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Summary

Haplotypes are an important concept for genetic association studies, but involve uncertainty due to statistical reconstruc-
tion from single nucleotide polymorphism (SNP) genotypes and genotype error. We developed a re-sampling approach
to quantify haplotype misclassification probabilities and implemented the MC-SIMEX approach to tackle this as a 3 ×
3 misclassification problem. Using a previously published approach as a benchmark for comparison, we evaluated the
performance of our approach by simulations and exemplified it on real data from 15 SNPs of the APM1 gene. Misclassi-
fication due to reconstruction error was small for most, but notable for some, especially rarer haplotypes. Genotype error
added misclassification to all haplotypes resulting in a non-negligible drop in sensitivity. In our real data example, the
bias of association estimates due to reconstruction error alone reached −48.2% for a 1% genotype error, indicating that
haplotype misclassification should not be ignored if high genotype error can be expected. Our 3 × 3 misclassification view
of haplotype error adds a novel perspective to currently used methods based on genotype intensities and expected number
of haplotype copies. Our findings give a sense of the impact of haplotype error under realistic scenarios and underscore
the importance of high-quality genotyping, in which case the bias in haplotype association estimates is negligible.
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Introduction

Haplotype association studies have gained influence due to
the availability of high-density single nucleotide polymor-
phism (SNP) data and their strengths in multi-locus analysis.
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Particularly, with the availability of genome-wide SNP geno-
type data, an increase in the number of haplotype association
studies utilizing this large-scale genotype data for haplotype
association studies can be anticipated, following the current
exploitation of these data in genotype association studies.

A haplotype covers a DNA-sequence on one chromosome
that is often inherited jointly. Haplotypes contain epistatic in-
formation on multiple SNPs, are expected to contain infor-
mation on an intervening un-genotyped causal variant, and
may represent the more biologically relevant entity (Clark,
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2004; Schaid, 2004). Haplotypes also reduce data complexity,
as the number of haplotypes appearing in a population usu-
ally undercut the number of theoretically possible haplotypes
(Daly et al., 2001; Johnson et al., 2001) and thus provide
a power gain (Akey et al., 2001; Morris & Kaplan, 2002).
Since determining haplotypes in the laboratory is still not
practicable for large epidemiological studies, haplotypes are
usually reconstructed statistically from SNP genotypes, e.g.,
via the EM-algorithm (Excoffier & Slatkin, 1995) involving
estimation uncertainty (Lamina et al., 2008).

Genotype error adds to this uncertainty: The error from
the genotyping process itself (“genotyping error”) is just one
of many sources of error (Pompanon et al., 2005). The pure
“genotyping error” can be estimated from repeated genotyp-
ing and is reportedly small for established genotyping meth-
ods such as multiplex approaches (0.01%–1% (Ranade et al.,
2001), 0.1% (Heid et al., 2008)) but might be larger for more
recently established genotyping methods such as genome-
wide SNP chip-genotyping. While the impact of such a
genotyping error is shown to be negligible for single SNP
association (Heid et al., 2008), it is an open question to what
extent the genotype error accumulates across multiple loci
resulting in more substantial haplotype error.

Haplotype error can result in misclassifying subjects: When
subjects are chosen according to their assigned haplotypes for
in-depth and expensive functional studies, misclassified haplo-
types misclassify subjects and compromise functional studies.
Haplotype error can also result in biased haplotype associ-
ation estimates: It is well known that errors in explanatory
variables induce bias in regression estimates and reduce power
(Carroll et al., 2006). Non-negligible bias in haplotype asso-
ciation estimates was reported in simulation studies by pure
reconstruction error assuming perfect genotypes (Kraft et al.,
2005) and by pure genotype error assuming unambiguous
reconstruction and a genotype error of 5% (Govindarajulu
et al., 2006). Thus, haplotype uncertainty due to both recon-
struction and genotype error under realistic scenarios and its
impact on haplotype assignment and on association estimates
is not well understood, particularly for real data situations.

Most previously reported approaches to account for haplo-
type error use the estimated number of copies of haplotypes in
the association analyses (Lake et al., 2003; Schaid 2004), which
transforms the biologically trichotomous haplotype variable
(zero, one, or two copies of a haplotype) into a continuous
entity. Here, we view haplotype error as a 3 × 3 misclassifica-
tion problem defined by the misclassification probabilities: We
present a re-sampling approach to estimate the misclassifica-
tion probabilities. We implement the “misclassification simula-
tion and extrapolation” (MC-SIMEX), an approach to account
for misclassification in a general model framework allowing
for covariate adjustment and for a wide variety of misclassi-
fication schemes and association analysis models (Kuchenhoff

et al., 2006). We test this approach via simulation studies and
apply it to a real data example of 15 SNPs of the APM1 gene
from 1770 subjects with plasma adiponectin concentrations
of the SAPHIR study (Heid et al., 2006). In both simulations
as well as in our real data example, we compare our approach
with one of the most widely used methods for haplotype as-
sociation analysis accounting for haplotype error (Lake et al.,
2003).

It was the aim of our investigation to estimate misclassi-
fication probabilities of haplotype error from reconstruction
and genotype error, to present sensitivity and specificity for
haplotype assignment, and the bias in haplotype association
estimates under realistic scenarios, and to provide an approach
to tackle this as a 3 × 3 misclassification problem.

Methods

The 3 × 3 Misclassification Problem

Let Gi = (Gi1, . . . ,GiL) denote the true genotype for the ith subject,
i = 1, . . . , n, for L SNPs with Gil indicating the number of minor
alleles at locus l, l = 1, . . . , L, for individual i (Gil ∈ {0, 1, 2})
and the genotype probabilities π

(l )
G = (π (l )

G,0, π
(l )
G,1, π

(l )
G,2). Ac-

cordingly, G∗
i = (G∗

i1, . . . , G∗
i L) denote the observed error-prone

genotypes with genotype probabilities π
(l )∗
G = (π (l )∗

G,0, π
(l )∗
G,1, π

(l )∗
G,2),

which are estimated by the observed genotype frequencies. As-
suming an allele-independent genotype error implies that the
probability of misclassifying the major allele A as the minor allele
a equals the probability of misclassifying the minor allele as the
major, P (A → a ) = P (a → A) = ε.

For M = 2L haplotypes h1, . . . , hM , the haplotypes of subject
i can be written as Hi = (Hi1, . . . , HiM ), with Him indicating the
true number of copies of haplotype hm of subject i, m = 1, . . . , M
(Him ∈ {0, 1, 2}). Accordingly, the (observed) reconstructed num-
ber of copies of each haplotype of subject i is H∗

i = (H∗
i1, . . . , H∗

i M ),
which is derived by the expected values given the observed
genotypes, E(H|G∗), for example, using the EM algorithm
(H∗

im ∈ [0, 2]); the (observed) most likely number of haplotypes
C∗

i = (C∗
i1, . . . , C∗

i M ) of subject i is derived by categorizing H∗
i

into the most likely haplotype pair for each individual, thus re-
turning to the discrete space (C∗

im ∈ {0, 1, 2}). For each haplo-
type hm, the transition Him → C∗

im describes a classical 3 × 3
misclassification problem denoted by the misclassification probabili-
ties π

(m )
kl = P (C∗

im = k|Him = l ), k, l = 0, 1, 2, which form the
matrix �(m ) = (π (m )

kl )k,l=0,1,2 involving six unknown parameters
due to π

(m )
0l + π

(m )
1l + π

(m )
2l = 1 for l = 0, 1, 2.

In the case of no genotype error, the subjects truly hav-
ing two copies of the same haplotype (“true homozygous”) can
always be reconstructed correctly from the genotypes, as the
genotypes are then homozygous at all loci, and thus π

(m )
02

and π
(m )
12 equal zero. Also, when the reconstructed haplotype

pair for a subject involves two copies of the same haplotype
(“observed homozygous”), this implies homozygous genotypes at
all loci und thus unambiguous reconstruction. Hence π

(m )
20 and
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Figure 1 Schematic overview of the haplotype error sources.

π
(m )
21 equal zero. The misclassification problem therefore reduces

to two unknown parameters π
(m )
00 and π

(m )
01 . This can be re-

parameterized by the sensitivity Snm = P (C∗
im > 0|Him > 0)

(“the probability that a true carrier of a certain haplotype is classi-
fied correctly”) and the specificity Spm = P (C∗

im = 0|Him = 0)
(“the probability that a true non-carrier is classified correctly”)

via π
(m )
00 = Spm and π

(m )
01 = π

(m )
1 +π

(m )
2 −Snm (π (m )

1 +π
(m )
2 )

π
(m )
1

. Here, π (m )
k =

P (Him = k)denotes the true probability for a subject having k
copies of one haplotype hm.

When genotype error Gi → G∗
i is involved in the misclas-

sification problem Him → C∗
im (see Fig. 1), haplotypes that

would have been unambiguous through reconstruction alone
are now also subject to error and π

(m )
02 , π

(m )
12 , π

(m )
20 , and

π
(m )
21 may deviate from zero leaving six parameters for mis-

classification probability estimation. The sensitivity and speci-
ficity can be determined from the misclassification probabilities

as Snm = π
(m )
11 π

(m )
1 +π

(m )
12 π

(m )
2 +π

(m )
21 π

(m )
1 +π

(m )
22 π

(m )
2

π
(m )
1 +π

(m )
2

and Spm = π
(m )
00 . If a

dominant genetic effect is assumed, the 3 × 3-misclassification
matrix reduces to a 2 × 2 problem and is then, again, completely
determined by sensitivity and specificity, even if genotype error
is involved.

While sensitivity and specificity are haplotype-specific er-
ror measures, the overall error (i.e., the proportion of subjects
with falsely classified haplotypes) summarizes overall haplo-
types, E Rall = ∑n

i=1 (1 − c i )/N where c i = 1, if Hi = C∗
i ,

otherwise c i = 0. The overall discrepancy D depicts the er-
ror in haplotype frequencies. It is defined as the propor-
tion of differences between observed haplotype frequencies
( f̂ ∗

1, . . . , f̂ ∗
M ) and true haplotype frequencies ( f̂ 1, . . . , f̂ M ):

D = D( f̂ 1, . . . , f̂ M, f̂ ∗
1, . . . , f̂ ∗

M ) = 1
2

∑M
m=1 | f̂ m − f̂ ∗

m |, ran-
ging between 0 and 1 (Stephens et al., 2001). The discrepancy
can also be depicted in a haplotype-specific way: Dm ( f̂ m , f̂ ∗

m ) =
1
2 | f̂ m − f̂ ∗

m |.

Estimating the Misclassification Probabilities
via Re-sampling

An approach to derive haplotype misclassification probabilities
in its most general form for given SNP genotype data was de-
veloped: As haplotype-specific discrepancies were shown to be
negligibly small (Lamina et al., 2008), we assumed that observed
haplotype frequencies reasonably approximated true haplotype
frequencies. For each simulation run, 1000 haplotypes were ran-
domly drawn given this true haplotype probability distribution
f = ( f1, . . . , f M ). Two haplotypes were randomly assigned to
each of 500 subjects assuming random mating. From each sub-

ject’s true haplotypes, the subjects’ genotypes were deduced. The
genotypes were then subjected to genotype error with ε = 0%,
0.5%, or 1% for each allele, which implies that a subject with
a true homozygous genotype at one SNP is assigned a het-
erozygous or the other homozygous genotype with probability
2ε(1 − ε) or ε2, respectively. From these error-prone genotypes,
haplotypes were reconstructed using the EM algorithm “proc
haplotype” (SAS, Heidelberg, Germany) and compared with the
true haplotypes using the error measures sensitivity, specificity,
misclassification probabilities, and discrepancies. For 100 simula-
tions, the mean and the standard deviation of these error measures
were computed.

Evaluating the Performance of the MC SIMEX
in Haplotype Association Analyses

We estimated the misclassification matrix � using the re-
sampling approach as described above based on the real data
haplotype frequencies. In the MC-SIMEX approach, data are
simulated with increasing misclassification �1+λ, λ = 1, 2, . . . ,
and association estimates β̂∗

λ are computed starting with the ob-
served data set (λ = 0) and the observed association estimate
β̂∗ = β̂0 (simulation step). Then, a function (linear, quadratic, or
log-linear) is fitted to the β-estimates and extrapolated back to
the case of no misclassification for λ = −1 (extrapolation step),
which is the SIMEX-corrected estimate (see Fig. S1 for illustra-
tion). The MC-SIMEX can be applied to all Generalized Linear
Models (GLM) for basically any given misclassification matrix
and is implemented in R (package “simex”).

We simulated normally distributed outcome data for linear
regression analysis for 1000 subjects: We assumed a risk hap-
lotype of interest, hR, with population probability f h R and de-
noted any other haplotype by h. Subjects were thus assigned the
h/h, hR/h, or hR/hR haplotype pair with probabilities (1 − f h R)2,
2 f h R(1 − f h R), or f 2

h R
and their outcome values were drawn

from N(0, σ 2), N(β, σ 2), or N(2β, σ 2), respectively, assuming
additivity of the effect β per copy of hR,. The variance of the
outcome, σ 2, was set to 0.4 to mimic adiponectin plasma level
(on the log(adiponectin+1) scale) from the real data example.
Different scenarios included effect estimates β of 0.5 or 0.05,
haplotype probabilities f h R of 0.15 and 0.3, and two misclassifi-
cation schemes,

�l ow =
⎛
⎝

0.975 0.1 0.01
0.025 0.9 0.1

0 0 0.89

⎞
⎠ and

�hi g h =
⎛
⎝

0.899 0.3 0.1
0.1 0.69 0.3

0.001 0.01 0.6

⎞
⎠ .

Based on the assigned true haplotype pairs hR/hR, hR/h, or h/h
for each subject and applying the haplotype misclassification
schemes �low or �high,, the observed haplotype pairs h∗

R/h∗
R,

h∗
R/h or h∗/h were obtained. To evaluate the performance of the

MC-SIMEX in correcting for haplotype misclassification and
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to check the preservation of the additivity of the effect, the β-
estimates comparing the subjects with h∗

R/h∗ (β̂1) or h∗
R/h∗

R (β̂2)
with h∗/h∗ subjects were computed (i) ignoring the haplotype
misclassification, (ii) accounting for it by the MC-SIMEX ap-
proach, and (iii) accounting for it by our benchmark method
(Lake et al., 2003) as implemented in R (haplo.glm). In the
method by Lake and colleagues, haplotypes and haplotype asso-
ciation are estimated in a single step incorporating the outcome
variable and covariate information.

For the 200 simulation runs, we computed mean and standard
deviation of effect estimates, 95% coverage (i.e., the proportion
of 95% confidence intervals that contain the true effect), and
relative bias, ((β̂na ive − β)/β)∗100%, with β̂na ive being the naive
estimator.

Real Data Example

To provide a real data example, we re-analyzed data from the
SAPHIR study (Salzburg Atherosclerosis Prevention Program in
Subjects at High Individual Risk), an observational study involv-
ing 1770 healthy unrelated subjects. From the known 53 SNPs of
the adiponectin encoding APM1 gene genotyped in a subsam-
ple, 15 haplotype tagging SNPs with minor allele frequencies of
>1% were selected according to Stram et al. (2003) and geno-
typed in the full sample. Haplotypes were reconstructed via the
EM algorithm (SAS proc haplotype). See Heid et al. (2006) for
details and notation of haplotypes.

We derived approximate misclassification matrices for each
haplotype combining the reconstruction error and a genotype
error of 0% (pure reconstruction error), 0.5% and 1%. We com-
puted haplotype linear regression estimates (i) ignoring the hap-
lotype misclassification using the naive estimator based on C∗,
(ii) accounting for it by the MC-SIMEX, or (iii) accounting for it
by the method from Lake and colleagues (Lake et al., 2003). The
linear model was computed on log(adiponectin+1) adjusted for
age, sex, body mass index (BMI), and all other haplotypes with
the most frequent one as reference (H22, frequency = 0.124).

Results

Estimating Misclassification Probabilities
via Re-sampling

Exemplified on the APM1 data, we derived the haplo-
type misclassification probabilities given the observed geno-
type data, the observed haplotype frequencies, and the as-
sumed genotype error via re-sampling. In this data, 18 of the
43 reconstructed APM1 haplotypes had frequencies >1%.
Table 1 depicts the haplotype misclassification matrices with
and without genotype error for selected haplotypes (all hap-
lotype misclassification matrices are shown in Table S1). As
expected, π02, π12, π20, and π21 were zero in the case of
no genotype error. When adding a genotype error of 0.5%

Table 1 Misclassification matrices for selected APM1 haplotypes assuming 0, 0.5, and 1% genotype error per allele (more details are given
in Table S1).

Haplotype (frequency) Genotype error

0% 0.5% 1%

H16 (0.100) H H H
0 1 2 0 1 2 0 1 2

C∗ 0 0.9726 0.0436 0 C∗ 0 0.9642 0.1141 0 C∗ 0 0.9589 0.1754 0.0058
1 0.0274 0.9564 0 1 0.0358 0.8857 0.1438 1 0.0411 0.824 0.2406
2 0 0 1 2 0 0.0002 0.8562 2 0 0.0006 0.7535

H2 (0.053) H H H
0 1 2 0 1 2 0 1 2

C∗ 0 0.9947 0.0070 0 C∗ 0 0.9944 0.0852 0 C∗ 0 0.9941 0.1672 0
1 0.0053 0.9930 0 1 0.0056 0.9148 0.0934 1 0.0059 0.8328 0.1833
2 0 0 1 2 0 0 0.9066 2 0 0 0.8167

H12 (0.023) H H H
0 1 2 0 1 2 0 1 2

C∗ 0 0.9947 0.1030 0 C∗ 0 0.9936 0.2096 0 C∗ 0 0.9929 0.2902 0.0345
1 0.0053 0.8970 0 1 0.0064 0.79 0.2586 1 0.0071 0.7091 0.3276
2 0 0 1 2 0 0.0004 0.7414 2 0 0.0007 0.6379

H4 (0.019) H H H
0 1 2 0 1 2 0 1 2

C∗ 0 1 0.0185 0 C∗ 0 0.9976 0.1363 0 C∗ 0 0.9955 0.2265 0
1 0 0.9815 0 1 0.0024 0.8637 0 1 0.0045 0.7735 0
2 0 0 1 2 0 0 1 2 0 0 1
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or 1%, all misclassification probabilities (for i �= j) increased
and most of the π02, π12, π20, and π21 deviated from zero.
For example, for the common haplotype H16, the misclassi-
fication probability from pure reconstruction error was rather
moderate with up to 4.36%, while misclassification increased
up to 24.06% when adding genotype error. The extent of the
haplotype reconstruction error was more substantial for some
(e.g., H12 with up to 10.30%), but not all (e.g., H4 with up to
1.85%) rarer haplotypes, which was already noted previously
(Lamina et al., 2008). Genotype error added markedly to
all haplotypes. Overall, the genotype error contributed more
substantially to the overall misclassification than the pure re-
construction error: The overall misclassification error of all
reconstructed haplotypes increased from 6.67% in the case of
no genotype error to 20.15% or 31.36% in the case of 0.5%
or 1% genotype error, respectively.

Summarizing the misclassification by sensitivity and speci-
ficity illustrated the dependence of pure reconstruction error
on haplotype frequencies: The sensitivity was high for the
common haplotypes and for many rare haplotypes, but was
substantially decreased down to 50% for some rare haplotypes
(Fig. 2A, Table S2). It can further be seen that the genotype
error reduced the sensitivity independently from haplotype
frequency. The sensitivity was as low as 40% for some hap-
lotypes with a genotype error of 1%. The specificity was
reduced for the common haplotypes, but was 100% for most
rare haplotypes and decreased in the presence of genotype
error but never fell below 95% (Fig. 2B).

Haplotype-specific discrepancies were small: they did not
exceed 0.001 in the case of no genotype error and reached
a maximum at 0.006 for 1% genotype error (Fig. 3). Overall
discrepancy increased for increasing genotype error of 0.5%
or 1% from 0.0199 (no genotype error) to 0.0738 or 0.1253,
respectively.

It should be noted that haplotype reconstruction error and
genotype error not only evoke misclassified haplotypes, which
is grasped by the misclassification matrix, but also gave rise to
“newly created” haplotypes: The percentage of falsely created
haplotypes increased from 0.395% for no genotype error to
6.30% or 11.50% for 0.5% or 1% genotype error, respectively.
However, the frequencies of falsely created haplotypes did not
exceed 0.25% and these haplotypes would usually not enter
haplotype association analyses due to sparseness of data.

Simulation Studies: Bias in Estimates
and Performance of MC-SIMEX

Simulation results to judge the performance of the MC-
SIMEX compared to the true, the naive, or the haplo.glm
model by Lake and colleagues are summarized in Table 2. We
have also compared the performance of the various SIMEX
extrapolation functions and found the loglinear function to

perform best (Table S3). While the estimates of the naive
model clearly underestimated the true haplotype effects, the
SIMEX estimates approximated the true estimate very well.
Estimators from the haplo.glm model still underestimated the
true association almost to the same extent as the naive method,
which can be explained by the fact that the largest contribu-
tion to the misclassification was from the genotype error (as
described above), which is neglected by the haplo.glm ap-
proach.

The relative bias for β1 ranged between −8.9% and
−10.2% (�low) or −31.4% and −36.9% (�high) and for β2,
between −1.9% and −4.2% (�low) or −17.3% and −22.1%
(�high). We observed no dependence of the bias on risk hap-
lotype frequency. Coverage of 95% confidence intervals across
the 200 simulations indicated that type I error was well pre-
served.

APM1 Real Data: Correcting Haplotype
Association Estimates for Misclassification

Figure 4A shows naive and corrected beta-estimates for the
three most common haplotypes (frequencies > 10%, except
the most common haplotype serving as reference) of the
APM1 real data example. Estimates increased when correct-
ing for pure reconstruction error by the MC-SIMEX and
further increased when additionally accounting for genotype
error. The correction using the haplo.glm model by Lake
and colleagues yielded similar beta-estimates as the SIMEX-
correction for pure reconstruction error, which is as ex-
pected as the haplo.glm model does not incorporate the
genotype error. For example, for the haplotype H16, the
β1 estimate was 0.086 without correction (β2: 0.224), 0.104
with pure reconstruction MC-SIMEX correction (β2: 0.239),
0.118 correcting for 0.5% genotyping error with MC-SIMEX
(β2: 0.273), 0.130 correcting for 1% genotyping error
with MC-SIMEX (β2: 0.297), and 0.095 (β2: 0.253) with
haplo.glm. Thus, haplo.glm estimates are comparable with the
estimates corrected for pure reconstruction error. The rela-
tive bias ranged from −3.1 to −20.7% (mean −10.2%) when
correcting for pure reconstruction error, while it ranged from
−31.0 to −38.9% (mean −16.2%) or −54.5% to −48.2%
(mean −20.6%) when adding 0.5% or 1% genotype error,
respectively. It should be noted that additivity of the genetic
effect did not fully hold.

A similar picture can be seen for the four haplotypes with
modest frequency (between 5% and 10%). For haplotypes
with frequencies <5%, however, the picture was less con-
sistent. Since covariate information is additionally used for
haplotype reconstruction, this could be due to the limited
number of subjects available for such haplotypes together with
specific covariate combinations (Fig. 4B).
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Figure 2 (A) Sensitivity and (B) Specificity as a function of haplotype frequencies in APM1
gene haplotypes for varying genotype errors (0, 0.5, and 1%).

Discussion

We introduce haplotype error as a 3 × 3 misclassification
problem and provide a unified approach to account for this
misclassification in haplotype assignment and haplotype asso-
ciation analyses. We provide a re-sampling approach to es-

timate misclassification, present sensitivity, and specificity as
measures of classification error in haplotype assignment, and
introduce the MC-SIMEX approach to account for haplo-
type error in association analyses. Our approach allows gen-
eral modeling and shows similar performance as the most
widely used approach by Lake et al. (2003) to correct for pure
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Figure 3 Discrepancy Dm as a function of haplotype frequencies in APM1 gene haplotypes for
varying genotype errors (0, 0.5, and 1%).

Table 2 Performance of MC-SIMEX correction of haplotype misclassification in simulation studies: A risk haplotype hR was simulated
and tested for association with a quantitative phenotype using a 2df model (estimating β1, β2) for various haplotype probabilities f h R and
misclassification schemes �low or �high. Across 200 simulated data sets, mean effect and coverage of 95% confidence intervals are given for
the true model, the model ignoring haplotype error (naive model), accounting for the error as proposed by Lake et al. (2003) (haplo.glm
model) and accounting for the error using the SIMEX corrected estimates using the loglinear function.

Model Misclassification matrix �low Misclassification matrix �high

Mean(β̂1) [Coverage] Mean(β̂2) [Coverage] Mean(β̂1) [Coverage] Mean(β̂2) [Coverage]

β1 = 0.5, β2 = 1, σ 2 = 0.4, f h R = 0.15

True 0.5028 [0.94] 1.0031 [0.98] 0.5044 [0.97] 1.0017 [0.94]
Naive 0.4536 [0.63] 0.9844 [0.99] 0.3183 [0.00] 0.8238 [0.67]
Haplo.glm 0.4565 [0.69] 0.9847 [0.99] 0.3209 [0.00] 0.8241 [0.67]
Simex (loglin) 0.5041 [0.94] 0.9998 [0.98] 0.5003 [0.83] 1.0922 [0.81]

β1 = 0.5, β2 = 1, σ 2 = 0.4, f h R = 0.3

True 0.5018 [0.95] 0.9959 [0.96] 0.4999 [0.93] 0.9974 [0.96]
Naive 0.4547 [0.63] 0.9538 [0.85] 0.3429 [0.00] 0.8244 [0.20]
Haplo.glm 0.4555 [0.66] 0.9539 [0.86] 0.3435 [0.00] 0.8245 [0.20]
Simex (loglin) 0.4963 [0.94] 0.9854 [0.93] 0.4881 [0.82] 0.9741 [0.94]

β1 = 0.05, β2 = 0.10, σ 2 = 0.4, f h R = 0.15

True 0.0528 [0.94] 0.1031 [0.98] 0.0544 [0.97] 0.1017 [0.94]
Naive 0.0481 [0.96] 0.1003 [0.97] 0.0346 [0.91] 0.0817 [0.91]
Haplo.glm 0.0484 [0.96] 0.1004 [0.97] 0.0349 [0.91] 0.0818 [0.91]
Simex (loglin) 0.0537 [0.95] 0.1029 [0.98] 0.0557 [0.85] 0.1108 [0.87]

β1 = 0.05, β2 = 0.10, σ 2 = 0.4, f h R = 0.3

True 0.0518 [0.95] 0.0959 [0.97] 0.0499 [0.93] 0.0974 [0.96]
Naive 0.0465 [0.95] 0.0918 [0.96] 0.0333 [0.92] 0.0759 [0.96]
Haplo.glm 0.0468 [0.93] 0.0919 [0.96] 0.0331 [0.92] 0.0758 [0.95]
Simex (loglin) 0.0509 [0.92] 0.0951 [0.95] 0.0502 [0.86] 0.0902 [0.91]
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Figure 4 β-coefficients for 17 APM1 gene haplotypes with frequency >1% compared to
subjects with two copies of the most common haplotype H22 as reference, based on a linear
regression model on log(adiponectin +1) adjusted for age, sex, body mass index, and all other
haplotypes, without accounting for error (naive estimator), accounting for reconstruction error
with 0%, 0.5%, and 1% genotype error using the SIMEX correction, and accounting for
reconstruction error using the haplo.glm approach by Lake et al. (2003)) (A) for common
haplotypes (frequencies > 10%) using a 2df genetic model, and (B) for rarer haplotypes
(frequencies < 10%) collapsing the homozygote subjects of the rare allele– if any– with the
heterozygote subjects.
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reconstruction error. Our approach is at the same time flexible
to additionally account for genotype error. We present both,
simulation and real data results and quantify the haplotype
misclassification under realistic scenarios.

Estimating Misclassification Under Realistic
Scenarios

We found the pure reconstruction error to be small relative
to the uncertainty added by a genotype error of 0.5% or 1%.
This genotype error size is consistent with previous error esti-
mates from double multiplex genotyping (Heid et al., 2008).
It can be argued that more recently developed genotyping
methods could have a higher genotype error, for which our
estimates undercut the real bias. Interestingly, the haplotype
uncertainty added through the genotype error appeared to
be independent from haplotype frequencies in contrast to the
haplotype reconstruction error (Lamina et al., 2008).

An alternative approach to assess haplotype misclassifica-
tion probabilities might be molecular haplotyping (Levenstien
et al., 2006). However, laboratory-assessed haplotypes are also
subject to error possibly to a larger extent than SNP geno-
types and cannot be considered a gold standard. Furthermore,
laboratory-assessed haplotypes are too costly to be assessed in
large scale, while our re-sampling approach to quantify hap-
lotype misclassification can be performed without laboratory
expenses in the routine epidemiological setting.

Sensitivity and Specificity as Measures of
Classification Error for Haplotype Assignment

Sensitivity and specificity can be derived easily from the mis-
classification probabilities and provide an intuitive and well-
accepted measure of classification error in life sciences. In our
scenarios, sensitivity was down to 40%. If a researcher aims
to select individuals with a certain haplotype for demanding
functional studies, knowing the probability that a selected in-
dividual really has this haplotype can substantially guide the
planning and success of such an investigation.

Performance of MC-SIMEX Correction
Compared to Benchmark Method

The MC-SIMEX correction for pure reconstruction error
compared well with the benchmark method by Lake et al.,
while at the same time providing the flexibility to incorporate
genotype error. As expected, estimates accounting for the
misclassification yielded estimates corrected “away from the
null” compared to the naive estimates for almost all haplotypes
and slightly extended confidence intervals.

Bias of Association Estimates Due to Haplotype
Error

In our real data example, association estimates uncorrected
for misclassification were underestimated by up to 50% as-
suming a genotype error of 1%. Our findings were thus in
the same ballpark as in previous reports (Govindarajulu et al.,
2006) describing an underestimation of up to 32.3% after ac-
counting for 1% genotyping error, but ignoring haplotype re-
construction error. However, for most haplotypes and/or for
high-quality genotypes (≤0.5% error), the impact of haplo-
type misclassification on haplotype association estimates will
be moderate and less relevant. This stresses the importance
of high genotyping quality when estimating haplotypes, but
also the validity of haplotype association analyses when based
on good genotypes. It will be an important issue to quan-
tify genotype error for genome-wide SNP chips’ genotypes
in order to understand the haplotype error, the underlying
bias in haplotype association estimates, and the extent of the
decreased power in genome-wide haplotype association anal-
yses.

Usefulness of our 3 × 3 Misclassification
Approach Compared to Existing Approaches

There are several available approaches to account for hap-
lotype error: In the approach by Zhu and Guo (Zhu &
Guo, 2006), haplotype reconstruction is based on fluores-
cent intensity genotype data instead of the called trichoto-
mous genotype. However, in most cases in current practice,
these genotype intensities will not be available to the analysts
of epidemiological data. Methods for haplotype association
analysis have been developed using H∗ within the likelihood
framework (Zaykin et al., 2002; Epstein & Satten, 2003; Lake
et al., 2003; Spinka et al., 2005) or with estimating equations
(Zhao et al., 2003). While the haplotype reconstruction error
is accounted for in these analyses (Mensah et al., 2007), they
do not incorporate genotype error.

Schaid et al. (2002) propose a score test using the expected
number of copies, E[H∗|G], according to the regression cali-
bration idea. This approach usually does not cover genotype
error, but could be extended. Lake et al. (2003) extended
the approach by Schaid and colleagues by additionally includ-
ing information on the outcome and covariates: Haplotypes
are reconstructed in one step together with estimating β-
coefficients. However, this “one-step” approach might not be
preferable for all situations: If several outcomes are of interest,
the haplotypes different for each outcome complicate com-
parisons across outcomes. If picking subjects with a specific
haplotype combination is of interest for functional follow-up,
the inclusion of the outcome in the haplotype estimation step
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might also not be ideal. We totally recognize that the ap-
proach by Lake and colleagues can be considered state of the
art. Therefore, we included it as a “benchmark” method for
comparing it with our approach.

While the MC-SIMEX method is an existing approach for
generally accounting for misclassification (Kuchenhoff et al.,
2006), it was never before applied to haplotype misclassifica-
tion. In fact, accounting for haplotype error in combination
with genotype error was never before viewed as a 3 × 3 mis-
classification problem. In combining this with a re-sampling
approach to estimate misclassification probabilities taking into
account both genotype error as well as statistical reconstruc-
tion error, we provide a unified approach to tackle haplotype
misclassification. The 3 × 3 misclassification approach is quite
natural and intuitive. It can add to the existing approaches
depending on the research question for which the haplotypes
are constructed: to provide measures of classification error for
subject selection or whenever the specific numbers of copies
of a haplotype or the specific haplotype pair are of interest.

Strengths and Limitations of This Investigation

It is a strength of our investigation that we applied our ap-
proach to high dense SNP genotype data with a complex
underlying haplotype structure, which showed very high as-
sociations with a quantitative disease-relevant blood marker.
Furthermore, we applied realistic scenarios to estimate hap-
lotype misclassification.

It may be considered a limitation of our re-sampling ap-
proach that we assumed the observed haplotype frequencies
to sufficiently approximate true haplotype frequencies. How-
ever, this seemed suitable, as haplotype-specific discrepancies
were found to be very small throughout. Furthermore, we
assumed the genotype error to be allele-independent (i.e.,
the probability of misclassifying the minor allele into the ma-
jor allele being the same as the other way round). This im-
plies a restricted genotype error model, which may not grasp
real situations completely. However, it is the currently most
widely applied genotype error model (Wong et al., 2004;
Govindarajulu et al., 2006; Moskvina & Schmidt, 2006), and
it has been shown to be reasonably applicable while being
the most parsimonious model (Heid et al., 2008). In fact, our
approach of the 3 × 3 haplotype misclassification has the ad-
vantage that it can be easily extended to incorporate a general
genotype error model due to its compatibility with the 3 ×
3 genotype misclassification problem.

Conclusions

Our investigation underscores that haplotype misclassifica-
tion, as a result of genotype error and statistical reconstruction

from these genotypes, can be substantial for some haplotypes
and in the case of high genotype error, but also that bias from
haplotype misclassification is small in the case of high-quality
genotype data. We present the MC-SIMEX approach as an
efficient method to correct association estimates for haplo-
type misclassification, which yields comparable results to the
haplo.glm method by Lake et al. (2003), while providing full
flexibility of models. Finally, we suggest that haplotype error
may be a 3 × 3 misclassification problem in existing ap-
proaches, which can be of particular interest under specific
research scenarios.
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Heid, I. M., Lamina, C., Küchenhoff, H., Fischer, G., Klopp, N.,
Kolz, M., Grallert, H., Vollmert, C., Wagner, S., Huth, C., Müller,
J., Müller, M., Hunt, S. C., Peters, A., Paulweber, B., Wichmann,
H. E., Kronenberg, F. & Illig, T. (2008) Estimating the single
nucleotide polymorphism genotype misclassification from rou-
tine double measurements in a large epidemiologic sample. Am J
Epidemiol 168, 878–889.

Johnson, G. C. L., Esposito, L., Barratt, B. J., Smith, A. N.,
Heward, J., Di Genova, G., Ueda, H., Cordell, H. J., Eaves, I. A.,
Dudbridge, F., Twells, R. C. J., Payne, F., Hughes, W., Nutland,

Annals of Human Genetics (2010) 74,452–462 461C© 2010 The Authors
Annals of Human Genetics C© 2010 Blackwell Publishing Ltd/University College London



C. Lamina et al.

S., Stevens, H., Carr, P., Tuomilehto-Wolf, E., Tuomilehto, J.,
Gough, SCL., Clayton, D. G. & Todd, J. A. (2001) Haplotype
tagging for the identification of common disease genes. Nat Genet
29, 233–237.

Kraft, P., Cox, D. G., Paynter, R. A., Hunter, D. & De, V. I.
(2005) Accounting for haplotype uncertainty in matched asso-
ciation studies: A comparison of simple and flexible techniques.
Genet Epidemiol 28, 261–272.

Kuchenhoff, H., Mwalili, S. M. & Lesaffre, E. (2006) A general
method for dealing with misclassification in regression: The mis-
classification SIMEX. Biometrics 62, 85–96.

Lake, S. L., Lyon, H., Tantisira, K., Silverman, E. K., Weiss, S.
T., Laird, N. M. & Schaid, D. J. (2003) Estimation and tests of
haplotype-environment interaction when linkage phase is am-
biguous. Hum Hered 55, 56–65.

Lamina, C., Bongardt, F., Kuechenhoff, H. & Heid, I. M. (2008)
Haplotype reconstruction error as a classical misclassification prob-
lem. PLoS ONE 3, e1853.

Levenstien, M. A., Ott, J. & Gordon, D. (2006) Are molecular
haplotypes worth the time and expense? A cost-effective method
for applying molecular haplotypes. PLoS Genet 2, e127.

Mensah, F. K., Gilthorpe, M. S., Davies, C. F., Keen, L. J., Adamson,
P. J., Roman, E., Morgan, G. J., Bidwell, J. L. & Law, G. R. (2007)
Haplotype uncertainty in association studies. Genet Epidemiol 31,
348–357.

Morris, R. W. & Kaplan, N. L. (2002) On the advantage of haplotype
analysis in the presence of multiple disease susceptibility alleles.
Genet Epidemiol 23, 221–233.

Moskvina, V. & Schmidt K. M. (2006). Susceptibility of biallelic hap-
lotype and genotype frequencies to genotyping error. Biometrics
62, 1116–1123.

Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. (2005) Geno-
typing errors: Causes, consequences and solutions. Nat Rev Genet
6, 847–859.

Ranade, K., Chang, M. S., Ting, C. T., Pei, D., Hsiao, C. F., Olivier,
M., Pesich, R., Hebert, J., Chen, Y. D., Dzau, V. J., Curb, D.,
Olshen, R., Risch, N., Cox, D. R. & Botstein, D. (2001). High-
throughput genotyping with single nucleotide polymorphisms.
Genome Res 11, 1262–1268.

Schaid, D. J. (2004) Evaluating associations of haplotypes with traits.
Genet Epidemiol 27, 348–364.

Schaid, D. J., Rowland, C. M., Tines, D. E., Jacobson, R. M. &
Poland, G. A. (2002) Score tests for association between traits and
haplotypes when linkage phase is ambiguous. Am J Hum Genet
70, 425–434.

Spinka, C., Carroll, R. J. & Chatterjee, N. (2005) Analysis of case-
control studies of genetic and environmental factors with missing
genetic information and haplotype-phase ambiguity. Genet Epi-
demiol 29, 108–127.

Stephens, M., Smith, N. J. & Donnelly, P. (2001) A new statistical
method for haplotype reconstruction from population data. Am J
Hum Genet 68, 978–989.

Stram, D. O., Haiman, C. A., Hirschhorn, J. N., Altshuler, D.,
Kolonel, L. N., Henderson, B. E. & Pike, M.C. (2003) Choosing

haplotype-tagging SNPs based on unphased genotype data using
a preliminary sample of unrelated subjects with an example from
the multiethnic cohort study. Hum Hered 55, 27–36.

Wong, M. Y., Day, N. E., Luan, J. A. & Wareham, N. J. (2004).
Estimation of magnitude in gene-environment interactions in the
presence of measurement error. Stat Med 23, 987–998.

Zaykin, D. V., Westfall, P. H., Young, S. S., Karnoub, M. A., Wag-
ner, M.J. & Ehm, M.G. (2002) Testing association of statistically
inferred haplotypes with discrete and continuous traits in samples
of unrelated individuals. Hum Hered 53, 79–91.

Zhao, L. P., Li, S. S. & Khalid, N. (2003) A method for the assessment
of disease associations with single-nucleotide polymorphism hap-
lotypes and environmental variables in case-control studies. Am J
Hum Genet 72, 1231–1250.

Zhu, W. & Guo, J. (2006) A likelihood-based method for haplotype
association studies of case-control data with genotyping uncer-
tainty. Sci China A Math 49, 130–144.

Supporting Information

Additional supporting information may be found in the online
version of this article:

Figure S1 Mechanism of the MC-SIMEX approach: The
naive estimator for λ = 0 and estimators calculated from
simulated data with additional artificial misclassification (λ >

0) are plotted. The fitted curve (solid line) is extrapolated
back to λ = −1 (dashed line), resulting in the MC-SIMEX
estimator.
Table S1 Misclassification matrices for APM1 haplotypes.
Table S2 Frequency, sensitivity, and specificity for APM1
haplotypes.
Table S3 Performance of MC-SIMEX correction of haplo-
type misclassification in simulation studies (including results
of MC-SIMEX estimators using linear and quadratic extrap-
olation functions).
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