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Combined analyses of gene networks and DNA sequence variation
can provide new insights into the aetiology of common diseases
that may not be apparent from genome-wide association studies
alone. Recent advances in rat genomics are facilitating systems-
genetics approaches1,2. Here we report the use of integrated
genome-wide approaches across seven rat tissues to identify gene
networks and the loci underlying their regulation. We defined an
interferon regulatory factor 7 (IRF73)-driven inflammatory net-
work (IDIN) enriched for viral response genes, which represents
a molecular biomarker for macrophages and which was regulated
in multiple tissues by a locus on rat chromosome 15q25. We show
that Epstein–Barr virus induced gene 2 (Ebi2, also known as
Gpr183), which lies at this locus and controls B lymphocyte migra-
tion4,5, is expressed in macrophages and regulates the IDIN. The
human orthologous locus on chromosome 13q32 controlled the
human equivalent of the IDIN, which was conserved in monocytes.
IDIN genes were more likely to associate with susceptibility to type
1 diabetes (T1D)—a macrophage-associated autoimmune disease—
than randomly selected immune response genes (P 5 8.85 3 1026).
The human locus controlling the IDIN was associated with the
risk of T1D at single nucleotide polymorphism rs9585056
(P 5 7.0 3 10210; odds ratio, 1.15), which was one of five single
nucleotide polymorphisms in this region associated with EBI2
(GPR183) expression. These data implicate IRF7 network genes
and their regulatory locus in the pathogenesis of T1D.

Although genome-wide association studies (GWASs) have uncov-
ered many common genetic variants associated with human diseases,
the molecular mechanisms by which DNA variation affects disease risk
remain poorly characterized6. To translate genetic association into
biological function, DNA variation has been correlated with gene
expression to identify the genetic drivers of gene networks, which
are coordinately regulated by transcription factors and represent
important determinants of disease aetiology7–9. Here we used a panel
of recombinant inbred rat strains1 to study transcription-factor-driven
gene networks and their regulatory loci and integrated these data with

human gene expression and GWAS data to identify genes, networks
and pathways for human disease (Supplementary Fig. 1).

We combined expression quantitative trait loci (eQTLs) from fat,
kidney and heart1,2 with new eQTL data in aorta, skeletal muscle,
adrenal gland and liver to create genome-wide eQTL data sets across
seven rat tissues. We used a two-step procedure to integrate eQTLs and
transcription factor target genes to identify transcription-factor-driven
gene networks (Supplementary Information). In the first step, we
identified 147 transcription factors whose expression mapped to 587
eQTLs across seven tissues, which were mostly (.90%) under trans-
regulatory genetic control, in keeping with previous studies in
yeast10,11. In the second step, we tested for enrichment of transcription
factor binding sites (TFBSs)12 in the putative promoter sequences of
genes whose expression mapped to trans-eQTLs. Out of the 13 tran-
scription-factor-driven gene networks identified (Supplementary
Table 1) we observed the strongest TFBS enrichment for interferon
regulatory transcription factor Irf7 (P , 1 3 1026; false discovery rate
(FDR), ,5 3 1025). Irf7 TFBSs were predicted in the promoters of 23
genes, including Irf7 itself, that all mapped to a single trans-eQTL on
rat chromosome 15q25 in adrenal gland, kidney, heart and liver. We
confirmed a subset of the predicted Irf7 targets by chromatin immuno-
precipitation and quantitative PCR that established direct interaction
of Irf7 with the promoters of these genes (Fig. 1a–c). Taken together,
this provides evidence for a transcription-factor-driven regulatory
cascade in which genetic variation on chromosome 15q25 modulates
the expression of Irf7 and Irf7 target genes.

Irf7 is a master regulator of the type 1 interferon response3, and
genes directly regulated by Irf7 may comprise the core components
of a larger network, which we identified by genome-wide co-expression
analysis of Irf7 target genes across tissues (Supplementary Informa-
tion). This revealed a network of 247 genes across seven tissues, which
was expanded to 305 genes in four of the seven tissues where additional
gene expression data were available (FDR , 0.1%) (Supplemen-
tary Table 2). Gene Ontology analysis of the network showed enrich-
ment for specific biological processes, including ‘immune response’
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(P 5 7.5 3 10229), and ‘response to virus’ (P 5 9.6 3 1027) (Sup-
plementary Table 3). We designated the network the Irf7-driven
inflammatory gene network (IDIN) (Fig. 1d), which was most enriched
for expression in mouse bone marrow macrophages (P 5 1.6 3 102159)
and human monocytes (P 5 6.0 3 102177), with high levels of expres-
sion in other immune cells, including B lymphocytes (Supplementary
Fig. 2).

Although a core of 23 Irf7 target genes mapped to the same trans-
eQTL on rat chromosome 15, the overall genetic control of the IDIN
was unknown. We used sparse Bayesian regression models13 to deter-
mine the association between expression levels of IDIN genes across
seven tissues with genome-wide single nucleotide polymorphisms

(SNPs) and identify regulatory ‘hot spots’14. The same rat 15q25 locus,
which controlled Irf7 and its targets in trans, was associated with IDIN
expression in all tissues (FDR , 1%) and showed the strongest evid-
ence for common regulation in five out of seven tissues with increased
expression of IDIN genes associated with the spontaneously hyper-
tensive rat (SHR) allele (Fig. 2). The IDIN, which is highly expressed in
immune cells, may represent a molecular signature of macrophages
that are associated with risk of common inflammatory diseases15 and
autoimmune disease T1D16. Hence, we characterized expression of
Cd68, an established marker of macrophages17, in SHR and Brown
Norway hearts and the recombinant inbred strains. Cd68 messenger
RNA levels were elevated in SHR relative to Brown Norway heart
(P 5 0.01), which reflected increased numbers of macrophages
(P 5 2 3 10222). In the recombinant inbred strains, Cd68 was under
trans-acting genetic control at the 15q25 locus that regulates the IDIN
(Supplementary Fig. 3).

We then analysed genetic variation in the recombinant inbred
strains using SNPs18 from the 15q25 region, which contains seven
annotated protein-coding genes, and determined the expression of
IDIN genes in seven inbred rat strains of known genotype that refined
the locus to a 700-kilobase region (Supplementary Fig. 4). Using the
SHR genome sequence19, only Dock9, Ebi2 and Tm9sf2 showed DNA
variation within the region, which was synonymous for Dock9, non-
synonymous but not predicted to be functional for Tm9sf2, and a 59
untranslated region SNP for Ebi2 (Supplementary Table 4). Ebi2 was
the only differentially expressed gene between parental strains within
the region and was cis-regulated in heart and kidney and highly
expressed in myeloid cell types (Supplementary Figs 4 and 5). We
assessed the effect of the Ebi2 59 untranslated region SNP by luciferase
assay; the SHR allele resulted in reduced luciferase activity relative to
the Brown Norway allele (Supplementary Fig. 5).

Ebi2 encodes an orphan G-protein-coupled receptor that controls
B-cell migration4,5 and is a candidate for the regulation of the IDIN at
the chromosome 15q25 region. We localized Ebi2 expression to Cd681

macrophages within the rat heart (Supplementary Fig. 6), an obser-
vation that we confirmed and extended across tissues (pancreas, liver,
kidney and heart) in the Ebi2GFP/1 mouse4 (Supplementary Fig. 7).
Short interfering RNA knockdown of Ebi2 in primary cultures of rat
macrophages (Supplementary Fig. 8a) increased expression of Irf7, the
central hub of the IDIN, and of IDIN genes (Supplementary Fig. 8b).
This suggests that Ebi2 is a negative regulator of the innate immune
response in macrophages, which would be consistent with lower Ebi2
expression in the SHR, which has more macrophages than the Brown
Norway rat (Supplementary Fig. 3).

To translate our findings to humans, we tested whether the IDIN was
recapitulated in human immune cells using genome-wide expression
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Figure 1 | The rat Irf7-driven inflammatory gene network. a, b, Trans-
regulated expression of Irf7 (a) and genes containing Irf7 TFBSs (b) by rat
chromosome 15q25. Left panels, gene expression in the left ventricle is shown in
the recombinant inbred rat strains grouped by SHR or Brown Norway genotype
at SNP J666808 (SHR allele, RI:SHR; Brown Norway allele, RI:BN). Data are
presented as box plots (box, 25th–75th percentiles; solid bar, median; whiskers,
10th–90th percentiles; total n 5 29). Right panels, TFBS predictions are
represented for the five (out of 23 predicted) Irf7 target genes. The chromosome
encoding the Irf7 target is shown to the left of the predicted Irf7 binding sites.
These data provide evidence for a regulatory cascade in which a locus on
chromosome 15q25 regulates the expression of Irf7 on chromosome 1 in an
allele-dependent manner with consequent effects on Irf7 target genes mediated
through Irf7 TFBSs. c, Quantitative chromatin immunoprecipitation of
predicted Irf7 target genes. Direct binding of Irf7 to the promoters of the
predicted targets Ifi27l (Ifi27), Irf7, Lgals3bp, Oas1 (Oas1a) and Sp110 was
confirmed in liver and heart tissues. Fold enrichments are shown relative to
non-immune immunoglobulin-G (IgG) control. Error bars, s.d. (n 5 5). d, The
expanded IDIN comprising 305 genes. Nodes represent genes; the node
representing Irf7 is coloured red and its predicted targets are coloured blue
(Supplementary Table 2). Edges connect genes that are either predicted Irf7
targets (black) or show significant Pearson correlation (FDR , 0.1%) to one of
the predicted targets (grey).
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data from monocytes isolated from 1,490 individuals from the
Gutenberg Heart Study20 (GHS). We performed TFBS enrichment
and co-expression analysis, analogous to that performed in the rat,
and identified the human IRF7-driven network (Supplementary Table
5), which had strong overlap with the rat IDIN (P 5 9.1 3 10220) and
was most significantly annotated by the Gene Ontology term ‘response
to virus’ (P 5 1.9 3 10213) (Supplementary Table 6). Using monocyte
gene expression data from a distinct cohort of 758 subjects from the
Cardiogenics Study (Supplementary Information), we found the same
set of co-regulated IRF7 target genes (Supplementary Table 5) and
significant overlap with the expanded IRF7-driven network indentified
in the GHS (P 5 8.3 3 10223).

We determined whether the human chromosome 13q32 locus
(spanning ,1 Mb; Supplementary Table 7), which is orthologous to
the critical rat chromosome 15q25 region, was associated with express-
ion of IDIN genes in humans. Multivariate analysis of the Cardiogenics
Study monocyte expression and genotype data revealed that six SNPs
in the 13q32 region (including rs9557217 (P 5 5.0 3 1025) and
rs9585056 (P 5 1.1 3 1023)) were associated with trans-regulated
expression of IRF7 and IRF7 target genes (Supplementary Fig. 9).
We did not, however, detect a signal for trans-regulation of IRF7 or
IRF7 target genes at the 13q32 locus in the GHS cohort. This may
reflect differences between the monocyte selection protocols used in
the two studies (Supplementary Information and data not shown).

In both the GHS and Cardiogenics Study cohorts, EBI2 expression
in monocytes was cis-regulated at the 13q32 locus, but the peak
SNPs differed between the two cohorts (most-associated SNPs:
Cardiogenics Study, rs9585056 (P 5 2.2 3 1028); GHS, rs9517725
(P 5 6.8 3 10213)) (Fig. 3). However, a formal hypothesis test21 of a
common causal genetic variant was not rejected (P 5 0.14). Two of the
five SNPs contained in the model explaining EBI2 expression,
rs9557217 and rs9585056, also had a significant trans-effect on IDIN
gene expression in the Cardiogenics Study cohort (Supplementary Fig.
9), suggesting common regulatory control by this locus on the IRF7
network and EBI2 expression.

Monocyte-derived macrophages are critical determinants of inflam-
matory processes important for common diseases15, including auto-
immune T1D22. The IDIN is expressed in macrophages, enriched for
immune response genes, and contained IFIH1, a well-characterized
T1D susceptibility gene23,24. We evaluated the association of the
human orthologues of rat IDIN genes and genes in the human IDIN
(Fig. 3) with T1D (Supplementary Information). SNPs close to
(#1 Mb from) any IDIN genes were significantly more likely to associate
with T1D in large-scale GWASs than SNPs close to genes not in the
network (P 5 2.4 3 10210) (Supplementary Table 8). We also tested
the IDIN association with T1D against all genes annotated by the
Gene Ontology term ‘immune response’ and established an over-
representation of T1D-associated genes (P 5 8.85 3 1026), indicating
that the IDIN more specifically categorizes T1D genes than the Gene
Ontology term ‘immune response’. The association of the IDIN with
T1D genes remained when the human leukocyte antigen locus was
removed from the analysis (P 5 8.57 3 1024; Supplementary Table 8).
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Figure 2 | Genetic mapping of regulatory hot spots for the IDIN. a–g, For
each rat autosomal chromosome (horizontal axes), the strength of evidence for
a SNP being a regulatory hot spot for controlling the network expression in
seven tissues is measured by the average Bayes factor (vertical axes).
Controlling the FDR at the 1% level for each eQTL, the average Bayes factor
indicates the evidence in favour of common genetic regulation versus no
genetic control, and is reported as a ratio between the strengths of these models
(Supplementary Information). For the ten largest regulatory hot spots, the
average Bayes factors (circles) and their 90% range (5th–95th percentiles, bars)
are reported; a single SNP (J666808) that is consistently and most strongly
associated with the network in five out of seven tissues is highlighted in red.
Insets, average Bayes factors and 90% range for the SNPs on rat chromosome
15q25 (base pairs 87,479,238 to 108,949,015). SNP positions in the region are
indicated by tick marks. Mb, megabase.
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In a GWAS meta-analysis of T1D in 7,514 cases and 9,045 con-
trols25, we found evidence for association of the chromosome 13q32
region at SNP rs9585056 (P 5 1.3 3 1027) that had not been reported
before (Fig. 3b). We genotyped this SNP in two independent large
cohorts and increased the strength of the T1D association (combined
P 5 7.0 3 10210; odds ratio (95% confidence interval), 1.15 (1.09–
1.21); Supplementary Table 9). The minor C allele of SNP rs9585056
was associated with T1D risk, lower EBI2 expression in both GHS and
Cardiogenics Study cohorts, and, on average, increased expression
levels of IDIN genes in the Cardiogenics Study cohort. Although we
cannot discriminate between single and multiple causal variants, over-
all these results show an overlap of association signals in the same
region on human chromosome 13q32 for IDIN genes, EBI2 cis-regu-
lation and T1D. We also noted that the EBI1 (CCR7) and EBI3 genes
are also associated with T1D susceptibility: EBI1 is in the confirmed
T1D region 17q21.225, and EBI3 encodes the b-subunit of the IL-27

cytokine, for which the a-subunit gene, IL27, is in the T1D region
16p11.225, suggesting a link between Epstein–Barr virus infection
and T1D.

The immunopathology of autoimmune T1D is characterized by
infiltration of the pancreas with B and T lymphocytes and macro-
phages16. We have shown that IDIN genes contribute to T1D risk
and implicate the innate viral response pathway and macrophages in
the aetiology of T1D. Loci that perturb gene networks can be important
for disease risk8 and the new T1D susceptibility locus that we identified
may regulate innate immune response genes in macrophages, as we
demonstrated in the rat. Ebi2, which controls Irf73, represents a can-
didate for trans-regulation of the human IDIN and for T1D risk. A
role for IRF7 in the pathogenesis of T1D is supported by functional
studies26 and by other T1D genes, namely TLR7, TLR827 and IFIH123,24,
which are regulated by or act through IRF728. Our study shows that co-
expression networks across species provide functional annotation of
genes in biological processes that can be used to reveal the signal of
common genetic variation of small effect that is not detected by
GWASs.

METHODS SUMMARY
We generated genome-wide expression data in the rat from seven tissues (adrenal
gland, aorta, fat, kidney, left ventricle, liver and skeletal muscle) using Affymetrix
RAE 230a and RAE 230_2 chips. eQTL mapping was carried out using the genetic
map of the BXH/HXB recombinant inbred strains generated in a previous large-
scale effort by the STAR consortium18, as previously described1,2. In humans,
expression data from isolated monocytes were obtained from 1,490 population-
based individuals from the GHS20 and from 758 individuals from the Cardiogenics
Study. eQTL data were analysed in conjunction with TFBS enrichment analysis
using PASTAA12 to identify core gene networks centred on transcription factors.
The core networks were expanded to include genes showing co-expression
(FDR , 0.1%) with any of the core network genes in seven rat tissues and isolated
human monocytes. We determined association between expression levels of the
network genes and genome-wide SNPs in the rat using sparse Bayesian regression
models13, and identified the major regulatory control points (hot spots)14 for the
entire network. Genes at the locus associated with the rat network were character-
ized by DNA sequencing, RNA sequencing, quantitative PCR analyses, luciferase
assay and combined in situ hybridization and immunohistochemistry. A com-
bined network, comprising the union or intersection of the rat and human net-
works, was constructed and analysed for association with T1D by means of a
stratified Wilcoxon rank test to compare SNPs genotyped in T1D GWASs25,29

close to (#1 Mb from) any network gene or to those close to any gene not in
the network (see http://www.t1dbase.org for all T1D SNP association data). SNPs
across the human locus, that is, orthologous to rat chromosome 15q25 controlling
the network, were tested for association with T1D as described elsewhere25.
Supplementary Fig. 1 provides an overview of the study design. Full methods
are provided in Supplementary Information.
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