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1 Introduction

Genomic variation in humans occurs in diverse forms and sizes ranging from single nucleotide changes
to large-scale structural variants of several megabases or even whole chromosomes (e.g. in Trisomie
21). Single nucleotide and copy number variants explain differences in individual phenotypes in hu-
mans (Stranger et al. 2007). Larger variants > 1 kb including balanced rearrangements (inversions, some
translocations) and copy number variants (CNVs) result in rearrangement, amplification or deletion of
subsequent genomic regions and consequently alter the structure of the genome. Interestingly, struc-
tural variants might alter gene function through diverse mechanism reviewed in Hurles et al. (2008):
An increased copy number of a large (>100 kb) DNA segment that overlaps a gene might increase the
expression level of that gene. Smaller variants can affect gene expression by reorganization of single
functional units like regulatory elements (promoters, enhancers) or exons, e.g. a deletion of a promoter
would abolish the expression of the consecutive gene.
Currently, whole-genome studies focus on the detection of copy number variants and other structural
variants in the human genome to elucidate their impact on phenotypes and disease,their population dif-
ferentiation and evolution. By now, a catalog of structural variants has been collected using microarrays
and made publicly available in the database of genomic variants (http://projects.tcag.ca/variation/).
Due to the limited resolution of microarrays by the number of probes on the array, the picture of the
CNV map is still relatively diffuse. On a population genetic scale it is still unclear, especially for smaller
CNVs < 5 kb, how many of them are expected to occur in one individual and to which extent they
contribute to the individual phenotype. In the most recent study CNVs are expected to include 24 Mb
sequence in a human genome, approximately 0.8% in healthy individuals (Conrad et al. 2010). Genomic
rearrangements causing aberrant transcriptional events or dosage effects play also an important role in
cancer development (Hanahan and Weinberg 2000). For example a gene that functions as a tumor su-
pressor can be lost by a deletion of a huge DNA segment.
The first human genome assemblies, published by the Human Genome Project (HGP) and Celera Ge-
nomics, used the Sanger or dideoxy sequencing technique for the determination of the nucleotide
sequence in DNA from different individuals (Nat 2004; Venter et al. 2001). In 2005 new sequenc-
ing technologies emerged with a drastic increase of cost-effective sequence throughput by a massive
parallelization of sequencing. Three different platforms, with 454 sequencing being the first one, fol-
lowed by Illuminas sequencing-by-synthesis and ABI/SOLiD’s sequencing-by-ligation are currently
well-established. These second-generation sequencing (2GS) or next-generation sequencing (NGS) tech-
nologies transformed genomic research through their diverse applications like whole-genome sequenc-
ing, targeted resequencing, RNA expression profiling (RNA-seq) and analysis of epigenetic modifica-
tions e.g. DNA methylation (Morozova and Marra 2008; Metzker 2010). Moreover, the 2GS technolo-
gies enable a throughout research on sequence and structural variation at base-pair resolution. The 1000
genomes project, launched by several companies worldwide, meets the challenge of sequencing several
hundred genomes from different populations to infer a detailed map of human genetic variation.
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The processing of second-generation sequencing data is labor-intensive because of the required pre-
processing step, the mapping of the plentiful short reads to an assembled human genome with one of
the available fast short-read alignment tools. In several publications a sequencing bias (GC-bias) in the
data is reported (Dohm et al. 2008), which might require a normalization method. Finally, the analysis
of copy number variants using mapped sequencing reads requires the development of sophisticated
bioinformatics algorithms. Most published methods are based on paired reads, i.e. two sequenced
fragments flanking the opposite ends of an insert in a genomic library. An unexpected distance of reads
in a discordant pair indicates a deletion or duplication of a genomic region. Few methods use the depth
of coverage signal of the mapped reads, which is also applicable to unpaired reads (single-end reads).
Several methods originally developed for detection of CNVs in array data, have been adapted for ap-
plication to 2GS data.

In this work I implement a method, which detects CNVs in 2GS data based on the depth of coverage
(DOC) signal of mapped reads. I determine the DOC signal by counting reads in constant or dynamic
windows along the genome. I use a statistical testing procedure, the event-wise testing (EWT) algo-
rithm (Yoon et al. 2009) for the detection of significant copy number events in successive windows. I
integrated the tool in Seqan, a C++ sequence analysis library, making use of its sequence-based data
structures. Following up its inherent generic design principle relieves the further enhancement of the
implemented workflow with related algorithms.
The necessary performance evaluation of the implemented program required test data. Therefore I im-
plemented a simulation platform that generates artificial copy number variants on a given sequence
and subsequently simulates sequencing reads on that sequence with substition errors. Furthermore I
implemented interfaces for the comparative application of additional available tools, CNV-seq (Xie and
Tammi 2009), DNAcopy (Olshen et al. 2004), SegSeq (Chiang et al. 2009) and SOLiD-CNV-Tool (McK-
ernan et al. 2009), on the simulated data sets. Finally I apply the program on real sequencing data
generated with two commonly used sequencing platforms (Illumina, SOLiD).
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2 Biological Foundations

2.1 De�nitions

The following biological definitions refer to Feuk et al. (2006) and Sharp et al. (2005).

Structural variant (SV). A structural variant is a polymorphic region of the DNA (≥ 1 kb) that affects
the structure of the genome in contrast to sequence variants (SNPs) that change the sequence of the
nucleotides. Structural variants can be classified according to their influence on genomic copy count, in
copy-number variants (CNVs) and copy-number invariant changes or balanced variants such as inver-
sions and translocations.

Single nucleotide polymorphism (SNP). A single base substitution of one nucleotide with another
observed in the general population at a frequency greater than 1%.

Copy-number variant (CNV). A DNA segment of at least 1 kb in size, that differs in copy number
in two or more genomes within a species due to duplication or deletion events. Usually a sufficient
large genomic region is expected to occur twice in the diploid human genome, i.e. the copy number is
two.

Copy-number polymorphism (CNP). A CNV which appears in more than 1% in a population is out-
lined as a copy-number polymorphism (CNP).

InDel. A relative gain (insertion) or loss (deletion) of a DNA segment of one or more nucleotides
in a genomic sequence.

Inversion. A DNA segment with reversed orientation with respect to the major sequence of a chro-
mosome.

Segmental duplication. Segmental duplications or low-copy-repeats (LCRs) are DNA blocks (1 to 400
kb) that occur in more than one site within a haploid genome and are very similar (>90% sequence iden-
tity). They account for approximately 5% of the genome and frequently coincide with variable copies
in different genomes and thus can be CNVs at the same time (Sharp et al. 2005) .

Translocation. A DNA segment with a modified position in the genome that has no gain or loss in
DNA content is termed a translocation. The translocation can either occur within a chromosome (intra-
chromosomal) or between different chromosomes (inter-chromosomal).
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2.2 Copy number variation in the human genome

Several studies aimed to construct a map of copy number variants in the human genome to study their
phenotype association. The first CNV map collected 1447 copy number variable regions (CNVRs), cov-
ering 360 Mb (12%) of the human genome using single-nucleotide polymorphism (SNP) genotyping
arrays and clone-based comparative genomic hybridization (Redon et al. 2006). Due to an overestima-
tion of CNV sizes in this study recent studies report that CNVs (>50 kb) affect less (approximately 0.5%
in McCarroll et al. (2008)) of the genome than initially expected. In contrast, the influence of smaller
CNVs (<5kb) is underestimated due to limited resolution of array-based methods. The extent to which
two unrelated human genomes vary in copy number was currently estimated to be between 24 Mb and
60 Mb, spanning 0.8− 2% of the genome sequence (Conrad et al. 2010; Cooper et al. 2007). These vari-
able regions overlap with approximately 400 protein coding genes (Conrad et al. 2010).
It is known, that CNVs are not distributed uniformly throughout the genome, but are enriched in re-
gions close to telomeres, centromeres and simple tandem repeat sequences and segmental duplica-
tions (Nguyen et al. 2006; Cooper et al. 2007). Deletion, duplication and inversions of genomic segments
can be formed by the mechanism of nonallelic homologous recombination between duplicated sequence
blocks, which results in the observation, that copy number polymorphisms are enriched within hotspots
of segmental duplications (Bailey et al. 2002; Sharp et al. 2005).

2.3 Functional impact and disease association

The nonrandom distribution of CNVs in the genome indicates that they might affect gene function. A
genome-wide gene expression study in 270 lymphoblastoid cell lines showed an association of gene ex-
pression and large-scale (> 100 kb) copy number variation (Stranger et al. 2007). Genes involved in sen-
sory perception (e.g. olfactory receptors), immune response and signaling are enrichend in published
CNVs (Cooper et al. 2007). Large duplications or deletions are associated with specific inherited or spo-
radic (de novo rearrangement) genetic disorders and multifactorial diseases e.g. in Tab. 2.1 (Hurles et al.
2008; Freeman et al. 2006). For example the Charcot-Marie Tooth type 1 A (CMT1A) disease is caused
by a 1.5-Mb tandem duplication on chromosome 17 resulting in three copies of the PMP22 gene (Lup-
skic et al. 1991). In several complex diseases like autism spectrum discorder (ASD) (Pinto et al. 2010),
schizophrenia (Xu et al. 2008), Parkinson (Singleton et al. 2003), HIV/AIDS susceptibility (Gonzalez
et al. 2005) and cancer (Campbell et al. 2008) copy number variants were observed (Tab. 2.1).
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Disease location Structural variant References
Charcot-Marie-Tooth type 1A 17p12 duplication of PMP22 Lupskic et al. (1991)
Williams-Beuren syndrome 7q11.23 deletion of ELN and others Ewart et al. (1993)
Autism 16p11.2 deletion of 16p11.2 Pinto et al. (2010)

Marshall et al. (2008)
Kumar et al. (2008)

Schizophrenia 16p11.2 microduplication of 28 genes Xu et al. (2008);
McCarthy et al. (2009)

Parkinson 4p15 triplication of SNCA Singleton et al. (2003)
HIV susceptibility 17q multi-allelic CNV of CCL3L1 Gonzalez et al. (2005)
Psoriasis 8p23.1 multiallelic CNV of Beta-defensins Hollox et al. (2008)
Alzheimer 21q21 duplication of APP Rovelet-Lecrux et al. (2006)

Table 2.1: Examples of disorders associated with CNVs
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3 Background

3.1 Detection of CNVs in microarray data

3.1.1 Microarray technology

The development of DNA microarrays enabled the scanning of the human genome for variation in
copy number at much higher resolution than in cytogenetic analysis using microscopy, which is limited
to 5 Mb sized events. Array comparative genome hybridization (array-CGH) and single-nucleotide
polymorphism (SNP) arrays have been used to detect copy-number variable regions with a size of 700
bp to several megabases in the genome (Carter 2007).

array-CGH

Clone-based comparative genomic hybridization (array-CGH) is based on the hybridization of differen-
tially labelled test and reference DNAs in spotted clones on a glass slide. Resulting fluorescent signals
are measured for each clone representing the relative amount of DNA at their location in the genome.
An amplification or a deletion of a genomic region in the test genome relative to the reference genome
is inferred through an increased or decreased hybridization intensity of the corresponding probes on
the array. The resolution of this method depends on the number and size of the probes on the array. For
example with array-CGH using BACs, which are usually 80-200 kb in length, large-scale copy number
differences of ≥50 kb in two samples can be detected (Iafrate et al. 2004). Using oligonucleotide probes
instead of clones substantially pushes the resolution of array-CGH up to 5 kb in high-density oligonu-
cleotide arrays (e.g. HD2 array from NimbleGen). Representational oligonucleotide microarray analy-
sis (ROMA-CGH) was developed to improve the poor signal-to-noise ratio of oligonucleotide arrays by
reducing the complexity of the hybridized genomic DNA (Sebat et al. 2004). The resolution of array-
CGH can be futher improved to almost nucleotide-level by the custom design of overlapping oligonu-
cleotides in selected chromosomal regions resulting in ultra-high-resolution arrays (Gribble et al. 2007).

SNP genotyping arrays

Several studies adapt SNP genotyping arrays for the interrogation of genomic copy number variants.
The Affymetrix SNP chips contain several matched and mismatched probe pairs (25 bp long) that cover
a known SNP. Genomic DNA of one sample is hybridized to the array and the resulting signal intensi-
ties of the matched and mismatched probes are compared to those of another individual (or a group of
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individuals) to detect copy number changes. Affymetrix extended its SNP genotyping arrays by non-
polymorphic probes for interrogation of CNVs in genome areas not covered by SNPs and regions that
include segmental duplications. The current Affymetrix SNP 6.0 array including 1.8 million probes was
used to generate a human CNV map at 2 kb breakpoint resolution (McCarroll et al. 2008).

3.1.2 Methods based on array data

Different methods have been developed for the detection of CNVs in array intensity data. In this section
I shortly explain two approaches that model the distribution of array intensity data (Clustering, hidden
markov models) and two nonparametric methods (circular binary segmentation and mean-shift-based
approach). In Dellinger et al. (2010) the performance of different approaches for SNP array data was
evaluated.

Clustering approach. Korn et al. (2008) use multiple probes for specific interrogatation of a prede-
fined CNP locus from a published CNV map (McCarroll et al. 2008) in SNP array data. Intensity signals
are summarized for each CNP segment and clustered using a one-dimensional Gaussian mixture model
(GMM) and prior information from previous experiments. The copy number of each locus in a sample
is assigned by its membership to a cluster. This method requires knowledge of CNV loci in the human
genome and a set of accurately genotyped CNVs for validation of results. Consequently, rare and de
novo CNVs cannot be detected with this approach.

Hidden markov model (HMM). Several studies use approaches based on a stochastic model, the hid-
den markov model, for the detection of copy number variable regions in array data e.g. in Korn et al.
(2008). It consists of hidden and observed states that represent the unknown copy number of probes in
a sample and their normalized intensity measurements in the array. The parameters of the model, the
emission and transition probablities are empirically estimated. The transition probabilities between the
copy number states are chosen according to the expectation: For the transition from the state with nor-
mal copy number (expected to be 2) to another state a low probability is selected, otherwise a relative
high probability is choosen. The distance of adjacent probes can be included in the model such that the
transition probabilities of nearby probes is higher. This approch is applicable to data from both array
platforms. The detection of multi-copy variants is limited with this approach, because with increased
number of hidden states the computational complexity is multiplied.

Circular binary segmentation (CBS). Circular binary segmentation is a modification of a binary seg-
mentation (Olshen et al. 2004). It uses the fact, that copy number variants are discrete gains or losses
of DNA in contiguous segments of the genome that cover multiple array probes. The underlaying
idea is to split each chromosome into regions of equal copy number and thereby overcome the noise
in array data. Binary segmentation is a change-point method. Let X1, X2, . . . be a sequence of random
variables. A change-point is defined as an index v that marks a shift in the distribution function F0 of
X1, . . . , Xv to the distribution function F1 in Xv+1, Xv+2, . . . until the next change-point. The array probes
are searched for change-points in the log ratios of intensities in a test versus a control sample that belong
to changes in copy number in the two data sets. These change-points separate segments with unequal
copy number. The control sample is assumed to have a constant copy number, which is two in case
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of autosomes. The binary segmentation procedure recursively applies a test statistic on the log ratio
intensities of probes, that are indexed by their physical location on the chromosome, to identify change-
points. It results in a partition of each chromosome into segments where the copy numbers are constant.

Mean-shift-based approach (MSB). The Mean-shift-based approach considers the array-CGH intenstiy
data as sampled from a probability-density function (Wang et al. 2009). It uses a kernel-based approach,
a method in pattern recognition, to estimate local gradients for this function. The kernel density estima-
tion (or Parzen window method) is a method for estimating the probability density function (p.d.f., Ker
(1995)). Essentially, MSB performs a discontinuity-preserving smoothing by iteratively shifting data
points to the density maxima in the distribution of intensities. MSB segments each chromosome into
regions of duplication and deletion.

3.2 Detection of CNVs in sequencing data

3.2.1 Second-generation sequencing (2GS) technology

Second-generation sequencing (2GS) or next-generation sequencing (NGS) are newer developments
that followed the automated Sanger method, which was the first-generation technology. They substan-
tially increase the sequence throughput through massively parallel sequencing of several million short
reads (35-400 bp) resulting in lower costs per sequenced base pair. I illustrate here three established
platforms - 454 (Roche Applied Science), Genome Analyzer (Illumina), SOLiD instrument (Applied
Biosystems). For a detailed technical review of recent advanced 2GS technologies see Metzker (2010).
The 2GS platforms use different combinations of methods for DNA template preparation, sequencing
and imaging and produce different amounts of raw sequencing data (Tab. 3.1).

Platform template
preparation

sequence reaction read length
(bp)

Run time
(days)

Gb per
run

Roche/454‘s GS
FLX Titanum

emPCR pyrosequencing 400 0.35 0.45

Illunina/Solexa‘s
GAII

solid-phase reversible terminator 75 or 100 4F, 9MP 18F,
35MP

Life/APG‘s
SOLiD 3

emPCR sequencing by ligation 50 7F, 14MP 30F,
50MP

Table 3.1: Overview of the three common 2GS sequencing platforms, F = fragment, MP = mate-
pair/paired-end, emPCR = emulsion PCR, GS = Genome Sequencer, GA = Genome Analyzer,
SOLiD = Support Oligonucleotide Ligation Detection, APG = Agencourt Personal Genomics

Template preparation

The first step in template preparation includes the random shearing of genomic DNA into smaller pieces
(e.g. 200-250 bp). These small sized DNA is transformed either in fragment templates or mate-pair
templates. Subsequently these templates are attached to a solid surface or immobilized to a support.
The imaging systems need multiplied fluorescent events, which is achieved by the amplification of
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templates. Two common methods are emulsion PCR (emPCR) and solid-phase amplification. In emulsion
PCR the DNA is captured onto beads with one DNA molecule amplified per bead (454, SOLiD). In solid-
phase amplification the clonally amplified clusters are generated on a glass slide (Illumina/Solexa).

Sequencing and imaging

In the sequencing step the clonally amplified templates are sequenced simultaneously. The observed
fluorescent signal is measured for each cycle. The Cyclic reversible termination (CRT) is a sequencing and
imaging method that uses reversible terminators. Each cycle of CRT includes three steps, the incorpo-
ration of a single fluorescently labelled nucleotide by a DNA polymerase, imaging of the fluorescent
signal to determine the identity of the nucleotide and cleavage of the terminating group and fluores-
cent dye. Illunia/Solexa uses a four-colour CRT for simultanous incorporation and imaging of the four
different nucleotides, each labelled with a different dye.
Sequencing by ligation (SBL) distinguishes from CRT by using a DNA ligase instead of a DNA poly-
merase. A fluorescently labelled pobe is hybidized to its complementary sequence and joined by a
DNA ligase to the adjacent primer. The identity of the ligated probe is determined by fluorescence
imaging. Finally the fluorescent dye is cleaved to repeat the cycle. Applied Biosystems uses SBL with
two-base-encoded probes in their support oligonucleotide ligation detection (SOLiD) platform.
In contrast to the other sequencing approaches, pyrosequencing does not modify nucleotides. Instead,
a DNA polymerase is manipulated by single addition of a dNTP. The release of an inorganic py-
rophospate is measured through conversion into light by enzymatic reactions with luciferase.

3.2.2 2GS data

Mate pairs/paired reads

The three widely-used 2GS-technologies (454, Genome Analyzer, SOLiD instrument) are able to gen-
erate paired reads that map at an approximately known distance in the human genome termed mate
pairs or paired-end reads. Mate pairs are constructed when the ends of a long DNA fragment (>1kb) are
sequenced. The ends of the 1 kb-fragment are tagged by an adaptor and circularized. Then the circular-
ized DNA is randomly fragmented and the tagged junction fragments are purified and sequenced. In
contrast, paired-end reads are generated by fragmentation of genomic DNA into short pieces (200-300
bp) and sequencing of both ends. The orientation of the paired reads is equal or opposite depending
on the used library preparation protocol. The information about the expected approximate distance of
paired reads in the genome can be used by algorithms for the detection of structrual variants. The mate
pair and paired-end sequencing approach provide short-range and long-range pairing information.

Sequencing errors and coverage biases

Sequencing errors and coverage biases have been reported for different sequencing platforms. Sequenc-
ing error rates should be considered in the mapping of the reads to a genome. The coverage biases
(GC-bias, pileups) may result in unequal sampling of certain genomic regions and thus require normal-
ization methods.
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Error rates. The different 2GS sequencing platforms are reported with different error rates, 3% for
pyrosequencing (Roche/454) (Quinlan and Marth 2007), 1− 2% for Illumina/Solexa (Hillier et al. 2008)
and 0.1% for SOLiD (McKernan et al. 2009). Substitutions are created during the amplification step
(PCR) and might be mistakingly interpreted as sequence variants. The accuracy of the SOLiD platform
is substantial higher compared with the other two platforms due to its inherent error correction by a
double interrogation of each base (2-base encoding or 2BE). The sequencing error rates continue to im-
prove for all platforms.

GC-bias. GC-poor and GC-rich genomic regions have been shown to be underrepresented in Illu-
mina/Solexa and SOLiD sequencing data compared to regions with average GC content (Dohm et al.
2008; Hillier et al. 2008; Harismendy et al. 2009), which is probably caused by an amplification bias dur-
ing template preparation (Metzker 2010). Shorter reads are more susceptible to such a chemistry bias
due to local sequence composition e.g. GC content.

Pileups. If someone looks closer at the aligned short reads in a sequencing experiment some reads
accumulate to noticeable huge perfectly identical pileups, e.g. in figure 3.1. These reads might be con-
sidered as PCR artefacts and should eventually be counted only once in an analysis that is based on a
quantification of reads.

Figure 3.1: Example for pileups (marked with asteriks) in a SOLiD dataset visualized with the SOLiD
alignment browser (http://solidsoftwaretools.com/gf/project/sab/)

Current sequencing-based methods rely on the indirect comparison through one assembled reference
genome for detection of copy number variants in different individuals. The de-novo assembly of their
genomes for a direct comparison of the sequences using short reads is a challenging task that requires
very high coverage (at least 30x, see Li et al. 2010) and sophisticated algorithms. Li et al. (2010) success-
fully assembled the human genome sequences of an Asian and African individual using single-end and
paired-end short reads (35-75 bp) at an average coverage of 71x and 40x of the NCBI human reference
genome using a de Bruijn graph and a supercomputer with 512 Gb memory to handle the huge number
of short reads. As long as de-novo assembly of genomes is still unaffordable for structural variant de-
tection in multiple genomes, methods use different signatures that result in the mapping of short reads
to a reference genome (Medvedev et al. 2009).
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3.2.3 Mapping of short reads

Initially, each sequencing read is aligned to a reference sequence allowing mismatches and eventually
small InDels. The mass data in second-generation sequencing requires efficient mapping algorithms
that associate each read with at least one position in the genome. There are already several tools avail-
able (listed in http://lh3lh3.users.sourceforge.net/NGSalign.shtml).
Due to the highly repetetive structure of the genome it is likely that reads are sampled from a redun-
dant sequence by the sequencing process. Even if large repetetive portions (telomeres, centromeres)
are excluded from the mapping, there remain smaller redundant structures e.g. Alu elements, LINE
repeats and segmental duplications (SDs). A mapping algorithm will detect multiple good alignments
that map these reads below the allowed sequencing error threshold. This results in the multiread as-
signment problem, that is to choose one position from multiple good alignments of an ambiguously
mapped read. Some mapping tools try to adress this problem additionally. For example the Maq algo-
rithm simply assigns the multiread randomly to one of its shared positions. But the existing solutions
are dissatisfying, because they cannot guarantee that the selected position is indeed the originating one
for the read.
The multiread assignment problem can be avoided by discarding sequence reads that map to multiple
genomic loci and use exclusively reads that fit in some definition as uniquely mapped:

Def. uniquely mapped reads
Given an alignment of a sequence read to a reference genome that allows at most e mismatches. The
aligned read is considered as uniquely mapped if its second best alignment has more than e mismatches
when compared to its best alignment.

Figure 3.2: Example for a multiread (a) and a uniquely mapped read (b) mapped to a reference genome
in an alignment.

An illustration of uniquely mapped reads is shown in Fig. 3.2. In this example reads are mapped with
at most 2 mismatches. Read a has two good alignments with zero and one mismatch that are below
the given error threshold. Thus read a is not a uniquely mapped read. Read b aligns to two positions
with one or three errors, but its second best position would be excluded by the used mapping algo-
rithm, because the number of mismatches exceeds the allowed error threshold. As a consequence, read
b is a uniquely mapped read and is assigned the genomic position of its best match. The limitation to
uniquely mapped reads has some disadvantages. Considerable information in repetive regions is lost
and the coverage is notably reduced in a non-uniform fashion. This results in an underrepresentation
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of mapped reads in repetetive regions e.g. segmental duplications.
The multiread issue might influence the results for the analysis of copy number variation that makes
use of the depth of coverage signal. All published tools focus on uniquely mapped reads or choose the
read with the best match with fewest mismatches from all reported alignments. Futher methods based
on paired-end mapping (PEM) use additional information about the pairing of the two reads to reliably
detect their location in the genome. Discrepancies in the distance of the reads inform about potential
deletions or duplications.

3.2.4 Methods based on depth of coverage (DOC)

Methods based on depth of coverage along the genome are similar to the array-based methods. Instead
of determining the copy number by quantifying a probe signal relative to a reference, they estimate the
copy number by quantifying the amount of reads in a sample in windows. Assuming the sequencing
method samples sequence reads uniformly from the genome, the number of reads aligning to a region
approaches a Poisson distribution with mean µ proportional to the size of the region and its copy count
in the genome. According to this the probability of exactly k observed reads in a fixed genomic region
is

P(X = k) =
µke−µ

k!
(3.1)

A deleted region is expected to have less or no reads mapped to it and a duplicated more reads (Fig. 3.3

a,b). For sufficiently high sequence coverage the Poisson distribution can be approximated by a normal

distribution. The majority of algorithms based on depth of coverage build statistical models on the read

distribution.

Figure 3.3: Illustration of depth of coverage in CNV regions (red). A deletion in a sample sequence
results in zero coverage relative to the reference (a) and a duplication in the sample results
in twice the expected coverage (b)

CNV-seq. Xie and Tammi (2009) use a simple robust statistical model for the sequencing process based

on log-ratios of read counts in constant overlapping windows in two samples. The window size is

determined based on the coverage of the input data and the threshold parameters for log-ratios and

p-values. The program is available as a R package (http://tiger.dbs.nus.edu.sg/cnv-seq/).
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DNAcopy. Circular binary segmentation (see sec. 3.1.2) was originally developed for the segmenta-

tion of chromosomes in regions with equal copy number using array data (Olshen et al. 2004). For its

application to 2GS data, the sequencing data must be processed to achieve log ratios of read counts.

Campbell et al. (2008) divided the genome into nonoverlapping, adaptive windows based on a fixed

number of in silico mapped reads with high uniqueness (with approx. 15 kb mappable sequence) and

counted the number of mapped reads in each window. Then they applied DNAcopy to the log ratio of

the read counts in two datasets. The tool is available from the Bioconductor project 1.

EWT. Yoon et al. (2009) developed a method called event-wise testing (EWT) that uses significance

testing for duplication and deletion events on intervals of non-overlapping windows on the genome.

They iteratively enlarge the event size starting with two adjacent windows. For larger events less strin-

gent significance thresholds are used. The iterations stop when the significance threshold reaches a

cutoff. The authors did not publish the implemented Java program.

SegSeq. Chiang et al. (2009) implemented a method called local change-point analysis. They estab-

lished a test statistic based on local differences of log ratios in read counts of a test and control data

set. Peaks in this local difference statistic that exceed a signifcance threshold are identified as candidate

breakpoints for copy number changes. The resulting segments are iteratively joined by eliminating can-

didate breakpoints. The authors applied the method for the detection of copy number alterations in Illu-

mina sequencing data from a tumor and normal sample. The Matlab source code of SegSeq is accessible

from the Broad Institute (http://www.broadinstitute.org/mpr/publications/projects/Computational Biology/

SegSeq 1.0.1.tar.gz).

SOLiD-CNV-Tool. The SOLiD-CNV-Tool employs a hidden markov model that represents the copy

number (0-7) as discrete hidden states and the coverage signal as observations on variable-length win-

dows. The window sizes depend on the uniqueness or mappability of the sequence (McKernan et al.

2009). Thus in regions that include repetetive or redundant sequence larger windows are used. The tool

is written in C, available in http://solidsoftwaretools.com/gf/project/cnv/.

The four available tools that are based on depth of coverage (CNV-seq, DNAcopy, SegSeq, SOLiD-

CNV-Tool) require different input data formats (Tab. 3.2). Most tools output the position, copy number

and p-value for each predicted CNV, except DNAcopy that outputs location of DNA segments with the

same copy number and their mean read depth.

1http://www.bioconductor.org /packages/2.3/bioc/html/DNAcopy.html
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Tool Algorithm Input (format) Output Ref.
CNV-
seq

statistical model on log
ratios

location of best matches (tsv) position, log ratio, p-values
of CNVs Xie and

Tammi
(2009)

DNAcopy Circular binary seg-
mentaion

RD log ratios in windows
(tsv)

segments, mean RD
Olshen
et al.
(2004)

SegSeq Local change point
analysis

location of mapped reads
(tsv)

position, copy number, p-
value of CNVs Chiang

et al.
(2009)

SOLiD-
CNV-
Tool

Hidden markov model mapped SOLiD reads @hg18
(gff2/gff3)

position, copy number, p-
value of CNVs McKernan

et al.
(2009)

Table 3.2: Overview of available tools based on depth of coverage, RD = read depth, tsv = tabulator
separated values, hg18 = NCBI human reference, build 36

3.2.5 Methods based on paired reads (PEM)

Sequence-based methods have extensively made use of mate-pair or paired-end reads for the analysis

of structural variation in sequencing data (Tuzun et al. 2005; Korbel et al. 2007; Kidd et al. 2008; Bentley

et al. 2008). The paired-end mapping (PEM) approach uses the fact, that the two paired reads must map

to the reference sequence with a fixed distance according to the size of the insert in the used library.

Analysis of discordant read pairs

Discordant read pairs with an enlarged distance of the mapped paired ends reveal a potential deletion

in the sample genome. An unexpectedly short distance of the ends points to an insertion of sequence

at the spanned locus in the sample genome relative to the reference genome (Fig. 3.4 a,b). Insertions

which exceed the size of the sequenced fragment are difficult to detect with this method. If the inserted

sequence occurs at another location in the genome, a linking of the paired reads between the location of

the insertion and the inserted sequence can be detected. If the inserted sequence is not contained in the

reference genome, a read spanning a breakpoint will not map resulting in a hanging insertion. A novel

inserted sequence can be determined by a local assembly of the breakpoints within the variant region

(Chen et al. 2009). Clustering strategies as decribed in Tuzun et al. (2005) classify discordant read pairs

with a mapped distance more than 2 sd apart the mean insert size with similar size and location. This

method enables the estimation of the breakpoint location of a copy number variant.
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Figure 3.4: PEM: a. deletion and b. insertion of sequence in the sample genome with discordant paired
ends, c. anchored split mapping

Split-read alignment

If a read spans a deletion breakpoint in the sample genome, it is splitted in its prefix and suffix mapping

at different locations in the reference genome (Fig. 3.4c). Ye et al. (2009) uses the mapped pair of a split

read as an anchor to reduce the search space for the mapping of the splitted read. With the anchored

split mapping the exact breakpoints of large deletions can be determined with base-pair resolution.

In an evaluation of the different methods the specificity and sensitivity for the detection of copy-number

changes, their ability to predict the copy number, its size and the exact location of the breakpoints might

be considered. Microarray-based technologies are limited to an a-priori focus on specific probe content

on the array and have thus a lower resolution and sensitivity compared to sequencing-based methods.

In addition, the accurate copy number of multi-copy variants can not be inferred by array-based meth-

ods, because of oversaturation effects.

Second-generation sequencing (2GS) methods can achieve base-pair resolution with sufficient high cov-

erage. In contrast to methods based on depth of coverage, methods based on paired reads enable the

detection of breakpoints (the accurate boundaries of a copy number event). Using a combined library

approach with different insert sizes increases the resolution of the breakpoint mapping.
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4 Methods

I implemented a program for detection of CNVs in 2GS data based on depth of coverage in C++ (copy-

DOC), using the open source C++ Sequence Analysis Library SeqAn 1 as platform. To evaluate the per-

formance of the implementation I established a simulation platform for generating synthetic CNVs in a

template DNA sequence and subsequent simulation of 2GS sequencing data on that sequence (copySim).

This platform was used comparing copyDOC with four published tools that use different approaches

based on depth of coverage. Therefore it was necessary to setup interfaces for data conversion of the

Sequence Alignment/Map (SAM) format to the respective input format and for evaluation of results.

In the following two parts I explain in detail the copyDOC tool and the copySim environment. Futher-

more I illustrate the interface setup and parameter settings. To assess the usability of copyDOC in

practice I applied it to real 2GS data sets from Illumina/Solexa and SOLiD platform. Results will be

shown in chapter 5.

4.1 Implementation of a CNV detection tool

In most biological applications, the experimentator is interested in copy number variable regions in two

samples e.g. from different individuals or tissues. Sometimes, however, a second dataset is not available

as a control. I designed the copyDOC program such that it can be run with or without a control data set.

Prerequisite to the CNV detection is a preprocessing of the reads, the mapping to a reference genome

using one of the available alignment tools 2. I use SAM as input format for aligned sequence reads,

because it is supported by most alignment tools (e.g. Bowtie, BWA, mrFAST, RazerS, SHRiMP). In the

following sections I first give an overview of the programming flowchart and then explain single steps.
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Figure 4.1: program overview

4.1.1 Programming �owchart

1. Acquisition of DOC signals

Depth of coverage signals are determined by counting start positions of mapped reads in fixed or

dynamic windows along the genome.

2. GC-Normalization

A simple median-based GC-Normalization is applied to DOC signals (optional).

3. Event calling

For event calling the Event-wise testing (EWT) algorithm (Yoon et al. 2009) is used that builds

a test statistic on the empirical distibution of normalized DOC signals. It evaluates lower and

upper tail probabilities (pL
i and pU

i ) based on the test statistic for each window i in a sequence.

Then it searches each chromosome for consecutive windows in an interval A with maximum tail

probabilities below a given adaptive threshold t that indicate deletion events ( max
{

pL
i | ∈ A

}
< t)

1http://www.seqan.de/
2http://lh3lh3.users.sourceforge.net/NGSalign.shtml)
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or duplication events ( max
{

pU
i | ∈ A

}
< t).

4. Event merging

I merge events that are at most dmax bases apart. Small events (at most smax base pairs large) are

gouped by nearest neighbor clustering and merged.

5. Selection of dimorphic events

If a control dataset is given a t-test is applied to DOC signals in the test and the control dataset in

order to select dimorphic events.

6. Filtering

Finally, CNVs are filtered by user-defined parameters (e.g. size, significance threshold) and results

are exported in GFF-format.

4.1.2 Acquisition of DOC signals

The first essential step in the pipeline is the determination of depth of coverage signals in windows. The

number of aligned sequence reads in windows is expected to follow a Poisson distribution with mean

proportional to the size of the region and the copy number. To confirm this I plotted the read count

distributions for NA12891 (1000 Genomes project data) in the alignable portion of the human chromo-

some 1 (excluding gaps) in Fig. 4.2. In this dataset multireads are included and their position was taken

randomly from all possible alignments by the Maq alignment tool. I fitted a Poisson distrubution based

on the average number of sequence reads in that dataset. In contrast to the expected Poisson distibution

the density of reads in real data is inhomogeneous. This is presumably explained by biological variation

or coverage biases of the sequencing process.

The DOC signal of the sequencing data is determined by counting start positions of reads in constant

or dynamic-sized windows. Whether only uniquely mapped reads or multireads are used depends on

the input SAM file (all reads are processed) or the given mapping quality threshold (reads below the

threshold are not counted).

Constant windows

For constant-sized windows their size must be choosen according to the coverage of the dataset. Xie

and Tammi (2009) adapts the window size to the average genome coverage and user defined threshold

parameters. In the copyDOC program the user chooses an adequate window size.
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Figure 4.2: Histogram of the number of aligned sequence reads in 1 kb windows of chromosome 1 in
NA12891; the expected Poisson distributions is drawn in red

Dynamic windows

If uniquely mapped reads are used, less reads map in repetetive regions in the genome resulting in low

read counts in the corresponding windows. Therefore it might be useful to choose dynamic window

sizes that depend on the repetetiveness or uniqueness of the sequence. I added this as an optional

feature. As additional input, the dynamic windows feature requires a mappability file in wiggle-format

that informs about whether a genomic position can be mapped uniquely for a given read length and

number of allowed errors. This file cannot be precomputed, because it depends on the currently used

genome assembly, the read length and allowed error rate in the mapping process. It can be created by

fragmentation of a genome with given read length and remapping the reads to it with a defined error

threshold. The information about unambigously mapped positions must be written in the wiggle-file.

Dynamic windows are choosen such that the number of uniquely mappable positions in a window is

constant and equal to a user-defined parameter.

4.1.3 GC-Normalization

A GC-bias, that is a nonlinear dependency between the G+C percentage and the number of aligned

reads, was observed in Illumina/Solexa and SOLiD data (Dohm et al. 2008; Hillier et al. 2008; Haris-

mendy et al. 2009). I examined this in two different data sets from Illumina and SOLiD. Therefore I
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computed the G+C percentage of all possible reads in each 1 kb alignable window of chromosome 1. I

plotted counts of aligned reads in each window in relation to the estimated G+C percentage of the reads

in that window (Fig. 4.3). In NA12891 data set I can not infer a nonlinear relationship. In the SOLiD

dataset sw620 there seems to be a nonlinear dependency between read counts and G+C content in 1 kb

windows.

Figure 4.3: GC dependency on counts of aligned sequence reads in chromosome 1 for NA12891 and
sw620

The optional normalization for GC-bias is done by a simple median based normalization. For each

window the G+C content is ascertained using the reference sequence. For different G+C intervals from

1% upto 100% the median read count of all windows with the same approximated G+C content is com-

puted. Yoon et al. (2009) adjust the read count of window i, ri, by the median read count of windows

with the same G+C-content (mi
GC) as window i relative to the overall median read count m, resulting in

the normalized read count r̃i:

r̃i = ri
m

mi
GC

(4.1)

To be more robust with respect to windows with extreme G+C content I implemented a smoothed ver-

sion of the median-based normalization, that uses a sliding averge of median read counts of the adjacent

windows i− 1 and i + 1 of window i:

r̃i = ri
m

1
4 mi−1

GC + 1
2 mi

GC + 1
4 mi+1

GC

(4.2)
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4.1.4 Event calling

If the coverage in windows is sufficiently high, the poisson distriubution of reads can be approximated

by a normal distribution. Therefore it is crucial that the choosen window size is not too small. The

Event-wise testing (Yoon et al. 2009) uses a test statistic based on the normal distribution for the empir-

ical DOC signals. The first step of EWT is the conversion of the DOC signal in each window to z-scores

by substracting the mean read count of all windows and dividing by the standard deviation. Copy

number variable regions result in lower or higher coverage signals than expected. Regions containing

amplified sequence are expected to show high z-scores, which are unlikely to occur, with small upper-

tail probability P(Z > zi) . Regions that contain deletions have negative z-scores and are also unlikely

with small lower-tail probability. For all windows the upper- and lower-tail probability is computed.

Then statistical tests are performed separately for deletion and duplication events. If the maximum

lower tail probability of consecutive windows is smaller than a significance threshold t, a duplication

event is detected. This is done analogously for duplication events. The search is started with 2-sized

events and iteratevely adds windows to the interval to evaluate the maximal tail probability. With

increasing event sizes I use already computed probabilities dynamically for the detection of the maxi-

mum probability. The threshold increases with larger event size l, i.e. becoming less stringent for larger

events, with L being the number of windows in a chromosome and FPR the fixed false positive rate:

t =

(
FPR

L
l

) 1
l

(4.3)

The iteration over l is stopped when t reaches 0.5, an arbitrary treshold reported by Yoon et al. (2009).

4.1.5 Event Merging

The detected events are restricted in size by the stopping criterion of the event-wise testing procedure.

Therefore a merging step is necessary to fuse nearby events. I established a merging procedure for

predicted events of the same type (deletion or duplication) in two steps. First, overlapping and nearby

events that are at most dmax apart are collapsed. Local variability of coverage might result in small

events (< 1kb) that infact belong to the same variant but could not be merged, because they are more

than dmax apart. I group small events (at most smax base pairs large) into clusters by nearest neighbor

clustering with at most rmax base pairs distance of the events in one cluster. The events of each cluster

are joined to their spanned region. The merging process can be influenced by the user with the dmax,

smax and rmax parameters (200 bp, 500 bp and 500 bp in default setting).
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4.1.6 Selection of dimorphic events

If two samples are given, it is useful to detect relative copy number changes in both, because this step

removes falsely detected events that are in fact repeats or assembly errors in the reference genome. A

t-test is used in order to determine whether the read counts of merged events are significantly different

in test and control dataset. If this is the case, a (dimorphic) copy number variant is called. This step is

omitted if no control sample is given (one-sample mode, Fig. 4.1).

4.1.7 Filtering

The filtering step is applied to reduce the number of false positives in the results. The results can be

filtered by their p-values according to the test statistic on DOC signals or by the p-value of the t-test

for dimorphic events. They can also be filtered by the ratio of the DOC signal in the event call relative

to the overall mean DOC signal (copy number ratio) and the absolute difference of copy numbers in

dimorphic events. Filter parameters are listed with their default values in tab. 4.1. In the pipeline this

step is optional and the unfiltered event set is also exported by the program.

Parameter Description Default value
Main options
fasta sequences in FASTA format hg18.fa
wig wiggle file (uniquely mapped positions of sequence) hg18.wig
controlId control sample Id 0
tag-length read length of sequence reads 50
Algorithm options
window-size size of fixed windows 100
dynamic use of dynamic-sized windows 0
mappable-positions minimal number of uniquely mappable positions (if dynamic is set) 100
mapping-qual minimal mapping quality of reads 0
normalize-gc apply GC-normalization procedure 0
merge-dist maximal distance for merging adjacent events 200
small-event-size maximal size of small events for clustering 500
small-event-dist maximal distance of small events for clustering 500
Filter parameter
max-pval significance level for CNVs 1e− 6
dimorph-p-val t-test p-value for dimorphic events 0.001
difference-threshold absolute difference threshold of copy number for dimorphic events 0.5
cn-ratio minimal copy number ratio to base level 0.75

Table 4.1: Parameter for the CNV detection tool copyDOC
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4.2 Implementation of a CNV simulation platform

To evaluate the performance of the implemented tool I established a simulation environment for CNVs

on sequencing data (copySim). For simplicity, CNVs are assumed to be uniformly distributed in the

genome with random size range and copy number. CopySim consists of three main steps, the simula-

tion of CNVs, the manipulation of a random or user-defined template sequence and the simulation of

single-end sequencing reads (Fig. 4.4).

First, deletions and duplications are sampled randomly on a given template sequence with a user-

Figure 4.4: Workflow of the CNV simulation platform CopySim that includes three steps: 1. CNV sim-
ulation. deletions and duplications are sampled on a sequence with random size and copy
number (CN) and saved in the validation dataset file. 2. Sequence manipulation. The sim-
ulated variants are introduced in one (CN = 1, CN = 3) or two copies (CN = 0, CN ≥ 3) of the
template sequence. 3. Read simulation. Fragment reads are sampled on the manipulated
and unaffected sequence and saved in FASTA-format.

defined size range and copy number range. These CNVs are introduced in two copies of the template

sequences, that represent the two alleles of a genome. Deletions are simulated either in both alleles,

given a copy number (CN) of zero or in one randomly chosen allele (CN = 1). Duplications with

CN ≥ 3 are added by insertion of sequence at CN − 2 random, nonoverlapping positions in one allele.

In the last step single-end reads are simulated on the manipulated and original sequence with user-

defined parameters for mismatch probabilities, number of reads, read length and maximal errors in one
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read. The read is sampled with randomly chosen allele, position and orientation (forward or reverse).

The output of the simulation platform consists of a test and a control read dataset in FASTA-format and

a file that contains the validation set for the simulated CNVs (tsv-format). The simulation platform can

be used with different settings that are defined by the parameters listed in Tab. 4.2 e.g. maximal variant

size (at least 1 kb), number of variants.

Parameter Description Example
num-cnvs number of simulated reads 100
min-size minimal variant size in bp 1000
max-size maximal variant size in bp 10000
min-copy-number minimal copy number 0
max-copy-number maximal copy number 4
tag-length read length of sequence reads 50
num-reads number of simulated reads 1000000
max-errors maximal number of sequencing errors in a read 2
error-dist text-file with error frequency at each position in read uniform error 0.01 (1%)
source-length length of random sequence if template sequence is not given 10000000 (10 Mb)

Table 4.2: Parameter for the CNV simulation platform copySim with examples.

4.3 Interface setup for additional tools

4.3.1 Input data conversions

I applied four tools to the detection of copy number variants in sythetic data (CNV-seq, DNAcopy,

SegSeq and the SOLiD-CNV-Tool). They implement different approaches (section 3.2.4) and use vari-

ous data input formats that require adaptation of the input. Therefore I produced a script for each tool

that converts the SAM alignment format to its input format, which I describe in the following section.

CNV-seq. CNV-seq requires files that contain the best mapping locations for each sequence read with

chromosome and genomic location separeated by tabulator (best-hit location file). SAM files are con-

verted in best-hit location files using an awk command that writes the third and fourth column of the

SAM alignment file in the best-hits file.

DNAcopy. DNAcopy was originally used with log ratios of intensity values in microarray data. To

use it with sequence data I computed log ratios of read counts in fixed windows for the test (rt) and
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control dataset (rc), normalized by the total coverage of each dataset (Nt and Nc):

nlogR = log2
(

rt

rc

)
∗ Nc

Nt
(4.4)

Then I used the normalized log ratios (nlogR) as input for the DNAcopy package in R and followed the

instructions for the Genome Segmentation Program segment 3.

SegSeq. SegSeq requires chromosome, genomic position and strand of aligned reads for a test and

control dataset and a textfile that contains the file locations. I wrote a perl scripts that converts a SAM

file in the SeqSeq input format and creates the textfile with the file information. SegSeq is implemented

in Matlab.

SOLiD-CNV-Tool. The SOLiD tool was implemented exclusively for SOLiD data and in the current

version it is limited to NCBI build 36. It uses SOLiD GFF files as input format that contain uniquely

mapped reads. It excludes CNVs within a defined distance of the centromeres and telomeres. There-

fore the location of the p-arm and q-arm of chromosomes must be defined in an input file (cmap-file).

I created a perl script that converts a SAM file into SOLiD GFF format. I omitted quality information

from the aligned reads, because they are not used by the SOLiD tool.

4.3.2 Parameter settings

In table 4.3 I specify all parameters used in the comparison of copyDOC with other tools in section 5.3)

on the synthetic dataset. In most cases I used default parameters, otherwise I choosed parameters that

seemed to be most suitable.

4.3.3 Sensitivity and Speci�city calculations

CNV-seq, SegSeq, SOLiD-CNV-Tool output the start and end positions of the predicted variants, but

DNAcopy produces a list of DNA segments with mean and standard deviation of log ratios of read

counts. From this list I filtered segments with size at most 1 Mb and mean larger than 0.1. Only SOLiD-

CNV and copyDOC infer a copy number for the predicted variant. SegSeq outputs a copy ratio for

the two datasets and CNV-seq and DNAcopy log ratios of coverage. The results were evaluated by

determination of true positive rates (TPR) and false positive rates (FPR), which I define in the following

3http://www.bioconductor.org/packages/2.3/bioc/manuals/DNAcopy/man/DNAcopy.pdf
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Tool Parameter Description Value
CNV-seq –minimum-

windows-required
minimum number consecutive windows 1

–log2-threshold threshold for log2 values 1
–p-value p-value threshold 0.00001
–genome-size genome size required for approximation of window size 62435964

copyDOC –window-size size of fixed windows 100
–dimorph-p-val significance level for dimorphic events 0.001
–difference-threshold absolute difference threshold for dimorphic events 0.5

DNAcopy –alpha significance level for the test to accept change-points 0.008
–nperm number of permutations used for p-value computation 50000
–p.method method for p-value computation hybrid
–undo.splits specifys how change-points ar undone, e.g. "sdundo" undoes

splits that are less than SDs apart
"sdundo"

–undo.SD number of SDs between means to keep a split if
undo.splits="sdundo"

1

SegSeq –W size of local windows (i.e. number of consecutive normal
reads)

400

–a number of false positive candidate breakpoints for initializa-
tion

1000

–b number of false positive segments for termination 10
SOLiD-
CNV

–coverage-format format for the aligned reads GFF

–trim-distance distance in kb to be trimmed from chromosome ends 0
–window-size window size 1000

Table 4.3: Parameter for the comparison of copyDOC with available tools in section 5.3

section.

Def. True positive. A predicted variant is considered as a true positive, if it overlaps with one CNV in

the validation set.

Def. True positive rate (TPR). The percentage of true positives relative to the number of variants in

the validation set.

Def. False positive. A predicted variant is considered as a false positive if none of the true variants are

overlapping with it.

Def. False positive rate (FPR). The percentage of false positives relative to the total number of predicted

variants.
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The copy number is not verified for the determination of the TPR, because it is not given by all tools.

4.4 Data sets

4.4.1 Simulated data

To evaluate the performance of the implemented tool, more precisely its sensitivity and specifity for

the detection of CNVs in sequencing data, I generated synthetic data using the simulation platform

from section 4.2. It consists of 100 duplications and deletions ranging from 1 kb to 10 kb with different

copy numbers (0,1,3,4) on chromosome 20 (US National Center for Biotechnlogy Information build 36

reference sequence). I simulated 50-bp reads from chromosome 20 with at most 2 sequencing errors

and remapped them to chromosome 20 using Bowtie with parameter –y –best –strata –chunkmbs 256

–m 1 –k 1 –l 50 –n 2 –f –S. With this parameter setting only uniquely mapped reads are reported. With

different amounts of simulated reads (1-10 million) I obtained data sets with 0.7-7x haploid coverage

on chromosome 20. To increase statistical power, each simulation was repeated 100 times.

4.4.2 European parent-child trio

For each of the three samples I downloaded approximately 150 million paird-end sequences of length

36 to 41 bp that were mapped to chromosome 1 from the US National Center for Biotechnlogy Informa-

tion (NCBI) Short Read archive. The whole dataset constitutes about 30-fold sequence coverage of the

human genome. This dataset was sequenced with the Illumina 1 G Analyzer and mapped to the NCBI

build 37 reference using MAQ.

4.4.3 Tumor cell lines

I used two SOLiD sequencing datasets that were derived from tumor cell lines (unpublished data from

Dr.Dr.M.R.Schweiger). The cells were taken from tumor tissue and metastases of a patient with col-

orectal cancer (American Tissue Culture Collection).The 50mer reads were aligned with the Applied

Biosystems mapping tool iMAP v 0.2.5.3 in classic mode allowing 5 mismatches per read on NCBI hg18

reference genome. Both datasets contain exclusively uniquely mapped reads that have a 4-fold genomic

coverage on hg18.
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5 Results

5.1 Evaluation of the performance in synthetic data

For a first test of the implemented tool sythetic data (described in sec. 4.4.1) were used that make some

simplifying assumptions about the composition of sequencing data e.g. uniform distribution of reads

on the sequence. The evaluation of sensitivity and specifity for detection of CNVs was done by com-

puting the average number of predicted copy number variants that overlap a simulated variant (true

positives) and the average number of predicted variants that are not included in the simulated data

(false positives) in 100 random duplications and deletions on chromosome 20. I repeated the analysis

for different physical coverages on chromosome 20 in the range of 0.7 to 7-fold. At 7-fold coverage,

the implemented method is able to predict 96% of the variants with 18% false positives relative to all

predictions (FPR), see Tab. 5.1. I obtained these results with the unfiltered call set. With reduced cov-

erage the sensitivity decreases to 35% at 0.7-fold coverage. I split the simulated CNVs in size bins to

coverage mean TPR (%) sd TPR (%) mean FPR (%) sd FPR (%)
0.7 34.5 7.5 60.8 7.9
1.4 55.1 5.0 39.6 7.7
2.8 80.8 3.7 23.3 4.4
4.3 90.4 2.9 21.9 3.6
5.7 93.4 2.7 18.6 4.1
7.1 95.6 2.1 18.2 3.9

Table 5.1: Mean and standard deviations for TPR and FPR of the implemented method (copyDOC) on
data sets with different coverage

analyze the sensitivity for detection of deletions and duplications at different variant size (Fig. 5.1).The

true positive rate drops substantially for variants that are smaller than 2 kb to around 70% at 7-fold cov-

erage. Deletions (copy number 0-1) are slightly easier to predict than duplications (copy number 3-4).

But there are also many more falsely predicted deletions than duplications. The most false positives are

smaller than 2 kb.

Furthermore I examined the correlation of predicted and true variant size at 7-fold coverage (Fig. 5.2).
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CopyDOC can approximate roughly the true variant size of deletions, but is unable to determine the

size for duplications.

Figure 5.1: True positive rate (TPR) and false positive rate (FPR) w.r.t. coverage of copyDOC at a win-
dow size of 100 bp for deletions and duplications; CNVs are grouped in different size bins:
1 kb (< 2 kb), 2 kb (≥ 2 and < 3 kb), 3 kb (≥ 3 and < 4 kb), 4 kb (≥ 4 and < 5 kb), 5-7
kb (≥ 5 and < 7 kb), 8-10 kb (≥ 8 and < 10 kb). TPR for each bin was computed relative
to the number of true variants of that size range. FPR was determined by counting the false
positives for a given size bin and divide it by the number of all predicted variants of this
size.

5.2 Parameter sensitivity

The sensitivity of the implemented tool strongly depends on the window size parameter as can be seen

in Fig. 5.2 for different coverages. The sensitivity is almost cut by half with a tenth of the window
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Figure 5.2: Correlation plot between predicted and true variant size in 4809 deletions and 4656
duplications.

size at 7-fold coverage. This observation might be due to small variants in the simulated size mixture.

Theoretically, the program is not able to detect variants that are smaller than twice the window size,

because searched events span at least two adjacent windows (see methods, sec. 4.1.4). The specificity

of copyDOC strongly depends on the window parameter at low coverage (0.7x, 1.4x), see Fig. 5.2. With

higher coverage (>4) the window size has only marginal influence on the specificity.

Figure 5.3: True positive rate (TPR) and false positive rate (FPR) given various fixed window sizes and
coverage.
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5.3 Comparison with other tools

I compared the implemented method with four published CNV detection tools, namely CNV-seq,

DNAcopy, SegSeq and SOLiD-CNV. Since these tools are developed for different sequencing platforms

and applications, a straightforward benchmark test is difficult and goes beyond this work. I used them

for an additional performance test of my implementation. Each tool was run on the simulated data

from section 4.4.1 using default parameters in most cases (exceptions in sec. 4.3.2) and the true positive

rate (TPR) and false positive rate (FPR) was evaluated for all tools.

coverage copyDOC w=100 copyDOC w=400 CNV-seq DNAcopy SegSeq SOLiD-CNV

0.7 34.5± 7.5 43.8± 5.6 7.1± 3.4 0.8± 0.8 7.3± 4.0 19.6± 4.4
1.4 55.1± 5.0 64.1± 3.7 27.1± 4.8 5.7± 2.4 34.9± 5.3 43.0± 4.9
2.8 80.8± 3.7 77.4± 4.3 48.9± 4.4 46.5± 5.4 65.7± 4.3 59.2± 4.7
4.3 90.4± 2.9 82.7± 3.7 60.1± 4.8 66.6± 5.4 79.6± 3.9 67.7± 4.3
5.7 93.4± 2.7 84.4± 3.6 66.0± 4.8 76.5± 4.9 86.0± 3.7 72.7± 4.1
7.1 95.6± 2.1 86.4± 3.3 70.6± 4.9 84.8± 3.9 90.4± 2.8 76.2± 4.6

Table 5.2: Mean and standard deviations of TPR for the implemented method (copyDOC) with window
size 100 bp and 400 bp and other available tools.

coverage copyDOC w=100 copyDOC w=400 CNV-seq DNAcopy SegSeq SOLiD-CNV

0.7 60.8± 7.9 29.9± 6.7 48.2± 15.7 2.3± 14.0 13.9± 31.6 20.5± 10.5
1.4 39.6± 7.7 20.2± 5.3 37.2± 7.8 7.8± 13.1 6.1± 5.8 19.7± 6.6
2.8 23.3± 4.4 16.6± 4.8 39.9± 6.4 17.7± 6.8 10.8± 6.0 17.7± 6.7
4.3 21.9± 3.6 17.1± 4.3 40.6± 5.8 20.7± 5.0 13.3± 5.0 17.8± 5.0
5.7 18.6± 4.1 16.1± 4.9 43.3± 3.3 22.6± 5.3 13.7± 5.0 15.9± 5.3
7.1 18.2± 3.9 16.8± 4.5 44.3± 3.2 25.8± 4.6 15.5± 4.3 16.6± 4.7

Table 5.3: Mean and standard deviations of FPR for the implemented method (copyDOC) with window
size 100 bp and 400 bp and other available tools.

The implemented tool (copyDOC) detected the most variants compared with the other tools at a cov-

erage ≥ 3-fold (see Tab. 5.2 and Fig. 5.4). At 7-fold coverage and using 100 bp windows copyDOC

detected 96% of the simulated variants, using 400 bp windows 86%. The other tools predicted 70.6%

(CNV-seq), 85% (DNAcopy), 90.4% (SegSeq) and 76.2% of the variants at the same coverage. The larger

sensitivity of copyDOC is likely due to the smaller window size compared to those of the other ap-

proaches: SegSeq (400 bp consecutive reads in control), SOLiD-CNV (1 kb) and CNV-seq (adaptive

windows e.g. 1 kb at 7-fold and 10 kb at 0.7-fold coverage). The high sensitivity of copyDOC comes

with the expense of a poor specificity at low coverage (1-2x) e.g. 40% FPR at 1.4-fold coverage (tab. 5.3).

The specificity is considerably improved with a window size of 400 bp (20% at 1.4x). SegSeq performs

better with respect to false positives compared to copyDOC (16% and 19% at 7-fold coverage) and the

other tools. If the sensitivity and specificity is considered at the same time the performance of copyDOC
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Figure 5.4: True positive rate (TPR) and false positive rate (FPR) w.r.t coverage for the implemented tool
at window size 100 bp (copyDOC 100) and 400 bp (copyDOC 400) and four published tools
(CNV-seq, DNAcopy, SeqSeg, SOLiD-CNV) with parameter settings from 4.3.2.

with a window size of 400 bp is comparable to that of SegSeq at a coverage of at least 3-fold. A low

coverage is problematic for the specificity of copyDOC independent of the window size.

5.4 Application

5.4.1 1000 genomes project data

In order to analyse its performance on real data copyDOC was applied to data from chromosome 1 of

the parent-child trio (1000 genomes project data). Each dataset covers chromosome 1 at approximately

30-fold with all mapped reads and 20-fold with uniquely mapped reads (tab. 5.4). I used the program

in two-sample mode with copyDOC parameters –window-size 100, –mapping-qual 30 –normalize-gc

(otherwise defaults from Tab. 4.1) to detect copy number variants that differ in the two samples. This

parameter setting results in exclusion of reads with a mapping quality below 30. The filtered reads

include only uniquely mapped reads. The program took 5h 20 min to process two datasets with 200

million reads each. The bottleneck in the pipeline of copyDOC is the first step, the determination of

depth of coverage signals from the data, because of the import of the huge amount of data. The program

called about 10000 events for each run, the majority of them are duplication events (tab. 5.5). The

filtering step removes half of this set resulting in about 2000 deletions and duplications in chromosome

1.
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dataset reads (all) coverage on chr1 reads mq≥30 coverage unique reads on chr1

NA12878 201240699 29.3x 158896695 23.1x
NA12891 186100776 27.1x 146307842 21.3x
NA12892 164033228 29.3x 124335270 18.1x

Table 5.4: 1000G trio dataset chromosome 1.

test control deletion events duplication events filtered deletions filtered duplications

NA12878 NA12891 867 8927 732 1637
NA12878 NA12891 2737 8927 2487 2132
NA12891 NA12892 2711 8926 2461 2132

Table 5.5: Detected events for the three runs with uniquely mapped reads.

For a second run I used the same datasets with no filtering by mapping quality. The results are shown

in table 5.6. CopyDOC predicts less CNVs (about overall 1000) than in the previous parameter setting.

This is notably striking in the predicted duplications (about 600 versus 9000).

test control deletions duplications filtered deletions filtered duplications

NA12878 NA12891 493 417 285 120
NA12878 NA12892 1703 593 949 262
NA12891 NA12892 1415 582 742 253

Table 5.6: Detected events for the three runs with all reads.

I counted the number of predicted CNVs that overlap an entry in the database of genomic variants

(DGV) for both runs. Using uniquely mapped reads the overlap of predicted CNVs that are at least 10

kb large with DGV is at most 56% (Tab. 5.7). It is lower (31− 39%), if also smaller CNVs (≤ 5 kb) are

considered. The overlap with DGV is significantly higher in the second run for all datasets, e.g. 83%

overlap with DGV entries of CNVs ≥ 10 kb in NA12891/NA12892 (Tab. 5.8). Including multireads has

a considerable influence on the result in this dataset.

5.4.2 Tumor cell lines

I tested copyDOC in single-sample mode with two whole-genome SOLiD datasets from tumor cell lines

(sw480 and sw620, unpublished data from Dr.Dr.M.R.Schweiger). The mapped reads were exported in

GFF format by the Applied Biosystems mapping tool iMAP and converted in SAM format using the

GFF conversion tool (matogff) from Applied Biosystems. The datasets consist of uniquely mapped

reads on NCBI hg18 (about 4-fold coverage, tab. 5.9).

I applied copyDOC on both datasets with 1 kb windows and GC-Normalization. It predicted 4704 and

2997 deletions in the filtered call sets of sw480 and sw620 (Tab. 5.10). In both datasets more duplications
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test control min mapqual min CNV size CNVs (filtered) copyDOC vs. DGV (%)

NA12878 NA12891 30 2 kb 2344 722/2344 (31%)
30 5 kb 412 133/412 (32%)
30 10 kb 79 39/79 (49%)

NA12878 NA12892 30 2 kb 4450 1480/4450 (33%)
30 5 kb 901 349/901 (39%)
30 10 kb 135 76/135 (56%)

NA12891 NA12892 30 2 kb 4434 1477 (33%
30 5 kb 893 348 (39%)
30 10 kb 134 75 (56%

Table 5.7: CNV concordance with DGV for program run with uniquely mapped reads.

test control min mapqual min CNV size CNVs (filtered) copyDOC vs. DGV (%)

NA12878 NA12891 0 2 kb 404 294/404 (73%)
0 5 kb 244 197/244 (81%)
0 10 kb 129 110/129 (85%)

NA12878 NA12892 0 2 kb 1210 743/1210 (61%)
0 5 kb 412 308/412 (75%)
0 10 kb 179 149/179 (83%)

NA12891 NA12892 0 2 kb 994 658/994 (66%)
0 5 kb 404 303/404 (75%)
0 10 kb 177 147/177 (83%)

Table 5.8: CNV concordance with DGV for program run with all reads.

than deletions were detected (9405 and 6122). I validated the results with array data (Affymetrix SNP

6.0 array, unpublished data from Dr.Dr.M.R.Schweiger). The array data includes very large variants,

on average 15 Mb large. I determined the percentage of predicted CNVs from array data that overlap

the copyDOC result with equal variant type (deletion or duplication/amplification), see Tab. 5.11. If I

select predicted CNVs that are at least 10 kb large they are consistent with 79% and 82% of the CNVs

in the array dataset. The concordance is lower when variants ≥ 100 kb are considered (50% and 57%).

This is due to the fact that the predicted CNVs are larger in the array dataset compared with the result

on sequencing data.
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dataset uniquely mapped reads coverage on hg18

sw480 218117242 3.5x
sw620 237796278 3.9x

Table 5.9: coverage of tumor cell line data.

Dataset Deletions Duplications Filtered deletions Filtered duplications

sw480 6525 10188 4704 9405
sw620 3462 6549 2997 6122

Table 5.10: Detected events for the tumor cell lines.

Dataset Min CNV size CNVs (filtered) Array result Array vs. copyDOC (%)

sw480 2 kb 14109 58 46/58 (79%)
10 kb 14064 58 46/58 (79%)
50 kb 14064 58 43/58 (74%)
100 kb 583 54 27/54 (50%)

sw620 2 kb 9119 78 65/78 (83%)
10 kb 9113 78 64/78 (82%)
50 kb 1734 75 56/75 (75%)
100 kb 826 69 39/69 (57%)

Table 5.11: CNV concordance with array data.
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6 Discussion

The evaluation of sensitivity of the implemented program (copyDOC) demonstrated that it is able to

detect copy number variants with high sensitivity in 2GS data with a TPR of 81− 96% at a coverage of

2.8− 7.1x (see Tab.5.1). The number of false positives at this coverage range is relatively high (18− 23%).

At low coverage ≤ 2 the sensitivity is decreased to 34% and there are much more false positives (61%).

The program is not able to infer the variant size for duplications (Fig. 5.2), i.e. the true size is underes-

timated. Since the sensitivity for detection of duplications is similar to that of deletions (Fig. 5.1), the

poor size prediction is due to insufficient merging of duplication events. Using the simulated data by

the implemented copySim environment, that inserts duplications randomly in the template sequence,

it is in general difficult to predict the exact breakpoints of the duplication in the sequence. The window

parameter has a significant influence on the number of correctly predicted variants. It has a strong im-

pact on the number of false positives in low coverage data (≤ 2-fold), see Fig. 5.3.

In comparison with four published tools that are also based on analysis of depth of coverage, the copy-

DOC program performs relatively good with respect to sensitivity and specificity (Tab. 5.2, Tab. 5.3,

Fig. 5.4). The parameters for the evaluated tools were choosen according to unsystematic performance

tests, but they might not represent the optimal parameter setting for this dataset. For the CNV-seq pro-

gram I was not able to find a parameter setting that decreases the high FPR at 40%. Except the window

size I did not examine the influence of filter parameters in copyDOC, which might improve specificity.

In practical applications the user would not test different parameters and is unable to determine the

FPR. Thus parameters should not have a major influence on the result.

The number of false positives seems to be very high (around 20%). This can be explained by repeats

that are contained in the used un-masked template sequence (chromosome 20), which are not removed

by the copySim platform. The number of predictable variants might also be influenced by repeats, as

far as the analysis is done on uniquely mapped reads.

The copyDOC program could be successfuly applied to real datasets from Illumina and SOLiD. For the

trio dataset from 1000 genomes project the results were dependent on whether unique reads or all reads

of the dataset was used resulting in 49− 56% and 83− 85% overlap of the predicted variants (≥ 10 kb)
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with entries in DGV (Tab. 5.7, Tab. 5.8). A second application in two tumor cell line datasets confirmed

that the program can get on a single dataset. The evaluation of the results with a true positive set based

on array data resulted in 79% and 82% concordance with respect to the array data set.
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7 Conclusions and outlook

In this work a program for detection of CNVs in sequencing data based on depth of coverage was im-

plemented in C++ (copyDOC). Single steps in the pipeline, the acquisition of DOC signals in windows,

the event calling and merging are implemented using generic programming techniques that enable the

future integration of other algorithms in the pipeline. Furthermore, a testing environment was imple-

mented, the copySim platform, which is very useful for testing and evaluation of different algorithms.

CopyDOC was successfully applied to synthetic and real data using constant sized windows. Dy-

namic windows, that adapt according to the local mappability of the sequence, are implemented in the

pipeline, but could not be tested in this work. They might be advantageous in datasets that contain

uniquely mapped reads. However, CNVs have been shown to be overrepresented in segmental dupli-

cations (Nguyen et al. 2006; Cooper et al. 2007) and by a general exclusion of multireads those CNVs

might be difficult to ascertain. In the application of copyDOC to a 1000 genomes dataset the overlap of

predicted variants was considerable higer using multireads compared to uniquely mapped reads. Thus

there is a requirement for tools that can handle multireads.

Futher improvements of copyDOC might be done for the CNV calling algorithm and the merging step.

For example the program workflow could be tested with a direct comparison of the DOC signals in

two datasets via log ratios instead of appling a t-test on DOC signals in the two datasets. CopyDOC

and copySim could be used as platform for the implementation and evaluation of futher CNV detection

algorithms.
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