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Abstract. The only established genetic determinant of non-Mendelianforms of Alzheimer’s disease (AD) is theε4 allele of the
apolipoprotein E gene (APOE). Recently, it has been reported that the P86L polymorphismof the calcium homeostasis modulator
1 gene (CALHM1) is associated with the risk of developing AD. In order to independently assess this association, we performed a
meta-analysis of 7,873 AD cases and 13,274 controls of Caucasian origin (from a total of 24 centers in Belgium, Finland, France,
Italy, Spain, Sweden, the UK, and the USA). Our results indicate that theCALHM1P86L polymorphism is likely not a genetic
determinant of AD but may modulate age of onset by interacting with the effect of theε4 allele of theAPOEgene.
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INTRODUCTION

Although Alzheimer’s disease (AD) is the most com-
mon cause of dementia in the elderly, its etiology is still
not fully understood. The characterization of causative
factors is thus important for better defining the patho-
physiological processes involved. Hereditary, early-
onset forms of AD have been linked to disease-causing
mutations in three different genes: the amyloid-β pro-
tein precursor (AβPP) gene on chromosome 21, the
presenilin 1 (PSEN1) gene on chromosome 14, and the
presenilin 2 (PSEN2) gene on chromosome1 [1]. How-
ever, the known mutations in these three genes account
for less than 1% of all AD cases [2]. Most forms of
AD develop after the age of 65 and are considered to be
sporadic because they lack an obvious familial aggre-
gation. The term “sporadic” has, however, been gradu-
ally replaced by the concept of non-Mendelian (i.e., ge-
netically complex) transmission. Although the impor-
tance of the genetic component of these non-Mendelian
forms has long been debated, there is now a large body
of evidence suggesting that genetic variation plays the
major role in determining risk for this form of AD as
well. This evidence is largely based on twin studies
which have shown that the heritability of AD in general
is high (between 60 and 80%) [3]. This latter study
has also shown that age at onset (AAO) is significantly
more consistent for pairs of monozygotic twins than for
dizygotic twins, indicating that genetic variants also ex-
plain a substantial proportion of AAO variation across
AD cases [3]. While these observations highlight the
importance of genetic factors in the risk for developing
AD, at present, only theε4 allele of the apolipoprotein
E (APOE) gene has been unequivocally identified as
a major determinant for the non-Mendelian forms of
AD [4–6]. In addition, currently more than two dozen
loci show significant risk effects in meta-analyses syn-
thesizing the available data from all published studies
in the field. (http://www.alzgene.org) [7].

We recently reported that the gene coding for the
newly characterized calcium homeostasis modulator 1
(CALHM1) channel may be a potential genetic risk
factor for non-Mendelian forms of AD. The less com-
mon allele (L) of a non-synonymous polymorphism
(P86L or rs2986017) within this gene was found to be
associated with an increased risk for developing AD.
Further it was shown that the underlying amino-acid
substitution from proline to leucine leads to a loss of
Ca2+ permeability, modulation of AβPP metabolism
and, ultimately, to an increase in Aβ peptide secre-
tion [8]. However, although CALHM1’s biological

properties make it a plausible AD risk factor [8,9], most
of the currently published follow-up studies in Cau-
casian populations were unable to confirm the asso-
ciation between the P86L polymorphism and the risk
of developing AD [10–14], with the exception of one
report [15]. Despite this contradictory data using af-
fection status as phenotype, three studies, in addition
to the original report, showed association between an
earlier AAO and homozygosity of the L allele and a
marker in theCALHM1vicinity [11,15,16].

In this study, we assessed the question whether or
notCALHM1 is a genetic susceptibility factor for non-
Mendelian AD, we genotyped a total of 9,662 individu-
als (2,249 cases and 7,413 controls) not previously test-
ed forCALHM1and performed a meta-analysis synthe-
sizing these data with previously published genotypes
in a total sample of 7,873AD cases and 13,274 controls
of Caucasian origin.

MATERIALS AND METHODS

Case-control samples were obtained from centers
in Belgium (1 study) [12,17], Finland (1 study) [10],
France (3 studies) [8,18], Italy (10 studies) [14,17],
Spain (4 studies) [15,17], Sweden (1 studies) [10], the
UK (1 study) [9], and the USA (3 studies) [8,11,13].
The main characteristics of the different populations
in each country are described in Supplementary Ta-
ble 3 (available online: Supplementary data available
online: http://www.j-alz.com/issues/22/vol22-1.html
#supplementarydata04). Clinical diagnoses of proba-
ble AD were all established according to the DSM-III-R
and NINCDS-ADRDA criteria [19]. Controls were de-
fined as subjects not meeting the DMS-III-R dementia
criteria and with intact cognitive functions (mini men-
tal status examination score> 25). Written informed
consent to participation was provided by all subjects or,
in cases of substantial cognitive impairment, a caregiv-
er, legal guardian or other proxy. The study protocols
for all populations were reviewed and approved by the
appropriate institutional review boards in each country.
Depending on the center, a broad range panel of tech-
nologies were used to genotype the rs2986017 SNP [8,
10–15].

Univariate analysis was performed using Pearson’s
χ2 test. Review Manager software release 5.0 (http://
www.cc-ims.net/RevMan/) was used to estimate the
overall effect (random effect odds ratio). For multi-
variate analysis, SAS software release 9.1 was used
(SAS Institute, Cary, NC) and inter-population homo-
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Table 1
Association between the CALHM1 P86L polymorphism and age atonset (in years± SD) for all AD cases
and forε4 or non-ε4 AD cases

Whole ε3 bearers Nonε4 bearers
n age at onset n age at onset n age at onset

GG 3658 73.0± 8.9 1969 72.0± 7.9 1673 74.2± 9.8
AG 2761 73.1± 8.9 1473 71.9± 8.3 1277 74.4± 9.5
AA 588 71.8± 8.9 316 70.2± 8.2 271 73.6± 9.3
p1 0.004 2× 10−4 0.78
∆ (AA versus AG+GG)2 −1.2 −1.8 −0.7
p3 8 × 10−4 4× 10−5 0.54
1mixed model adjusted for gender and using center as a random variable
2∆, the difference in AAO between LL and PL+ PP carriers (in years).
3the difference in AAO between LL and PL+ PP carriers, using a mixed model adjusted for gender and
with center as a random variable.

Fig. 1. Association between the P86L L allele and the risk of developing AD in the different case-control studies, according to the country of
origin.

geneity between was tested using Breslow-Day com-
putation [20]. The association of the P86L polymor-
phism with the risk of developing AD was assessed by
a multiple logistic regression model adjusted for age,
gender,APOEstatus and center or country (see Sup-
plementary Table 3 for description of AAO per coun-
try). The association between the P86L polymorphism
and AAO was assessed using a mixed model adjusted
for gender and using the center as a random variable.
Similar results were obtained when using the country
as a random variable (data not shown). The presence or
absence of an interaction betweenAPOEstatus and the
P86L polymorphism was systematically assessed in all
logistic regression or mixed models.

RESULTS

Upon combining all available case-control genotype
data for the P86L SNP in allele-based effects meta-
analyses, we observed that the population-specific ORs
showed significant evidence for heterogeneity across
datasets (p = 0.003). We thus calculated the sum-
mary OR using a random-effects model, where the

overall P86L association appeared to be not significant
(OR= 1.07; 95% confidence interval (CI) [0.97–1.17];
p = 0.17; Fig. 1). Upon exclusion of the five initial
case-control datasets (all part of the initial, positive
study) [8], the heterogeneity across population-specific
ORs was substantially reduced (p = 0.29), but neither
meta-analysis showed significant results (OR= 1.01;
95% CI [0.95–1.08];p = 0.76).

As we had access to subject-level genotype and phe-
notype data for all samples, we also tested for associa-
tion between P86L and AD risk by pooling data across
studies and adjusting for age, gender, APOEε4 status,
and center using an additive logistic regression model.
This model is equivalent to the allelic association ap-
proach when the conditions for Hardy-Weinberg equi-
librium are met [21], which was true for the combined
sample (Supplementary Table 1). In this model, the L
allele of the P86L polymorphism was weakly associ-
ated with AD (OR= 1.09; 95% CI [1.03–1.15];p =

0.002). However, this association was mainly driven by
the initial case-control datasets of the original report,
and was no longer significant after exclusion of these
samples (OR= 1.02; 95% CI [0.95–1.08], adjusted for
age, gender, APOE status, and center;p = 0.66).
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Table 2
Association between theAPOEε4 allele alone and in combination with the P86L polymorphism
with age at onset (in years± SD)

APOE n Age at onset1 APOE rs2986017 n Age at onset2

ε4 − /ε4- 3223 74.2± 9.6 ε4 − /ε4- AG+GG 2952 74.3± 9.7
AA 271 73.6± 9.3

ε4 − /ε4+ 3027 72.5± 8.1 ε4 − /ε4+ AG+GG 2774 72.6± 8.1
AA 253 70.9± 8.3

ε4 + /ε4+ 736 68.4± 7.5 ε4 + /ε4+ AG+GG 671 69.0± 7.5
AA 65 67.2± 7.0

1p = 1.1× 10−31(mixed model adjusted for gender and using center as a randomvariable).
2p = 2.6× 10−31 (mixed model adjusted for gender and using center as a randomvariable).

Finally, we assessed the association of the P86L
polymorphism with AAO using a mixed model with
center of origin as a random variable. As previously
reported [8,11,15], patients bearing the LL genotype
displayed an earlier AAO than carriers of the LP and
PP genotype (71.8± 8.9 vs. 73.0± 8.9 years of age,
respectively;p = 8 × 10−4; Table 1 and supplemen-
tary Table 2). This association was still observed after
exclusion of the initial samples (73.2± 8.2 vs. 74.3
± 8.2 years of age, respectively; p=0.001). Follow-
ing the detection of an interaction between the P86L,
APOEε2/ε3/ε4 polymorphisms and AAO (p = 0.04),
we stratified the data according toAPOE status and
observed that the association of the LL genotype with
AAO was the strongest inε4 carriers (70.2± 8.5 vs.
72.0± 8.2 years;p = 4 × 10−5 (Table 1 and Supple-
mentary Table 2). Again, this association was still ob-
served after exclusion of the initial samples (71.9± 7.4
vs. 73.2± 7.5 years of age, respectively;p = 0.002).

When taking into account the well characterized
APOEε4 allele dose effect on AAO, we observed that
the P86L LL genotype was systematically associated
with a decrease in AAO inε3/ε4 andε4/ε4 carriers (Ta-
ble 2). Comparison of likelihood ratio between a mixed
model including only APOE genotype and a mixed
model including both APOE and CALHM1 genotypes
indicated that addition of the CALHM1 P86L poly-
morphism was more informative to explain the AAO
variability than the APOEε4 allele alone (p = 1 ×

10−10).

DISCUSSION

Using both novel and previously published genotype
data, we performed meta-analyses of 7,873 AD cases
and 13,274 controls from 24 centers assessing the po-
tential association between the P86L polymorphism in
CALHM1 and risk for AD, but were unable to repli-
cate the initial findings. The discrepancy of risk effects

between the independent follow-up data and the data
first published by Dreses-Werringloer et al. [8], may
indicates a false-positive finding in the initial report, a
situation commonly observed in genetically complex
diseases and referred to as “proteus phenomenon” or
to as the “winner’s curse phenomenon” [22]. In ad-
dition to chance variation and technical artifacts, this
may be caused by population substructure across cases
and controls included in the affected association stud-
ies. Indeed, this type of difference can lead to spuri-
ous associations between diseases and genetic mark-
ers [23–26], particularly when low increases in risk
are involved [27]. This observation may be particular-
ly relevant for the P86L L allele, since its frequency
appears to be highly variable (even ranging from 20
to 31% for Caucasian populations) and its association
with AD risk was categorized as moderate in the initial
report [8].

However, even though our meta-analysis results
rather unequivocally refute the initial findings suggest-
ing that CALHM1 is a genetic risk factor for AD, the
present work suggests that the CALHM1 P86L poly-
morphism could modulate AAO and more specifical-
ly the APOEε4 allele’s dose effect on this phenotype.
Interestingly, several studies have shown that AAO in
AD is highly heritable [28,29], and (in addition to the
strong association of theε4 allele with AAO) it has been
suggested that genes such as GTS1 or GTS2 may have
a specific effects on AAO without necessarily mod-
ifying the risk for developing AD [30–32], although
these findings have not been independently replicated
to date. In this context, it is worth noting that AAO data
are difficult to acquire reliably reducing the power of
such analyses. Although the large overall sample size
analyzed in the present study should help to decrease
the likelihood of a false-positive outcome, additional
genetic studies will be required to further characterize
the association between the P86L polymorphism and
AAO in ε4-carriers. However, it appeared that the asso-
ciation of the P86L polymorphism with AAO was still
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observed after exclusion of the initial samples, this sup-
porting a real impact ofCALHM1on disease progres-
sion. It is also worth noting that factors affecting AAO
tends to be spuriously associated with disease suscep-
tibility (and the younger the cases the stronger this ar-
tifact association may be) and this confounding effect
may explain in part positive results in cross-sectional
studies [33].

Furthermore, it would be of particular interest to ex-
tend the association analyses to non-Caucasian popu-
lations, such as those of South-East Asian (for which
conflicting results have already been reported [34–36]),
or African descent. However, since the P86L L al-
lele frequency is lower in Asian populations than Cau-
casian populations, particularly large sample sizes will
be needed to detect significant risk or AAO effects.

Given that the P86L L allele has been associated with
an increase in Aβ productionin vitro [8], confirmation
of this association with AAO may indicate that a vari-
ation in Aβ production can modulate AD progression
without increasing the AD risk. Interestingly, biolog-
ical evidence suggests that both theAPOE gene and
the genetic determinants characterized in two recent
genome-wide association studies (GWASs) in AD may
be primarily involved in Aβ peptide clearance [17,37].
Combination of these genetic results and physiopatho-
logical data may thus indicate that whereas familial,
early-onset forms of AD are mainly linked to genes that
are involved in Aβ overproduction, genetic variants of
APOE and the GWAS-defined loci may influence sus-
ceptibility to late-onset forms of the disease via a role
in Aβ clearance [38]. In this context, we could hypoth-
esize that the moderate over-production of Aβ peptides
associated with the P86L L allele only modifies the AD
process when there is a failure in Aβ clearance – a fail-
ure that is likely to be particularly exacerbated inε4
carriers.

In conclusion, the present meta-analysis does not
support the notion that CALHM1 is a genetic risk factor
for AD. However, we found a significant association
between the P86L L-allele and earlier onset for AD,
particularly in carriers of the APOEε4-allele. There-
fore, further studies are warranted aimed at investigat-
ing whether or not genetic variation at CALHM1 may
modify some of the pathophysiological processes in-
volving Ca2+ homeostasis and leading to AD [39–41],
in particular in carriers of the APOEε4 allele.
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