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ABSTRACT: The increasing amount of sequence data
provides new opportunities and challenges to derive
mechanistic models that can link sequence variations to
phenotypic diversity. Here we introduce a new computa-
tional framework to suggest possible consequences of
sequence variations on regulatory networks. Our meth-
od, called sTRAP (strap.molgen.mpg.de), analyses varia-
tions in the DNA sequence and predicts quantitative
changes to the binding strength of any transcription
factor for which there is a binding model. We have tested
the method against a set of known associations between
SNPs and their regulatory consequences. Our predictions
are robust with respect to different parameters and model
assumptions. Importantly we set an objective and
quantifiable benchmark against which future improve-
ments can be compared. Given the good performance of
our method, we developed a publicly available tool that
can serve as an important starting point for routine
analysis of disease-associated sequence regions.
Hum Mutat 31:477–483, 2010. & 2010 Wiley-Liss, Inc.

KEY WORDS: regulatory SNP; transcription factor;
protein–DNA interaction; genome-wide association
studies; eQTL

Introduction

Genetic polymorphisms constitute the basis of phenotypic
diversity. An increasing amount of sequence data points to
substantial sequence variation among individual organisms, such
as single nucleotide polymorphisms (SNPs) and structural
variations. Ongoing genotyping and resequencing projects are
likely to produce ever more data, that will challenge our molecular
understanding about the functional consequences of such
variations. The most studied form of sequence variations are
SNPs which, in some cases, cause distinct phenotypes, disease, or
increased disease susceptibility [Altshuler et al., 2008]. Occasion-
ally, SNPs affect directly the function of a protein, as exemplified
by sickle cell disease, which can be linked to a mutation in the
coding region of a-globin [Ingram, 1956].

As the result of technological advances, there are now a number
of systematic efforts underway to map human variations [Frazer
et al., 2007] and the genetic basis for many other common diseases

in genome-wide association studies [Burton et al., 2007; Kruglyak,
2008; Schadt, 2009]. Unsurprisingly, most variations have been
observed in noncoding regions, where they might alter regulatory
interactions. Their functional consequences, however, are more
difficult to predict and validate, because the regulatory code is
much more complex and flexible than the genetic code. For
example, the misregulation of a-globin is known to cause a
thalassemia; a reduction in functional hemoglobin [Higgs et al.,
1989]. Only recent experiments have provided first insights into
possible molecular mechanisms, namely, the creation of a novel
Gata1 binding site and other hallmarks of regulatory control in
the upstream region of a-globin [De Gobbi et al., 2006].

The regulatory effects of sequence variations can be measured
systematically at the level of gene expression data. The transcript
level of each individual gene is treated as a quantitative trait, and
can subsequently be used for genetic mapping. This idea has given
rise to eQTL studies as first proposed in Jansen and Nap [2001]
and recently reviewed in Cookson et al. [2009] and Rockman
[2008]. These studies have identified a large number of cis-
regulated eQTL genes [Brem and Kruglyak, 2005; Brem et al.,
2002; Hubner et al., 2005; Schadt et al., 2003], providing first links
between sequence and function.

However, both GWAS and eQTL studies have some limitations.
First, the SNPs found to be associated with a certain trait are not
necessarily the causative variation, but rather provide a lead to a
larger sequence region. To increase the resolution, additional time-
consuming sequencing efforts have to be undertaken, which can
only be done for a subset of candidate genes. This will generally
yield additional SNPs that might be in linkage disequilibrium with
the lead SNP. Even if a causative SNP has been identified, these
studies only provide certain associations, but no hypothesis about
the actual mechanisms involved.

In principle, computational studies can be used to prioritize
SNPs and to generate hypotheses about the regulatory mechan-
isms involved. Some earlier work on regulatory SNPs considered
binding sites of specific transcription factors (TFs) and studied
their overlap with comprehensive collections of SNPs [Ameur
et al., 2009; Chorley et al., 2008]. Other groups have aimed to
generate larger collections of SNP–TF associations using binding
site predictions [Kim et al., 2008; Ponomarenko et al., 2003;
Stepanova et al., 2006]. Focusing on the functional role of SNPs,
the computational approach has also been used to assess the
overall correlation of functional SNPs with sequence features, such
as predicted binding sites [GuhaThakurta et al., 2006]. In a similar
spirit, Andersen et al. [2008] have attempted to utilize
evolutionary sequence conservation to assess the functionality of
noncoding sequence variations. These authors noted that binding
site predictions do not improve the detection of functional
SNPs. The main caveat for all these efforts is that experimental
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binding data is still sparse, whereas computational binding site
predictions tend to be very unspecific and rely on an arbitrary
threshold. Moreover, they do not address the more direct question
that is often asked by geneticists: Given a specific SNP, the binding
of which transcription factor is most affected by the sequence
variation? The answer to such a question is complicated by the large
number of known TFs and the large rate of false positives, which is
commonly associated with threshold-based binding site predictions.

Here we do not aim to predict functional or causative SNPs, but
we assume that functionality has already been established by other
means, such as promoter assays. Instead, we aim to identify those
transcription factors, whose predicted binding affinity is most
strongly affected by a given sequence variation. This goal is more
challenging than previous efforts as its success hinges on the
correct identification of a transcription factor from a large set of
many possible ones. Our approach makes predictions about
individual SNPs rather than the overall sequence properties of
classes of SNPs. We believe that this specificity brings our efforts in
line with what geneticists would want to learn about selected SNPs.

To this end we extended an earlier framework for transcription
factor affinity predictions, TRAP [Roider et al., 2007], and
combined it with a statistical approach to normalize the binding
affinities for different transcription factors. Our new method,
called sTRAP, can predict sequence-induced changes in the
binding affinity of a transcription factor. Importantly, and owing
to our statistical framework, we are able to compare these changes
for a comprehensive set of transcription factors. We validated the
approach against a set of known SNP–TF associations and find
that sTRAP correctly predicts a large fraction of those associations
at a small rate of false predictions.

Finally, we provide the software and a simple Web interface
(http://strap.molgen.mpg.de) that calculates affinity changes for
any user-specified pair of sequences. This will help geneticists to
rapidly assess likely effects of sequence variation on regulatory
interactions.

Data and Methods

An overview of our method is given in Figure 1. In the
following we provide the details for the individual steps.

SNP Data

Although there is massive data on sequence variation from
large-scale mapping efforts [Frazer et al., 2007; Sherry et al., 2001],
the regulatory potential of SNPs is badly documented and only
occasionally reported. Here we study 20 known associations of
regulatory SNPs with transcription factors, which were collected
by Andersen et al. [2008]. These comprise SNPs that are naturally
occurring or were generated by targeted mutagenesis. Moreover,
for those SNPs the binding of selected transcription factors was
shown to be affected. For each of these SNPs we retrieve a flanking
region of 60, 100, 500, and 1,000 bp.

Binding Models

An increasing number of genome-wide in vivo and in vitro
studies of protein–DNA interactions [Harbison et al., 2004;
Mukherjee et al., 2004] aim to provide a comprehensive
compendium of binding models for transcription factors under
different conditions and in various species. For the purpose of this
work we use a preliminary compendium of binding models, as
available from the TRANSFAC database, version 12.1 [Matys et al.,

2003]. We use information on 202 vertebrate transcription factors,
which is encoded by 554 position specific weight matrices. In
earlier work we showed how this information can be used to
predict the sequence-specific binding affinities of a transcription
factor using a biophysical framework [Roider et al., 2007]. For the
local binding affinities at sequence position l we use

a1ðR0; lÞ ¼
R0e�ELðlÞ

11R0e�ElðlÞ
ð1Þ

where R0(W) 5 0.6W�6 and l5 0.7 are two parameters that
were fitted in Roider et al. [2007], and W denotes the width of the
motif. The local affinity predictions can be utilized in two
different ways.

First we consider, for each SNP and every motif matrix, the W
pairs of local affinities that are changed when comparing the
reference sequence with its variation. This is illustrated on the left
side of Figure 2, where the matrix model for Gata1 (width
W 5 13 bp) is scanned over a regulatory SNP in the a-globin
promoter, which causes a thalassemia. Such a scan results in 13
pairs of predicted affinities that differ between the reference
sequence and its variation. The alignment shown in Figure 2 is
determined by the shift with the most deleterious effect on the
binding affinity of Gata1.

Such a local comparison may suggest large effects on the
predicted binding affinity, even if the flanking sequence contains
additional binding sites that may buffer the effect of a sequence
variation. Therefore, we also employed a second strategy in which
we calculate the overall affinity, A, of a transcription factor to a
longer sequence region of size L (i.e., SNP1flanking region). This
can be obtained by summing the local binding affinities, al, over
all accessible sites. This second approach has the added benefit
that, for each SNP and every transcription factor, we only need to
compare the two overall affinities from the reference sequence and
its variation.

Distribution of Binding Affinities

In general, the predicted affinities for different transcription
factors are not comparable because they can have very different
specificities. Hence, it is important to also model, for each factor,
the distribution of binding affinities over genomic sequences.
With the help of such a distribution one can normalize the
affinities; in other words, one can assign a p-value to each affinity.
Here we follow the statistical framework developed in Manke et al.
[2008]. There we showed that a simple parameterization
effectively describes the distribution of affinities, A, for most
transcription factors:

log A � Pðxja; b; cÞ ¼ exp � 11a
x � c

b

h i�1=a
� �

ð2Þ

The three parameters of this Generalized Extreme Value (GEV)
distribution also depend on the length of the sequence region, and
their value was determined in Manke et al. [2008] for all 554
binding models of vertebrate transcription factors from TRANS-
FAC [Matys et al., 2003]. Although the parameters of the
distribution in Equation (2) are based on a sequence model of
known human promoters, in some situations it might be
preferable to use a different background model that captures the
specific sequence properties in the vicinity of the SNP more
accurately. In those instances our implementation offers the
possibility to reestimate the empirical distribution of binding
affinities (and their p-values). Given a sufficiently large sequence
region around the SNP, we estimate the p-values based on the rank
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statistics obtained from all affinities in the neighbourhood of the
SNP (see right-hand side of Fig. 2 for an example). Here we
implemented this option to test the robustness of our predictions,
but in general, the local background model may be better suited
for species with GC-content very different from humans.

Prediction of Differential Binding Affinities

Here we describe a simple ranking scheme to compare different
transcription factors with respect to the changes induced by
sequence variations. For a given transcription factor, X, and a pair

Figure 2. The left figure (A) illustrates how an SNP may cause changes to the local binding affinity of a transcription factor. This example is
for a regulatory SNP in the a-globin promoter region and transcription factor Gata1, whose sequence logo is shown at the top. Shifting this
particular motif (width W 5 13 bp) across the SNP-region, gives rise to 13 differential pairs of binding affinities. Those are plotted at the bottom
on a natural logarithmic scale. The alignment shown on the top corresponds to a shift of 5 bp with respect to the SNP. The right figure (B) shows
a regional approach, where the affinity is calculated for a larger window (L 5 60 bp) which was shifted across a 73,000-bp region around the
SNP. The affinity of Gata1 is strongly affected as evident from a large shift at the position of the SNP. Notice that the affinities shown are not yet
normalized, but the variance observed in the surrounding sequence helps to quantify this change. For this article we also utilized a
parameterization of the affinity distribution from [Manke et al., 2008].

Figure 1. Overview of the sTRAP method. Using sequence data and a comprehensive set of transcription factor binding models as input, we
predict the binding affinities of all transcription factors (TF) to the reference sequence and its variation. These affinities are then normalized with
the help of the affinity distribution from Manke et al. [2008]. This normalization step ensures that affinities and affinity changes are comparable
for different factors. The log-ratio of the two p-values is used to rank all TFs according to their change in binding affinity.
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of sequences, S1 and S2, we calculate the p-values, pX(S1) and
pX(S2), as described in the previous section. In the following we
consider S1 as the reference sequence and S2 its variation and
define a log-ratio

rX ¼ log10

pXðS1Þ

pXðS2Þ

� �
ð3Þ

Large positive values denote cases where the factor X increases its
binding affinity, whereas for large negative values the binding
affinity is decreased with respect to the reference sequence S1.
Importantly, the ratios for different transcription factors, X, are
directly comparable, because they are based on p-values, rather
than absolute affinities. Conceptually we aim to detect differential
binding affinities that are changed in one or the other sequence,
and the score of Equation (3) provides a corresponding
quantitative ranking. Notice that if p(S1)/p(S2) follows a uniform
ratio distribution, then r 5 1 corresponds to p 5 0.05. In this
work, however, we focus on the ranking of scores r from different
transcription factors and assess the performance of our predic-
tions based on such a ranking.

Alternatively, one may also want to assign a high score if S1 or
S2 or both show strong binding to a transcription factor. In this
case one could replace Equation (3) by the minimum of pX(S1)
and pX(S2)

rX ¼ minfpXðS1Þ; pXðS2Þg ð4Þ

The biological rationale for the latter score is to detect strong
binding sites that might be affected by the SNP, even if the
resolution of simple binding models cannot detect differential
affinities. Such effects may be caused by synergistic interactions
with other transcription factors, and they are beyond our current
framework. Ultimately one would require a model to predict
changes in gene expression that could be considerable, even for
minor changes in binding affinity. In the absence of any more
sophisticated model, our heuristic scores aim for simplicity and
avoid overfitting.

Results

sTRAP: A Framework to Rank Affinity Changes

In earlier work we had proposed a quantitative framework for
the computational prediction of transcription factor binding sites
and determined a simple parameterization for binding affinities
[Roider et al., 2007] and their distribution [Manke et al., 2008].
Similar approaches have been studied by a number of other
groups [Djordjevic et al., 2003; Foat et al., 2006; Segal et al., 2008;
Tanay, 2006].

Here we extend this approach to annotate pairs of sequences
with respect to changes in their affinity. Just as we had previously
ranked transcription factors with respect to their affinity for a
single sequence region, we now rank transcription factors with
respect to affinity changes induced by sequence changes. We think
of these sequence pairs as being derived from a reference sequence
and a possible mutation. In particular, we are interested in scoring
the abolishment or the creation of a binding site in one or the
other sequence. This notion is made quantitative by the log-ratio
of p-values (Eq. 3) as introduced in the Methods section. In
general, we calculate the binding affinity of transcription factors to
longer sequence regions of length L, but a special case is L 5W
(local approach), where the length is equal to the width, W, of the
binding motif. The output of sTRAP consists of a list of
transcription factors, which are ranked according to changes

induced by the SNP. We reasoned that top-ranking transcription
factors are most likely to be affected and provide natural
candidates for subsequent analysis. A software package and a
Web-based interface is provided that permits an identical analysis
for any given sequence variation (http://strap.molgen.mpg.de).

sTRAP Predicts Many Known SNP–TF Associations

For a first test of our method we applied sTRAP to a list of
known regulatory sequence variations from humans and their
associated transcription factors as collected by Andersen et al.
[2008]. The set of SNPs is based on extensive literature search, and
includes naturally occurring SNP as well as those generated in
mutagenesis experiments; see Method section for more details. We
have also verified that the set of transcription factors known to be
effected by those SNPs includes only factors for which at least one
motif matrix can be found in TRANSFAC.

For each SNP, our method predicts a ranked list of TFs that is
compared to the list of TFs known to be affected by the variation.
As an input list we took 554 vertebrate transcription factor motifs
from the TRANSFAC database [Matys et al., 2003]. A good
method would predict known TFs at the top of the list. Indeed, in
Figure 3 it is shown that a large fraction of known TFs appear top
when ranked according to Equation (3). We also compared this to
random expectations where all TF motifs are assigned a random
rank. The deviation from random expectations is clearly
significant. Notice that the slight deviation of the random set
from uniformity apparent in Figure 3 is due to the fact that some
TFs have multiple motifs and we always take the best rank.

sTRAP Predictions Are Specific

Although it is encouraging to see that many known associations
of regulatory SNPs with their respective transcription factors can
be detected, we now investigate more carefully the rate of true
positives as a function of false positives. To this end we introduce a
variable threshold, y which defines when the binding of a
transcription factor is said to be affected by the SNP, |rX| 4y. For
every threshold, our predictions can be compared to the reference
set of known TF–SNP associations. Because only individual
transcription factors have been tested experimentally for any given
SNP, there is a generic lack of information regarding the effect of
the SNP on other factors. For our purposes we make the
conservative assumption that all other transcription factors are
not affected by the SNP and therefore count predicted associations
of experimentally untested factors as false positives. This approach
is likely to inflate the estimated rate of false positives. In Figure 4
we plot the rate of true positives against the rate of false positives,
when the threshold y is changed. This curve (the receiver operator
characteristic) can be used to compare the performance for
different parameterizations and competing models. The perfor-
mance of our method can be quantified by the area under the
curve and it is significantly larger than 0.5, which would be
expected from random assignments. This performance is also
much better than what can be achieved using simple score
differences (area E0.55). For this comparison we utilized the
scoring system developed in Rahmann et al. [2003]. Score
differences have previously been used in Andersen et al. [2008]
and GuhaThakurta et al. [2006], but with no beneficial effect on
their ability to predict functional SNPs. Although Equations (3)
and (4) are based on p-values, it is important to notice that the
above evaluation merely utilizes a ranking of those heuristic scores
and does not provide any significance level. For all practical
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purposes one could select a specific point from the curve in Figure 4.
For example, at a false positive rate of 10% we recover more than
half of the known TF–SNP associations, which corresponds to a
score threshold of y5 0.21.

To assess the robustness of our method, we have compared the
classification performance of different parameter settings and
classifiers. As classifiers we have used different thresholds on the
absolute log ratio or the minimum of the two p-values,
corresponding to the two scenarios where SNPs affect the binding
strongest or fall in strong binding sites without drastic changes of
affinity. We evaluated different lengths of the sequence regions
used to compute the binding affinities, and different background
models to determine the distribution of affinities. For the length
of the sequence region, L, we used L 2 f61; 100; 500; 1000g bp to
account for the effect of multiple binding sites, or L 5W, where W
is the motif width. The latter corresponds to the local approach
described in Section 2. Furthermore, we also evaluated the
classification performance for two classes of background models:
(1) the GEV parameterization and (2) empirical p-values derived
from the neighbouring sequence around the SNP of interest. In
the latter case we used background sequences of 100,000 bp
around the SNP to estimate the p-values with sufficient accuracy.
Our results are summarized in Table 1, which shows that the
method is robust with respect to the choice of classifiers and the
length of the sequence region p.

Discussion

Current studies from molecular medicine result in many SNPs
that are found to be associated with certain diseases, some of
which might be causative. However, there is a scarcity of follow-up
mechanistic studies to rationalize those predictions in molecular
terms.

In this work we developed a novel method to predict which
transcription factor is likely to be affected by a sequence variation.
Our new approach (sTRAP) is based on an earlier biophysical
framework (TRAP), and predicts sequence-induced changes in
binding affinities. This quantitative approach relies on a proper
normalization of binding affinities and permits a robust ranking
of the most affected transcription factors. There are a number of
advantages of the sTRAP method compared to the traditional
annotation of binding sites. First, it allows for the prediction of
the most affected transcription factors in a quantitative and
threshold-free manner. Other works have utilized a threshold and

Figure 4. Here we show that the sTRAP approach is specific. The
red curve is obtained by varying the threshold rX in Equation (3),
where the p-values are estimated from the distribution of Equation (2).
A sequence length of L 5 61 bp around the SNPs was used as in
Andersen et al. [2008]. At a rate of 10% false positives we recover 50%
of all true positives. The area under the curve is 0.70. For comparison,
we also included as blue line the results from a traditional analysis, in
which we utilized score differences to rank the transcription factors.
Here we used the scoring system introduced in Rahmann et al. [2003].
This approach has a much reduced performance as quantified by the
area of 0.55, which is close to random expectation (dotted line).

Table 1. sTRAP Performs Robustly for Different Choices of
Parameters and Distributions

Ratio Min

Length GEV Regional GEV Regional

W 0.743 – 0.833 –

61 0.702 0.69 0.852 0.87

100 0.713 0.71 0.817 0.85

500 0.736 0.67 0.769 0.81

1,000 0.749 0.62 0.767 0.78

Here we summarize the area under the ROC curve (AUC) as a performance measure of
our method. As described in the main text we utilized different length of the flanking
region. For the local method, the length was set to the variable motif width, W, of the
different transcription factors. The specific choice of L 5 61 bp was motivated by our
analysis of the data from Andersen et al. [2008]. We provide the AUC for two alternative
scores defined by equations 3 and 4, respectively. For each method and score we also
compared two different background models: the GEV-model from a parametrization of
the affinity distributions in human promoters Manke et al. [2008] and a regional
background model obtained from the affinity distribution in 100,000 bp around the SNP.

Figure 3. The sTRAP approach successfully predicts many known
TF–SNP associations. For each known regulatory SNP and its
associated transcription factor we record the rank of the correspond-
ing matrix according to our scoring scheme. This figure shows that
many known associations get a significantly high rank according to
our scoring scheme (Eq. 3). In blue we show the same histogram for a
set of reshuffled matrices. The slight increase toward higher ranks is
due to multiple matrices assigned to some factors.
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focused on the overlap of predicted binding sites with SNPs, but
without ranking the difference in binding strength [Ameur et al.,
2009; Kim et al., 2008; Ponomarenko et al., 2003]. In
GuhaThakurta et al. [2006] the authors had also used quantitative
scores, but without effect on their conclusion regarding the overall
correlation of predicted binding sites and functional classes of
SNPs. Second, although other works [Ameur et al., 2009; Kim
et al., 2008] have annotated only the reference sequence with
binding sites, we always consider both the reference sequence and
its variation. Therefore, we can account for both a decrease and a
possible increase of binding affinity, corresponding to the
abolishment or creation of new sites. Third, our method can be
adjusted to assess the binding capacity of longer sequence
fragments. In this way we can account for buffering effects from
neighboring sites that could maintain a high overall binding
affinity, even when the SNP in question is disruptive. Fourth, we
have introduced a performance test and measure, against which
future developments and possible improvements can be tested.

We have shown that the performance of sTRAP is robust against
the choices of parameters and different background models used
to normalize predicted binding affinities. Different scores were
chosen based on different biological premises, and the sequence
models were chosen to capture some of the local sequence
variability more or less accurately. Alhough there is no theoretical
basis for choosing one or the other background model, it is
encouraging that all approaches we have tested have comparable
performance (Table 1).

We have implemented our method as part of an R-package
called tRap and provide a public Web interface, which allows the
user to submit pairs of sequences corresponding to the two SNP
alleles for analysis (http://strap.molgen.mpg.de). This makes
sTRAP a valuable tool for the exploratory data analysis elucidating
the mechanisms and possible consequences of regulatory SNPs. In
addition to its importance for understanding genetic diseases, our
approach also provides clear suggestions for transcription factors
that affect gene expression in a human specific manner. Other
possible applications include the study of eQTL and species-
specific sequence variation. Although our method does not
directly assess the functionality of a SNP, it may help to prioritize
a list of candidate SNPs if prior knowledge about the role of the
implied transcription factors is available.

As with all sequence-based methods, our approach assumes that
the binding dynamics of transcription factors to the sequence is
rapid and that the equilibrium binding strength is the key
parameter to control gene expression. Currently we employed a
large but limited set of transcription factor motifs from the
TRANSFAC database. There are still many transcription factors
with unknown motifs that are beyond our model, and that will
give rise to false negatives. Recent experimental advances and
high-throughput data, such a protein-binding arrays [Badis et al.,
2009; Berger et al., 2006], are likely to alleviate this limitation in
the near future and permit an even more comprehensive
assessment of the effect of sequence variations. Large-scale binding
screens also raise the hope that we will soon be able to model small
differences in the binding preferences of structurally similar
proteins, as well as binding differences of the same transcription
factor in variable cellular conditions. Currently such differences
are not easily resolved and contribute to limitations of our
approach.

Although sTRAP predictions are generically powerful as
evidenced by the ROC curve of Figure 4, it will be a challenging
task to validate individual predictions and integrate them into a
molecular understanding of signaling and gene expression. The

overarching goal of this project is to render computational
binding predictions more quantitative. Clearly, much work
remains to be done. However, there is hope that the theoretical
developments will increasingly be driven by technological
advances and quantitative data [Mittler et al., 2009], against
which the models can be optimized.
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