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Three decades of genetic research in Alzheimer disease (AD) have substantially broadened our under-
standing of the pathogenetic mechanisms leading to neurodegeneration and dementia. Positional cloning
led to the identification of rare, disease-causing mutations in APP, PSEN1, and PSEN2 causing early-onset
familial AD, followed by the discovery of APOE as the single most important risk factor for late-onset AD.
Recent genome-wide association approaches have delivered several additional AD susceptibility loci that
are common in the general population, but exert only very small risk effects. As a result, a large proportion
of the heritability of AD continues to remain unexplained by the currently known disease genes. It seems likely
that much of this ‘‘missing heritability’’ may be accounted for by rare sequence variants, which, owing to
recent advances in high-throughput sequencing technologies, can now be assessed in unprecedented
detail.
Introduction
Alzheimer disease (AD) is the most common neurodegenerative

disease and one of the most common diseases in the industrial-

ized world. Clinically it is defined by a slowly progressing loss of

cognitive functions, ultimately leading to dementia and death.

Neuropathologically it is characterized by the aggregation and

deposition of misfolded proteins, in particular aggregated

b-amyloid (Ab) peptide in the form of extracellular senile

(or neuritic) ‘‘plaques,’’ and hyperphosphorlylated tau (t) protein

in the form of intracellular neurofibrillary ‘‘tangles’’ (NFTs). These

pathognomonic changes are often accompanied by abundant

microvascular damage, including vascular amyloid deposits,

and pronounced inflammation of the affected brain regions.

Genetically, AD is usually divided into two forms: (1) familial

cases with Mendelian inheritance of predominantly early-onset

(<60 years, early-onset familial AD [EOFAD]), and (2) so-called

‘‘sporadic’’ cases with less apparent or no familial aggregation

and usually of later onset age (R60 years, late-onset AD

[LOAD]). It needs to be emphasized that this traditional dichoto-

mization is overly simplistic as there are cases of early-onset AD

without evidence for Mendelian transmission while, conversely,

LOAD is frequently observed with a strong familial clustering,

sometimes resembling a Mendelian pattern. While EOFAD is

caused by rare and highly penetrant mutations in three genes

(see below), the genetics of LOAD is more complex. Current

thinking posits that susceptibility for LOAD is conferred by

numerous genetic risk factors of relatively high frequency but

low penetrance and therefore small effect size (see below). While

LOAD is also sometimes referred to as ‘‘sporadic AD,’’ it is

important to emphasize that up to 60%–80% of this form of

AD is genetically determined (Gatz et al., 2006). Still, environ-

mental and epigenetic factors likely make an important contribu-

tion in determining an individual’s risk, although the precise
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nature and mechanisms underlying this nongenetic component

remain largely elusive, in part because they are difficult to assess

experimentally (see also the review by Traynor and Singleton

[2010] in this issue of Neuron).

In this review, we provide a historical as well as quantitative

summary of genetic research in AD. Systematic evaluation of

the aggregated association evidence accumulated in the field

to date (Figure 1) reveals a pronounced distinction between

results from candidate gene versus genome-wide approaches:

during the course of only three years, genome-wide association

studies (GWAS) in AD have yielded more reproducible and

consistent—and thus likely more relevant—findings than three

decades of candidate-gene-driven research. Accordingly, in

this article we will not focus on results from the candidate gene

era (which have been extensively reviewed in the past, e.g.,

Bertram and Tanzi, 2008; Avramopoulos, 2009), but rather on

themost recently implicated GWAS loci in AD, in particular those

that showed evidence for genome-wide significant association

either in individual studies or as a result of systematic meta-anal-

yses. In addition, we discuss the potential relevance of these

loci to AD pathogenesis and provide an outlook of the promises

and limitations of future genetic studies in AD.

Positional Cloning Led to the Discovery of Three
Early-Onset Familial AD Genes
Similar to most other Mendelian diseases, early progress in deci-

phering the genetics of ADwas afforded by studying large, multi-

generational pedigrees suffering from very early-onset forms of

thedisease (EOFAD). Assessing coinheritanceof specific genetic

markers in genetic linkage analyses provided a rough estimate of

themost likely locationof the underlyingdiseasegene,whichwas

subsequently identified by means of ‘‘positional cloning,’’ i.e.,

amore or less systematicmutational screening of DNA segments
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Figure 1. Manhattan Plot of Currently Published Genetic Association Findings in AD
Displayed are �log(10) p values (y axis) of all polymorphisms (n = 2033) with published genetic data currently available on the AlzGene database (http://www.
alzgene.org; current onSeptember 27, 2010), listed in genomic order (x axis). Greendots represent p values resulting from random-effects allele-basedmeta-anal-
yses ofR four independent data sets using either genotype summary data or effect size estimates provided in the original publications. Black/gray dots represent
either single-study p values or the results ofmeta-analyses on < four independent data sets. Red horizontal line indicates one common threshold for genome-wide
significance (p = 13 10�7). Note that p values at theAPOE locus actually go below 13 10�50 and are truncated here for display purposes. Vertical columns repre-
sent approximate locations of LOAD linkage findings (based on a ‘‘narrow definition’’ of diagnosing AD) as reported in a recent meta-analysis of LOAD linkage
studies (Butler et al., 2009). Dark columns represent regions that showed ‘‘genome-wide suggestive,’’ while light columns showed ‘‘genome-wide nominal’’
evidence for linkage. Genes in blue font represent the approximate locations of the currently knownEOFADgenes. Data fromboth resourceswere scaled to repre-
sent the NCBI36/hg18 build of the human reference genome. The plot was generated in R using ‘‘qqman’’ (http://gettinggeneticsdone.blogspot.com/).
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close to the linkage peak. This approach led to the identification

of three distinct genetic loci—APP (amyloid precursor protein) on

chromosome 21q, PSEN1 (presenilin 1) on 14q, and PSEN2

(presenilin 2, a homolog of PSEN1), on 1q—that cause AD with

high penetrance in mutation carriers (reviewed in Tanzi and

Bertram, 2005). Currently, more than 200 distinct disease-

causing mutations are known across these genes and several

more are discovered each year (for an up-to-date overview see

the AD & FTD Mutation Database [Cruts and Van Broeckhoven,

1998], http://www.molgen.ua.ac.be/admutations/). Concurrent

with a wealth of functional and molecular genetic data, the iden-

tification of these EOFAD genes has significantly informed our

understanding of the pathogenetic mechanisms underlying neu-

rodegeneration in AD, which inmost instances proved to be con-
nected to an abnormal production of the Ab peptide, although

some were also found to influence Ab clearance or aggregation

(Murakami et al., 2003; Tsubuki et al., 2003).

Ab is cleaved from APP by the subsequent action of two

enzymes, b- and g-secretase (Cole and Vassar, 2008; Steiner

et al., 2008). Interestingly, the catalytic center of g-secretase is

encoded by the EOFAD genes PSEN1 and PSEN2. This

convergence of genetic and molecular evidence has given

support to the ‘‘amyloid hypothesis,’’ which postulates that the

abnormal production of Ab is the initial step in triggering the

pathophysiological cascade that eventually leads to AD (Glenner

and Wong, 1984; Hardy and Higgins, 1992; reviewed in Tanzi

and Bertram, 2005), and that other neuropathological hallmarks

of AD—hyperphosphorlylated t-protein and neurofibrillary
Neuron 68, October 21, 2010 ª2010 Elsevier Inc. 271
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Table 1. Overview of All Published GWAS in AD

GWAS Design Population No. SNPs

No. AD GWAS

(Follow-up)

No. CTRL GWAS

(Follow-up) ‘‘Featured’’ Genes

Grupe et al., 2007 Case-control USA & UK 17,343 380 (1428) 396 (1666) APOE, ACAN, BCR, CTSS,

EBF3, FAM63A**, GALP,

GWA_14q32.13,

GWA_7p15.2, LMNA,

LOC651924, MYH13, PCK1,

PGBD1, TNK1, TRAK2, UBD

Coon et al., 2007;

Reiman et al., 2007

Case-control USA, Netherlands# 502,627 446 (415) 290 (260) APOE, GAB2

Li et al., 2008 Case-control Canada & UK 469,438 753 (418) 736 (249) APOE, GOLM1,

GWA_15q21.2,

GWA_9p24.3

Poduslo et al., 2009 Family-based

& Case-control

USA 489,218 9 (199) 10 (225) TRPC4AP

Abraham et al., 2008 Case-control UKz 561,494 1082 (-) 1239 (1400) APOE, LRAT

Bertram et al., 2008 Family-based USA 484,522 941 (1767) 404 (838) APOE, ATXN1, CD33,

GWA_14q31

Beecham et al., 2009 Case-control USA^ 532,000 492 (238) 496 (220) APOE, FAM113B

Carrasquillo et al., 2009 Case-control USAC 313,504 844 (1547) 1255 (1209) APOE, PCDH11X

Lambert et al., 2009 Case-control Europez �540,000 2035 (3978) 5328 (3297) APOE, CLU (APOJ), CR1

Harold et al., 2009 Case-control USA & EuropeCz �610,000 3941 (2023) 7848 (2340) APOE, CLU (APOJ),

PICALM

Heinzen et al., 2009 (CNV) Case-control USA^ n.g. 331 (-) 368 (-) APOE, CHRNA7

Potkin et al., 2009 Case-control USA (ADNI)y 516,645 172 (-) 209 (-) APOE, ARSB, CAND1,

EFNA5, MAGI2, PRUNE2

Seshadri et al., 2010 Case-control Europe & USACz# �2,540,000 3006 (6505) 22604 (13532) APOE, BIN1, CLU (APOJ),

EXOC3L2, PICALM

Naj et al., 2010 Case-control USA & Europey#^ 483,399 931 (1338) 1104 (2003) APOE, MTHFD1L

Modified after content on the AlzGenewebsite (http://www.alzgene.org; current on September 27th 2010). Studies are listed in order of publication date

(determined by PubMed-ID number). ‘‘Featured Genes’’ are those genes/loci that were declared as ‘‘associated’’ in the original publication, although

criteria for declaring association may vary across studies; genes underlined and in bold font were reported to show experiment-wide ‘‘genome-wide

significant’’ association; inmany studies, surrogatemarker were used forAPOE.Numbers of ‘‘ADCases’’ and ‘‘Controls’’ refers to sample sizes used in

initial GWAS screening, whereas ‘‘Follow-up’’ refers follow-up data sets (where applicable); please consult AlzGene website for more details on these

studies. Symbols (C, z, #, y, ^) indicate sample overlap across studies with identical symbols. **This locus was originally named ‘‘THEM5.’’
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tangles, vascular damage, and inflammation—are conse-

quences, rather than causes, of the disease process. The

amyloid hypothesis has also informed the search for and func-

tional interpretation of genetic factors in LOAD (see below).While

the three currently known EOFAD genes explain a large propor-

tion of theMendelian forms of AD, they do not explain all, making

it likely that additional EOFAD-causing genes exist, which—if

identified—could provide novel and valuable insights into the

pathogenesis of AD.

Candidate Gene Studies in AD
The fact that most currently known EOFAD genes cause AD by

an abnormal production of the Ab peptide led to the formulation

of other Ab-centered hypotheses in the search for the genetic

causes of LOAD (e.g., with potential effects on Ab production,

aggregation, or clearance; Table 2). One of the first such ‘‘candi-

date genes’’ assessed for genetic association with AD was

APOE (encoding apolipoprotein E [apoE]) on chromosome

19q13. Since the APOE-containing chromosomal region was
272 Neuron 68, October 21, 2010 ª2010 Elsevier Inc.
implied by means of genetic linkage analysis before any bona

fide association studies were conducted (Pericak-Vance et al.,

1991), APOE was a candidate gene on both functional and posi-

tional grounds, a convergence that has (re)emerged for some of

the most recently implicated LOAD genes (Figure 1). The original

discovery that the 34 allele of a 3 allele haplotype (composed of

32, 33, and 34 alleles, which show different biochemical proper-

ties at the protein level) leads to a dose-dependent increase in

AD risk of �4-fold as compared to noncarriers (Strittmatter

et al., 1993) has been replicated in essentially all independent

follow-up studies (Bertram et al., 2007). The association between

increased risk for AD and 34 continues to be—by a margin—the

lead association finding even in modern-days genetic studies of

LOAD (Table 1). In contrast to 34, the rarer 32 allele appears to

exert ‘‘protective’’ effects (or ‘‘healthier aging’’) when inherited

with the 33 allele as compared to homozygous 33 allele carriers

(Corder et al., 1994; Gerdes et al., 2000), a finding that has

been consistently replicated, albeit at lower statistical signifi-

cance (Farrer et al., 1997).

http://www.alzgene.org
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Functionally, apoE-dysfunction has been connected to

several pieces in the puzzle of Ab-centered AD hypotheses

(Table 2), and a detailed discussion of the wealth of in vitro and

in vivo evidence supporting its role in AD pathogenesis is beyond

the scope of this review (for recent reviews, see Kim et al., 2009a,

and Vance and Hayashi, 2010). However, despite the broad

molecular evidence that apoE protein is involved in AD-specific

pathways, it is interesting that genetic variation in the APOE

gene has also been associated with risk for numerous other

neuropsychiatric disorders including Parkinson disease (Lill

et al., 2010b; Williams-Gray et al., 2009) and multiple sclerosis

(Lill et al., 2010a), as well as a number of cardio- and cerebrovas-

cular diseases (Peck et al., 2008; Willer et al., 2008), age-related

macular degeneration (Bojanowski et al., 2006), and longevity

(Sebastiani et al., 2010; Gerdes et al., 2000). It should be noted,

however, that different alleles are associated with disease risk

across different phenotypes and none of these associations is

nearly as well established as APOE’s effects on AD risk. Func-

tionally, all of the aforementioned putative associations could

at least partially relate to apoE’s pivotal role in lipid and choles-

terol metabolism (Zhang et al., 1992).

The nonspecific nature of the APOE-AD association has

prompted several investigators to propose that the actual AD-

predisposing effect may be exerted by other genes/proteins in

the chromosomal interval containing APOE (Takei et al., 2009;

Roses et al., 2010). The latter study identified a polymorphic

poly-T variant in TOMM40 (encoding translocase of outer mito-

chondrial membrane 40 homolog; which maps only �2,000 bp

proximal of APOE), of which ‘‘long’’ poly-T repeats are associ-

ated with a younger onset age even in 33 allele carriers as

compared to ‘‘short’’ poly-T repeats. If confirmed in independent

data sets, this finding could explain why the 34 allele in APOE

does not account for all of the genetic variance attributed to

the chromosome 19q13 region in LOAD. In addition, it was

recently proposed that genetic variants in or near the EXOC3L2

(exocyst complex component 3-like 2) gene (�300 kb distal of

APOE) may have an effect on AD risk that is independent of 34

(Seshadri et al., 2010). Unfortunately, systematic assessment

of the possible genotype-phenotype correlations in the chromo-

somal interval containingAPOE is aggravated by the fact that the

SNPs defining the 32/3/4 haplotypes are only poorly covered by

current genome-wide microarrays, necessitating manual rege-

notyping in most instances (Thompson et al., 2009).

The early success of the candidate gene approach in AD has

spurred a large number of genetic association studies assessing

other loci of potential relevance based on functional hypotheses

(mostly Ab-centered). The outcomes have been inconsistent; of

the nearly 700 candidate AD genes investigated over the past

30 years, only few show significant risk effects when data from

all available studies are combined (Bertram and Tanzi, 2008)

(for an up-to-date overview see the AlzGene Database). Note-

worthy examples include associations seen with common

variants in ACE (angiotensin-converting enzyme; Kehoe et al.,

1999), ADAM10 (disintegrin and metalloproteinase domain-con-

taining protein 10; Kim et al., 2009b), CHRNB2 (cholinergic

receptor, nicotinic, beta 2; Cook et al., 2004), DAPK1 (death-

associated protein kinase 1; Li et al., 2006), IL8 (interleukin 8;

Li et al., 2009), MTHFR (methylenetetrahydrofolate reductase;
Chapman et al., 1998), OTC (ornithine carbamoyltransferase;

Bensemain et al., 2009), SORL1 (sortilin-related receptor;

Rogaeva et al., 2007), and TF (transferrin; van Rensburg et al.,

1993), which all show modest genetic effects but only modest

statistical support in random-effects meta-analyses. While the

modest effect sizes exerted by these candidate loci (i.e., odds

ratios [OR] between �1.15 and 1.5) are quite typical for geneti-

cally complex diseases, their statistical support (i.e., p values

between �0.0001 and 0.01) is orders of magnitude below (i.e.,

less significant) that observed for loci that have recently emerged

from GWAS in AD (i.e., p values << 13 10�7, Figure 1). This can

be attributed to a number of reasons likely acting in combination,

including type-I error, small sample size, and different sources of

bias (Ioannidis, 2005). It is interesting to note that the candidate

gene approach was substantially more successful in identifying

robust disease associations in some other disorders, such as

Parkinson disease (PD), where the lead susceptibility signals

(SNCA [a-synuclein], MAPT [microtubule-associated protein

tau], LRRK2 [leucine-rich repeat kinase 2], GBA [glucosidase,

beta, acid]) were already established with genome-wide signifi-

cance years before the GWAS era (Lill et al., 2010b; Ross and

Farrer, 2010). Another surprising difference between AD and

PD is that two of the genes established to cause autosomal-

dominant forms of PD (SNCA and LRRK2) also show unequiv-

ocal and highly significant risk effects on non-Mendelian

(‘‘idiopathic’’) PD, while no such correlation appears to exist in

AD for APP, PSEN1, and PSEN2 (AlzGene database). Further-

more, MAPT (encoding t-protein, the abnormal deposition of

which represents a neuropathological hallmark for AD but not

PD) is highly significantly associated with risk for PD (p = 3.6 3

10�21), but currently not AD.

Genome-wide Association Studies in AD
One of the main limitations of the candidate gene approach is

its focus on a preconceived functional and/or positional hypoth-

esis. Until recently, this approach was aggravated by technical

limitations, as it was both laborious and expensive to develop

multiplex genotyping assays that allowed for investigation of

more than a fewmarkers at a time. In the last five years, however,

the advent of microarray technology has revolutionized genetics

research, and it is now possible to assess several hundreds of

thousands (or via in silico genotyping, or imputation, several

millions) of single-nucleotide polymorphisms (SNPs) in one

experiment. Usually, SNPs on these microarrays are inter-

spersed at high density throughout all chromosomes, effectively

allowing one to perform genome-wide association testing in a

largely hypothesis-free manner, e.g., as GWAS. While genome-

wide screening has distinct advantages,massivemultiple testing

is a critical issue and substantially more rigorous criteria are

required to declare an association as being ‘‘significant’’ on an

experiment-wide level. Several thresholds to declare genome-

wide significance have been proposed, with p values usually

ranging between 5 3 10�7 and 5 3 10�8 (Ioannidis et al., 2009;

McCarthy et al., 2008), although there are other ways to deter-

mine study-specific genome-wide significance (Ionita-Laza

et al., 2007).

Several GWAShave been performed in AD to date (Table 1). All

but one have seen APOE as the by far most significant finding
Neuron 68, October 21, 2010 ª2010 Elsevier Inc. 273



Neuron

Review
(with p values down to�13 10�160; Harold et al., 2009), but over

three dozen other loci beyond APOE have been implicated

(Table 1). Of these, only a few were reported to show study-

specific genome-wide significance in at least one report, and

only these loci will be discussed in chronological order in the

remainder of this section.

The first genome-wide significant finding was reported for

GAB2 (GRB2-associated binding protein 2) by Reiman et al.

(2007), who found this effect to be most pronounced in carriers

of the 34 allele at APOE. This finding has been met with mixed

replications (e.g., Chapuis et al., 2008; Sleegers et al., 2009)

and currently shows a p value of 2.2 3 10�3 in the ongoing

AlzGene meta-analyses. It also showed nonsignificant (p value

�0.15) effect sizes in the same direction as in the original report

in a large subsequently published GWAS (Harold et al., 2009),

although no further details were given. Functionally, GAB2

protein may be involved in the production of Ab as it binds to

Grb2 (growth factor receptor-bound protein 2), which in return

can bind APP and both presenilins (Nizzari et al., 2007). Other

data also suggest a potential involvement in tau phosphorylation

and NFT formation (Reiman et al., 2007).

The second genome-wide significant association signals were

reported by Bertram et al. (2008), in a family-based GWAS for

ATXN1 (ataxin 1), CD33 (siglec 3), and an as yet uncharacterized

locus on chromosome 14 (GWA_14q31.2). While for the latter,

current AlzGenemeta-analyses show no support of independent

replication in case-control data sets (e.g., Bettens et al., 2009),

only insufficient data exist to merit meta-analyses for the other

two loci (although Harold et al. [2009] reported no evidence for

association with either of these genes). Functional genetic

experiments suggest that differences in ATXN1 expression can

modulate Ab levels in vitro, an effect that appears to bemediated

via b-secretase cleavage of APP (Zhang et al., 2010). CD33

belongs to the family of sialic acid-binding, immunoglobulin-

like lectins that are believed to promote cell-cell interactions

and to regulate the functions of cells in the adaptive and innate

immune systems (Crocker et al., 2007; von Gunten and Simon,

2006), both involved in contributing to the inflammatory reac-

tions observed in the brains of AD patients. In this context it is

interesting to note recent data suggesting that Ab could function

as an antimicrobial peptide that may have a normal function in

the innate immune system (Soscia et al., 2010).

In 2009, several AD GWAS were published suggesting the

presence of additional AD susceptibility genes. First, Carra-

squillo et al. (2009), highlighted PCDH11X (protocadherin 11

X-linked), currently the only GWAS signal on the X chromosome.

Just like several other loci discussed in this section, independent

replication of this finding has been inconsistent (e.g., Beecham

et al., 2010). Some protocadherins have been proposed as

g-secretase substrates (Haas et al., 2005), and it remains to

be seen whether or not PCDH11X competes with APP for g-sec-

retase.

Later that year, two large GWAS from the UK (Harold et al.,

2009) and France (Lambert et al., 2009) were published back-

to-back highlighting three novel AD genes, i.e., CLU (clusterin;

a.k.a. apolipoprotein J), CR1 (complement component (3b/4b)

receptor 1), and PICALM (phosphatidylinositol binding clathrin

assembly protein). All three of these loci have since received
274 Neuron 68, October 21, 2010 ª2010 Elsevier Inc.
overwhelming support from independent follow-up studies

(Carrasquillo et al., 2010; Jun et al., 2010; Schjeide et al., in

press) and currently rank at the very top of the AlzGene meta-

analyses, directly following APOE. All three loci show genome-

wide significant association in allelic meta-analyses combining

all available data with p values ranging from 2.1 3 10�20 (CLU;

rs11136000), 2.7 3 10�8 (CR1; rs3818361), and 1.1 3 10�16

(PICALM; rs3851179; Figure 1). In addition, there are several

other SNPs in each of these loci showing highly significant asso-

ciation (p values < 1 3 10�5) with AD risk, leaving essentially no

doubt that variants in these or nearby genes represent genuine

AD susceptibility loci. Furthermore, it is interesting to note

that—like APOE—two of these novel AD loci map in or close to

regions showing strong evidence for LOAD linkage in a recent

meta-analysis of genome-wide linkage studies (Butler et al.,

2009), i.e., CLU on chromosome 8p21 and CR1 on 1q32.2 (Fig-

ure 1). Despite their strong statistical support, it should be

emphasized that the effect sizes exerted by these loci are

collectively low (allelic ORs �1.15 for all three loci), which is

much less than for APOE 34 (allelic OR �4) or other established

neurodegenerative disease loci (e.g., ORs > 1.3 for three of the

established Parkinson susceptibility loci—SNCA, MAPT, and

LRRK2—which were all confirmed by different GWAS; Pankratz

et al., 2009; Simón-Sánchez et al., 2009; Satake et al., 2009).

Functionally, the novel loci implicated by Harold et al. (2009)

and Lambert et al. (2009) may exert their effects in a number of

ways (Table 2). Clusterin is a �75 kDa chaperone molecule

that is expressed in all tissues, including the CNS. The main

associated SNP (rs11136000) lies deeply intronic with no known

or implied functional effect. In addition to possibly being involved

in clearance and aggregation of Ab, clusterin has also been

reported to be involved in Ab fibrillization (DeMattos et al.,

2002, 2004), regulation of brain cholesterol and lipidmetabolism,

and the inhibition of neuronal apoptosis/potentiation of neuro-

protection (Nuutinen et al., 2009). CR1 is the main receptor of

the complement C3b protein, a key inflammatory protein acti-

vated in AD (Khera and Das, 2009; Wyss-Coray et al., 2002). In

vitro and in vivo experiments suggest that complement activa-

tion can protect against Ab-induced neurotoxicity and may

reduce the accumulation/promote the clearance of amyloid

and degenerating neurons (Rogers et al., 2006; Wyss-Coray

et al., 2002). PICALM plays a role in clathrin-mediated endocy-

tosis (Tebar et al., 1999), synaptic transmission, and the removal

of apoptotic cells (Harel et al., 2008; Yao et al., 2005). With

respect to AD it is interesting that the C-terminal fragment of

APP generated by b-secretase cleavage undergoes clathrin-

mediated endocytosis before being cleaved by g-secretase

(Koo and Squazzo, 1994). It is therefore possible that dysfunc-

tional PICALM protein could interfere with this process, but

this notion has not been supported by preliminary in vitro studies

(Wu et al., 2009). Furthermore, brain-expressed PICALM protein

is predominately expressed in endothelial cells, where it could

play a role in Ab transport into the bloodstream (Baig et al.,

2010). The hypothesis that PICALMmay be involved in Ab clear-

ance is also supported by recent data indicating that—like APOE

34—the PICALM risk allele is associated with reduced levels of

Ab in the cerebrospinal fluid of AD patients and control individ-

uals (Schjeide et al., in press).



Table 2. Potential Mechanisms Linking Genome-wide Association Findings to AD Pathogenesis

APOE ATXN1 BIN1 CD33 CLU CR1 GAB2 PCDH11X PICALM

Ab-production Zhang et al.,

2010

Wigge et al.,

1997;

Pant et al.,

2009

Nizzari et al.,

2007

Haas et al.,

2005

Tebar et al.,

1999

Ab-aggregation Kim et al.,

2009a;

Moir et al.,

1999

DeMattos et al.,

2002;

Thambisetty et al.,

2010

Ab-clearance Kim et al.,

2009a;

Holtzman et al.,

1999

Wigge et al.,

1997;

Pant et al.,

2009

Zlokovic et al.,

1996;

DeMattos et al.,

2004

Wyss-Coray et al.,

2002;

Rogers et al.,

2006

Tebar et al.,

1999;

Baig et al.,

2010

t-phosphorylation Reiman et al.,

2007

Synaptic

transmission

Senzaki et al.,

1999;

Blanco et al.,

2000

Yao et al.,

2005;

Harel et al.,

2008

Inflammation Kim et al.,

2009a

Crocker et al.,

2007;

von Gunten

and Simon,

2006

Xie et al., 2005 Wyss-Coray et al.,

2002; Khera

and Das,

2009

Cerebrovascular

events

Kim et al., 2009a

Schematic overview of the potential functional impact of GWAS findings and their reported or suggested potential involvement in a number of pathogenetic pathways of relevance to AD. Only
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In 2010, two further GWAS were published suggesting the

existence of three additional AD susceptibility loci. The first

(Seshadri et al., 2010) resulted from a large collaborative effort

that also included the GWAS data from four of the five aforemen-

tioned studies (Table 1). In addition to replicating the association

between CLU and PICALM—which was not unexpected given

that a large proportion of samples overlapped with the GWAS

that originally implicated these genes—this study highlighted

two potential additional AD risk factors, i.e., BIN1 (bridging

integrator 1; originally implicated at subgenome-wide signifi-

cance by Harold et al. [2009]) and EXOC3L2 (exocyst complex

component 3-like 2), or a locus nearby on chromosome

19q13.32. Combining all available data, both genes currently

display highly significant association with AD risk on AlzGene

with p values around 3.0 3 10�10 and 2.1 x 10�10, respectively

(Figure 1), and allelic ORs in the order of�1.15.BIN1 (also known

as amphiphysin II) encodes several isoforms of an adaptor

protein involved in receptor-mediated endocytosis (Pant et al.,

2009; Wigge et al., 1997), which—as hypothesized for PIC-

ALM—could have an effect on Ab production and/or the

clearance of Ab from the brain. In addition, rare, homozygous

mutations inBIN1 have been found to cause recessive centronu-

clear myopathy, a condition characterized by muscle weakness

and abnormal centralization of nuclei in muscle fibers (Nicot

et al., 2007). The disease-causing effect is probably triggered

by abrogating BIN1’s interaction with dynamin 2, which has

also been associated with risk for LOAD in candidate gene

analyses (Aidaralieva et al., 2008), albeit inconsistently. The

biological function of the protein encoded by EXOC3L2

remains largely elusive. It should be emphasized, however,

that the �100 kb region harboring the risk-associated variant

(rs597668) on chromosome 19q13.32 contains several other

genes (e.g.,NKPD1 [NTPase, KAP family P loop domain contain-

ing 1], TRAPPC6A [trafficking protein particle complex 6A],

BLOC1S3 [biogenesis of lysosomal organelles complex-1,

subunit 3],MARKL1 [MAP/microtubule affinity-regulating kinase

4], and MARK4 [MAP/microtubule affinity-regulating kinase 4]),

which could also represent the functional correlates underlying

this association. It is also noteworthy that the associated SNP

only maps �300 kb distal to the APOE region, so it remains to

be seen whether these two regions are genetically/functionally

related. It also is quite possible that rs597668 ismerely ‘‘tagging’’

the association with APOE and does not actually represent

a novel AD locus in its own right.

The latest addition to the set of GWAS-derived putative LOAD

loci is MTHFD1L (methylenetetrahydrofolate dehydrogenase

[NADP+ dependent] 1-like), recently reported to show genome-

wide significant association with AD risk in �5,000 individuals

(Naj et al., 2010). In contrast to most other AD GWAS findings,

the risk allele at the associated SNP (rs11754661) appears

to confer relatively large effect sizes, i.e., allelic ORs �2, which

translates into nearly doubling the risk for AD in carriers of

the minor allele. The study was an extension of this group’s

earlier GWAS (Beecham et al., 2009), which had already previ-

ously implicated this locus at genome-wide suggestive signifi-

cance. As such, it was included in auxiliary analyses of the

GWAS by (Harold et al., 2009), who reported no evidence of

association with SNP rs11754661 in their sample (OR = 1,
276 Neuron 68, October 21, 2010 ª2010 Elsevier Inc.
p = 0.98), despite excellent power to detect the proposed OR

of �2.

In summary, GWAS have substantially reshaped the land-

scape of LOAD genetics during the course of only three years.

Currently, the most promising findings relate to the identification

of variants in or near BIN1, CLU, CR1, and PICALM whose

status as novel AD risk loci have been confirmed by extensive

and independent replication data. Other GWAS loci, such as

ATXN1, CD33, EXOC3L2, GAB2, MTHFD1L, and PCDH11X,

should be considered more provisional until further replication

data become available. While fine-mapping and biochemical

studies are still needed to identify the sequence variants under-

lying the currently observed genetic associations and to confirm

and characterize their presumed molecular effects, nearly all of

the newly reported GWAS loci have been linked to Ab metabo-

lism in one or more ways (Table 2). In particular, this relates to

Ab-aggregation or clearance of Ab from the brain either directly

or indirectly, e.g., via effects on the immune system response

to Ab-related toxicity. However, these potential, Ab-centered

functional connections are still preliminary in most instances,

and further research is needed to clarify whether or not other

pathways are affected by these loci. Furthermore, it can be

expected that several additional AD susceptibility variants will

be identified in future genome-wide efforts using higher-density

microarrays in combination with substantially increased sample

sizes, alternative phenotype definitions (e.g., ‘‘endophenotypes’’

such as neuroimaging or CSF biomarker levels), and via system-

atic data-integration and meta-analysis efforts. It remains to be

seen whether these findings will reveal hitherto unrecognized,

novel pathogenetic mechanisms beyond those related to the

metabolism of APP and Ab.

Back to the Future: Beyond GWAS and the Search
for Causal Variants
Despite the enthusiasm revolving around the novel GWAS find-

ings, it should not be forgotten that, individually, the risk effects

exerted by the new GWAS loci are small, i.e., they confer a mere

�0.10-fold to 0.15-fold increase or decrease in AD risk in carriers

versus noncarriers of the associated alleles, compared to

a nearly 4-fold increase in AD risk related to the presence of

the APOE 34 allele. Although to date no precise estimate exists

regarding the proportion of LOAD heritability explained by the

combined effects of APOE and the confirmed GWAS loci,

it appears reasonable to assume that this proportion does not

exceed 50%. This is the upper bound of explained heritability

in other complex diseases for which—unlike AD—significant

association has been demonstrated for several common loci of

large effect (i.e., ORs > 2 to > 3), such as age-related macular

degeneration (Chen et al., 2010; Manolio et al., 2009). In other

words, a substantial proportion of the heritability for LOAD likely

remains unexplained by the currently known susceptibility

genes. The ‘‘missing heritability’’ in these traits has been coined

as the ‘‘dark matter’’ of GWAS, in the sense that ‘‘one is sure it

exists, can detect its influence, but simply cannot see it (yet)’’

(Manolio et al., 2009).

There are four main areas likely to account for the missing

heritability in AD: (1) common variants that are inappropriately

tagged by any of the existing microarrays; (2) common variants
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that are tagged by existing microarrays but exert even smaller

effects than the ones already identified (i.e., ORs < 1.1) and

can only be identified in very large sample sizes (for AD this

would require between �25,000 and > 100,000 combined

cases and controls for allele frequencies ranging between 0.5

and 0.05, respectively, to be detected at genome-wide signifi-

cance, i.e., p values �1 3 10�7); (3) copy-number variants

and structural chromosomal changes (while these can be

resolved to a certain degree on existing GWAS microarrays,

this has only rarely been carried out for AD to date, see Table

1); (4) rare sequence variants (e.g., with minor allele frequencies

<< 5%) conferring both small and large effects. While the

former three issues can be addressed by upcoming GWAS,

current microarray technology is not designed for de novo

identification or the reliable measurement of rare sequence

variants. As a matter of fact, owing to this inherent limitation,

most GWAS analysis pipelines explicitly exclude rare variants

(e.g., MAFs < 5% or < 1%) prior to analysis. Thus, the identifi-

cation of the presumed disease-associated rare variants will

require deep resequencing in suitable data sets, either small

scale (i.e., restricted to specific loci, e.g., previously associated

GWAS regions, similar to what has been done for years in

positional cloning and candidate gene experiments) or large

scale (e.g., whole exome, or whole genome). The genetics

community has already begun to construct a comprehensive

catalog of rare sequence variants in the human genome by

applying large-scale resequencing using recently developed,

massively parallel (so called ‘‘next-generation’’) sequencing

techniques, e.g., as part of the 1000 Genomes project (http://

www.1000genomes.org/). For the most part, however, this will

not alleviate the need to actually directly test these variants in

sufficiently large collections of affected and unaffected individ-

uals in disease-centered discovery projects.

As for all previous eras of human genetic research (i.e., posi-

tional cloning, candidate gene, GWAS), the specific disease-

causing or disease-modifying effects can only be established

following in-depth functional genetic characterization of the

associated variants, followed by validation in patient materials

and/or relevant animal models. While this molecular evidence

has proven immensely difficult to attain for most common

variants of small effect, the functional characterization of the

rare, EOFAD-causing mutations in APP, PSEN1, and PSEN2

has been pivotal for our understanding of AD pathogenesis.

This can be attributed to the fact that most EOFAD mutations

engender amino acid changes with clear functional conse-

quences on Ab metabolism. In contrast, common disease-

associated variants often lie in genomic regions of no obvious

functional consequence, e.g., gene deserts, or deep within

introns. Based on the sheer number of potentially functional

coding region variants to emerge from deep resequencing

efforts over the coming years, much of the progress in the field

will depend on the development of appropriate and efficient

in silico and in vitro high-throughput pipelines to study variant-

activity relationships in a systematic manner.

It goes beyond the scope of this review to provide a detailed

account of the various available approaches for the generation

and analysis of large-scale resequencing data aimed at identi-

fying rare variants linked to disease. However, several landmark,
proof-of-principle projects have already been completed that

can be regarded as initial reference (reviewed in Manolio et al.,

2009; McClellan and King, 2010). These studies succeeded not

only to identify novel disease-causing variants of Mendelian

diseases in genes previously unlinked to the specific traits

(Bilgüvar et al., 2010; Gilissen et al., 2010; Ng et al., 2010), but

also to ‘‘resolve’’ the complex patterns that typically emerge

from GWAS approaches (Dickson et al., 2010; Johansen et al.,

2010; Nejentsev et al., 2009), althoughmost of these findings still

await functional genetic confirmation and characterization.

It does not seem too far-fetched to expect that in AD, as well,

such efforts will revolutionize our understanding of the true

genetic forces underlying disease susceptibility, possibly more

so than GWAS have begun to expand our knowledge about

the genetic basis of LOAD beyond APOE.

A continuing challenge in the coming years will be to efficiently

distinguish between findings that likely reflect genuine genetic

effects versus those that are simply due to chance. For common

variants, i.e., those typically assayed in candidate gene or GWAS

approaches, several guidelines have already been suggested

(e.g., Chanock et al., 2007; Little et al., 2009; Khoury et al.,

2009) that essentially amount to demonstrating genome-wide

significance upon combining results from all available data

sets (e.g., via meta-analysis) in the absence of significant hetero-

geneity or bias. For variants with only insufficient support

(e.g., those showing nominal association but lacking power to

achieve genome-wide significance), intermediate measures

have been proposed that may help to assess the ‘‘solidity’’ of

a finding until sufficient data are available (e.g., using Bayesian

analyses to estimate the odds that a finding is ‘‘real’’ [Wellcome

Trust Case Control Consortium, 2007; Wakefield, 2007], or

grading its ‘‘epidemiologic credibility’’ [Ioannidis et al., 2008]).

For rare variants, the situation is more complex for a number of

reasons, including the need for very large sample sizes (owing

to the low allele frequencies), or confounding due to allelic

heterogeneity (i.e., different alleles in the same gene that

contribute independent risk effects). Several approaches have

been suggested to overcome these issues, e.g., to pool variants

within the same coding regions (Price et al., 2010) or to measure

general ‘‘mutational load’’ in case versus control subjects

(International Schizophrenia Consortium, 2008). A crucial factor

in this context will be to distinguish between rare variants with

disease-specific effects from neutral coding changes, e.g., by

means of high-throughput functional assays and/or by studying

pedigrees rather than unrelated cases and controls to prove

cosegregation with disease status.

Conclusions
Three decades of genetic research in AD have substantially

broadened our understanding of the pathogenetic mechanisms

leading to neurodegeneration and dementia. Initially, genetic

linkage analysis followed by positional cloning identified the

major causes underlying EOFAD by pinpointing rare, disease-

causing mutations in APP, PSEN1, and PSEN2. Candidate

gene approaches, sometimes informed by genetic linkage

results, have led to the discovery of APOE as the single most

important risk factor for LOAD. Recently, GWAS have delivered

several additional susceptibility loci that are common in the
Neuron 68, October 21, 2010 ª2010 Elsevier Inc. 277
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general population, but only exert very small genetic effects.

Several other common risk-factor genes can be expected to

emerge from GWAS in the coming years. Collectively, however,

a large proportion of the heritability of AD will continue to remain

unexplained by the variants invoking these association signals.

It seems likely that much of the ‘‘missing heritability’’ may be

caused by rare sequence variants in genes that predispose to

both early- and late-onset forms of AD.

For the first time in the history of human genetics research, the

genetic basis of AD and other heritable diseases can be

assessed in unprecedented detail and efficiency owing to recent

advances in large-scale sequencing technologies. Our initial

understanding of the etiology of AD began with the identification

of rare causal mutations in EOFAD. As we commence to engage

in large-scale resequencing projects, we may very well find

ourselves ‘‘back to the future’’ by discovering rare causal

variants in genes that were initially associated with AD based

on common SNPs appearing to exert only small effects on

disease risk.
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