30 and GATA2 21 interaction partners (numbers taken from UniHI).

FIG. 4. Example. Assuming that

the SP1 motif is the set of 10-mers

(and their reverse complements)

with a score of at least 95% of the

maximal score, we can derive

the ranks for this 10-mer set, i.e.,

the ranks among all 10-mers in as-

cending order according to their

waiting time until emergence and

normalize them.
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FIG. 5. Histogram of the relative

ranks of k-mers contained in JAS-

PAR PCMs. For all JASPAR ma-

trices of length k, 5� k� 10, we

assigned relative ranks to the k-

mers with a relative score threshold

of 0.95 (according to the procedure

illustrated in Fig. 4). The horizontal

line represents the uniform case,

i.e., the case where the relative

ranks would be distributed uni-

formly.
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4. DISCUSSION

We have developed a probabilistic approach to study the evolution of regulatory regions allowing us to

predict how long one has to wait for a given TF binding site of length k, k ranging from 5 to 10, to be

created at random in the human species - either in one promoter of length 1 kb or in at least one of all the

human promoters. Our results indicate that new TF binding sites can indeed appear on a small evolutionary

time scale: for example, given that model M1 is an appropriate choice, on average around 7,500 years may

be sufficient for a given 5-mer to emerge in at least one of all the human promoters, for 8-mers around

350,000 years and for 10-mers around 4.8 Myrs (model M1). But for some TF binding sites of length 10

like, for example, the SP1 binding site, a duration of 700,000 years may be enough. This reveals that new

TF binding sites of length k, k� 10, can easily appear in a time span significantly below or around e.g. the

divergence time of human and chimp which is around 4 Myrs as stated by Hobolth et al. (2007).

According to our model, on average the expected waiting times increase exponentially with the length of the

binding site. This suggests that in the evolution of primates, there should be a bias towards many short motifs

instead of one long TF binding site in regulatory sequences. This is what one actually observes in eukaryotes;

for example Wray et al. (2003) pointed out that promoters containing 10–50 binding sites for 5–15 different

transcription factors are not uncommon. By computing the information content of eukaryotic TF binding sites,

Wunderlich and Mirny (2009) found that in contrast to bacteria, single eukaryotic TF binding sites are too short

and imprecise to guarantee specific binding which is compensated for by TF binding site clustering.

Furthermore, our results suggest that the composition of TF binding sites and not only their length play a

crucial role concerning the waiting times for appearance: sometimes it is even more ’’favorable’’ to wait for

a particular (kþ 1)-mer instead of waiting for another k-mer. For example, the waiting time for the 9-mer

ACGTACGTA to appear in one of all promoters has been estimated to be around 1.3 Myrs and the one for

the 10-mer CCCCCCCCCC to be only around 650,000 years. In consideration of the fastest and slowest

emerging k-mers, one observes that k-mers containing products of the CpG methylation-deamination

process (TG and CA) can rapidly appear in promoter sequences while TA- or CG-rich k-mers need a lot of

time to be created at random. Hence, the CpG methylation-deamination process is probably a major

determinant in generating new TF binding sites. It accelerates the emergence of some k-mers - which

becomes obvious when comparing waiting times from the models M0 and M1. Simply assuming inde-

pendently evolving nucleotides like Durrett and Schmidt (2007), Stone and Wray (2001), does not unveil

the importance of this neighbor dependent substitution process for the creation of new TF binding sites.

Thus, the more general model M1 should be preferred over the model M0.

We have tested whether our results are consistent with existing TF binding sites, i.e. if these TF binding

sites are top ranking among all k-mers ranked in ascending order according to their waiting time till emer-

gence. Based on PCMs from the database JASPAR (Portales-Casamar et al., 2010), we showed that this

holds true for most of the cases. On the other hand, our model of predicting waiting times for the appearance

of TF binding sites could be also used as a null model to detect TF binding sites which emerge slowly under

FIG. 6. Histogram of the minimal

relative ranks of JASPAR TFs.

After having assigned relative ranks

to the k-mers contained in JASPAR

matrices (see Fig. 5), we deter-

mined the smallest relative rank for

every TF. Thus, this figure depicts

JASPAR TFs ranked according to

their waiting time until appearance

according to our model.
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the model but which are still observed. For example, the TATA-binding protein recognizes a motif containing

TATA. But when looking at the waiting times in Table 2 (model M1), one surprisingly observes that k-mers

containing TATA are among the slowest emerging k-mers. In this case, we speculate that due to the fact that

the TATA-motif is probably one of the most crucial cis-regulatory elements, it ’’has to’’ be quite rare and

therefore ’’should’’ not appear rapidly by the time passing to avoid drastic changes in gene regulation.

Additionally, for future research it would be interesting to characterize the TFs with fast (resp. slowly)

emerging binding sites with regard to biological properties (e.g. GO categories) similar to our approach in

section 3.2.3. where we have examined the connection between the speed of binding site emergence and

tissue-specificity/interaction partners. So far, we could observe that ubiquitous TFs are usually associated with

fast emerging binding sites, while tissue-specific TFs are linked to slower emerging TF binding sites.

In summary, one can conclude that new TF binding sites are expected to emerge rapidly when taking all

human promoter sequences as a basis. Apart from having computed the speed of de novo creation of

k-mers, our approach now also reveals how the composition of a TF binding site as well as of the promoter

sequence can influence the process of TF binding site emergence and therefore, extends the previous

knowledge about the dynamics of promoter sequence evolution.
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