
 

 

 

 
Generation and application of genomic tools  

as important prerequisites for sugar beet 

genome analyses 

 

 
Dissertation zur Erlangung des akademischen Grades des 

 

Doktors der Naturwissenschaften (Dr. rer. nat.) 

 

eingereicht im Fachbereich Biologie, Chemie, Pharmazie 

der Freien Universität Berlin 

 

 
 

vorgelegt von  

Cornelia Lange 

aus Rheinhausen j. Duisburg 

 

April 2010 
 



 

 

 

  



 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
Diese Arbeit wurde am Max-Planck-Institut für Molekulare Genetik, Berlin unter Anlei-
tung von Dr. habil. Heinz Himmelbauer angefertigt. 
 
 
 
1. Gutachter: Dr. habil. Heinz Himmelbauer 
 Centre de Regulacio Genomica (CRG)  

 C/ Dr. Aiguader, 88, E-08003 Barcelona, Spanien 
 
 
2. Gutachter: Prof. Dr. Wolfgang Schuster 

Institut für Angewandte Genetik, Freie Universität Berlin, 
Albrecht-Thaer-Weg 6, D-14195 Berlin, Deutschland 

 
 
 
Disputation am: 31.05.2010 
 





 

 

Contents 

1 List of publications enclosed in this thesis ......................................................... 1 

2 Summary .............................................................................................................. 3 

3 Zusammenfassung ............................................................................................... 5 

4 Introduction ......................................................................................................... 7 

4.1 Sugar beet (Beta vulgaris) .......................................................................... 7 

4.2 Taxonomy and angiosperm evolution ........................................................ 7 

4.3 Plant genome sizes and repeats .................................................................. 9 

4.4 Genome Mapping ..................................................................................... 12 
4.4.1 Genetic mapping and molecular marker systems ...................................................... 12 
4.4.2 Physical mapping techniques .................................................................................... 17 

4.5 Aim of this work ...................................................................................... 24 

5 Publication I ....................................................................................................... 25 

5.1 High-throughput identification of genetic markers using 
representational oligonucleotide microarray analysis .............................. 25 

5.2 Supplementary information ...................................................................... 60 

5.3 Contributions ............................................................................................ 61 

6 Publication II ..................................................................................................... 63 

6.1 Haplotype divergence in Beta vulgaris and microsynteny with 
sequenced plant genomes. ........................................................................ 63 

6.2 Supplementary information ...................................................................... 77 

6.3 Contributions ............................................................................................ 83 

7 Publication III .................................................................................................... 85 

7.1 Construction and characterization of a sugar beet (Beta vulgaris) 
fosmid library ........................................................................................... 85 

7.2 Contributions ............................................................................................ 90 

8 Publication IV .................................................................................................... 91 

8.1 Mobilization and evolutionary history of miniature inverted-repeat 
transposable elements (MITEs) in Beta vulgaris L. ................................. 91 

8.2 Contributions .......................................................................................... 106 

9 Discussion ......................................................................................................... 107 

9.1 Genome Mapping ................................................................................... 107 

9.2 Evolution and genome structure ............................................................. 111 

9.3 Outlook: Whole genome physical map and genome sequencing ........... 113 

10 References ........................................................................................................ 115 

11 Appendix ............................................................................................................... i 



 

 

11.1 Abbreviations............................................................................................... i 

11.2 Curriculum Vitae ....................................................................................... iii 

11.3 Danksagung (Acknowledgements) ........................................................... vii 

11.4 Selbständigkeitserklärung .......................................................................... ix 

11.5 CD with supplementary data ..................................................................... xi 
 



List of publications enclosed in this thesis 
 

1 
 

1 List of publications enclosed in this thesis 
 

 

Publication I 

High-throughput identification of genetic markers using representational 

oligonucleotide microarray analysis. 

Lange C*, Mittermayr L*, Dohm JC, Holtgräwe D, Weisshaar B, Himmelbauer H. 

Theor Appl Genet. 2010 Apr 9. [Epub ahead of print] 

DOI: 10.1007/s00122-010-1329-2 

 

 

Publication II 

Haplotype divergence in Beta vulgaris and microsynteny with sequenced plant 

genomes. 

Dohm JC, Lange C, Reinhardt R, Himmelbauer H. Plant J. 2009; 57 (1): 14-26. 

DOI: 10.1111/j.1365-313X.2008.03665.x 

 

 

Publication III 

Construction and characterization of a sugar beet (Beta vulgaris) fosmid library. 

Lange C, Holtgräwe D, Schulz B, Weisshaar B, Himmelbauer H. Genome. 2008; 51 

(11): 948-51 

DOI:10.1139/G08-071 

 

 

Publication IV 

Mobilization and evolutionary history of miniature inverted-repeat transposable 

elements (MITEs) in Beta vulgaris L. 

Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T. Chromosome 

Res. 2006; 14 (8): 831-44 

DOI: 10.1007/s10577-006-1090-1 

 



 

 

 

 

 

 



Summary 

3 

2 Summary 
 

Genetic and physical maps of a genome are essential tools for structural, functional and 

applied genomics. Genetic maps allow the detection of quantitative trait loci (QTLs), 

the characterisation of QTL effects and facilitate marker-assisted selection (MAS). The 

characterisation of genome structure and analysis of evolution is augmented by physical 

maps. Whole genome physical maps or ultimately complete genomic sequences, respec-

tively, of a species display frameworks that provide essential information for under-

standing processes in respect to physiology, morphology, development and genetics. 

However, comprehensive annotation underpins the values a genome sequence or physi-

cal map represents. An important task of genome annotation is the linkage of genetic 

traits to the genome sequence, which is facilitated by integrated genetic and physical 

maps. 

In the context of this study several sugar beet (Beta vulgaris L.) genomic tools were 

developed and applied for evolutionary studies and linkage analysis. A new technique 

allowing high-throughput identification and genotyping of genetic markers was devel-

oped, utilising representational oligonucleotide microarray analysis (ROMA). We tested 

the performance of the method in sugar beet as a model for crop plants with little se-

quence information available. Genomic representations of both parents of a mapping 

population were hybridised on microarrays containing custom oligonucleotides based 

on sugar beet bacterial artificial chromosome (BAC) end sequences (BESs) and ex-

pressed sequence tags (ESTs). Subsequent analysis identified potential polymorphic 

oligonucleotides, which were placed on new microarrays used for screening of 184 F2 

individuals. Exploiting known co-dominant anchor markers, we obtained 511 new 

dominant markers distributed over all nine sugar beet linkage groups and calculated 

genetic maps. Besides the method´s transferability to other species, the obtained genetic 

markers will be an asset for ordering of sequence contigs in the context of the ongoing 

sugar beet genome sequencing project. In addition, possible linkage of physical and 

genetic maps was provided, since genetic markers were based on source sequences, 

which were also used for construction of a BAC based physical map utilising a hybridi-

sation approach. An example of the hybridisation based approach for physical map con-

struction and its application for synteny studies was demonstrated. Since little is known 

about synteny between rosids and Caryophyllales so far, we analysed the extent of 
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synteny between the genomic sequences of two BAC clones derived from two different 

Beta vulgaris haplotypes and rosid genomes. For selection of the two BAC clones we 

hybridised 30 oligonucleotide probes based on ESTs corresponding to Arabidopsis 

orthologs on chromosomes 1 and 4 that were presumably co-localised in the recon-

structed Arabidopsis pseudo ancestral genome (Blanc et al. 2003) on sugar beet BAC 

macroarrays comprising two different sugar beet libraries. A total of 27,648 clones were 

screened per sugar beet library, corresponding to 4.4-fold and 5.5-fold, respectively, 

sugar beet genome coverage. We obtained four and five positive clones for the probes 

on average. Two clones, one from each haplotype that were positive with the same five 

EST probes, were selected and their genomic sequences were determined, annotated and 

exploited for synteny studies.  

Furthermore, I constructed and characterised a sugar beet fosmid library from the dou-

bled haploid accession KWS2320 encompassing 115,200 independent clones. The insert 

size of the fosmid library was determined by pulsed field gel electrophoresis to be 39 

kbp on average, thus representing 5.9-fold coverage of the sugar beet genome. Fosmids 

bear the advantage of narrowly defined size of the clone inserts, thus fosmid end se-

quences will essentially contribute to the future assembly and ordering of sequence con-

tigs. Since repeats are a major obstacle for successful assembly of plant genome se-

quences, frequently causing gaps and misassembled contigs, I generated a genomic 

short-insert library. The short-insert library facilitated repeat identification within the 

sugar beet genome, which was exemplarily shown for three miniature inverted-repeat 

transposable element (MITE) families. 

Altogether this work contributed substantially to a deeper understanding of the genome 

structure of sugar beet and provided the basis for successful sequencing of the sugar 

beet genome.  
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3 Zusammenfassung 
 

Genetische und physikalische Karten eines Genoms sind essentielle Werkzeuge für struk-

turelle, funktionelle und angewandte Genomik. Genetische Karten erlauben die Identifi-

zierung von „Quantitative Trait Loci“ (QTLs), die Charakterisierung von QTL-Effekten, 

und sie ermöglichen Marker gestützte Selektion in der Züchtung. Die Charakterisierung 

der Genomstruktur, sowie Evolutionsanalysen werden durch physikalische Karten ermög-

licht. Umfassende physikalische Karten, bzw. letztendlich eine vollständige Sequenz des 

Genoms einer Spezies, stellen Gerüste dar, die essentielle Informationen zum Verständnis 

von Prozessen die Physiologie, Morphologie, Entwicklung und Genetik betreffend, ent-

halten. Der Nutzen einer physikalischen Karte bzw. einer Genomsequenz hängt jedoch 

von einer guten, umfangreichen Annotation ab. Ein wichtiger Bestandteil der Genoman-

notation ist die Verknüpfung von genetischen Merkmalen mit der Genomsequenz, die 

durch die Integration von genetischen und physikalischen Karten erreicht wird.  

Im Kontext dieser Arbeit wurden verschiedene Werkzeuge für Genomik-Studien in der 

Zuckerrübe (Beta vulgaris L.) entwickelt und angewandt, um Evolutionsstudien und 

Kopplungsanalysen durchzuführen. Es wurde eine neue Technik entwickelt, die basierend 

auf „Representational Oligonucleotide Microarray Analysis” (ROMA), Hochdurchsatz-

Identifikation und -Genotypisierung von genetischen Markern ermöglicht. Die Methode 

wurde in der Zuckerrübe als Model für Kulturpflanzen mit wenig verfügbarer Sequenzin-

formation getestet. Hierzu wurden genomische Repräsentationen beider Elternlinien einer 

Kartierungspopulation auf Microarrays mit benutzerdefinierten Oligonukleotiden, basie-

rend auf Zuckerrüben „Bacterial Artificial Chromosome” (BAC) -Endsequenzen (BESs) 

und „Expressed Sequence Tags“ (ESTs), hybridisiert. Folgende Analysen führten zur 

Identifizierung von potentiell polymorphen Oligonukleotiden. Diese wurden zum Design 

weiterer Microarrays verwendet, die zum Screening von 184 F2-Individuen dienten. Unter 

Zuhilfenahme bekannter kodominanter Marker konnten 511 neue, über alle neun Kopp-

lungsgruppen der Zuckerrübe verteilte, dominante Marker gewonnen und genetische Kar-

ten berechnet werden. Zusätzlich zu der Möglichkeit die Technik auch auf andere Spezies 

anzuwenden, stellen die neu gewonnenen genetischen Marker ebenfalls einen Zugewinn 

für die Anordnung von Sequenz-Contigs im Rahmen des zurzeit laufenden Zuckerrüben-

genom-Sequenzierungsprojekts dar. Zudem wurde eine Verknüpfung der genetischen 

Karte mit der physikalischen Karte ermöglicht, da die Sequenzen auf denen die geneti-
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schen Marker beruhen ebenfalls für die Konstruktion einer BAC basierten physikalischen 

Karte genutzt wurden. Ein Bespiel des Hybridisierungs-Ansatzes, der zur Generierung der 

physikalischen Karte genutzt wurde, und seine mögliche Anwendung für Syntänie-

Studien wurde im Weiteren demonstriert. Da bisher wenig bekannt ist über Syntänie zwi-

schen Rosiden und Caryophyllales, untersuchten wir den Syntäniegrad zwischen den 

genomischen Sequenzen zweier BAC-Klone, gewonnen aus zwei verschiedenen Zucker-

rüben-Haplotypen und Rosiden-Genomen. Für die Auswahl der zwei BAC-Klone hybri-

disierten wir 30 Oligonukleotid-Sonden auf Zuckerrüben BAC-Makroarrays, die zwei 

verschiedene Zuckerrüben-Banken umfassten. Die Sonden basierten auf ESTs, welche 

Arabidopsis Orthologen auf den Chromosomen 1 und 4 entsprachen, die ursprünglich im 

rekonstruierten pseudo-anzestralen Arabidopsis-Genom kolokalisiert waren (Blanc et al. 

2003). Insgesamt wurden 27.648 Klone pro Zuckerrüben Bank untersucht. Dies entspricht 

einer 4,4-fachen bzw. 5,5-fachen Abdeckung des Zuckerrübengenoms. Im Durchschnitt 

erhielten wir vier bzw. fünf positive Klone pro Sonde. Zwei Klone jedes Haplotyps, die 

positiv für die gleichen EST-Sonden waren, wurden ausgewählt und ihre genomischen 

Sequenzen wurden ermittelt, annotiert und für Syntänie-Studien verwendet.  

Desweiteren konstruierte und charakterisierte ich eine Zuckerrüben-Fosmidbank mit 

115.200 vereinzelten Klonen aus der doppelt-haploiden Linie KWS2320. Die Größe der 

Fosmid-Inserts wurde mittels Pulsfeldgelelektrophorese bestimmt und betrug 39 kbp im 

Durchschnitt, d.h. die Fosmidbank deckte das Zuckerrübengenom 5,9-fach ab. Fosmide 

weisen den Vorteil auf, dass ihre Insertgröße kaum variiert und daher Fosmid-

Endsequenzen die zukünftige Assemblierung und Orientierung von Sequenz-Contigs 

ebenfalls entscheidend unterstützen werden. Da repetitive Elemente ein großes Hindernis 

für die erfolgreiche Assemblierung von Pflanzengenomsequenzen sind und häufig große 

Lücken in Genomsequenzen oder falsch assemblierte Contigs verursachen, habe ich zu-

sätzlich eine genomische „Shotgun“-Klonbank mit kleinen Insert hergestellt. Diese er-

möglichte die Identifikation von repetitiven Elementen im Zuckerrübengenom, wie es 

beispielhaft für drei „Miniature Inverted-Repeat Transposable Element” (MITE) Familien 

gezeigt wurde.  

Insgesamt trug diese Arbeit erheblich zu einem tieferen Verständnis der Struktur des Zu-

ckerrübengenoms bei und stellte die Basis für die erfolgreiche zukünftige Sequenzierung 

des Zuckerrübengenoms dar.  
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4 Introduction 
 

4.1 Sugar beet (Beta vulgaris) 

Sugar beet (Beta vulgaris) is a crop plant with high economic importance, since it is the 

only sucrose storing crop of moderate climates. It accounts for about 25% of the world-

wide sugar production (Draycott 2006), provides the basis for a vast number of food 

products and can be utilised for bio-fuel production. Sugar beet is a relatively young 

crop, domesticated in the late 18th century (Fischer 1989). Before sugar beet was used 

for sugar production, sugar isolated from sugar cane had to be imported to Europe from 

tropical regions. After Marggraf had proven in 1784 that the sweet substance contained 

in Beta forms was chemically identical with cane sugar, beets were grown in central 

Europe and industrial sugar production started in the beginning of the 19th century. Sys-

tematic breeding of sugar beet led to continuous improvement of sugar beet, especially 

with regard to its sugar content. In the middle of the 19th century, the sucrose content of 

sugar beet amounted to about 8%, whilst today sucrose can account for around 17% of 

the plant´s dry weight (www.kws.de). Later and current breeding approaches do not in 

the first place aim for increased sucrose content in sugar beet roots, but rather for pest 

and disease resistances and minimizing the breeder´s effort. One early prominent exam-

ple is the generation of monogerm sugar beet lines (Savitsky 1950). In contrast to old 

multigerm varieties, monogerm seeds produce single seedlings on germination, which 

obviated the need for performing laborious singling. 

 

4.2 Taxonomy and angiosperm evolution 

Taxonomically, within the angiosperms (flowering plants) sugar beet (Beta vulgaris L. 

ssp. vulgaris var. altissima Döll) is a member of the core eudicotyledons and belongs to 

the order of Caryophyllales (Figure 1).  

Angiosperms are the most diverse extant plant group on earth occupying a large spec-

trum of habitats. Angiosperm diversification took place in the early Cretaceous period 

(145-99 million years ago). Sugar beet and Arabidopsis thaliana diverged from a com-

mon ancestor an estimated 120-130 million years ago (mya). The last common ancestor 
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of sugar beet and potato (Solanum tuberosum) is dated 110 mya (Wilkstrom et al. 

2001). Both follow closely the divergence of dicot from monocot families about 140-

150 mya (Moore et al. 2007). Genome analyses have revealed that a possible explana-

tion for the fast diversification of the flowering plants might lie in gene or whole-

genome duplications (WGD). Recent and ancient WGDs are also termed polyploidy and 

paleopolyploidy, respectively. It is generally accepted that Arabidopsis has undergone 

at least three WGDs, called α, β and γ events (Figure 1). Jaillon et al. (2007) suggested 

that the common ancestor of V. vinifera, P. trichocarpa and A. thaliana was an ancient 

hexaploid, resulting from a paleohexaploidy event (γ) after the divergence of monocots 

and eudicots early in angiosperm evolution, followed by gene loss leading to pseudodip-

loid genomes. The exact timing of the γ event is still controversial, ranging from before 

the split of the monocots and eudicots to the last common ancestor of all extant rosids 

(Soltis et al. 2009). However, comparative studies between tomato (Solanum lycopersi-

cum) and grapevine revealing collinearity between tomato and triplicate regions in 

grapevine, led to the conclusion that the γ event took place before the split of asterids 

and rosids (Tang et al. 2008). The Arabidopsis genome underwent at least two other 

WGD events (β and α). The complete genome sequence of papaya has shown, that the β 

event probably took place in Brassicales after the split of papaya and Arabidopsis ~72 

mya (Ming et al. 2008) and thus being much younger than previously proposed by 

Bowers et al. (2003) who placed the β event before the divergence of monocots and 

eudicots. The α event likely occurred within the Brassicaceae around 40 mya (Fawcett 

et al. 2009). Several investigated plants have undergone further lineage or species spe-

cific WGDs (Figure 1). Since all recently sequenced eudicot plant genomes represent 

rosids or asterids, the complete genome sequence of sugar beet will be of great value to 

gain new insights into angiosperm genome evolution.  
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Figure 1. Phylogenetic tree of selected core eudicotelydons. Whole genome duplications (WGDs) in their 

approximate temporal context are indicated as yellow rectangles. WGDs were inferred from the studies of 

Bertioli et al. (2009) for legumes, Tuskan et al. (2006) for poplar (Populus trichocarpa), Fawcett et al. 

(2009) for the generally accepted α and β duplication events in Arabidopsis and Schlueter et al. (2004) for 

Solanaceae. Red circles denote recent polyploidy events that took place ~13 million years ago (mya) in 

soybean (Glycine max) (Schmutz et al. 2010) and in potato (Solanum tuberosum) (Schlueter et al. 2004). 

Figure modified from Fawcett et al. (2009). 

 

4.3 Plant genome sizes and repeats 

Plant nuclear genomes vary greatly in their sizes and structures. Genome sizes across 

land plants can range over several orders of magnitude. Genlisea margaretae is consid-

ered to have the smallest genome (63 Mbp) found so far within the angiosperms 

(Greilhuber et al. 2006), whereas members of the Liliaceae possess genomes with sizes 

of more than 120,000 Mbp (Bennett and Smith 1991).  
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Sugar beet is a diploid species encompassing n=9 chromosomes. The haploid genome 

size is estimated to be 758 Mbp (Arumuganathan and Earle 1991), which is larger than 

the genome sizes of all plants sequenced so far, except for the very recently sequenced 

soybean (Glycine max) genome with a size of 950 Mbp (Schmutz et al. 2010) and the 

maize (Zea mays) genome with 2,300 Mbp (Schnable et al. 2009) (Table 1).  

 

Table 1. Characteristics of sequenced plant genomes. 

Plant species Hapl. ge-

nome size 

[Mbp] 

No. of 

chromo-

somes  

No. of pre-

dicted protein-

coding genes 

Transpo-

son con-

tent [%] 

Reference 

Arabidopsis 

thaliana 

125 n = 5 27,379* 14 (The Arabidopsis 

Genome Initiative 

2000) 

Oryza sativa (ssp. 

japonica) 

389 n = 12 37,544 

 

  

35 (International Rice 

Genome Sequencing 

Project 2005) 

Populus tricho-

carpa 

485 n = 19 45,555 42 (Tuskan et al. 2006) 

Vitis vinifera 487 n = 19 30,434 41 (Jaillon et al. 2007) 

Carica papaya  372  n = 9 24,746 52 (Ming et al. 2008) 

Cucumis sativus 244 n = 7 26,682 43 (Huang et al. 2009) 

Zea mays 2,300 n = 10 32,540 84 (Schnable et al. 

2009) 

Glycine max 1,115 n = 20 46,430 59 (Schmutz et al. 2010) 

Brachypodium 

distachyon 

272 n = 5 25,532 28 (International 

Brachypodium 

Initiative 2010) 
*Updated with data from The Arabidopsis Information Resource (TAIR; http://www.arabidopsis.org) 

 

 

Repetitive elements comprise a large fraction of plant genomes (Heslop-Harrison 2000). 

In sugar beet the repeat content was estimated to be around 63%, exploiting reannealing 

kinetic experiments (Flavell et al. 1974). In general, repetitive elements can be catego-

rised into tandemly arranged and dispersed sequences. Transposable elements (TEs) are 

dispersed sequences, which comprise a large fraction of repetitive DNA in eukaryotes. 
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Tandem repeats include satellite DNA consisting of numerous tandemly arranged re-

peats that are non-coding and mostly located in heterochromatic regions, micro- and 

minisatellites, telomeric repeats and ribosomal genes. Several studies have shown that 

TEs together with satellites play a major role in plant genome evolution; in particular 

accumulation and proliferation of TEs are responsible for the different sizes of plant 

genomes (Sanmiguel et al. 1996; Heslop-Harrison 2000; Hawkins et al. 2006; Vitte and 

Bennetzen 2006). 

TEs can be divided into two classes according to their mechanisms of transposition. 

Class I elements (retrotransposons) transpose by reverse transcription of an RNA inter-

mediate performed by a multi-enzyme, while class II elements (DNA transposons) 

transpose directly from DNA to DNA mediated by an element-encoded transposase 

(Finnegan 1989). Retrotransposons can be further divided into highly repetitive long 

terminal repeat (LTR) retrotransposons and non-LTR retrotransposons. LTR retrotrans-

posons, including copia-like and gypsy-like retrotransposons, make up the majority of 

the transposable element classes in most plants (see references in Table 1). Non-LTR 

retrotransposons include long interspersed elements (LINEs) and short interspersed 

elements (SINEs). They are grouped into superfamilies such as Tc1/mariner, hAT and 

Mutator (reviewed in: Feschotte et al. 2002). Additionally, miniature inverted-repeat 

transposable elements (MITEs) have been found in many plant genomes (Bureau and 

Wessler 1994; Tarchini et al. 2000; Jiang and Wessler 2001). MITEs are the predomi-

nant transposable element associated with the non-coding regions of the genes of flow-

ering plants (Bureau et al. 1996; The Arabidopsis Genome Initiative 2000). Like DNA 

transposons, MITEs possess terminal inverted repeats and short target site duplication 

but they are non-autonomous, i.e. they do not encode a transposase.  

In Beta vulgaris several studies have been performed analysing the abundance, genomic 

organization and evolution of tandemly repeated and dispersed repetitive DNA ele-

ments, including the characterisation of the physical distribution of microsatellites on 

chromosomes of sugar beet (Schmidt and Heslop-Harrison 1996). Dechyeva and 

Schmidt (2006) examined the structure and species-specific diversification of subtelom-

eric satellite DNA families of the genus Beta and related species, applying Southern 

blotting, fluorescent in-situ hybridisation (FISH) and multi-colour FISH on extended 

DNA fibres. Furthermore, sugar beet repetitive sequence belonging to various classes 

were identified and characterised, among them LINEs (Kubis et al. 1998), the 

Tc1/mariner DNA transposon Vulmar1 (Jacobs et al. 2004), dispersed repeats belong-
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ing to the families pDvul1 and pDvul2, the pRv1 satellite repeat (Menzel et al. 2008), 

MITEs (Menzel et al. 2006), Ty1-copia retrotransposons (Schmidt et al. 1995) and a 

novel type of plant non-LTR retrotransposons, identified as the BNR family (Heitkam 

and Schmidt 2009). 

 

4.4 Genome Mapping  

The term “genome mapping” describes different approaches to resolve the organisation 

of genes and other sequences within genomes. There are two major groups of genome 

maps: genetic maps and physical maps. Genetic maps reflect the relative positions of 

markers on a chromosome based on probability calculations, assuming that the more 

often two markers co-segregate, i.e. no crossing-over event has occurred between them 

during meiosis, the closer they are located within the genome. Physical maps, in con-

trast, display true physical distances measured in base pairs (bp). 

Both map types are very useful tools for genomic studies. Genetic maps allow the detec-

tion of quantitative trait loci (QTLs), the characterisation of QTL effects and facilitate 

marker-assisted selection (MAS). The characterisation of genome structure and analysis 

of evolution is augmented by physical maps. However, when anchored to each other, 

providing an integrated map, they have the highest potential for advanced genomics 

research. 

In the following chapters of the introduction, different techniques for construction of 

genetic and physical maps will be presented.  

 

4.4.1 Genetic mapping and molecular marker systems 

In order to construct a genetic map, the segregation pattern of markers in a mapping 

population is determined and the relative positions and distances, usually measured in 

centimorgan (cM), between markers are calculated. One cM is equal to a 1% chance 

that two markers on a chromosome will be separated in a single generation due to cross-

ing-over during meiosis. Hence, genetic maps do not display physical distances but 

probabilities. cM units can be transferred into corresponding physical distances, i.e. 

base pairs (bp), but these are just estimated, averaged values, since recombination fre-

quency is not equally distributed over a genome. Mapping of genetic markers is only 
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possible, if the markers are polymorphic, i.e. there is variation between the parental 

lines at the marker loci. Thus, the first task of genetic mapping is to find polymorphic 

markers, followed by scoring of their segregation pattern in the mapping population and 

finally ordering and calculation of genetic distances. Important factors influencing the 

robustness and value of a genetic map are the number of markers and individuals that 

are used for map calculation, its possible application for high-throughput and the char-

acter of the markers (dominant/codominant; anonymous/known). Over the past years 

several molecular marker technologies for genetic mapping have been developed, all 

addressing different tasks, depending on the desired needs and future usage. In practice 

several marker systems are often combined to produce genetic maps, in order to achieve 

higher marker densities.  

The following sections describe the most prominent techniques and their advantages 

and disadvantages, respectively.  

 

4.4.1.1 Restriction fragment length polymorphism (RFLP) scoring 

One of the earliest technologies used on the DNA level was restriction fragment length 

polymorphism (RFLP) scoring (Botstein et al. 1980). RFLP methodology is based on 

the ability of DNA restriction enzymes to recognise and cleave specific DNA motives, 

yielding fragments of defined lengths. Base composition alterations within a recognition 

site can create or destroy a restriction site leading to variation in the number of sites. 

Alternatively, insertion or deletion of blocks of DNA within a fragment could alter its 

size. Fragments encoding specific sequences from two individuals can be analyzed by 

Southern hybridization (Southern 1975), allowing the identification of different sized 

fragments and thus visualising a polymorphic marker. RFLP scoring bears the advan-

tages of being highly reproducible, providing co-dominant markers which are transfer-

able between different populations. Restrictions in the number of loci that can be ana-

lysed simultaneously, laborious assay steps and the need for substantial amounts of ge-

nomic DNA are major drawbacks of RFLP scoring. The invention of PCR (Mullis et al. 

1986) led to combination of both techniques and the development of PCR-RFLP (Deng 

1988), also called cleavage amplification polymorphism (CAP). PCR-RFLP includes 

PCR amplification of a fragment with a sequence-specific primer pair followed by di-

gestion with a restriction enzyme. Digested fragments can be directly analysed on an 

agarose gel without need of a subsequent hybridization step. RFLPs have been used for 
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construction of linkage maps for various plants, such as maize (Helentjaris et al. 1986), 

potato (Bonierbale et al. 1988) and sugar beet (Barzen et al. 1992; Hallden et al. 1996). 

RFLP scoring is still used, e.g. to test genetic diversity between different accessions of a 

species (Kojima et al. 2005), but PCR-RFLP is the prevalently applied method, in plants 

especially utilised for analyses of agronomically important loci  (Kaundun and 

Matsumoto 2003; Avila et al. 2006; Asakura et al. 2009; Upadhyay et al. 2009) and in 

combination with different marker systems to construct linkage maps (Schneider et al. 

1999; Cuevas et al. 2008; Orr and Molnar 2008).  

 

4.4.1.2 Simple sequence repeats (SSRs) and inter-simple sequence repeats (ISSRs) 

Simple sequence repeats (SSRs) or microsatellites are tandemly repeated short DNA 

stretches (unit size < 6 bp), which are scattered throughout eukaryotic genomes at many 

different locations. Since they have been shown to be highly polymorphic in the number 

of repeats within a block of tandemly repeated DNA within a species, they can be used 

as genetic markers (Weber and May 1989). Isolation of SSRs comprises screening of a 

small insert genomic library with microsatellite probes. Subsequently, inserts containing 

SSRs are sequenced and PCR primers flanking the particular loci are designed. Typing 

of the SSRs in a mapping population involves only two steps, PCR amplification and 

electrophoresis to generate DNA banding patterns on a gel and to reveal repeat number 

polymorphisms. Advantages of this marker system are the co-dominant character of the 

markers, its high reproducibility, straight-forward experimental performance and the 

transferability of SSR markers across different populations. However, they are quite 

costly to produce and cannot be multiplexed to a high extent. SSR markers have been 

widely utilised for studying genetic variation (Vigouroux et al. 2005; Malysheva-Otto et 

al. 2006; Blair et al. 2009) and linkage mapping (Taramino and Tingey 1996; Mccouch 

et al. 1997; Laurent et al. 2007; King et al. 2008) in plants. 

A distinct marker system also based on microsatellites and PCR amplification, are inter-

simple sequence repeats (ISSRs). Primers complementary to microsatellites are used as 

primers to amplify the regions between the microsatellite loci, resulting in a mixture of 

amplified fragments (Zietkiewicz et al. 1994). Length variations of amplifiable frag-

ments between different individuals can be detected on gels. Unlike exploiting SSRs, 

for ISSRs applications no prior sequence information is necessary for primer design, but 

on the other hand a drawback of ISSR markers is their dominant character. The main 



Introduction 

15 

application of ISSR markers in plant is the exploration of genetic variation between 

populations and closely related species (Fang and Roose 1997; Joshi et al. 2000; Rout et 

al. 2009), but they have also contributed to the construction of genetic maps (Kojima et 

al. 1998; Casasoli et al. 2001; Gupta et al. 2008). 

 

4.4.1.3 Random amplified polymorphic DNA (RAPD) 

Another marker system exploiting PCR amplification is random amplified polymorphic 

DNA (RAPD), which is based on the amplification of random DNA segments with sin-

gle primers of arbitrary nucleotide sequence (Williams et al. 1990). Polymorphisms are 

inherited in a Mendelian fashion and can be detected on agarose gels as DNA segments, 

which can be amplified from one parent but not the other. Since they are either present 

or absent on the detection gel, RAPD markers are dominant. The major benefits of 

RAPD assays are their independence of target DNA sequence information for the de-

sign of amplification primers and the very simple and cheap experimental design. Their 

very limited capability of being transferable between populations and species and their 

problems with reproducibility are critical disadvantages. Besides phylogenetic and di-

versity studies (Vierling and Nguyen 1992; Singh et al. 2009; Szczepaniak et al. 2009), 

RAPD markers have been exploited for genetic map construction (Bradshaw et al. 1994; 

Kesseli et al. 1994; Haque et al. 2008).  

 

4.4.1.4 Amplified fragment polymorphism (AFLP) 

Amplified fragment polymorphism (AFLP) technique combines PCR amplification and 

fragmentation with restriction enzymes (Vos et al. 1995). However, in contrast to PCR-

RFPLs, AFLPs are generated by first performing restriction digestion of DNA, ligation 

of the resulting fragments to oligonucleotide adapters, serving as binding sites for the 

PCR primers, followed by selective PCR amplification of the fragments and analysis of 

the amplified fragments. Usually, the restriction digestion is performed with two restric-

tion endonucleases. The choice of the utilised restriction enzymes determines the size 

range of the produced DNA fragments. Selective PCR amplification is achieved by the 

use of primers that extend into the restriction fragments, amplifying only those frag-

ments in which the primer extensions match the nucleotides flanking the restriction sites 

(Vos et al. 1995), resulting in a unique, reproducible profile. AFLP does not require any 
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prior knowledge of nucleotide sequence of the target DNA and the method allows co-

amplification of high numbers of restriction fragments. Modern detection systems such 

as capillary electrophoresis of fluorescently labelled AFLP products have replaced con-

ventional denaturing polyacrylamide gels, and thus allow to simultaneously evaluate a 

large number of loci and to produce high-resolution genetic maps with dominant mark-

ers (Schondelmaier et al. 1996; Bert et al. 1999; Kamisugi et al. 2008).  

Sequence-specific amplification polymorphism (S-SAP) is a marker system derived 

from the AFLP technique. S-SAP exploits the high degree of sequence heterogeneity 

and insertional polymorphisms, both within and between species, of retrotransposons 

(Waugh et al. 1997). Only one AFLP primer and a second primer, complementary to the 

retrotransposon or another sequence of interest, are used for selective amplification. 

Waugh et al. (1997) demonstrated the usefulness of the system by detecting DNA 

polymorphisms based on position of LTR retrotransposon sequences in relation to adja-

cent restriction endonuclease sites in barley (Hordeum vulgare). The advantage of S-

SAP is its usually higher degree of polymorphisms compared to AFLP. In principle, S-

SAP is applicable to any transposable element in any organism (Syed and Flavell 2007) 

and has been successfully performed to construct linkage maps in a number of plant 

species, such as wheat (Queen et al. 2004), lettuce (Syed et al. 2006) and artichoke 

(Portis et al. 2009). 

 

4.4.1.5 Single nucleotide polymorphisms (SNPs)  

With ongoing progress in the development of sequencing technologies and the increase 

in available DNA sequence resources, single nucleotide polymorphisms (SNPs) have 

gained importance as molecular markers. SNPs are the most abundant variants within 

the genomes of eukaryotes. SNP rates vary between different species, but in general 

they are higher in non-coding regions, than in protein coding regions. SNP rates (aver-

age of coding and non-coding regions) of 1 per 247 bp in rape seed (Brassica napus) 

(Westermeier et al. 2009), 1 per 104 bp in maize (Tenaillon et al. 2001) and 1 per 65 bp 

(Schneider et al. 2007) or 1 per 29 bp (Dohm et al. 2009), respectively, in sugar beet 

have been estimated. Generally, SNPs are detected in silico by analysis of aligned se-

quences obtained from databases, through sequencing or re-sequencing of candidate 

genes, PCR products or whole genomes or transcriptomes of several genotypes. The 

ongoing improvements of next generation sequencing (NGS) technologies 
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(comprehensively reviewed in: Metzker 2009), such as 454 pyrosequencing (Margulies 

et al. 2005), Illumina/Solexa sequencing (Bentley et al. 2008) and SOLiD (Valouev et 

al. 2008), allow to re-sequence genomes or sequence transcriptomes for SNP detection 

in a high-throughput compatible manner. In this way, in the presence of a reference ge-

nome sequence, SNP detection for genes from secondary metabolite biosynthetic path-

ways utilizing NGS technologies was carried out in Eucalyptus species (Kuelheim et al. 

2009). Furthermore, SNPs were detected in Brassica napus by Solexa transcriptome 

sequencing using a publicly available set of Brassica species unigenes as a reference 

sequence (Trick et al. 2009) and in maize performing transcriptome sequencing of shoot 

apical meristems with 454 sequencing technology (Barbazuk et al. 2007). Genotyping 

of previously detected SNPs, e.g. for linkage map construction, can be achieved in vari-

ous ways. Several high-throughput SNP genotyping platforms have been developed, 

such as the molecular inversion probe (MIP) (Hardenbol et al. 2003) and Illumina 

GoldenGate (Fan et al. 2003) assays, both combining multiplex PCR with array hy-

bridization and genotyping by hybridization of genomic representations on microarrays 

(Matsuzaki et al. 2004) (high-density genotyping platforms are extensively reviewed in: 

Fan et al. 2006). High-density genetic linkage maps of soybean, barley and cowpea (Vi-

gna unguiculata) were generated by sequencing amplicons and ESTs, followed by 

genotyping with Illumina GoldenGate assays (Hyten et al. 2008; Close et al. 2009; 

Muchero et al. 2009).  

 

4.4.2 Physical mapping techniques 

In contrast to genetic maps, physical maps represent real physical distances of markers 

along chromosomes or DNA stretches. When integrated with genetic maps, physical 

maps allow linking of genetically mapped markers to actual physical locations. Differ-

ent types of physical maps have been developed that vary in their degree of resolution. 

The physical map with the highest possible resolution would be the complete genome 

sequence of a given species. Complete genome sequences are available only for a very 

limited number of species so far. Most strategies for sequencing a whole genome re-

quire a physical map as an essential prerequisite, since it provides a scaffold for se-

quence or contig, i.e. a set of clones that are related to one another by overlap of their 

sequences, respectively, assembly. 
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The following parts of the introduction explain different physical map types and marker 

systems and point out their benefits and drawbacks. 

 

4.4.2.1 Cytogenetic mapping 

The lowest-resolution physical map is a cytogenetic map, which is based on the visual 

appearance of a chromosome when stained and examined under a microscope. Obtain-

ing cytogenetic maps by hybridization with labelled probes was introduced with the 

development of the DNA in situ hybridisation technique (Gall and Pardue 1969; John et 

al. 1969). Initially used radiation based methods for probe labelling and signal detection 

were soon replaced by fluorescence-based techniques (Langer-Safer et al. 1982). The 

resolving power of fluorescence in situ hybridization (FISH) varies between 2 Mbp and 

10 Mbp and depends on the cytological targets, encompassing interphase nuclei, mitotic 

prometaphase and metaphase chromosomes, super-stretched mitotic metaphase chromo-

somes, meiotic pachytene chromosomes, and extended DNA fibers (reviewed in Jiang 

and Gill 2006). The advantage of FISH rests mainly in the ability to directly determine 

and visualise the chromosomal location of DNA clones. FISH based physical maps cov-

ering entire chromosomes have been constructed for various plants including amongst 

others Brassica oleracea (Howell et al. 2005), maize (Koumbaris and Bass 2003), soy-

bean (Walling et al. 2006) and potato (Iovene et al. 2008). Besides physical mapping 

different variants of FISH are applied in plants for chromosome identification (Pedersen 

and Langridge 1997; Dong et al. 2001; Kim et al. 2002; Lengerova et al. 2004; Szinay 

et al. 2008), karyotyping (Badaeva et al. 2002; Han et al. 2008; Falistocco 2009), repeat 

analyses (Dechyeva and Schmidt 2006; Menzel et al. 2006; Han et al. 2008; Macas et 

al. 2009) and chromosome-specific painting (Lysak et al. 2001; Tang et al. 2008).  

 

4.4.2.2 Mapping with large insert clone libraries 

Physical maps constructed by ordering a collection of overlapping cloned DNA frag-

ments utilizing large insert clone libraries provide a higher resolution than cytogenetic 

maps. Several vector systems having different features can be selected for inserting the 

DNA fragments of interest (Table 2). Important factors to consider when choosing a 

vector system are the insert size, stability and ease of manipulation of the source library.  
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4.4.2.2.1 Large insert vector systems 

Cosmids were among the earliest developed vectors capable of carrying large inserts 

with a size of approximately 40 kbp (Collins and Hohn 1978). They contain the cohe-

sive - end site (cos) sequences of λ phage, enabling to serve as vectors in conjunction 

with the λ phage in vitro packaging system (Hohn and Murray 1977). The cosmid vec-

tor containing the particular DNA insert is packaged into λ phage particles and resulting 

phages are subsequently used for transfection of a bacterial host strain for propagation. 

Cosmids bear the advantages of high transfection rates and narrowly defined sizes of 

clone inserts. The major disadvantage of cosmids is their instability in vivo, i.e. they 

undergo drastic rearrangements and deletions, due to their high copy number. To over-

come this drawback modified cosmids, termed fosmids, were developed by replacing 

the high copy origin of replication with an Escherichia coli F-factor single-copy origin 

of replication, which permits insert stability (Kim et al. 1992). Modern fosmid vectors, 

like pCC1FOS (Epicentre Biotechnologies, Madison,WI), usually also contain an addi-

tional inducible high-copy origin of replication, which facilitates high DNA yields 

along with insert stability.  

The yeast artificial chromosomes (YACs) systems permits cloning of exogenous DNA 

fragments up to 3000 kbp into linear artificial chromosomes that are maintained in yeast 

(Saccharomyces cerevisiae) (Murray and Szostak 1983; Burke et al. 1987). YACs per-

mit cloning of the largest DNA inserts compared to other vector system, however they 

posses several disadvantages. On the one hand the cloning procedure of YACs is com-

plicated, leading to laborious production of a representative YAC library. Also prepara-

tion of YAC-DNA is difficult, since the artificial chromosome has to be separated from 

the background of yeast chromosomes. Moreover, chimeric YAC clones are frequently 

observed and recombination can occur within a YAC clone resulting in rearrangements 

or interstitial deletions. 

The most widely used vector systems for large insert libraries nowadays are the bacte-

rial artificial chromosome (BAC) system based on E. coli and its single-copy plasmid F-

factor (Shizuya et al. 1992) and the P1 artificial chromosome (PAC) system, combining 

the features of bacteriophage P1-derived and F-factor based approaches (Ioannou et al. 

1994). Both systems include the ability to maintain inserts up to 300 kbp along with 

high degree of structural stability in the bacterial host.  
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Besides these prevalent vector systems, there also exist several further vectors with spe-

cialised features for certain needs, e.g. the transformation-competent artificial chromo-

some (TAC) vector that can accept and maintain large genomic DNA fragments stably 

in both E. coli and Agrobacterium tumefaciens and it has the cis sequences required for 

Agrobacterium-mediated gene transfer into plants.  

 

Table 2 : Vector systems for large insert library production 

Vector Insert size Advantages (+)/ disadvantages (-) 

Cosmid 35 – 45 kbp + high transformation efficiency 

+ narrowly defined sizes of clone inserts 

- instability of clones  

- comparatively small insert size 

 

Fosmid 35 – 45 kbp + high transformation efficiency 

+ narrowly defined sizes of clone inserts 

+ stable maintenance of insert DNA 

+ high DNA yield with inducible origin of replication  

- comparatively small insert size 

 

YAC 90 – 2000 kbp + largest insert size of all systems  

- difficult cloning and handling 

- instability of clones  

 

BAC/PAC 70 – 300 kbp + relatively large insert size 

+ stable maintenance of insert DNA 

- low DNA yield due to low copy origin of replication 

 

 

4.4.2.2.2 Techniques for ordering of large insert clones 

No matter which large insert vector library is utilised, the task of constructing a whole-

genome physical map includes ordering of the clones by applying either fingerprinting 

methods or techniques based on screening for marker contents.  

Fingerprinting methods include the digestion of large insert clones with restriction en-

zymes and subsequent analysis of the DNA fragments. Clones containing overlapping 
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DNA inserts, i.e. originating from the same genomic location, produce shared banding 

patterns on gels. The degree of overlap is indicated by the proportion of shared bands, 

thus the analysis of the overlap of numerous clones allows to built contigs (Staden 

1980). 

Classical fingerprinting techniques provide the basis for modern advanced fingerprint-

ing applications. For construction of a physical map of Caenorhabditis elegans, whole-

genome fingerprinting was utilised for the first time (Coulson et al. 1986). In this study, 

radioactively labelled fragments of cosmid clones were size separated on denaturing 

polyacrylamide gels. The fragments were produced by first performing restriction diges-

tion with a rare cutter (i.e. 6-bp specificity), followed by radioactively labelling and 

subsequent digestion with a frequent cutter (i.e. 4-bp specificity) producing fragments 

appropriate for separation on polyacrylamide gels. Only a subset of fragments with a 

labelled rare-cutter-end can be detected. Different fingerprinting methods were devel-

oped, such as agarose fingerprinting (Olson et al. 1986), involving digestion of large-

insert clones with a rare cutter and analysis of the fragments on agarose gels. Thus, al-

most all fragments are taken into consideration, allowing direct size estimation of the 

overlapping region and a reliable detection of rearranged clones. Several modifications 

adapted for increased throughput, accuracy and information content have been pro-

posed. An important step was the adaptation of fingerprinting methods for use on auto-

mated sequencers and multiplexing (Gregory et al. 1997; Ding et al. 2001) by labelling 

fragments from different clones with different fluorescent dyes allowing simultaneous 

analyses in a single lane. Further on high-throughput pipelines combining the use of 

several restriction enzymes and capillary sequencers (Luo et al. 2003) were built, usu-

ally referred to as high information content fingerprinting (HICF). Until now, finger-

printed BAC based physical maps of whole genomes have been generated for many 

plant species, including  rice (Zhang and Wing 1997; Tao et al. 2001), sorghum (Klein 

et al. 2000), soybean (Wu et al. 2004), maize (Nelson et al. 2005) , poplar (Kelleher et 

al. 2007) and recently papaya (Yu et al. 2009). The fingerprinting approach is well 

suited for relatively unexplored genomes and includes many possibilities for its adapta-

tion to high-throughput. However, repetitive elements are a major source for producing 

false overlap using fingerprinting methods, since they result in similar banding patterns 

for clones originating from different genomic locations. Further major drawbacks of 

fingerprinting techniques are the anonymous character of produced clone contigs and 

the impossibility to detect small overlaps, in order to prevent a high rate of falsely as-
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sembled contigs. Furthermore, maps can only be constructed based on a single, prefera-

bly homozygous accession, because haplotypic variation may result in the construction 

of two separate contigs for a given genomic region (see e.g. Kelleher et al. 2007). 

“Screening for content” methods include PCR amplification of sequence tagged sites 

(STSs) and hybridisation based approaches. STSs are short stretches of DNA that can 

be specifically detected for establishing physical maps. If two STSs are located close to 

each other in the genome, there is a high chance of finding them together on the same 

DNA fragment or clone, respectively, when screening a genomic library. The further 

apart the positions of two STSs in the genome, the lower are the chances of finding 

them on the same fragment. Thus, the obtained screening data can be used to order 

clones according to their genomic location. Most commonly used sequence sources for 

STSs include expressed sequence tags (ESTs), simple sequence length polymorphisms 

(SSLPs) and random genomic sequences. STSs have first been employed for establish-

ing physical maps of human chromosomes using PCR (Olson et al. 1989; Green et al. 

1991). The development of systematic pooling strategies, where clone libraries are con-

densed in pools, allowed the screening of large libraries (Green and Olson 1990; Bruno 

et al. 1995). These approaches usually require a large number of PCRs to address one 

target sequence. Hybridisation based methods follow a different strategy. In general, all 

different variations of hybridisation based methods involve hybridization of labelled 

DNA probes to high density arrays of clones or DNA. Hybridisation probes may be 

labelled PCR amplicons, cDNA clones, overgo probes or short oligonucleotides. DNA 

sequence information is not necessarily required to develop probes. Systematic pooling 

of the probes before hybridisation to the arrayed clones or DNA, leads to a manifold 

reduction of required hybridisation experiments. Subsequently, individual probes can be 

assigned to clones by performing a deconvolution step. In comparison to PCR based 

approaches, hybridisation screening is faster and cheaper, because the entire library may 

be screened in one step, probe construction is less costly and multiple probes can be 

addressed in one step. Using PCR amplicons or cDNA as probes often bears the disad-

vantages of uneven labelling of all probes in one pool and the presence of repetitive 

elements in the labelled probes. When sequence data is available, hybridisation can be 

carried out using overgo probes. Overgo probes are 40-mer probes produced by design-

ing a pair of 24-mers with an overlap of 8 bp from the target sequence. Radioactive nu-

cleotides are then incorporated at the resulting 16-bp overhangs using Klenow fragment 

(Cai et al. 1998; Ross 1999). Due to their increased specific activity, sequence specific-
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ity and small size, they are likely to hybridise in a locus specific manner and the 

chances of including repetitive sequences are reduced.  

Rather than construction of physical maps for whole genomes solely based on overgo 

probe hybridisation, overgo probes have often been used in combination with maps ob-

tained by fingerprinting techniques to increase the genome coverage (Cai et al. 2001), 

anchor fingerprinting derived contigs to genetic maps (Chen et al. 2002; Xu et al. 2008) 

or to perform comparative genomics by linking overgo probes conserved between 

closely related species to a physical map obtained by fingerprinting approaches (Hass-

Jacobus et al. 2006; Yu et al. 2009).  

An alternative but similar hybridisation approach is the use of labelled 35mer-

oligonucletides as probes, which also allows conversion of any STS, genetically 

mapped marker or BAC end-fragment, for which sequence information exists, into a 

marker (Khorasani et al. 2004). Pooling and 5’-end labelling with polynucleotide kinase 

of the 35-mer oligonucleotides allow uniform activity of each probe in a pool and per-

formance of hybridisation assays in a very straightforward high-throughput manner.  

As described for overgo probes, a combination of fingerprinting maps and hybridisation 

based maps is of great value, since advantages and disadvantages of each method can 

substitute each other. 
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4.5 Aim of this work 

Whole genome physical maps or genomic sequences, respectively, of a species display 

frameworks that provide essential information for understanding processes in respect to 

physiology, morphology, development and genetics. However, comprehensive annota-

tion underpins the values a genome sequence represents. An important task of genome 

annotation is the linkage of genetic traits to the genome sequence, which is facilitated 

by integrated genetic and physical maps. An integrated map allows map based cloning 

of important genes, analyses of different varieties or species, QTL dissection and clon-

ing, MAS and studies on genome structure. Sugar beet is an agronomically important 

plant, since it is the only sucrose storing crop of moderate climates. However, genomic 

resources and knowledge about its genome structure and evolution are limited. Prior to 

the studies included in this work, only medium dense genetic maps of sugar beet ex-

isted, including EST and RFLP- derived single SNP markers as well as microsatellite 

markers (Schumacher et al. 1997; Laurent et al. 2007; Schneider et al. 2007). In addi-

tion, several publicly accessible BAC libraries (Gindullis et al. 2001; Hohmann et al. 

2003; Mcgrath et al. 2004; Hagihara et al. 2005; Jacobs et al. 2009), about 29,000 EST 

sequences, most of them originating from the study of Herwig et al. (2002) and about 

25,000 BES in public databases were available. Yet, no high-density genetic map or a 

comprehensive physical map was available. This work aimed at generating and apply-

ing new tools, representing essential prerequisites for sugar beet genome analysis and 

providing new insight into evolution and genome structure. In addition, its goal was to 

facilitate successful sequencing, assembly and annotation of the sugar beet genome in 

the near future. Since it would be the first genome sequence originating from a member 

of the order Caryopyllales, it would be highly beneficial for comparative and evolution-

ary studies. A new method for generation of genetic markers in sugar beet was estab-

lishing with the potential to be linked to the physical map, constructed utilising a hy-

bridisation based approach introduced in this work. In addition, fosmid and small insert 

libraries were produced and characterised supporting sequence assembly and facilitating 

repeat identification. 
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Abstract 
 

We describe a novel approach for high-throughput development of genetic markers us-

ing representational oligonucleotide microarray analysis (ROMA). We test the perform-

ance of the method in sugar beet (Beta vulgaris L.) as a model for crop plants with little 

sequence information available. Genomic representations of both parents of a mapping 

population were hybridized on microarrays containing in total 146,554 custom made 

oligonucleotides based on sugar beet bacterial artificial chromosome (BAC) end se-

quences and expressed sequence tags (ESTs). Oligonucleotides showing a signal with 

one parental line only, were selected as potential marker candidates and placed onto an 

array, designed for genotyping of 184 F2 individuals from the mapping population. Util-

izing known co-dominant anchor markers we obtained 511 new dominant markers (392 

derived from BAC-end or BAC sequences, respectively and 119 from ESTs) distributed 

over all nine sugar beet linkage groups and calculated genetic maps. Further improve-

ments for large-scale application of the approach are discussed and its feasibility for the 

cost-effective and flexible generation of genetic markers is presented. 
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Introduction 
 

High-density genetic maps are essential tools for crop plant improvements. They facili-

tate the detection of quantitative trait loci (QTLs), the characterization of QTL effects 

and, when integrated with physical maps, enable the map based cloning of genes under-

lying QTLs. For precise transfer of QTLs between different genetic backgrounds, high 

density of genetic markers is crucial due to the need of polymorphic markers immedi-

ately flanking QTLs (Somers et al. 2004). Also linkage disequilibrium (LD) maps and 

association mapping require dense genetic maps (Bernardo et al. 2009). Genetic mark-

ers linked to genes and QTLs provide the framework for marker assisted selection 

(MAS), which is a very promising approach to accelerate line development in breeding 

programs (reviewed in: Collard et al. 2005; Collard and Mackill 2008; Ribaut and Hois-

ington 1998). Increasing availability of sequence resources for several crop plants has 

led to great advances in marker assisted breeding approaches. However, complete or 

draft, respectively, genome sequences exist only for a few crops, such as rice (Oryza 

sativa) (International Rice Genome Sequencing Project 2005), grapevine (Vitis vinifera) 

(Jaillon et al. 2007), papaya (Carica papaya) (Ming et al. 2008), sorghum (Sorghum 

bicolor) (Paterson et al. 2009), potato (Solanum tuberosum) (www.potatogenome.net), 

soybean (Glycine max) (Schmutz et al. 2010) ) and cucumber (Cucumis sativus) (Huang 

et al. 2009). Thus, there is high demand for high-throughput, cost-effective marker 

technologies for crops with little sequence information available. Here, we focus on 

sugar beet (Beta vulgaris L.), a diploid species encompassing n=9 chromosomes and a 

haploid genome size of 758 Mbp (Arumuganathan and Earle 1991). Taxonomically, B. 

vulgaris is a member of the core eudicot plants and belongs to the order of Caryophyl-

lales (APG 2009). As is the case for many crop plants, it is of high economic impor-

tance, but publicly available sequence resources are limited. At present, the GSS data-

base of GenBank holds approximately 3000 end-sequences from sugar beet fosmid 

clones (Lange et al., 2008), and about 28,000 end-sequences from sugar beet BAC li-

brary USH20 (McGrath et al., 2004). Roughly 30,000 sugar beet EST sequences have 

been deposited in GenBank. Genomic sequencing of the sugar beet genome is under 

way in a collaborative effort by the authors of this paper (www.gabi.de). 

Over the past years several molecular marker technologies for genetic mapping have 

been developed. One of the earliest technologies used on the DNA level was restriction 

fragment length polymorphism (RFLP) scoring (Botstein et al. 1980). With the inven-
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tion of PCR, marker systems such as simple sequence repeat (SSR) (Weber and May 

1989), random amplified polymorphic DNA (RAPD) (Williams et al. 1990) and ampli-

fied fragment polymorphism (AFLP) (Vos et al. 1995) followed. Subsequently, modifi-

cations of these mapping systems were developed in order to obtain performance im-

provements in terms of efficiency and reliability. One approach for identification and 

mapping of polymorphic markers in mouse established by Himmelbauer et al. (1998) 

included complexity reduction of genomic samples by performing AFLP prior to hy-

bridization against a reference BAC library gridded at macroarrays. The concept of re-

ducing the complexity of a genomic sample by producing genomic representations was 

originally introduced by Lisitsyn et al. (1993). They presented a method termed repre-

sentational difference analysis (RDA) built upon subtractive hybridization techniques 

for identifying sequence differences between two DNA populations. RDA includes di-

gestion of genomic DNA with restriction endonucleases, ligation of the resulting frag-

ments to oligonucleotide adapters, followed by PCR amplification. Shorter restriction 

endonuclease fragments are preferentially amplified by Taq polymerase during PCR, 

resulting in genomic representations with reduced nucleotide complexity. The decreased 

complexity of the representations allows to achieve greater completeness during sub-

tractive enrichment and, hence, a more effective kinetic enrichment. With ongoing pro-

gress in miniaturization of arrays, approaches using microarrays in combination with 

genomic representations were developed for analysis of copy number variations in the 

context of cancer (Lucito et al. 2000). A similar approach was used by Lezar et al. 

(2004) for fingerprinting in Eucalyptus grandis. For hybridization based methods the 

advantages of complexity reduction rests mainly in the lower noise to signal ratio, since 

opportunities for cross-hybridization are reduced, thus obtaining greater intensities for 

specific signals on the arrays (Kennedy et al. 2003). In addition, low amount of input 

material is needed per experiment. A technique that evolved from RDA is representa-

tional oligonucleotide microarray analysis (ROMA) that was established for the detec-

tion of structural variation in cancer and healthy tissue in a high-throughput profiling 

manner (Lucito et al. 2003). Whilst Lucito et al. (2000) and Lezart et al. (2004) initially 

applied microarrays of fragments from representations as probes to analyze genomic 

representations, microarrays of oligonucleotides were adopted for ROMA, thus repre-

senting a very flexible and reproducible method compatible with high-throughput appli-

cations. ROMA was further utilized in several studies for genome wide analysis of copy 

number variants in humans (Sebat et al. 2004) and analysis of copy number variants in 
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cancer tissue (Grubor et al. 2009; Hicks et al. 2006; Lakshmi et al. 2006; Stanczak et al. 

2008).  

Existing Beta vulgaris genetic maps covering all nine chromosomes include expressed 

sequence tag (EST)- and RFLP- derived single nucleotide polymorphism (SNP) mark-

ers as well as microsatellite markers (Laurent et al. 2007; Schneider et al. 2007; 

Schumacher et al. 1997). However, due to the limited sequence resources, no high-

density genetic map is available for sugar beet so far. 

In this study we explore and demonstrate the potential of ROMA for high-throughput, 

cost-effective and flexible development of genetic markers in crop plants. We apply 

ROMA for the identification of polymorphisms between two accessions of sugar beet 

(Beta vulgaris L.) and discuss further improvements. The information gained in this 

study will facilitate the production of similar platforms for other species. 
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Materials and methods 

 
Plant material and DNA isolation 

 

For array based genotyping we chose 196 F2 individuals and both parents of the “K1” 

mapping population (kindly provided by B. Schulz, KWS SAAT AG, Einbeck, Ger-

many). One parent of this mapping population was K1P1 (KWS2320), a German double 

haploid monogerm breeding line and the other parent was K1P2, a partly selfed line. 

The F2 genotypes were generated by selfing of F1 individuals (K1F1). A subset of the 

K1 mapping population was also used in the studies of Mohring et al. (2004) and 

Schneider et al. (2007). Genomic DNA was isolated from plant material cultivated in 

vitro. Briefly, young plants 3 – 5 cm in size were harvested, flash frozen in liquid nitro-

gen and stored at -80°C before DNA isolation. 100 – 200 mg frozen plant material was 

ground with 5 mm stainless steel beads (Qiagen, Hilden, Germany) using the Tissue-

Lyser (Qiagen) for 45 sec at 30 Hz. Subsequently, 1.3 ml hot (65°C) extraction buffer 

(0.1 M TrisHCl; 0.7 M NaCl; 0.05 M EDTA; pH 8) was added to the ground material, 

followed by incubation at 65°C for 15 min with repeated shaking. Genomic DNA was 

then purified from the lysate by extraction with phenol-chloroform. Remaining RNA 

was digested using 10 µl RNAse A (10 µg/µl) for 10 min at 37°C and the DNA was 

precipitated with isopropanol, followed by a wash-step with 70% ethanol. Finally, the 

dried pellet was dissolved in 100 µl TE-buffer (10 mM Tris-HCl; 1 mM EDTA; pH 8).  

 

 

Amplicon generation 

 

Amplicons were generated as described by Lucito and Wigler (2003) with slight modi-

fications. Restriction digests were carried out in a reaction volume of 30 µl with 120 ng 

genomic sugar beet DNA, 20 U BamHI (New England Biolabs, Ipswich, MA), 20 U 

BglII (New England Biolabs), 1× digestion buffer (New England Biolabs) and 1× BSA 

(New England Biolabs) followed by incubation overnight at 37°C. Completeness of the 

digestion was monitored by gel electrophoresis. In order to enable amplification of the 

fragments, adaptors were ligated to the protruding 5’-termini of the digested DNA. The 

adaptors consisted of a 24-mer oligonucleotide (5’-

AGCACTCTCCAGCCTCTCACCGCT-3‘) and a partly complementary 12-mer (5’-
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GATCAGCGGTGA-3‘), of which 7.5 µl each (62 µM) were added to 10 µl (40 ng) of 

digested DNA, 3 µl 10× T4 DNA ligase reaction buffer (New England Biolabs) and 

ddH2O in a reaction volume of 29.5 µl. After heating to 55°C and slow cooling of the 

mixture to room temperature, 0.5 µl of T4 DNA ligase (400 U/µl, New England Bio-

labs) was added, followed by incubation at 16°C over night. Next, 3 µl (4 ng DNA) of 

the ligation reaction were used as PCR template with 0.4 µl dNTPs (100 mM), 3 µl 24-

mer adaptor (62 µM) acting as primer, 2 µl Taq polymerase (5 U/µl), 6 µl 10× PCR 

buffer (481 mM KCl; 0.96% Tween 20; 14 mM MgCl2; 337 mM Tris-base; 144 mM 

Tris-HCl; 1.44% cresol red) and 45.6 µl ddH2O. PCR was performed with an initial 

elongation step at 72°C for 5 min to replace the 12-mer adaptor and fill in the recessive 

3’-termini. Afterwards a denaturation step at 94°C for 4 minutes was performed, fol-

lowed by 25 cycles consisting of 94°C for 30 seconds, 65°C for 30 seconds and 72°C 

for 3 minutes, and a final elongation step at 72°C for 10 minutes. Finally the PCR prod-

ucts were purified using QIAquick PCR Purification Kit 50 (Qiagen) and QIAquick 96 

Purification Kit (Qiagen) according to the manufacturer’s instructions.  

 

Oligonucleotide design for microarrays  

 

Custom oligonucleotides for the 44K and 105 K arrays were generated from two ge-

nomic BAC end data sets and one EST data set. 29,320 end sequences (Weisshaar et al., 

unpublished) from the sugar beet BAC clone library “ZR/KIEL” (genotype: KWS2320; 

Hohmann et al. 2003) and 25,850 end sequences from the sugar beet BAC clone library 

USH20 (McGrath et al. 2004) (NCBI database of Genome Survey Sequences; 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=nucgss) were searched for BamHI and 

BglII restriction sites using the “restrict” program of the EMBOSS suite (Rice et al. 

2000). In 6486 ZR BAC end sequences 1-12 restriction sites were found, and in 6493 

USH20 BAC ends 1-9 restriction sites were found (either BamHI or BglII). Perl scripts 

and the EMBOSS programs “seqret” and “extractseq” were used to extract the subse-

quences between restriction sites and to select fragments such that sequences of a length 

below 80 bp were discarded, sequences of lengths 80 – 200 bp were kept, and sequences 

of length above 200 bp were split into two parts. The resulting 20,759 fragments from 

the ZR BAC end data set, 21,882 fragments from the USH20 BAC end data set and 

22,834 BAC sequences from the ZR BAC end data set containing no BamHI or BglII 

restriction sites were repeat masked applying RepeatMasker (Smit et al. 1996-2004) 
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with a repeat library containing sugar beet specific repeats (from the NCBI nucleotide 

database http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore) and other known plant 

repeats (RepeatMasker inherent or downloaded from NCBI nucleotide database). The 

masked sequences were sent to the Agilent web page 

(https://earray.chem.agilent.com/earray) for the design of 60-mer oligonucleotides. In 

order to exclude repetitive oligonucleotides we searched against the BAC end data sets 

using BLASTN (Altschul et al. 1990) (-e 1e-5, -F F) and discarded oligonucleotides 

which matched more than two times. In addition, oligonucleotides based on two sugar 

beet BAC clone sequences, SBI-153H13 and ZR-47B15 (GenBank FJ752586 and 

FJ752587) (Dohm et al. 2009), were constructed in the same way.  

For the design of oligonucleotides from ESTs we downloaded 22,209 publicly available 

nuclear sugar beet EST sequences from the NCBI nucleotide database. The sequences 

were repeat masked and clustered with the cap3 algorithm (Huang and Madan 1999) 

with parameters P (overlap percent identity) = 95, o (overlap length cutoff) = 50 and h 

(max. overhang percent length) = 100 resulting in a non-redundant data set of 14,517 

EST sequences. This data set was compared with genomic sequences of A. thaliana 

(downloaded from the NCBI database), Populus trichocarpa (downloaded from 

http://genome.jgi-psf.org/Poptr1/Poptr1.download.ftp.html) and O.  sativa (downloaded 

from http://www.tigr.org/tdb/e2k1/osa1/data_download.shtml) on the protein level us-

ing TBLASTX (-S 1 and -e 1e-5). The mRNA-to-genomic alignment program spidey 

(Wheelan et al. 2001) with parameters -s T and -r p was applied for every pair of ho-

mologous sequences between B. vulgaris and A. thaliana, P. trichocarpa, or O. sativa, 

respectively, controlled and parsed by Perl scripts. In total 9764 B. vulgaris sequences 

had matches with A. thaliana, 9634 with P. trichocarpa, and 9244 with O. sativa. Ac-

cording to the match positions we extracted the subsequences from the ESTs using Perl 

scripts and the Emboss “exractseq” program.  We removed subsequences shorter than 

80 bp, reverse matching sequences, and single-exon sequences in cases where another 

homologous gene sequence with more than one exon for the same B. vulgaris EST se-

quence existed. Overlapping matches with different genes for one B. vulgaris EST se-

quence were combined. BamHI and BglII restrictions sites were masked with “N”s, and 

60-mer oligonucleotides were designed for each exon sequence at the Agilent web site. 

Oligonucleotides with a length of 30 bp were built from the central part of each 60-mer. 
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Microarray design 

 

We used three different custom gene expression microarray formats: 4×44K (Agilent, 

Santa Clara, CA, USA) and 2×105K (Agilent) for screening of the parental genotypes 

and 8×15K (Agilent) for genotyping of the F2 individuals. Gene expression arrays were 

preferred to comparative genome hybridization (CGH) arrays, since expression arrays 

contained more positions for custom made features. Previously designed custom oli-

gonucleotides were placed onto the 4×44K and 2×105K arrays using the Agilent eArray 

platform. Features identified as being polymorphic between both parental lines in the 

course of this study were selected for the design of a 15K array. In addition to the po-

lymorphic features, control features complementary to BglII/BamHI double digest 

fragments of mouse BAC clone RP24-571N6 (GenBank: AC102017) were placed onto 

the 15K array. For the design of these control features, we performed in silico restric-

tion digestion of the BAC clone sequence using NEBcutter V2.0 (Vincze et al. 2003) 

with BglII and BamHI prior to repeat masking of the BAC sequences using Repeat-

Masker. Thereafter, appropriate feature sequences for each fragment in the size range of 

290 – 6319 bp were selected using the Agilent eArray platform and placed onto the 15K 

array in fivefold replicates.  

 

Amplicon labeling and array hybridization 

 

In case of the F2 samples for the 15K arrays, 247 ng of BAC clone RP24-571N6, double 

digested with BamHI/BglII and amplified as described above, was spiked-into each 

sample before labeling as hybridization control. Labeling and hybridization were per-

formed according to Agilent protocols. Briefly, amplicon samples were labeled with 

Cyanine 3-dUTP by random priming (Agilent Genomic DNA Labeling Kit Plus) at 

37°C for 2 hr followed by heat inactivation at 65°C for 10 minutes. The recommended 

amounts of DNA template for labeling varied between the different array formats and 

were 500 ng for the 15K array, 1 µg for the 44K array and 1.5 µg for the 105K array. 

Labeled products were purified using Microcon YM-30 filters (Millipore, Billerica, 

MA) and if necessary 1×TE-buffer (10 mM Tris-HCl; 1 mM EDTA; pH 8) was added 

to the final hybridization volume (18 µl for the 15K array, 44 µl for the 44K array and 

104 µl for the 105K array). Specific labeling activity (pmol dye / μg DNA) of the sam-

ples was examined using a NanoDrop ND-1000 UV-VIS Spectrophotometer (Nano-
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Drop Technologies, Rockland, DE). The recommended specific activity after labeling 

and clean-up was 25 – 40 pmol/µg. The Agilent Oligo aCGH Hybridization Kit was 

used for hybridization. Samples were prepared according to the manufacturer’s protocol 

and hybridized with 10 rpm at 65°C for 24 hrs.  

After two washing steps with Oligo aCGH wash buffers 1 and 2 (Agilent) the arrays 

were immediately scanned with the DNA microarray scanner G2505B (Agilent) at a 

wavelength of 532 nm and with 5 µm resolution.  

 

Data analysis 

 

We analyzed the scanned microarray images (.tif) using the Agilent Feature Extraction 

software (version 9.1.3.1 for 44K and 105K arrays; version 9.5.3.1 for 15K arrays) ap-

plied on the individual grid file for each array format and the Agilent GE1-v5_91_0806 

protocol (44K and 105K arrays) and GE1-v5_95_ Feb07 protocol with enabled “Local 

background method” (15K arrays). For 44K and 105K arrays, signal thresholds separat-

ing positive signals from negative ones valid for all features on one array were deter-

mined manually by setting a threshold at which a weak optical signal was visible. Each 

feature signal on the particular arrays was divided by the determined threshold intensity 

and resulting signals above one were scored as present, and signals below one were 

scored as absent. Features having a signal in K1P1 and no signal in K1P2 or vice versa 

were placed onto the 15K array as polymorphic marker candidates. For normalization of 

the 15K arrays, signals of control feature groups, i.e. oligonucleotides complementary to 

one fragment of BAC clone RP24-571N6 present in five replicates were utilized. The 

average signal values of each control feature group on one array were summed up rep-

resenting the normalization value. Subsequently, all feature values on one array were 

divided by the related normalization value.  

Seventy-eight features on the array were based on 50 source sequences that had previ-

ously been used by Schneider et al. (2007) for marker development. By comparison of 

these features’ scoring results with different thresholds to their known scoring results 

from Schneider et al. (2007), criteria for scoring the signal as absent or present for each 

feature were determined individually. The conclusive criteria were: (1) only features 

with a normalized signal value > 10 were scored; (2) a signal value was scored as posi-

tive when larger than 2.5 times the lower quartile and scored as negative when smaller 

than the lower quartile minus 10% of the lower quartile, signal values between these 
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thresholds were considered as missing genotypes ; (3) the number of genotypes scored 

as positive or negative (not missing) had to be more than 133 (72%); (4) only features 

with no significant deviation (χ2 ≤ χ2
α=0.05) from the expected 3:1 (signal: no signal) ra-

tio, were included into further analysis. Before map calculation, an additional masking 

step was performed using RepeatMasker with all Virdiplantae specific repeats, B. vul-

garis chloroplast (GenBank EF534108) and mitochondrial (GenBank NC_002511) se-

quences. Furthermore, features with more than one BLASTN hit (-e 1e-09) against the 

“nr” database or more than two hits (-e 1e-09) against the “gss” database were excluded. 

Based on the signal scores of the parental lines K1P1 and K1P2 on the 44K and 105K 

arrays, respectively, the marker scores were translated into A (homozygous K1P1); B 

(homozygous K1P2); C (known to be not homozygous A) and D (known to be not ho-

mozygous B). Due to the dominant character of the markers, heterozygous individuals 

could not be determined. 

 

Map calculation 

 

We calculated genetic maps using AntMap version 1.1 (Iwata and Ninomiya 2006) and 

performed grouping with the nearest neighboring locus option. We chose a LOD score 

of 12 or greater in order to minimize the number of falsely grouped markers. Groups 

known to be located on one linkage group based on previously mapped co-dominant 

markers were joined. Recombination percentage was converted to genetic distance by 

the Kosambi map function (Kosambi 1944) with optimization of locus ordering by 

minimizing the sum of adjacent recombination fractions (SARF) (Falk 1989) and with 

default parameters of AntMap Ant Colony Optimization. Thirty runs of locus ordering 

were performed.  Linkage maps were plotted using the software MapChart 2.2 (Voor-

rips 2002) with post processing, i.e. adjustment of lines connecting homolog loci be-

tween linkage groups, applying an image processing software.   
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Results 
 

Genomic representations 

 

Genomic representations are reproducible subpopulations of genomic DNA in which 

the resulting sample has a new format, or reduced complexity, or both (Lisitsyn and 

Wigler 1993; Lucito et al. 1998). The complexity reduction leads to improved hybridi-

zation kinetics compared to that of the complete genome. In order to achieve a complex-

ity reduction we digested the genomic DNA with endonucleases, ligated primers to the 

resulting fragments and amplified these by PCR, thus producing amplicons. Taq poly-

merase can amplify fragments up to approximately 2000 bp (Saiki et al. 1988). Within a 

mixture of differently sized templates, PCR preferentially generates products in the size 

range of 200 – 1200 bp. Hence, larger fragments will not be effectively amplified and 

produce no signals by hybridization on an array containing oligonucleotides comple-

mentary to subparts of the fragments. By scoring of presence or absence of fragments in 

representations from both parents of a mapping population, polymorphic marker candi-

dates can be determined. Subsequent hybridization of representations from F2 individu-

als of the mapping population on arrays containing the polymorphic marker candidates 

allows genotyping of the F2 individuals (strategy outline: Fig. 1). 

The complexity reduction rate depends predominantly on the choice of restriction en-

zymes and their cutting frequency, respectively. We wanted to achieve a complexity 

reduction to approximately 10% of the sugar beet genome. For determining suitable 

restriction endonucleases we performed in silico restriction enzyme double-digestion 

with different enzymes utilizing two genomic sugar beet sequences (BAC clones SBI-

153H13 and ZR-47B15) and calculated the percentage of fragments in the range of 200 

– 1200 bp. The restriction with both BglII and BamHI led to a predicted amplifiable 

proportion of 7 – 11% of the DNA. In order to experimentally evaluate the preferred 

size range of the Taq polymerase, we digested the DNA of the two sugar beet BAC 

clones SBI-153H13 and ZR-47B15 with BglII and BamHI and analyzed the amplified 

fragments by gel electrophoresis (Fig. 2). Fragments within an approximate size range 

of 250 – 1500 bp were preferentially amplified, suggesting that genomic amplicons 

generated by digestion with BglII and BamHI represent 14 – 15% of the sugar beet ge-

nome. 
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Array design for identification of polymorphic markers  

 

To identify polymorphic markers, labeled genomic representations of the P1 and P2 

parental lines were hybridized on Agilent 44K and 105K custom microarrays. 

The Agilent 44K array contained 45,220 oligonucleotide positions, named features, of 

which 1428 were structural controls, thus 43,792 custom features could be placed onto 

the array. We designed 21,720 oligonucleotides based on BAC-end sequences (BES), 

21,720 based on ESTs and 352 based on two BAC sugar beet sequences (SBI-153H13 

and ZR-47B15). Apart from structural controls, the 105K array provides space for 

102,762 custom features. Of these, 79,506 were designed based on BES (45,980 with 

BamHI or BglII restriction site and 33,526 without), 23,116 based on ESTs and 140 

based on the sugar beet BAC sequence FJ752587. In total we designed 146,554 custom 

features based on sugar beet ESTs and BAC sequences, respectively, that were available 

in GenBank and the GABI beet physical map consortium. The standard oligonucleotide 

length for Agilent arrays is 60 nt. In order to test the hypothesis of previous studies 

(Castle et al. 2003) showing 30-mers to be more sensitive, we designed 50% of the 

146,554  oligonucleotides as 60-mers and 50% as 30-mers representing sub-fragments 

of each 60-mer. The distribution of the origins of oligonucleotide sequences on the 44K 

and 105K arrays is shown in Fig. 3a. 

 

Scoring of K1P1 and K1P2: Selection of polymorphic markers for 15K oligonu-

cleotide array 

 

After hybridization of the labeled K1P1 and K1P2 amplicons, respectively, on the 105K 

and 44K arrays, the signals were scored as positive or negative. At this stage of our 

study, thresholds for signal scoring were determined by visual evaluation, and one sig-

nal value was defined for all features on one array.  

Oligonucleotides giving a positive signal for K1P1 but no signal for K1P2 and vice 

versa were selected as potential polymorphic markers and were used for the design of a 

15K array allowing the placement of 15,160 features onto the array. We used 245 posi-

tions for hybridization controls (described below), thus 14,915 oligonucleotides identi-

fied as potentially polymorphic before could be selected for the 15K array. Of these 

polymorphic marker candidates 83% showed a positive signal in K1P1 and 17% a posi-

tive signal in K1P2 This bias towards positive signals is probably due to the initially 



Publication I 

39 

used simple method for discrimination between signals or no signal, i.e. setting the 

same thresholds for all features on one array based on the visual impression of a weak 

optical signal. Criteria for scoring the signals as absent or present for each feature were 

optimized for scoring of the 15K arrays later on (see material and methods section). The 

distribution of 30-mers and 60-mers and their source sequence origin is shown in Fig. 

3b. Even though the numbers of 30-mer and 60-mer probes were equal on the 44K and 

105K arrays, 72% of the potential polymorphic markers were 60-mers, indicating that 

60-mers are better suited for the detection of polymorphisms using ROMA. 

 

Analysis of 15K oligonucleotide arrays with internal control features 

 

For genotyping, genomic representations of 196 F2 individuals from the K1 mapping 

population were hybridized on the 15K arrays containing the polymorphic marker can-

didates. Results were obtained only for 184 F2genotypes, which were further analyzed. 

Oligonucleotides, one for each fragment of the mouse BAC clone RP24-571N6 pro-

duced by BglII and BamHI digestion, served as an internal control. Five replicates of 

each of these control oligonucleotides were scattered across the 15K array, thus compar-

ing the signal intensities allowed verification of even hybridization throughout an array. 

We selected 184 arrays with uniform hybridization results for further analysis. Since 

BAC clone RP24-571N6 was digested and amplified in the same way as the genomic 

sugar beet DNA and the resulting PCR products were spiked-into the genomic-

representation samples of each genotype before labeling, the mouse BAC control oli-

gonucleotides also provided verification of the performance of our method. Fig. 4 

shows the distribution of the control oligonucleotides’ signals from all 184 F2 geno-

types. As expected, large fragments did not produce signals on the array, since they 

could not be amplified by Taq polymerase. This observation confirms the feasibility of 

our method. However, we also observed control fragments within the amplifiable size 

range (C11: 290 bp and C30: 512 bp; Fig 4), which did not show hybridization signals. 

This may indicate some biases in the generation of amplicons other than size exclusion, 

for instance base composition of fragments. Another obvious conclusion from the re-

sults in Fig. 4 was the need for setting individual score thresholds for each feature, since 

the range of signal intensities varied largely between distinct features, presumably due 

to nucleotide composition.  
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Scoring of signals on the 15K array and selection of markers for map construction 

 

In order to find general criteria for setting individual scoring thresholds for each feature, 

we utilized scoring data from markers mapped in a subset of the same mapping popula-

tion K1 (Schneider et al. 2007). Seventy-eight features on the array were based on 50 

source sequences that had previously been used by Schneider et al. for marker devel-

opment. We determined the optimal scoring parameters by comparing the array-based 

scoring results for these features to the scoring results from Schneider et al. (2007). 

Based on signal intensities and the deviation from the expected ratio of signal to no sig-

nal (see Materials and Methods) individual thresholds were selected resulting in the 

least possible number of false positives and negatives. Applying these criteria, 1204 fea-

tures were selected from the 15K array (Fig. 3c), of which the ratio of 60-mers (76%) to 

30-mers (14%) was almost the same as it was on the whole 15K array. Within the 60-

mers the proportion of oligonucleotides derived from BAC sequences increased from 

52% to 62%. An additional masking step led to the removal of 30 features. After merg-

ing of features derived from the same locus, i.e. originating from the same BAC se-

quence or EST, we obtained 873 final marker candidates for genetic map construction. 

Six hundred-eighty-nine (79%) of these were derived from BAC sequences (621 with 

BamHI or BglII restriction site and 68 without), and 184 (21%) from ESTs. The merg-

ing step provided an important verification step, since features derived from the same 

locus with discordant scoring results of more than 3% were discarded from the data set. 

The fraction of polymorphic markers having a positive signal in K1P1, constituted 82% 

(716), which reflects the fraction of K1P1 positive features being present on the whole 

15K array. This suggests that the bias towards K1P1- positive features occurred due to 

the initially used strategy of applying one single threshold for all features per array to 

score the signals of the parental lines on the 44K- and 105K-arrays. 

 

Proof of concept: Integration of markers into an existing genetic map and evalua-

tion of marker orders 

 

In order to test if the new markers could be integrated into an existing sugar beet genetic 

map, we obtained scoring data for 280 co-dominant RFLP- and EST-derived SNP 

markers. These markers were also mapped in a subset of the K1 mapping population in 

the study of Schneider et al. (2007). We combined the co-dominant scoring data of 80 
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F2 individuals with the corresponding 873 dominant marker scores and grouped them. A 

stringent LOD score of 12 was chosen, to minimize the number of falsely grouped 

markers. In total 315 new dominant markers distributed over all nine B. vulgaris chro-

mosomes (Table 1) could be assigned to linkage groups (LGs) and allowed the con-

struction of a genetic map containing 595 markers, both co-dominant and dominant 

(Fig. 5, Table S1). This genetic map has a theoretical average density of one marker per 

1.27 Mbp, assuming 758 Mbp as the size of the sugar beet genome (Arumuganathan 

and Earle 1991). For comparison of marker orders, a map containing only the 280 avail-

able co-dominant markers from Schneider et al. (2007) was constructed using the same 

parameters as described above for marker positioning (Table 1, Fig 5, Table S1). The 

marker order along the chromosomes was well preserved in LGs I – VIII, except for 

some local marker substitutions and rearrangements. These effects might be explained 

by the relatively small number (80) of K1F2 individuals used for map calculation and 

by the lesser information content on linkage of the dominant markers compared to co-

dominant markers (Knapp et al. 1995; Sall and Nilsson 1994). LG IX showed more ex-

tensive shifting of the marker group containing anchor markers TG_E0246, MP_R0119, 

MP_R0002, MP_R0018 and MP_sc from one end of the linkage group to the opposite 

end. The size of the LGs varied between 147.3 cM (LG I) and 201.0 cM (LG III) and 

showed inflation for all LGs from 911.1 cM (sum of all LGs, only co-dominant mark-

ers) to 1589.5 cM (sum of all LGs, co-dominant and dominant markers), which could 

result from missing data points of some markers and from problematic markers, result-

ing in artificial inflation of the map size. We performed a second round of marker 

grouping and ordering using only the 873 dominant markers with their scores for all 184 

K1F2 individuals. The 315 dominant markers mapped to LGs before served as anchor 

markers. This strategy led to the assignment of 196 additional dominant markers to LGs 

(Table 1, Fig. 5, Table S1),  resulting in a total of 511 dominant markers, translating 

into an average marker density of one marker per 1.48 Mbp of the sugar beet genome. 

Of these 511 dominant markers 392 originated from BAC-end or BAC sequences and 

119 from ESTs (Table S2).The overall genetic map size increased from 1589.5 cM to 

1668.6 cM compared to the map with dominant and co-dominant markers. Except for 

LGs IV and IX, whose sizes decreased from 169.9 cM to 136.4 and from 184.7 cM to 

152.5, respectively, the sizes of all LGs increased. This artificial map inflation was 

probably again resulting from missing scoring results and the dominant character of the 

markers. When comparing the marker order of the map with only dominant markers to 
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the one with both dominant and co-dominant markers, the need for carefully evaluating 

the dominant marker order becomes obvious. In LGs IV, V and VII, all of which con-

taining only markers linked in coupling phase, the marker orders were well preserved. 

However, in the other LGs, containing also dominant markers in repulsion phase, there 

were severe marker rearrangements. Because of the stringent LOD score used within the 

grouping process, the assignment of markers to LGs was certainly very reliable; the 

marker order within LGs, however, was probably imperfect, originating mainly from the 

dominant character of the markers which is unfavorable in an F2 intercross population. 

Especially for double heterozygotes from the F2 population, the repulsion phase pro-

vides much less information about linkage than the coupling phase when considering 

two markers at a time (Liu 1998). 
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Discussion 
 

In this study we showed that representational oligonucleotide microarray analysis can 

be successfully applied for high-throughput identification of genetic markers in species 

with limited sequence information. The marker yield could be drastically increased by 

optimizing the custom made arrays in several ways. On the one hand only 60-mer 

oligonucleotides should be placed onto the array, since they proved to perform better 

than 30-mers. Of initially 50% 60-mers used on the arrays for screening the parental 

genotypes (Fig. 3a), the fraction of 60-mers among the selected polymorphic marker 

candidates was 72% (Fig. 3b) and even slightly increased among the finally used 

markers for map construction (Fig. 3c). On the other hand, BAC-end derived 

oligonucleotides seem to be favorable compared to oligonucleotides designed based on 

EST sequences. If marker development is to take place for a genome that has not been 

sequenced, information on exon borders within ESTs needs to be determined by cross-

species alignment. In the present work we aligned sugar beet ESTs against the genomes 

of A. thaliana, P. trichocarpa and O. sativa. However, such alignments may be 

erroneous, resulting in the design of some oligonucleotides that perform poorly in 

hybridization with amplicons prepared from genomic DNA in cases where exon-exon 

borders within the EST source sequences were missed. We also suggest placing each 

oligonucleotide in multiple replicates onto the array, to achieve more robust scoring 

results and thereby to reduce the number of missing data points.  The dominant 

character of our markers provides less information on linkage compared to co-dominant 

markers (Liu 1998). Especially when the F2 progeny is used and the markers are in 

repulsion phase, the quality of marker ordering within a multilocus map decreases 

drastically (Knapp et al. 1995; Mester et al. 2003). In practice, about half of the markers 

are expected in each coupling phase, since their identification should be random. Due to 

a bias in our initial approach for scoring the parental lines, i.e. setting the same signal 

threshold for all features on one array, the distribution of linkage phases in our 

experiment is deviating from the expected 1:1 ratio. The fact of having dominant 

markers in coupling and repulsion phase often leads to mapping the dominant markers 

from either parent separately to create two different maps in practice (Knapp et al. 1995; 

Mester et al. 2003; Peng et al. 2000; Sall and Nilsson 1994). We constructed phase 

separated maps containing co-dominant markers and dominant markers from one 

coupling group exemplarily for LG III and obtained indeed well preserved order of the 
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co-dominant markers (Figure S4). One approach to subsequently integrate the two maps 

into one final map applied before was using pairs of co-dominant and dominant 

markers, which have higher linkage information than pairs of dominant markers in the 

coupling phase (Mester et al. 2003). However, since this strategy requires every 

dominant marker to be paired with a co-dominant marker, it is extremely demanding. 

Tan and Fu (2007) proposed another method for estimating the recombination fraction 

between markers that improved the accuracy of estimation through distinction between 

the coupling phase and the repulsion phase of the linked loci. This method or other 

specialized algorithms as presented by Jansen (2009) could be utilized for map 

construction using a dataset of dominant markers like the ones presented in this work. In 

any case, the disadvantage of the dominant character of the markers could be reduced 

by using backcross progeny for genotyping. The amount of relative information per 

individual in an F2 population drops drastically with higher recombination fraction. 

Only if dominant markers are in coupling phase and linked tightly, the information 

content of a F2 population reaches the one of a backcross population (Allard 1956). 

Backcross populations map dominant and codominant markers with equal efficiency if 

the recurrent parent is recessive for the dominant loci, since in that case mapping is not 

affected by linkage phase. However, only half of the markers are expected to be 

informative in a backcross population when recessive and dominant loci are randomly 

distributed between both parents, contrary to F2 populations where all markers are 

informative. This effect could be compensated by doubling the number of marker used 

for map construction. 

Applied in an optimized fashion, our approach offers a straight-forward, cost-effective 

alternative for high-throughput identification and utilizing of genetic markers, when 

compared to existing methods: While the  polymorphism that allows mapping the 

ROMA based marker is not known, some sequence information at the marker locus is 

available. The source sequences typically are 500-1000 bases in length (EST sequences 

and end sequences from genomic clones). The available sequence information is an 

advantage compared to other platforms such as AFLP or RAPD, because a ROMA 

based marker can be located on the genome sequence (once available). Also, the 

sequence information can be used to design a marker assay suitable for typing on 

sequence-based platforms, and for transfer of markers to other accessions. ROMA is 

easier to implement than the diversity arrays technology (DArT) (Jaccoud et al. 2001). 

DArT produces whole-genome fingerprints by scoring the presence versus absence of 
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DNA fragments in genomic representations and offers the possibility to develop genetic 

markers without any prior sequence information, but it includes a cloning step, which 

can be omitted using the ROMA approach. Another widely used method to identify 

single feature polymorphisms (SFP) in crop plants utilizes Affymetrix microarrays, 

which have a higher density (> 500,000 oligonucleotides per array) than the arrays used 

in this study (Bernardo et al. 2009; Das et al. 2008; Deleu et al. 2009; Kim et al. 2009; 

Rostoks et al. 2005), but depends on the availability of a comprehensive transcriptome 

catalogue and an Affymetrix GeneChip of the desired species or of a very closely 

related species, respectively. Our approach provides great flexibility, since arrays design 

can be adjusted to existing sequence resources that are available for the species of 

interest. Recently, also approaches combining next generation sequencing with 

complexity reduction methods, like AFLP or using transcriptome sequences for SFP 

markers in species without whole genome sequence information have been emerging 

(Barbazuk et al. 2007; Novaes et al. 2008; van Orsouw et al. 2007). The drawback of 

such methods might be a relatively high false positive rate in the absence of 

comprehensive genomic information, due to biased occurrences of sequencing errors 

(Dohm et al. 2008). 

In summary, this study demonstrates the feasibility of ROMA to generate genetic mark-

ers in a cost-effective way with the potential for high-throughput analysis. The markers 

developed in this study will be an asset for the ongoing projects to map and sequence 

the sugar beet genome. Since the source sequence of each of the developed markers is 

known (Table S2), the new markers can be easily transferred onto other genotyping 

platforms.  
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Tables 
 

Table 1 Summary of marker numbers and sizes of linkage groups (LGs) of the con-

structed genetic maps with co-dominant and dominant markers (C + D), only co-

dominant markers (C) and only dominant markers (D) 

 

LG C + D  C  D 

 No.   Size (cM)  No.   Size (cM)  No.   Size (cM) 

I 35 147.3   23 82.2  23 171.8 

II 63 153.9   31 82.8  59 216.2 

III 64 201.5  33 116.0  48 206.6 

IV 76 169.9  24 106.7  61 136.4 

V 95 178.3  37 115.4  90 229.2 

VI 51 177.9  35 104.0  51 183.9 

VII 96 198.0  39 131.9  80 190.0 

VIII 45 178.0  27 71.2  51 182.3 

IX 70 184.7  31 100.9  48 152.2 

∑ 595 1589.5  280 911.1  511 1668.6 
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Figures 
 

 
Fig. 1 Flow diagram to illustrate the mapping strategy 
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Fig. 2 Verification of size dependent preferential amplification of restriction fragments by Taq-

polymerase. a Purified amplicons of BAC clones SBI-153H13  (lane 1) and ZR-47B15 (lane 2). Sizes of 

marker bands (lane M) are indicated in base pairs. Only fragments in the size range of approximately 250 

– 1500 bp were amplified, b Virtual digest of BAC clones SBI-153H13 (lane 1) and ZR-47B15 (lane 2) 

with BamHI and BglII. The size range of fragments that is amplified by PCR is indicated by a dashed box 

 

 

 
Fig. 3 Size distribution and source sequence origin of oligonucleotide arrays. a Sugar beet oligonucleo-

tides on 44K and 105K arrays used for identification of marker candidates. The total number of oligonu-

cleotides on both arrays comprised 146,554, b 14,915 oligonucleotides selected from 44K and 105K 

arrays and placed onto the 15K array for screening of the F2 genotypes, c Features on the 15K array ful-

filling the defined criteria for selection and scoring of individual features; used for map calculation 
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Fig. 4 Box plot of hybridization signals of mouse BAC control oligonucleotides from all genotypes. The 

signals were normalized and the average values of the five replicates were plotted. Oligonucleotides were 

ordered along the x-axis in ascending order according the size of the restriction fragments they are com-

plementary to. The interquartile range (IQR) including the median and the inner fences (upper quartile 

plus 1.5× IQR and lower quartile minus 1.5× IQR, respectively) are shown. Mild outliers (points beyond 

the inner fences) are displayed as crosses, extreme outliers (points beyond the outer fences, i.e. larger than 

the upper quartile plus 3× IQR or smaller than the lower quartile minus 3× IQR) as circles 
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Fig. 5 Sugar beet linkage map constructed with co-dominant markers from Schneider et al. (2007) com-

bined with dominant markers (C + D), only co-dominant markers (C) and only dominant markers (D). 

Marker names and the cumulative genetic distances in cM are indicated. Corresponding markers between 

the maps are connected with a line 
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5.2 Supplementary information 

 

Provided on supplementary CD (see section 11.5): 

 

Supplementary material S1 a: Genetic markers of the map containing only codomi-

nant markers (C) b: codominant and dominant markers (C+D) c: only dominant markers 

(D) and their cumulative genetic distances  

 

Supplementary material S2: Dominant genetic markers with corresponding GenBank 

Accessions 

 

 

 
Supplementary Figure S3: Sugar beet linkage map of linkage group III constructed with co-dominant 

markers from Schneider et al. (2007) (C) and combined with phase separated dominant markers (C +D 1 

and 2). Marker names and the cumulative genetic distances in cM are indicated. Corresponding markers 

between the maps are connected with a line. 
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5.3 Contributions 

I analysed the obtained data and calculated the genetic maps. In addition, together with 

HH I developed the concept of the manuscript, wrote the manuscript draft and included 

the suggestions from the co-authors. 

 

Contributions of co-authors: 

LM:  Performed all wet lab experiments 

JCD:  Designed the oligonucleotides for the custom made arrays and wrote the 

corresponding part of the materials and methods section 

DH and BW: Provided the BAC end-sequences 

HH: Had the initial idea for the experiments, contributed to the concept of the 

manuscript 
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6 Publication II 

6.1 Haplotype divergence in Beta vulgaris and microsynteny with 

sequenced plant genomes. 

Dohm JC (JCD), Lange C (CL)

DOI: 10.1111/j.1365-313X.2008.03665.x 

, Reinhardt R (RR), Himmelbauer H (HH). Plant 

J. 2009; 57 (1): 14-26. 

The original article is online available at: 

http://www3.interscience.wiley.com/journal/121391360/abstract 
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6.3 Contributions 

I performed the wet lab experiments, i.e. production and hybridisation of the macroar-

rays, generation of the BAC shot-gun library for sequencing and performance of the 

Southern hybridisation experiments. Furthermore, I analysed the hybridisation results, 

created Figure 1 (phylogenetic tree), Figure 2 (part of the reconstructed gene map of the 

Arabidopsis ancestor) and Figures S1 (Probe-clone hit statistics), S2/S3 (Southern hy-

bridisations) and S4 (comparison of 35mer hybridisation and Southern results). To-

gether with HH and JCD I developed the concept of the manuscript, wrote parts of the 

manuscript and took part in critical discussion and optimising of the manuscript. 

 

Contributions of co-authors: 

JCD:  Performed all bioinformatic analyses (sequence annotation, repeat identi-

fication and synteny analysis), took part in development of the manu-

script concept, wrote major parts of the manuscript, included the sugges-

tions from the co-authors and took part in critical discussion of the manu-

script 

RR:  Sequenced the BAC shot-gun libraries and assembled the BAC se-

quences  

HH: Had the initial idea for the experiments, took part in development of the 

manuscript concept, wrote parts of the manuscript and took part in criti-

cal discussion and optimisation of the manuscript 
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7 Publication III 

7.1 Construction and characterization of a sugar beet (Beta vulgaris) 

fosmid library 

Lange C (CL)

DOI:10.1139/G08-071 

, Holtgräwe D (DH), Schulz B (BS), Weisshaar B (BW), 

Himmelbauer H (HH). Genome. 2008; 51 (11): 948-51. 

The original article is online available at: 
http://article.pubs.nrc-cnrc.gc.ca/ppv/RPViewDoc?issn=0831-2796&volume=51&issue=11&startPage=948 
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7.2 Contributions 

I performed all wet lab experiments, i.e. construction of the fosmid library and screen-

ing of the library. In addition, I performed the BLAST analyses, together with HH I 

developed the manuscript concept, I wrote the manuscript draft and included sugges-

tions of the co-authors. 

 

Contributions of co-authors: 

DH and BW: Generated the fosmid end-sequences and provided the corresponding 

parts of the manuscript 

BS:  Provided the plant material 

HH: Had the initial idea for the experiments, contributed to the concept of the 

manuscript 
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8.2 Contributions 

I generated the Beta vulgaris small insert library and produced the macroarrays for iso-

lation of the genomic VulMITE I clone. In addition, I wrote minor parts of the manu-

script (material and methods). 
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9 Discussion 
 

This study describes the generation of several sugar beet genomic tools and their appli-

cation for evolutionary studies and linkage analysis. A new technique allowing high-

throughput identification and genotyping of genetic markers in sugar beet was devel-

oped (Publication I). Besides its transferability to other species, the obtained genetic 

markers will be an asset for ordering of sequence contigs on the genetic map. In addi-

tion, possible linkage of physical and genetic maps is provided, since genetic markers 

are based on source sequences, which are also used for construction of a BAC based 

physical map utilising a hybridisation approach. An example of the hybridisation based 

approach for physical map construction and its relevance for synteny studies is demon-

strated (Publication II). Furthermore, we constructed and characterised a sugar beet 

fosmid library (Publication III) supporting the assembly and orienting of sequence con-

tigs and generated a short insert library facilitating repeat identification within the sugar 

beet genome (Publication IV). 

 

9.1 Genome Mapping  

Genetic and physical maps are essential tools for structural, functional and applied ge-

nomics. The method presented in Publication I demonstrated that representational oli-

gonucleotide microarray analysis (ROMA) can be successfully applied for high-

throughput identification of genetic markers in species with limited sequence informa-

tion. Genomic representations of both parents of a mapping population were hybridised 

on 105K and 44K microarrays containing in total 146,554 custom made oligonucleo-

tides based on sugar beet BAC-end sequences (BESs) and ESTs. Subsequent analyses 

resulted in selection of 14,915 oligonucleotides identified as potentially polymorphic, 

which were placed on a new 15K microarray used for screening of 184 F2 individuals. 

Finally, 511 new dominant genetic markers could be placed onto a genetic map utilising 

co-dominant anchor markers. This low marker yield was due to control and test steps 

performed in order to establish the new technique and could be increases by several 

optimisations. On the one hand, 60mer oligonucleotides proved to perform superior in 

comparison to 30mer oligonucleotides. However, the crucial point to be improved is the 

scoring of the marker signals as present or absent. One possibility to obtain more robust 
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results is to place each oligonucleotide in multiple replicates, at least triplicates, onto the 

arrays. Oligonucleotides showing high variation within one group would be discarded, 

diminishing falsely scored markers. In addition, the approach utilised for determining 

polymorphisms between the parental lines P1 and P2 on the 105K and 44K arrays could 

be ameliorated by considering each feature signal individually instead of setting one 

signal threshold for the whole array. A promising strategy would be to examine the ratio 

of signal intensities between P1 and P2 specifically for each feature on the array. An 

individual threshold based on the level of signal differences between P1 and P2 for one 

feature could be set and features with P1/P2 or P2/P1 ratio, respectively, exceeding this 

threshold would be selected as polymorphic marker candidates. In order to test the fea-

sibility of this approach, I determined the influence of the signal ratio between P1 and 

P2 on marker yield and the abundance of features exemplarily for the 44K array (Figure 

2). The yield for each ratio category was calculated by dividing the number of markers 

falling into the particular ratio category and that could be placed onto the genetic map 

by the total number of features belonging to the particular category on the 15K array. 

For instance, 260 features whose signal intensities varied more than 10fold between P1 

and P2 on the 44K array were successfully utilised for genetic map calculation, 976 

features falling into this category (ratio between the signals of P1 and P2 on the 44k 

array > 10) were present on the whole 15K array, thus the marker yield for this category 

was 26.7% (260/976). In total, 5182 features on the 15K array originated from the 44K 

array (signal ratio >1), 339 of these were placed onto the genetic map. Hence, the over-

all marker yield for the 44K array in the performed experiments was 6.5%. A strong 

correlation between the extent of signal difference between P1 and P2 and the marker 

yield becomes obvious. However, increasing the signal ratio threshold above which 

marker candidates are selected, leads to drastic decrease of the number of features on 

the 44k array falling into the particular category (Figure 2). Features that show a more 

than 10fold higher signal with one parent in comparison to the other parent had a high 

marker yield (26.7%), but only 1429 features on the 44K array were in this range. The 

choice of the threshold should be considered carefully and adjusted to the available re-

sources. Nevertheless, selection of about 15,000 features from the 44K with a P1/P2 or 

P2/P1 signal ratio >2 and subsequent genotyping of the F2 progeny would have proba-

bly yielded about 1400 markers with the ability to be anchored onto the genetic map. 

This number could apparently be exceeded by using just 60mer oligonucleotides and 

replicates.  
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Figure 2: Influence of the signal ratio between P1 and P2 (i.e. signals of P1/P2 or P2/P1, respectively) of 

all features on the 44K array on marker yield and abundance. The yield for each ratio category was calcu-

lated by dividing the number of features falling into the particular category that could be anchored to the 

genetic map by the total number of features belonging to this category on the 15K array. Each feature that 

contributed to a marker was counted, although features representing one BES or EST were merged before 

map calculation (339 features originating from the 44K array contributed to 264 markers anchored to the 

genetic map). 

The dominant character of the genetic markers developed in Publication I is a vital ob-

stacle, since it provides less information on linkage compared to co-dominant markers 

(Liu 1998). Especially when an F2 progeny is used and the markers are in repulsion 

phase, the quality of marker ordering within a multilocus map decreases drastically 

(Knapp et al. 1995; Mester et al. 2003). Different strategies can be exploited in order to 

alleviate this effect. In addition to the approach tested in Publication 1, i.e. construction 

of phase separated maps containing co-dominant markers and dominant markers from 

one coupling group, specialised algorithms can be applied for map calculation in order 

to improve the accuracy of estimations (Tan and Fu 2007; Jansen 2009). Furthermore, 

the choice of the mapping population has great influence on mapping efficiency. Differ-

ent studies investigated the ability of different population types to detect recombinants 

by using either co-dominant or dominant markers (Allard 1956; Reiter et al. 1992). The 

amount of information about the recombination fraction provided by any data set de-

pends on the completeness of classification and the closeness of linkage. Mapping effi-

ciency of co-dominant markers in an F2 population is high, but dominant markers map 
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less efficiently, since mixed linkage phases will negatively influence the information 

content. In contrast, if the recurrent parent is recessive for the dominant loci, backcross 

populations map dominant and co-dominant markers with equal efficiency, as mapping 

is not affected by the linkage phase. However, only half of the markers are expected to 

be informative in a backcross population when recessive and dominant loci are ran-

domly distributed between both parents, contrary to F2 populations where all markers 

are informative. This effect could be compensated by doubling the number of marker 

used for map construction.  

The presented genetic mapping technique exploiting ROMA has considerable advan-

tages compared to other existing high-throughput genetic mapping assays, such as di-

versity arrays technology (DArT) (Jaccoud et al. 2001) and detection of single feature 

polymorphisms (SFPs) utilising Affymetrix microarrays (Das et al. 2008; Bernardo et 

al. 2009; Deleu et al. 2009). DArT includes a laborious cloning step and the obtained 

markers are anonymous. The detection of SFPs on Affymetrix microarrays depends on 

the availability of a comprehensive transcriptome catalogue and an Affymetrix Ge-

neChip of the desired species or of a very closely related species, respectively. How-

ever, since the ROMA approach is based on absence or presence of amplicons, but  the 

underlying DNA polymorphism is not detected, the genetic markers might be difficult 

to transfer to high-throughput genotyping platforms such as Illumina`s GoldenGate as-

say, which has been deployed for SNP genotyping in soybean (Hyten et al. 2008), wheat 

(Akhunov et al. 2009) and loblolly pine (Pinus taeda) (Eckert et al. 2009). 

In general, a genetic map can reveal if a marker is linked to a trait. Yet, the real physical 

distance remains unknown and the marker might be physically located quite far away 

from the gene of interest. Hence, linkage of genetic markers to a physical map is essen-

tial to exploit their full potential. Integrated genetic and physical maps are crucial for 

isolation of any gene of interest, e.g. underlying an important trait, by positional clon-

ing. As introduced above, different approaches can be exploited for construction of ge-

netic and physical maps all having individual advantages and disadvantages. The inte-

gration of genetic and physical maps is accomplished by obtaining markers that can be 

placed on both maps and thus establish a connection between different maps. For exam-

ple, in papaya and grapevine, BAC clones were fingerprinted in order to construct 

physical maps (Lamoureux et al. 2006; Yu et al. 2009). Several previously genetically 

mapped markers (mainly SSRs) were anchored to these fingerprinted contig (FPC)-

based physical maps by performing PCR screens of BAC clones and in silico analyses, 
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electronic PCR (Schuler 1997) and BLAST analyses (Altschul et al. 1990) utilising 

BESs. In addition, markers derived from BESs also used in physical map construction 

could directly be anchored. The BAC-based marker-content physical mapping tech-

nique introduced in Publication II allows direct linkage of genetic and physical maps. 

Although the presented genetic markers do not contain information about the molecular 

alteration underlying the polymorphisms per se, their approximate location is linked to 

the ESTs and BESs the oligonucleotides on the microarrays are based on. Using these 

source sequences for oligonucleotide design in the course of physical map construction 

facilitates direct linkage of the genetic and physical maps. Additional major advantages 

of the marker-content approach are its potential to use different genotypes (Publication 

II) and the small risk of detecting paralogous loci. Several problems can hamper anchor-

ing of physical map contigs to the genetic map. An ideal situation would be to use sin-

gle-copy probes derived from all genetically mapped loci to screen the BAC library. In 

theory the physical mapping technique presented in Publication II has the potential to 

accomplish this condition, but since this requires a high density genetic map at the same 

time as physical mapping is carried out, the number of available genetic probes is usu-

ally the bottleneck. In addition, ambiguous hybridisation results, e.g. due to the ex-

ploited pooling strategies or cross-contaminations, might lead to false contig assembly. 

Another problem might be that a probe from one genetic location hybridises to BACs in 

different contigs. Likely explanations for this phenomenon are either that the probe is 

complementary to a duplicated sequence in the genome or that physical contigs truly 

have to be merged. The latter explanation might presumably be true especially at the 

end of contigs. Thus, physical contig assembly and anchoring to the genetic map has to 

be carried out thoroughly and often includes manual post-editing of automated assembly 

steps. 

 

9.2 Evolution and genome structure 

Plant genomes differ substantially among species in their sizes and their number of 

genes. It is generally accepted that key factors for shaping of flowering plant genomes 

are large-scale DNA duplication events. However, the number, extent and timing of 

these duplications are still controversial. Whole genome physical maps or ultimately 

complete genome sequences of flowering plants from different plant lineages are essen-

tial prerequisites for studies on genome structure and evolution of angiosperms. Since 
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little is known about synteny between rosids and Caryophyllales so far, we determined 

and annotated the genomic sequences of two BAC clones derived from two different 

Beta vulgaris haplotypes and analysed the extent of synteny between them and rosid 

genomes (Publication II). In addition, we studied the intraspecific variation between the 

two sugar beet haplotypes. Initially, we used a hybridisation based approach for com-

parison of the gene order in Beta vulgaris and an ancient Arabidopsis genome before 

the recent α – WGD in Arabidopsis, reconstructed by Blanc (2003). They determined 

the approximate gene order of the ancestral genome by merging genes lying in sister 

regions, resulting in resulting in 20,187 genes arranged in a linear array. We hybridised 

30 oligonucleotide probes based on ESTs corresponding to Arabidopsis orthologs on 

chromosome 1 and 4 that were co-localised in the reconstructed Arabidosis pseudo an-

cestral genome, on sugar beet BAC macroarrays comprising two different sugar beet 

libraries. One clone from each sugar beet library was chosen that hybridised with the 

same 5 probes, i.e. they span the same genomic region. The genomic region was identi-

fied to be located on sugar beet chromosome 1. The orthologs in Arabidopsis were as-

signed to chromosomes 1 and 4. Sequencing of the two clones and comprehensive an-

notation followed by collinearity analyses, revealed synteny between sugar beet, Arabi-

dopsis, poplar, Medicago and grapevine. Although Arabidopsis has undergone at least 

one more WGD (β) after the split from sugar beet, the gene order of the Arabidosis 

pseudo ancestral genome showed broad collinearity to the sugar beet. The most com-

prehensive matches were found in grapevine and poplar (paralogous regions on two 

chromosomes). Grapevine has not undergone a lineage specific WGD. Its genome has a 

triplicate structure, resulting from a paleohexaploidy event (Jaillon et al. 2007), also 

shared with papaya (Ming et al. 2008) and probably tomato (Tang et al. 2008). Poplar 

has undergone at least one lineage specific WGD, resulting in a sextuplicate genome 

structure (Tuskan et al. 2006; Tang et al. 2008). These findings suggest that the paleo-

hexaploidy event (γ) pre-dates the split between asterids and rosids, thus traces of the 

hexaploidy event should also be found in sugar beet. However, since we were analysing 

just a small, randomly chosen segment from the sugar beet genome, we could not ad-

dress this question. Indications for the existence of many duplicated genes in the sugar 

beet genome have already been found (Mcgrath et al. 2004). The number of genes of a 

species is influenced by WGD events to some extent. Papaya has a reduced gene num-

ber (about 10% fewer genes than Arabidopsis), which may be accounted for by a pau-

city of genome duplications relative to other sequenced angiosperms (Soltis et al. 2009). 
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On the other hand, for soybean and poplar (both experienced lineage-specific WGD 

events) much higher numbers of genes were predicted (Table 1). For sugar beet we es-

timated a number of 29,000 protein coding genes (Publication II). This might be a hint 

for the absence of a lineage-specific WGD in sugar beet. But since Arabidopsis has a 

relatively small number of predicted protein coding genes, although it has undergone 

several rounds of WGDs, there must be additional reasons that cause the different num-

ber of genes. Differences in generation time and speed of evolution are proposed causes 

likely influencing the number of genes of plant species (Tuskan et al. 2006; Fawcett et 

al. 2009). A whole genome physical map and a complete genome sequence of sugar 

beet will facilitate essential insights into the genome structure of sugar beet and angio-

sperm evolution. Still, the oldest genome duplications will still be difficult to detect and 

time precisely, since more recent polyploidy events in concert with gene loss, chromo-

somal inversions and translocations can conceal the early events in angiosperm genome 

evolution.  

 

9.3 Outlook: Whole genome physical map and genome sequencing 

At the basis of all sequenced plant genomes lay physical, genetic and integrated maps, 

respectively. Until recently, sequencing of complete plant genomes was performed us-

ing traditional Sanger sequencing technology exploiting a clone-by-clone strategy (The 

Arabidopsis Genome Initiative 2000; International Rice Genome Sequencing Project 

2005; Schnable et al. 2009) or whole genome shotgun (WGS) strategy (Tuskan et al. 

2006; Jaillon et al. 2007; Ming et al. 2008; Schmutz et al. 2010). Both strategies rely on 

a comprehensive physical map either for the identification of a minimum tiling path, i.e. 

selection of large-insert clones that span a genomic region with minimal overlaps, or for 

orienting and ordering of sequence contigs. For sequencing of the cucumber genome, a 

novel de novo sequencing strategy was carried out taking advantage of the long reads of 

the Sanger technology and the high sequencing depth and low unit cost of NGS (Huang 

et al. 2009). For the ongoing sequencing of the sugar beet genome, a similar strategy is 

utilised, combining Sanger sequencing of BESs and fosmid end sequences (FESs) (Pub-

lication III) with several genomic NGS resources (454 whole genome shotgun single 

read data, 2.5 kbp and 4.5 kbp Illumina paired-end data and 20 kbp 454 paired-end 

data). Especially when exploiting the relatively short NGS reads, a comprehensive 

physical map and a combination of several resources with different defined sequence 
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lengths providing a robust scaffold are required for successful ordering and orienting of 

sequence contigs. The FESs bear the advantage of narrowly defined size of the clone 

inserts (Publication III), thus contributing essentially to the process of assembling scaf-

folds. As mentioned above, the BESs facilitate anchor points to the genetic map. Re-

peats are a major obstacle for successful assembly of plant genome sequences, fre-

quently causing gaps and misassembled contigs. In addition, TEs might result in overes-

timation of the plant´s gene content, since they often acquire portions of genes, leading 

to the amplification of truncated gene fragments that have open reading frames (ORFs), 

which are easily mistaken for standard plant protein coding genes (Bennetzen et al. 

2004). The best way to deal with repetitive elements is extensive identification and 

comprehensive annotation, as has been shown in Publication IV exemplarily for three 

MITE families in Beta vulgaris.  

All new tools and findings, presented in this work contribute substantially to a deeper 

understanding of the genome structure of sugar beet and provide the basis for successful 

sequencing of the sugar beet genome.  
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11 Appendix 

11.1 Abbreviations 

AFLP amplified fragment polymorphism 

BAC bacterial artificial chromosome 

BES bacterial artificial chromosome end sequence 

bp base pairs 

CAP cleavage amplification polymorphism 

cM centi Morgan 

DArT diversity arrays technology 

DNA deoxyribonucleic acid 

e.g. exempli gratia 

EST expressed sequence tag 

FES fosmid end sequence 

FISH fluorescence in situ hybridization 

FPC fingerprinted contig  

HICF high information content fingerprinting  

i.e. id est 

ISSR inter-simple sequence repeat 

kbp kilo base pairs 

LINE long interspersed element 

LTR long terminal repeat 

MAS marker-assisted selection 

Mbp mega base pairs 

MIP molecular inversion probe  

MITE miniature inverted-repeat transposable element 

mya million years ago 

NGS next generation sequencing  

ORF open reading frame 

PAC P1 artificial chromosome  

PCR polymerase chain reaction 

RAPD random amplified polymorphic DNA 
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RFLP restriction fragment length polymorphism 

ROMA representational oligonucleotide microarray analysis 

SFP single feature polymorphism 

SINE short interspersed element 

SNP single nucleotide polymorphism 

S-SAP sequence-specific amplification polymorphism  

SSLP   simple sequence length polymorphism  

STS sequence tagged site 

TAC transformation-competent artificial chromosome 

TE transposable element 

WGD whole genome duplication 

WGS whole genome shotgun 

YAC yeast artificial chromosome 
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