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the known breakpoint cluster regions. The deletion on chro-
mosome 17q24 removes several genes. Among these genes 
 PRKAR1A  is deleted. Inactivating mutations of  PRKAR1A  cause 
Carney complex. To our knowledge, this is the first report of 
a patient with acampomelic campomelic dysplasia, carrying 
both a deletion and a translocation. 

 Copyright © 2010 S. Karger AG, Basel 

 Campomelic dysplasia (CD; MIM 114290) is a rare and 
severe skeletal malformation syndrome. Characteristic 
features include congenital bowing of long bones (i.e. 
campomelia), hypoplastic scapulae, deformed pelvis and 
spine, and a reduced number of ribs. Craniofacial defects 
such as cleft palate, micrognathia, flat face, and hyper-
telorism are also common. Most patients do not survive 
the neonatal period due to severe respiratory distress. In 
about two thirds of 46,XY CD patients, partial or com-
plete male-to-female sex reversal is observed [Houston et 
al., 1983; Mansour et al., 1995]. An atypical form with 
absence of campomelia, referred to as acampomelic CD 
(ACD), is found in about 10% of patients and is more fre-
quent among those individuals surviving the neonatal 
period [Mansour et al., 2002].
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 Abstract 
 Campomelic dysplasia (MIM 114290) is a severe malforma-
tion syndrome frequently accompanied by male-to-female 
sex reversal. Causative are mutations within the  SOX9  gene 
on 17q24.3 as well as chromosomal aberrations (transloca-
tions, inversions or deletions) in the vicinity of  SOX9 . Here, we 
report on a patient with muscular hypotonia, craniofacial 
dysmorphism, cleft palate, brachydactyly, malformations of 
thoracic spine, and gonadal dysgenesis with female exter-
nal genitalia and müllerian duct derivatives in the presence 
of a male karyotype. X-ray examination and clinical exami-
nations revealed no signs of campomelia. The combination 
of molecular cytogenetic analysis and array CGH revealed
an unbalanced translocation between one chromosome 7 
and one chromosome 17 [46,XY,t(7;   17)(q33;q24).ish t(7;   17)
(wcp7+,wcp17+;wcp7+wcp17+)] with a deletion of approxi-
mately 4.2 Mb located about 0.5 Mb upstream of  SOX9 . STS 
analysis confirmed the deletion of chromosome 17, which 
has occurred de novo on the paternal chromosome. The 
proximal breakpoint on chromosome 17 is localized outside 
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  In the majority of patients, de novo heterozygous loss-
of-function mutations in the coding region of the tran-
scription factor gene  SOX9  on 17q24 are detected. Chro-
mosomal aberrations (translocations, inversions and de-
letions) are rare causes of CD/ACD. In only few cases, 
breakpoints have been determined precisely [Hill-Harfe 
et al., 2005; Leipoldt et al., 2007]. Leipoldt et al. [2007] 
defined 2 breakpoint cluster regions with a proximal 
breakpoint cluster between 50 and 375 kb and a distal 
breakpoint cluster between 789 and 932 kb upstream of 
 SOX9 . Recently, Lecointre et al. [2009] reported on a dele-
tion of 960 kb upstream of  SOX9  causing a familial ACD. 
Here, we report on an ACD patient with male-to-female 
sex reversal and translocation [t(7;   17)] as well as a  � 4-Mb 
deletion located 492 kb upstream of  SOX9  in chromo-
some 17.

  Materials and Methods 

Case Report
 The patient is the second child of nonconsanguineous parents 

(a 32-year-old father and a 28-year-old mother) and was born in 
the 39th week of pregnancy with a birth weight of 2,940 g and a 
length of 49 cm. After birth craniofacial dysmorphism including 
epicanthus, broad nasal bridge, low-set dysmorphic ears, and cleft 
palate as well as muscle hypotonia and short hands were obvious. 
By X-ray examination no signs for campomelia were seen, but 
vertebral malformations, including fusion of cervical and thora-

cal vertebrae, only 11 pairs of ribs, severe scoliosis, and a double 
kidney on the left side were detected. Chromosome analysis re-
vealed a male karyotype despite female external genitalia, uterus 
and inguinal gonads.

  Now, at 5 years of age, the patient has a severe progressive sco-
liosis ( fig. 1 ) and lordosis. There is a mild muscle hypotonia, and 
she is able to walk. She speaks clearly and answers precisely to 
questions. Sensorineural hearing deficit requires the use of hear-
ing aids.

  Cytogenetic Analysis 
 Chromosome preparations of the patient were made from cul-

tured B-lymphocytes (EBV-transformed lymphoblastoid cell cul-
ture), according to standard procedures. Karyotype analysis was 
done on GTG-banded chromosomes at a banding level of 400 
(ISCN). Chromosome preparations of the parents were made 
from PHA-stimulated peripheral blood lymphocytes and ana-
lyzed by standard GTG banding procedures at a banding level of 
450 (ISCN). FISH studies were performed with whole chromo-
some painting probes for chromosome 7 and 17 according to the 
supplier’s protocol (Q BIOgene, Heidelberg, Germany; Total 
Chromosome DNA probe Chromosome 7 Green, Chromosome 
17 Red).

  DNA Isolation and STR Analysis 
 High-molecular-weight DNA was isolated from peripheral 

blood by salting out procedure and from cultured lymphoblastoid 
cell lines by phenol-chloroform extraction, both according to 
standard protocols. For STR (Short Tandem Repeats) analysis 
primers for following loci were used: D17S807, D17S1870, 
D17S1350, D17S1304, D17S1351, and D17S1352. PCR was per-
formed in a total volume of 20  � l reaction buffer containing  � 200 

A B C

  Fig. 1.  X-rays of the patient at the age 20 
months.  A  The chest showed severe scolio-
sis.  B  Lower extremities of the patient ex-
hibited no signs of campomelia.  C  Short-
ening of the thumb is striking. 
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ng of genomic DNA, 0.4  �  M  of each primer, 0.2 m M  dATP, dGTP, 
and dGTP, 10  �  M  dCTP, 0.2  � Ci  � [ 32 P]dCTP, 1.5 m M  MgCl 2 , and 
0.5 U  Taq  polymerase (Invitrogen, Karlsruhe, Germany). Prod-
ucts were separated on 6% denaturing polyacrylamide gels and 
visualized by autoradiography.

  Array CGH 
 Array CGH was performed as described previously [Erdogan 

et al., 2006]. In brief, 2  � g of amplified patient and reference DNA 
were labeled by random priming (Bioprime Array CGH, Invitro-
gen, Carlsbad, Calif.) with Cy3 and Cy5 (Amersham Biosciences, 
Piscataway, N.J.), respectively, and hybridized onto a tiling path 
BAC array, consisting of the human 32k BAC Re-Array Set 
(BACPAC Resources Center; http://bacpac.chori.org/pHuman-
MinSet.htm). For the analysis and visualization of array CGH 
data, the software package CGH-PRO [Chen et al., 2005] was em-
ployed. Raw data were normalized by ‘Subgrid LOWESS’. For the 
assessment of copy number gains and losses, we used conservative 
log2 ratio thresholds of 0.3 and –0.3, respectively. Deviant signal 
intensity ratios involving 3 or more neighboring BAC clones were 
considered to be potentially pathogenic, unless they were covered 
by more than one known DNA copy number variant, as listed in 
the Database of Genomic Variants (http://projects.tcag.ca/varia-
tion/) or covered by  1 50% of their length at least once in our ref-
erence set of more than 700 samples.

  Southern Blot Analysis 
 DNA was cleaved with restriction enzymes (New England

Biolabs, Frankfurt/M., Germany), separated on 0.7% agarose
gels and transferred to Hybond XL membranes (GE Health-
care, Freiburg, Germany) by alkaline transfer. Southern blots 
were consecutively probed with multi-prime labeled PCR-prod-
ucts from the critical region. The hybridization probes were am-
plified from randomly chosen sequences of the breakpoint critical 
region from N0074N19. Primers for probe up SOX9–8 were: 
upSOX9_8_F: TTGATGCATACACATCTGGGA and upSOX9_
8_F: TTACACTCCTGGAGTATGTCA.

  Identification of the Breakpoints 
 Genomic walking was carried out using the BD Genome 

Walker TM  Universal Kit (BD Biosciences Clontech, Palo Alto, Ca-
lif.). In short, genomic DNA of the patient was cleaved in 4 inde-
pendent reactions with blunt-end cutting restriction enzymes 
 Eco RV,  Hpa I,  Pvu II, and  Stu I. After phenol-chloroform extrac-
tion and ethanol precipitation, the adaptor supplied in the kit was 
ligated to both ends of the genomic DNA fragments. Subsequent 
amplification of these walking libraries was carried out in 2 nest-
ed rounds using the High Fidelity Expand Long Template PCR 
System (Roche, Mannheim, Germany). For the first PCR, for de-
termination of the chromosome 17 telomeric breakpoint, adap-
tor-specific primer 1 (AP1) from the kit and a self-designed se-
quence-specific primer (SOX9_BP_GSP1: 5 � -AAGTCTACCAG-
T TTACTGCTCTGTAACAAG-3 � ) were used. A nested ampli-
fication round was carried out using primers AP2 (supplied in the 
kit) and SOX9_BP_GSP2 (5 � -GTTCTCTAAGCCCTTTTAG C-
TCTATTCCAC-3 � ). After each round, PCR-products were ana-
lyzed on 1% agarose gels. Appropriate bands were cut out from the 
agarose gel, purified and either directly sequenced or after being 
cloned into pGEM-T Easy vectors (Promega, Mannheim, Germa-
ny). Sequencing reactions were carried out using the DYEnamic 

ET Terminator Cycle Sequencing Kit (GE Healthcare, Freiburg, 
Germany) and analyzed on a MegaBace 500 sequencer (GE 
Healthcare). The resulting sequences were subjected to FASTA 
searches (www.ebi.ac.uk.fasta33). The proximal breakpoint of 
chromosome 17 was obtained by amplifying the walking libraries 
with primers AP1 and Chr.7_1_R (5 � -TGGGACCTTGGTTT-
AGAC CA CA GA GTG-3 � ) and AP2/BP_Chr7_2_R (5 � -CTGAG-
GT CA GG CA GG ATGCCTGATGTA-3 � ), respectively. All break-
points were verified by sequencing PCR products across the trans-
location breakpoints.

  Results 

 The patient’s phenotype indicated the diagnosis of 
ACD. Conventional cytogenetic analysis and whole chro-
mosome painting revealed a karyotype 46,XY,t(7;   17)
(q33;q24).ish t(7;   17)(wcp7+,wcp17+;wcp7+wcp17+). By se-
quencing  SOX9  no alteration could be detected. Array 
CGH analysis identified an approximately 4.2-Mb-span-
ning deletion located 5 �  to and  � 500 kb apart from  SOX9 . 
N0737P07 (RP11–737P07) and N0074N19 (RP11–74N19) 
were identified as proximal and distal breakpoint clones, 
respectively. This deletion could be confirmed by STR 
analysis ( fig. 2 ). For the critical region, only a maternal 
allele could be amplified from the patient’s DNA; the pa-
ternal allele was missing. The absence of the paternal al-
lele indicates a de novo occurrence of the deletion on the 
paternal chromosome. Furthermore, chromosome anal-
ysis of the parents revealed normal karyotypes.

  The precise telomeric breakpoint region from chro-
mosome 17q24 was narrowed down by quantitative 
Southern blot hybridization experiments. Therefore, 
Southern blots from equal amounts of DNA of the patient 
and one control person, cleaved with various restriction 
enzymes, were produced. For the generation of hybrid-
ization probes sequences, 9 almost equally distributed 
sections of N0074N19 were selected for PCR amplifica-
tion (= probe upSOX9–1 to upSOX9–9). Probes localized 
telomeric to the breakpoint hybridized in normal dosage 
to the patient’s DNA, whereas probes localized centro-
meric to the breakpoint hybridized in half of the normal 
intensity. Hybridization with probe upSOX9–8 revealed 
junction fragments for 4 restriction enzymes ( Bgl I,
 Eco RI,  Sac I and  Tth 111I) in the patient’s DNA in com-
parison to the control suggesting close vicinity to the 
chromosome 17 telomeric breakpoint. According to a re-
striction map of the breakpoint region derived from a da-
tabase sequence (AC118653), the predicted breakpoint re-
gion could be confined to an interval of approximately 
800 bp. For the identification of the breakpoint at the nu-



 Jakubiczka   /Schröder   /Ullmann   /Volleth   /
Ledig   /Gilberg   /Kroisel   /Wieacker   

Sex Dev 2010;4:143–149146

cleotide level, a chromosome walking library of the re-
gion of interest was established (see Methods). From this 
library, a breakpoint-spanning fragment was amplified 
and sequenced. Sequence analysis revealed identity to 
chromosomes 17q24 and 7q33. Starting with a PCR-
primer derived from the chromosome 7q33 sequence, a 
fragment covering the 17q24 centromeric breakpoint 
could be amplified from our walking library. After se-
quencing the corresponding cloned fragment, the break-
points could be assigned exactly. The 7q33 breakpoint 
corresponds to BAC clone AC020581 at position 
136,344,223 (http://genome.ucsc.edu/) within the 
 CHRM2  gene. The centromeric breakpoint on chromo-
some 17 is localized after position 62,893,447 in the re-
gion of  PIPNC1 , while the telomeric breakpoint is local-
ized before nucleotide 67,134,958 (http://genome.ucsc.
edu/). Thus, the deletion comprises of 4,241,511 Mb and 
is located 493,799 bp centromeric to  SOX9  according to 
HG17 ( fig. 3 ). According to the databases, several genes 
map to the deletion interval ( table 1 ). The sequences span-
ning the breakpoints are given in  figure 4 .

  Discussion 

 In the patient with ACD, a deletion of 4.2 Mb, located 
approximately 0.5 Mb upstream from  SOX9,  and a de 
novo translocation (7;17) have been detected. It can be as-
sumed that the deletion arose in the context of this trans-
location. Each aberration alone – the translocation and 
the deletion – may be sufficient to explain the phenotyp-
ic characteristics of the patient. She has survived the neo-
natal period as it has been described for several ACD pa-
tients with aberrations outside of the  SOX9 -coding re-
gion [Pfeifer et al., 1999]. Besides point mutations within 
 SOX9 , translocations, inversions and deletions centro-
meric to  SOX9  cause CD or ACD.

  So far, in the literature only few deletions within the 
 SOX9  region have been reported. In the first patient, the 
breakpoint has not been determined exactly, but it is re-
ported that the deletion is localized in 17q23.3–24.3 and 
comprises the entire  SOX9  gene as well as the regions up-
stream and at least 10 kbp downstream [Olney et al., 1999]. 
Pop et al. [2004] reported 2 deletions: the first deletion oc-
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  Fig. 2.  Results of STR analysis confirmed a deletion in the patient, 
which has occurred on the paternal chromosome. Presence of a 
reciprocal translocation t(7;   17) is not considered in this figure. 

  Fig. 3.  Localization of translocation/deletion breakpoints in the 
derivative chromosomes 7 (black) and 17 (red).  PITPNC1  on chro-
mosome 17 is partly deleted by the 4.2-Mb deletion,  CHRM2  is 
interrupted by the translocation. Numbers refer to positions of 
breakpoints according to HG17. The genes involved in the dele-
tion are given in table 1.   
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Table 1.  Genes included in the deletion of chromosome 17 (according to HG17)

Gene Localization Disease

PITPNC1 62804386–63120107
NOL11 63144521–63170772
BPTF 63252242–63410956
C17orf58 63417680–63420164
KPNA2 63462310–63473431
ENS00000154251 63633345–63635979
Q6ZU00 63677569–63677958
Q66K37 63706572–63708031
AMZ2 63755310–63776634
SLC16A6 63775933–63799002
ARSG 63814772–63930467
WIPI1 63929018–63965210
PRKAR1A 64019705–64040503 Carney complex type 1 (MIM 160980)

intracardiac myxoma (MIM 225960)
primary pigmented nodular
adrenocortical
disease 1 (MIM 610489)

FAM20A 64044607–64109125
ABCA8 64375028–64463128
ABCA9 64482369–64568731
ABCA6 64586442–64649610
Q9P162 64656019–64656177
ABCA10 64655772–64752582
ABCA5 64754387–64834885
MAP2K6 64922433–65050046
KCNJ16 65583021–65643339
KCNJ2 65677271–65687755 Andersen cardiodysrhythmic

periodic paralysis (MIM 170390)
short QT syndrome 3 (MIM 609622)

ENSG0000214155 67363766–67365559
Q8IVH9 67548060–67548212

A  
           91450     91460     91470     91480     91490     91500  
               |         |         |         |         |         |  
AC073404  gttggaatacctcagtagtgagtattaattttcttcccccccaaatccagcaagcaatctag 
          |||||||||||||||||||||||||||||| 
BP 1      gttggaatacctcagtagtgagtattaattAGGTCAGAGAGACCTAAATTTGAATCACAGCA 
                                          |||||||||||||||||||||||||||||| 
AC020581  GTGTAATATTGTGGAAATGACATGGTCCAGGAGTCAGAGAGACCTAAATTTGAATCACAGCA 
             |         |         |         |         |         |         
         80260     80270     80280     80290     80300     80310     
 
B  
        80260     80270     80280     80290     80300     80310     80320 
            |         |         |         |         |         |         | 
AC020581    TAATATTGTGGAAATGACATGGTCCAGGAGTCAGAGAGACCTAAATTTGAATCACAGCACTT 
            ||||||||||||||||||||||||||||||| 
BP 2        TAATATTGTGGAAATGACATGGTCCAGGAGtcctttaaagacatacaacaaacatcagggca 
                                           ||||||||||||||||||||||||||||||| 
AC118653    acaggctcgactaactactcaacattaacatcctttaaagacatacaacaaacatcagggca 

          |         |         |         |         |         | 
     39250     39240     39230     39220     39210     39200 

  Fig. 4.   A  Sequences spanning breakpoint 1 
(= BP1; proximal 17q/distal 7q) and  B  se-
quences spanning breakpoint 2 (= BP2; 
proximal 7q/distal 17q). Sequences of 
chromosome 7 are given in upper case 
while those of chromosome 17 are given in 
lower case. Numbers refer to positions 
within the corresponding BAC. The dou-
ble-underlined dinucleotide AG at the 
junctions between chromosome 17 and 
chromosome 7 in BP1 could not be as-
signed to one of the BACs and must there-
fore represent an insertion. The under-
lined TC dinucleotide at BP2 is present in 
the corresponding sequences of chromo-
some 7 and chromosome 17 and cannot 
unequivocally be attributed to one or the 
other sequence.       
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curred in a male CD patient and comprises more than
4 Mb. Also this deletion removes the entire  SOX9  gene. 
Interestingly, it also had occurred on the paternal chro-
mosome. The second deletion is located 380–1,869 kb cen-
tromeric to  SOX9  and was found in an ACD patient with 
46,XY sex reversal. Lecointre et al. [2009] reported on a 
familial ACD caused by a 960-kb deletion encompassing 
a fragment from 517 kb to 1.477 Mb upstream of  SOX9  
which removes several highly conserved sequences.

  Analysis of deletions upstream of  SOX9  is of great im-
pact for the identification of regulatory sequences. Ba-
gheri-Fam et al. [2006] assayed the regulatory potential 
of 7 conserved sequence elements (E1 to E7) located be-
tween 290 kb 5 �  and 95 kb 3 �  to human  SOX9  in a trans-
genic mouse model. Among them E1 being located 28 kb 
5 �  to  Sox9  controls the expression in the node, notochord, 
gut, bronchial epithelium as well as in the pancreas, while 
E3 located 251 kb 5 �  to  Sox9  enhances the expression in 
the neural crest cells of the inner ear. Although our pa-
tient is affected by a hearing deficit, the deletion detected 
does not comprise these regulatory sequences. Also the 
homologous sequence to the recently identified testis-
specific enhancer of  Sox9  [Sekido and Lovell-Badge, 
2008] is not deleted. Therefore, other regulatory elements 
may be missing, or a position effect may influence the 
function of known regulatory sequences. For example, 
the developmental enhancer of  SOX9  located 1.44 Mb up-
stream of  SOX9  is involved in pathogenesis of Pierre-
Robin sequence [Benko et al., 2009]. Therefore, the cleft 
palate, being present in our patient and being one of the 
characteristics of PRS, may be explained by the inclusion 
of this developmental enhancer into her deletion.

  Database analysis revealed that several protein-coding 
sequences map into the deleted region (Ensembl release 
49;  table 1 ). One of these genes is  PRKAR1A,  encoding
the cAMP-dependent protein kinase regulatory subunit 
type I �  [Kirschner et al., 2000]. Inactivating mutations
of this gene are associated with Carney complex type 1 
(CNC1, MIM 160980) as well as isolated primary pig-
mented nodular adrenocortical disease (PPDNAD,
MIM 610489) and intracardiac myxoma. CNC, a multiple 
neoplasia syndrome, is charaterized by endocrine tu-
mors, spotty skin pigmentation, cardiac and other myx-
omas, psammomatous and pigmented schwannomas, 
large-cell calcifying Sertoli cell tumors (LCCSCTs), and 
mammary ductal adenomas as well as other rather rare 
lesions. CNC and  PPNAD are inherited in an autoso-
mal-dominant manner. So far, neither Carney complex 
nor isolated PPDNAD or intracardia myxoma were
diagnosed in the patient.

  Both chromosome 17 breakpoints in the patient map 
outside the translocation breakpoint clusters defined by 
Leipoldt et al. [2007] which are located between 50 and 
375 kb (proximal breakpoint cluster) and between 789 and 
932 kb (distal breakpoint cluster) centromeric to  SOX9 .

  The proximal deletion breakpoint on chromosome 17 
in the patient is located within the  PITPNC1  gene, a mem-
ber of the phosphatidylinositol transfer protein family. 
The corresponding cytoplasmic protein transfers phos-
phatidylinositol from one membrane compartment to 
another. Two transcript variants encoding distinct iso-
forms have been identified for this gene.

  The breakpoint on chromosome 7q33 is located with-
in the  CHRM2  (muscarinic cholinergic receptor 2) gene. 
The muscarinic cholinergic receptors belong to a large 
family of G protein-coupled receptors. The functional
diversity of these receptors is defined by the binding of 
acetylcholine to these receptors and includes cellular
responses such as adenylate cyclase inhibition, phos-
phoinositide degeneration and potassium channel 
mediation. Muscarinic receptors influence many effects 
of acetylcholine in the central and peripheral nervous 
system. The muscarinic cholinergic receptor 2 is involved 
in mediation of bradycardia and a decrease in cardiac 
contractility. Multiple alternatively spliced transcript 
variants have been described for this gene.

  As  CHRM2  and  PITPCN1  are both transcribed in the 
same direction (+ strand), the translocation (7;17) could 
mediate the formation of a fusion gene with an alternative 
function or control.

  For the management of this patient, it is important to 
keep in mind that adverse consequences of these deleted 
or disrupted genes can occur during further development.
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