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ABSTRACT

Motivation: A major challenge in regulatory genomics is the
identification of associations between functional categories of genes
(e.g. tissues, metabolic pathways) and their regulating transcription
factors (TFs). While, for a limited number of categories, the regulating
TFs are already known, still for many functional categories the
responsible factors remain to be elucidated.

Results: We put forward a novel method (PASTAA) for detecting
transcriptions factors associated with functional categories, which
utilizes the prediction of binding affinities of a TF to promoters.
This binding strength information is compared to the likelihood of
membership of the corresponding genes in the functional category
under study. Coherence between the two ranked datasets is seen as
an indicator of association between a TF and the category. PASTAA
is applied primarily to the determination of TFs driving tissue-specific
expression. We show that PASTAA is capable of recovering many TFs
acting tissue specifically and, in addition, provides novel associations
so far not detected by alternative methods. The application of
PASTAA to detect TFs involved in the regulation of tissue-specific
gene expression revealed a remarkable number of experimentally
supported associations. The validated success for various datasets
implies that PASTAA can directly be applied for the detection of TFs
associated with newly derived gene sets.

Availability: The PASTAA source code as well as a corresponding
web interface is freely available at http://trap.molgen.mpg.de
Contact: roider@molgen.mpg.de

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The elucidation of transcriptional regulatory networks is essential
for understanding how cells integrate internal as well as external
signals, ultimately controlling processes like progression through the
cell cycle, appropriate response to cellular stress or differentiation of
stem cells into adult tissues. Transcription factors (TFs) constitute a
central component of such networks by regulating the expression of
housekeeping as well as cell type-specific genes. The action of one
or more TFs can thereby cause the co-expression of entire cohorts
of genes. Therefore, genes expressed in a certain category such as
a cell type or stress condition are expected to share binding signals
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for the same TFs. However, uncovering binding signals of the TFs
responsible for the observed expression patterns constitute a major
challenge for both experimentalists as well as theoreticians.

Given a set of genes expressed in the same functional category
(metabolic pathway, tissue, developmental stage, etc.), two basic
strategies are traditionally applied to find regulatory signals in the
sequences. The first approach is based on de novo identification of
sequence patterns over-represented in the putative promoter regions
of these genes (Bailey and Elkan, 1995; Huber and Bulyk, 2006;
Smith et al., 2006; van Helden et al., 2000). While this strategy
allows detecting the presence of so far uncharacterized sequence
motifs, the patterns need to be well defined in order to obtain
statistical significance (Frith ef al., 2004b). Such methods are also
more sensitive to the occurrence of repeat-like sequences not filtered
out by standard tools (Frith et al., 2004b).

The alternative approach avoids many of these problems by
focusing only on the occurrences of matches to predefined, experi-
mentally derived TF binding motifs. With larger collections of
experimentally derived TF binding motifs becoming available, this
approach has gained wide popularity. For a manually selected set of
tissue specifically expressed genes, Wasserman and Fickett (1998)
were the first to use this method successfully to predict TFs involved
in the regulation of muscle-specific genes. Subsequently, several
studies revealed additional TF-tissue associations for a limited
number of TFs (Frith et al., 2004a; Qian et al., 2005; Yu et al., 2006),
usually by analysing the proximal promoters of tissue-specifically
expressed genes derived from microarray or expressed sequence
tags (EST) data. In order to be able to include distal cis-regulatory
elements in the analysis such methods are frequently combined
with phylogenetic footprinting, which limits the sequence space to
likely regulatory elements (Ho Sui et al., 2007; Pennacchio et al.,
2007).

An important prerequisite for any of the above methods is the
adequate definition of groups of genes expected to be co-regulated by
the same factor. Generally, such groups can be inferred either from
databases such as Gene Ontology (GO) (Hill ez al., 2002) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Aoki and Kanehisa,
2005) through a binary assignment of the genes to the groups or from
functional genomics data such as microarrays or ESTs in which case
the specificity of a given gene for a given category (e.g. vertebrate
tissues) is measured quantitatively. However, also such non-binary
data are usually transformed into binary assignments by introducing
an arbitrary cut-off, thereby discarding the information about the
relative likelihood of a gene belonging to a category.
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In this article, we put forward a novel method to detect TFs that
are associated with particular functional categories of genes. We call
our method PASTAA for predicting associated transcription factors
from annotated affinities, because as a first step we rank all genes
by the predicted affinity of the TF to the genes’ promoters. The
expectation, of course, is that target genes of the TF rank high
in this list. To detect an association between TFs and a category,
this ranked list is compared to another ranking of the same genes,
which should reflect the likelihood of the genes belonging to the
category under study. Typically, this ranking will be based on the
degree of specificity of a gene for a tissue as derived from expression
data.

We will show that recognizing an association between a TF and a
functional category of genes can then be reduced to determining an
enrichment of common genes at the top of both lists. To this end, we
propose an iterated hypergeometric test applying varying cut-offs to
the two lists. Repeating this procedure for all available TF binding
motifs allows delineation of the most important associations of TFs
with the category under study. Importantly, in this approach it is
not required to set any cut-offs a priori on either binding of a TF
to a promoter or membership of a gene in a category. A similar
approach has been applied by (Eden ez al., 2007) to discover TF
binding motifs in ranked lists of DNA sequences.

We validate the method by attempting to rediscover the TFs
that were used in different Chromatin ImmunoPrecipitation on chip
(ChIP)—chip experiments, utilizing the binding P-values from the
experiments for the ranking of the genes. For gene lists derived
from tissue-specific expression data, we show that PASTAA yields
a more comprehensive number of functional TF—tissue associations
than alternative methods.

2 METHODS
2.1 TF binding data (ChIP-chip, ChIP-PET)

As a first set of validation categories, we utilized the yeast genome-wide
datasets on in vitro TF-DNA interactions available for the three TFs (Rapl,
Migl and Abfl) from Mukherjee et al. (2004) and the in vivo ChIP—chip
data from Harbison er al. (2004) for more than 200 TFs in various cell
conditions. In both studies, the authors provide binding measurements for
each factor to all approximately 6000 yeast intergenic regions. Here, we
analyse the datasets corresponding to those 25 TFs for which position
specific frequency matrix (PFMs) are available in TRANSFAC. Our TF
binding affinity predictions are computed for each of the 25 matrices to
all approximately 6000 intergenic regions.

For validation on vertebrate ChIP—chip data, we refer to the study by
Odom et al. (2004) where the binding of the three factors HNF1, HNF4 and
HNF6 to approximately 13 000 human promoters was measured. PASTAA
thereby uses the provided in vivo binding P-values to rank all promoters
for a given TF, while the sequences spotted on the microarrays are used to
compute the binding affinities for each of the 589 vertebrate PFMs contained
in TRANSFAC.

For validation on ChIP-PET data, we utilize the cMYC dataset by Zeller
et al. (2006). In contrast to ChIP—chip binding values, the size of paired
end tags (PET) clusters does not allow for an unambiguous ranking of the
target sequences, i.e. there are some 2 x 10° PET singletons, 12 x 103 PET
clusters of size 2 and about 103 clusters of size >3. We thus ranked the
sequences according to cluster size but followed the proposal of Zeller
et al. (2006) and used only clusters of size >3 as input to PASTAA. The
sequences spanning the clusters (average length: 2121 bp) were used to
compute binding affinities. As background set, 10000 sequences of length
2121 bp with random genomic start positions were used.
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Fig. 1. The PASTAA workflow.

2.2 EST expression data

The expression of a given gene in a given tissue from human and mouse
is determined by analysing corresponding EST clusters from the GeneNest
database (Haas et al., 2000), which includes the annotation of the originating
tissue for each EST. Tissue specificity of a given gene is thereby evaluated by
computing a P-value reflecting the overrepresentation of ESTs from a tissue
among all ESTs of a given cluster (see Supplementary Material and Gupta et
al., 2005 for details). To make results comparable between the different tested
methods, only EST clusters with P-value <10~ in at least one of the tissue
categories are utilized. For the PASTAA analysis, TF affinities are computed
for all 589 vertebrate TRANSFAC matrices and for 200 bp upstream of the
transcription start sites of all 26 000 mouse genes in Ensembl (Birney ef al.,
2006).

2.3 Methods overview

An overview of PASTAA’s workflow is shown in Figure 1. All genes are
ranked according to their predicted affinity for a given TF such as the
pancreas-specific TF PTF1 (A). At the same time, the genes are also ranked
according to their association with a given category such as pancreas (B).
After applying a cut-off to the lists in (A) and (B), a hypergeometric test
is used to determine the significance of the overlap between the top target
genes of the TF and the top ranking genes in the category [illustrated by the
Venn diagram in (C)]. Cut-offs are thereby chosen iteratively in such a way
that the obtained hypergeometric P-values (ovals indicate the corresponding
changes in set sizes) are minimized. The negative logarithms of these optimal
P-values are used as scores to subsequently rank all PFMs for the category
under investigation (D).

2.4 TF binding predictions

For the analysis of the vertebrate datasets, we use the 589 PFMs for
vertebrates provided by the TRANSFAC database version 11.1 (Matys et al.,
2006). For the yeast analysis, we use the set of 56 fungi PFMs in TRANSFAC.
For each PFM the binding affinity, (N), between the corresponding TF and a
given DNA sequence is computed by our previously published TRAP method
(see Supplementary Material for details).

2.5 TF affinity predictions using TRAP

To predict the binding strength of a given TF to a promoter sequences we
utilize the TRAP method (Roider et al., 2007). TRAP avoids the artificial
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separation between binding sites and non-binding sites but instead computes
the binding probability of a given TF to each site in the sequence. These
binding probabilities are summed over all positions in a sequence to give an
estimate on the total binding affinity of the TF for a putative promoter. The
affinities are then used to rank all promoters for the given TF. For details see
Supplementary Material.

2.6 Measuring TF-gene category associations

In order to detect an association between a TF and a given functional category,
we test for the enrichment of genes from the category among the high-
ranking genes of the TF (Fig. 1). Given binary assignments for all genes
(see subsequently), the enrichment of target genes of a TF among the genes
belonging to a category is evaluated by the following hypergeometric test:

=

where N is the number of all genes in the input set, C is the number of
genes assigned to a category, 7 is the number of targets for a TF and X is
the number of observed targets in the category.

The significance of the TF—gene category associations obtained from
the above hypergeometric test depends on the cut-off used to make a
binary assignment of the genes to a category and on the cut-off on the
predicted affinity, (N), used to specify the targets of a given TF. Since
the optimal values for these two cut-offs are not known a priori, we
loop over a set of cut-offs on both the values that determine association
with a category (e.g. significance of the expression of a gene in a
tissue) as well as on (N). For the gene list ranked by likelihood of
the genes belonging to the category, the cut-off is chosen in such a
way that sets containing {1,2,...,99, 100, 110, ...,290, 300,400, ..., 1000}
genes (however maximal the number of genes in the input set) are
generated. On (N) the cut-off is selected so that target gene sets of
size {25,50,...,150, 175,200,250, ...,500,600, ...,1000} are obtained.
Together the two sets of cut-offs give a total of 2413 combinations for
the number of genes in a given category and the number of target genes
for a given TF. In general, each of these cut-off combinations will yield
a different hypergeometric P-value. We assume that the smallest achieved
hypergeometric P-value corresponds to the most meaningful detectable
association between a given TF and a set of genes in a given category.
The negative logarithms of the most significant P-values are used as scores
to subsequently rank the associations for a given TF or a given tissue. The
resulting ranking reflects the relative rather than the absolute association of
the TFs with respect to a given category. To assign absolute P-values to the
scores we compare the results to 10% resamplings, which have been pre-
computed for any given input set size by randomly shuffling the rankings of
the genes for both lists. This procedure allows for fast subsequent assessment
of the significance of the enrichment scores and accounts for the dependency
between consecutive test scores.

Besides expression data, groups of genes may also be derived from
categorical data as presented by databases such as KEGG (Aoki and
Kanehisa, 2005) or GO (Hill et al., 2002). In such a case, one might seek to
find TFs that regulate the expression of genes unambiguously assigned to a
particular metabolic pathway or cellular process. The genes belonging to such
a category are not ranked and are thus all treated equal, that is, no additional
cut-off is applied to the input list.

(€]

2.7 'TF expression in predicted top ranking tissue

To test whether TFs are in general preferentially expressed in the tissues
most significantly enriched with their target genes, we first select for each
TF the PFM yielding the most significant hypergeometric P-value for a given
tissue. This is done to avoid any bias potentially introduced when evaluating
multiple PFMs for a given TF. In order to assign a TRANSFAC matrix to the

related EST cluster, we mapped the protein sequence of the respective TF to
the mouse or human EST cluster with highest sequence similarity according
to BLASTX. TFs with EST cluster P-value <107 in the corresponding
tissue were selected as specifically expressed. Subsequently, all cases where
a TF is specifically expressed in its top ranking tissue were put in a first
bin, all cases where a TF is specifically expressed in its second to top tissue
in a second bin and so forth. For each TF, this procedure was repeated
over all its 72 tissue associations. The ultimate assessment of the size of
the resulting bins is complicated by the fact that tissue categories with few
ESTs are not only less likely to express the TF, but are also less likely
to produce significant hypergeometric P-values. Therefore, there exists an
intrinsic negative correlation between the ranks of the tissue and the number
of TFs expressed per tissue. To assess whether the enrichment is higher than
expected, we repeated the entire analysis 10 times, every time assigning a
random 200-bp long DNA sequence to each of the genes. The difference
between the actual results and the ones obtained from the random sequences
in each of the 72 bins was finally evaluated by the following #-statistic:

= bin; ¢ — bin; , @

or

where bin; ¢ is the number of TFs assigned to bini using the real genomic
sequences, bin; , is the average number of TFs assigned to bin i over all 10
random sequence sets and o, is the SD of the number of TFs in bin i obtained
over the 10 random sets.

2.8 Comparison to PAP, z-statistics and Clover

The PASTAA algorithm was compared to three widely used methods for
predicting TF—tissue associations.

Promoter Analysis Pipeline (PAP) (Chang et al., 2007) was
accessed via logging into bioinformatics.wustl.edu/webTools/portalModule/
PromoterSearch.do. Clover (Frith et al., 2004a) was obtained from
http://zlab.bu.edu/clover/. As input we provided the set of 589 TRANSFAC
vertebrate PFMs, a sequence set corresponding to the 200 bp promoters of
the mouse genes in a given tissue category, and as background DNA all
mouse promoter sequences not contained in the tissue category. Input and
background sequence sets hereby had very similar overall GC content. For
both PAP and Clover we used default settings. For the z-score statistics
we referred to a standard statistical method for the annotation of TF hits
(Rahmann et al., 2003), which balances the expected number of true and
false positive binding site predictions and subsequently applied a z-score
statistics [as used for instance by oPOSSUM (Ho Sui et al., 2007)] to
detect any binding site enrichment in a given tissue category. As input to
the z-score statistics, we used the same 589 TRANSFAC PFMs and 200
bp proximal promoters as above. In order to make the results optimally
comparable between PASTAA, Clover, z-score statistics and PAP, we restrict
the tissue sets for the comparison to only those genes whose IDs could be
unambiguously matched to entries in the PAP database.

3 RESULTS

3.1 PASTAA identifies meaningful cut-offs

To validate PASTAA’s ability to select meaningful sets of input genes
and predicted target genes from ranked lists, we utilized the large-
scale ChIP—chip and PBM binding data from Harbison et al. (2004)
and Mukherjee et al. (2004) where the binding between a given TF
and all approximately 6000 intergenic regions from yeast has been
measured.

As a first test case, we supply PASTAA with a list of all intergenic
regions ranked either according to their measured in vitro binding
strength with the factor Abf1 or ranked according to their predicted
affinities based on the matrix ABF1_01 from TRANSFAC. PASTAA
obtains the most significant overlap between experimentally bound
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Fig. 2. Cut-off space for the hypergeometric test. (A) The —log
hypergeometric P-values (indicated by colour) for ABF1_01 and the Abfl
in vitro dataset depending on the cut-off combination employed for the
predicted affinity and PBM binding values. The most significant target
enrichment (P-value 7.3 x 10723%) is found when using the top 800 genes
according to PBM and top 900 genes according to affinity. The steepest
increase in —log P-values is found at the origin of the plot. (B) Same
analysis as in (A) but for the factor PHO4_01 and the Pho4 ChIP—chip
dataset (phosphate-deprived condition). According to the fact that Pho4 has
far less targets than Abfl an optimal hypergeometric P-value of 7.9 x 1020
is found when using only the top 300 genes according to ChIP—chip data and
top 100 genes according to affinity.

sequences and predicted targets by selecting the top 800 intergenic
regions according to ChIP measurements and the top 900 genes
according to predicted affinities. These sets share a total of 474
intergenic regions (P-value ~107253). The dependency of the
P-values on the chosen cut-offs and their apparent convergence
to an optimal value is illustrated in Figure 2A. Given that most
factors have considerably fewer real targets than Abfl, which is
a global transcriptional regulator involved in the regulation of a
multitude of genes (Miyake er al., 2004), the optimal cut-offs
for more specifically acting factors are expected to yield fewer
than 1000 genes for both the target and measurement set. In fact,
all other 25 tested yeast factors had optimal cut-offs below 1000
genes, as illustrated in Figure 2B for the matrix PHO4_01 and its
corresponding ChIP—chip dataset. For this factor, with only a few
target genes (Springer et al., 2003), the most significant association
(P-value ~10~19) is found when using the top 300 genes according
to ChIP—chip data and top 100 genes according to predicted affinity.
For efficiency we thus restrict the further analyses to the top 1000
genes in either list.

Table 1. Top associated PFMs for the HNF and MYC target gene sets

HNF1 HNF4 HNF6 MYC
HNF1_Q6 HNF4_Q6_01 CDPCR1_01
HNF1_01 HNF4_01 OK_01
HNF1_Q6_01 HNF4_01_B CDP_02 MYC_Q2
HNF1_C HNF4_Q6 CDPCR3HD_0  ETF_Q6
AR_02 STAF_02 HNF6_Q6
HNF4_DR1_Q3 PBX1_02 ZF5_01
AR_03 COUPTE_Q6 MYCMAX_B
T3R_01 CDPCR3_01 CHCH_01
COUP_01 CDP_01 AP2ALPHA_01
RORAI_01  STAT_01 E2F_Q3_01 7ZF5_B

Top ranking PFMs for the HNF1, HNF4 and the HNF6 ChIP—chip datasets and the
c¢cMYC ChIP-PET dataset. Matching PFMs are indicated in red. Matrices for E2F, a
co-regulator of MYC genes, are indicated in yellow.

3.2 Recovery of yeast ChIP-chip data

We next assess how well PASTAA detects the TFs corresponding
to a given PBM or ChIP—chip dataset by evaluating the association
between a given dataset and all 56 yeast matrices in TRANSFAC.
To this end, we rank all PFMs according to their association scores
(—log of the most significant hypergeometric P-value). For 21
out of 24 Chip—chip datasets, for which a corresponding matrix
is available, PASTAA recovers the correct PFM among the five
top ranking matrices. In several cases, non-matching TFs, which,
however, share a similar binding motif to the correct TF, are
among the top ranking factors. For instance, ADR1_01 (consensus
GGGGT) and STRE (AGGGG) are among the top ranking PFMs
for the Migl dataset (AAAATCTGGGGT). In addition to such
matching motifs, PASTAA detects known co-factors for many of the
datasets. For example, Lac9, a co-regulator for galactose response
genes (Salmeron et al., 1989), is the second highest ranked TF for
the Gal4 dataset; while heat shock factor, a known co-regulator of
Msn2 (Grably et al., 2002), is identified as second highest ranking
TF for the Msn2 dataset (see Supplementary Table S1 for details).

In many cases, the association scores drop several-fold between
the top ranking PFMs and the subsequent ranking matrices.
For instance, the three top ranking PFMs for the Abfl dataset
obtain scores of 300.0, 252.1 and 173.0; while the next motif,
REPCAR1_01, attains a score of 7.6. To assess more quantitatively
how far down the list the ranking remains meaningful, we assess
the probability of generating a given score by chance. To this end
we compare the PASTAA scores to that of 10° random resamplings.
The large majority of matching PFMs obtain resampling P-values
of <104, while many unconfirmed associations are less significant
(Supplementary Table S1).

3.3 PASTAA accounts for ChIP data from human

To assess PASTAA’s ability to detect an enrichment of TF targets
in a set of vertebrate sequences, we analysed ChIP—chip data
available for the three hepatic TFs HNF1, HNF4 and HNF6 (Odom
et al., 2004). As input for PASTAA, we ranked all approximately
13 000 promoter sequences assessed by the experimenters according
to how strongly they were bound by a given HNF factor. As
shown in Table 1, for the HNF1 and HNF4 gene sets PASTAA
correctly finds the highest association for the PFMs corresponding
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to HNF1 and HNF4, respectively (out of 589 vertebrate PFMs
present in TRANSFAC). For the HNF6 dataset the single PFM
present in TRANSFAC is ranked at position five, while four PFMs
corresponding to another homoeodomain factor CDP are ranked top.
These results match the findings of a dedicated study that identified
the same factors as top associated with the HNF6 ChIP—chip dataset
(Smith et al., 2005). For the cMYC dataset (Zeller et al., 2006)
shown in the rightmost column of Table 1, we rank two cMYC
matrices among the top 10 PFMs and another MYC matrix at
position 13. Interestingly, among the top matrices we also detect
E2F, a key co-regulator of Myc genes (Leone et al., 2001).

3.4 PASTAA predicts tissue-specific TFs

‘We now turn to searching for TFs involved in the regulation of sets of
tissue-specific genes. To this end, we define tissue categories based
on EST data and determine the significance of expression of the
gene in every category. As above we produce two ranked lists, one
according to the significance of expression, and one according to
the predicted affinity. PASTAA then determines the most significant
overlap between these lists. Affinities are hereby computed for the
200 bp upstream of the transcription start sites of all approximately
26 000 Ensembl mouse genes (Birney et al., 2006). In the following,
we analyse the tissues of muscle, heart, liver, leucocyte and retina.
For each of these tissues a number of key regulators are known from
experimental as well as computational studies, which we expect to
recover with our method. As shown in Table 2, the most significantly
associated matrices for muscle and heart are PFMs corresponding to
muscle enhancer factor 2 (MEF2), serum response factor (SRF) and
muscle specific TATA (MTATA). This is in accordance with previous
findings by Wasserman and Fickett (1998). For the liver category
HNF1, HNF4 are dominating the ranking (Odom et al., 2004), while
for leucocyte PFMs corresponding to immune related TFs such as
NF-kappaB and c-Ets-1 are found (Pennacchio et al., 2007). Lastly,
for retina, PASTAA detects the eye-specific factors CRX [cone rod
homoeobox protein (Furukawa et al., 2002; Qian et al., 2005)] and
CHX10 (Dorval et al., 2006).

Aside from these well-studied cases, we also find functional
associations for several other tissues. For instance, the pancreatic
TFs IPF1 [insulin promoter factor 1 (Ohlsson et al., 1993)] and PTF1
[pancreas-specific transcription factor 1 (Roux et al., 1989)] are
listed among the top 10 factors for pancreas. The lung- and thyroid-
specific factor TTF1 [thyroid transcription factor 1 (Kimura et al.,
1999)] is detected as the top ranking factor in the lung category and
among the top 10 factors in the thyroid category. Another example
is PIT1 [pituitary-specific positive transcription factor 1 (Li et al.,
1990)] which is detected at rank 4 in the pituitary gland category.

Importantly, very similar results are found for many tissues when
analysing gene sets derived from the GNF microarray dataset instead
of EST data (see Supplementary Material for results obtained from
GNF data).

3.5 Comparison to alternative approaches

In order to evaluate the usefulness of PASTAA, we compared its
performance to that of three alternative methods: (i) Clover (Frith et
al.,2004a); (ii) PAP (Chang et al., 2007); and (iii) a z-score statistics
[as was used for instance in oPOSSUM (Ho Sui et al., 2007)]
applied to a standard hit-based annotation that balances the number
of false and true binding site predictions (Rahmann et al., 2003).

Table 2. Result for tissues with Known TF associations

CLOVER z-score PAP PASTAA
Muscle
SP1_Q2_01 SRF_01 TATA_01 SRF_Q5_01 7.3 1E-06
MAZ_Q6 SRE_C T3R_Q6 SRF_01 6.2 2E-05
MEF2_Q6_01 SRF_Q5_02 MTATA_B SRF_Q5_02 6.0 4E-05
TATA_01 SRF_Q6 SF1_Q6 SRF_C 5.9 SE-05
TBP_01 SRF_Q4 SPZ1_01 MTATA_B 5.8 S5E-05
Heart
SP1_Q4_01 SRF_01 SF1_Q6 MEF2_Q6_01 8.0 0.0
SP1_Q2_01 MEF2_02 ERR1_Q2 SRF_C 6.4 3E-05
SP1_Q6 SP1_Q4_01 ER_Q6_02 RSRFC4_01 6.1 5SE-05
GC_01 UFIH3B._Q6 T3R_Q6 MTATA_B 6.0 9E-05
SP1_Q6_01 SRF_Q5_02 TATA_01 MEF2_02 5.9 9E-05
Liver
SP1_Q4_01 HNF4_Q6_01 CEBP_Q2_01 HNF4_Q6_01 21.3 0.0
SP1_Q2_01 HNF1_01 PBX1_03 HNF1_01 20.7 0.0
GC_01 HNF4_01 CEBP* HNF4_01 20.5 0.0
SP1_Q6_01 HNF1_Q6 GR_Q6_01 HNFI1_Q6 193 0.0
SP1_Q6 HNF1_Q6_01 HNFI1_Q6 HNFI1_C 17.4 0.0
Retina
SP1_Q2_01 UFIH3B._Q6  SREBP1_Q6  GATA1_03 124 0.0
CACB._Q6 SP1_Q4_01 LFA1_Q6 CRX_Q4 79 0.0
SP1_Q6_01 SP1_Q2_01 ZIC2_01 VMAF_01 5.1 6E-04
WT1_Q6 KROX_Q6 TFII_Q6 SREBP1_02 49 9E-04
SP1_01 SP1_Q6 PAX4_03 CHX10_01 4.5 2E-03
Leukocyte
SP1_Q4_01 SP1_Q4_01 ETS_Q6 NFK.B65_01 13.0 0.0
SP1_Q6_01 SP1_Q6 PEA3_Q6 NFK.B_01 122 0.0
SP1_Q2_01 GC_01 PUL_Q6 NFKB_Q6_01 11.7 0.0
GC_01 SP1_Q6_01 ETS_Q4 CREL_01 11.2 0.0
SP1_Q6 SP1_Q2_01 cREL* ETS_Q6 10.0 0.0

Top ranking PFMs according to PASTAA and three alternative approaches. Predictions
corresponding to experimentally characterized TF—tissue associations are shown in red.
Associations in blue correspond to matrices for the general factor SP1 and the basal
TATA box. The last two columns indicate PASTAA’s association scores as well as the
corresponding resampling P-values.

*JASPAR matrices (Sandelin et al., 2004) used only by PAP.

Clover and the z-score statistics were used with 200 bp proximal
promoters as input, while PAP uses larger promoter regions refined
by phylogenetic footprinting. As shown in Table 2, PAP detects
well-characterized associations especially for the liver and leucocyte
tissue categories. Clover finds GC-rich motifs such as the general
TF SP1 (Kaczynski et al., 2003) as highly enriched in all tested
categories. Accordingly, more specific associations appear at higher
ranks (these results are obtained regardless of whether or not a
background gene set is provided to Clover). The z-score statistics
recovers many of the known muscle-, heart- and liver-specific
associations but also detects GC-rich motifs as top ranking in several
categories. Interestingly, neither method ranked CRX or CHX10
among the top PFMs for retina.

When analysing the HNF ChIP—chip datasets Clover and z-score
statistics yield similar results to PASTAA. In contrast, for the MYC
dataset, Clover ranked the first MYC matrix at position 48 while all
but one other MYC matrix were considered anti-correlated with the
input set. Similarly, for this dataset the z-score statistics ranked the
first MYC matrix at position 28 while the top matrices correspond
to immune-related and heat-shock factors.

3.6 TFs are over-expressed in their top ranked tissues

Above we showed that PASTAA successfully detects important TFs
for groups of co-expressed genes. Here we address the reverse
question: given a TF can we detect in which tissue the factor plays a
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Fig. 3. TFs are over-expressed in their top ranking tissues. Height of bins
indicates the number of TFs expressed in the associated tissue of given rank
based on the real sequence data (dark blue) or on the results obtained from
10 random sequence sets (light blue). Error bars show the 95% confidence
interval for the results obtained from the 10 random sequence sets. Tissues
top ranking for a given TF express the factor more often than expected, while
bottom ranking tissues express the TF equally or less often than expected. The
enrichment is particularly significant for the first three bins corresponding
to all three top ranking TF-tissue associations (P-value of enrichment for
bins 1-3 combined: 2.2 x 107!2). The general trend in the light blue bins
indicates the technical bias caused by the different number of ESTs in each
tissue category.

role? To assess, in an unbiased fashion, for all TFs how meaningful
the top ranking tissue associations are, we analysed the expression
patterns of the TFs themselves. The underlying assumption is that
a TF specifically expressed in a certain tissue is likely to assert
a regulatory function there. Consequently, a TF should be over-
expressed more frequently among its top-ranking tissues rather than
among randomly assigned tissues. In the entire dataset of 72 tissues,
there are 352 TF-tissue associations where the TF is specifically
expressed in the corresponding tissue. In 29 of these cases the tissue
is indeed top ranking for the TF. This constitutes a 2-fold increase
(P-value: 1.3 x 107°) over what would be expected by chance (see
Section 2). In 21 cases the tissue is ranked second (1.6-fold increase,
P-value: 0.019) and in 17 cases third to top (1.7-fold increase,
P-value: 0.017). Over all the 72 possible tissue ranks a clear trend
exists for the higher ranking tissues to express the corresponding
TFs more often than expected, while lower ranking tissues tend to
express the TFs at lower levels (Fig. 3).

It has to be noted that this verification method fails for factors
such as SRF and HNF1, which are broadly expressed despite their
known tissue-specific activities, or for factors such as PTF1, which
do not have enough support by EST data to assess their expression
patterns. To validate such TF-tissue associations, we performed
an extensive manual PubMed search seeking for strong evidence
for the involvement of a TF in the regulation of a tissue. This
procedure confirmed an additional 149 top associations including
HNF3 (Kaestner et al., 1999) and PTF1 (Roux et al., 1989) with
pancreas, MEF2-muscle (Wasserman and Fickett, 1998), RFX-
testis (Reith et al., 1994) and NRSF-brain (Chen et al., 1998)
(Table 3).

Table 3. Top ranking tissues for a selected group of PFMs
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Vesic. g. Kidney & Testis Lung

Associations supported extensively by literature or by specific expression of the TF in
the respective tissue are indicated in yellow and red, respectively.

4 DISCUSSION

TFs play an important role in the regulation of genes specifically
expressed in different cell stages and conditions. In order to detect
functional associations between TFs and groups of co-regulated
genes, we utilize the full qualitative information from functional
genomics data and TF binding predictions. For the latter we
have applied a biophysical model to predict binding affinities
to regulatory regions. Combining the resulting rankings with an
iterative search for the most significant overlap between genes in
a category and target gene sets of a TF allows to robustly detect
functional TF-tissue associations without the need for ad hoc cut-
off selections. It has to be stressed that cut-offs applied to the affinity
measure occur at the level of promoters and not at individual binding
sites. While this still constitutes a rather artificial separation between
TF target promoters and non-targets the subsequent hypergeometric
test statistics is more powerful than a z-score test, which would avoid
the target separation but tends to run into problems when trying to
optimize the input lists (data not shown).

Using PASTAA we are able to detect associations between TFs
and gene groups stemming from various sources such as ChIP—chip
data as well as EST or microarray-based expression data. For the
HNF and cMYC datasets we find the corresponding PFMs with high
specificity, while neither Clover nor the z-score statistics ranked a
MYC matrix among the top PFMs for the MYC dataset. Together
these findings suggest that important biological information about
regulating TFs can straightforwardly be obtained from the ranking
of the PFMs for a given dataset provided by PASTAA without the
need of introducing cut-offs a priori.

When applied to the analysis of tissue-specific gene sets PASTAA
detects on one hand well-known TF-tissue associations, like SRF-
heart, MEF2-muscle and HNF1-liver, which are usually predicted by
most alternative computational approaches. In these cases, the TF—
tissue association signals are so strong that the successful recovery
of functional associations seems to be insensitive to the choice of the
method. On the other hand, for a number of tissues the top ranking
TFs diverge considerably between different methods. Many of the

440



Identifying regulating transcription factors

association found by PASTAA are hereby strongly supported by
literature as in the case CRX-retina (Furukawa et al., 2002), PTF1-
pancreas (Roux et al., 1989) and TTF1-lung (Kimura et al., 1999).
Besides extensive validation through literature, our predicted
associations are additionally supported by the observation that
the corresponding TFs are significantly more often over-expressed
in their top ranking tissues than expected based on random
sequence sets.

Despite the progress reported here, there are still a number of
tissues and TFs for which no experimentally validated association
could be recovered. One reason for this might be the lack of EST
expression data for several tissues. Therefore, while we observed
that variations in the list of genes assigned to a certain tissue
category do not strongly affect the ranking of TF—tissue associations,
it may still be sensible to integrate different expression datasets [as
suggested by Pennacchio et al. (2007)].

Another reason for missing associations may be caused by TFs
mainly acting on enhancer elements that are located far upstream
or downstream of the transcription start site (TSS). We attempted
to incorporate such elements by using evolutionary conserved
sequences within 10 kb upstream of the TSS to compute the TF
binding affinities but found nearly identical TF rankings for the
analysed tissues (Supplementary Table S2). This indicates that
the majority of detectable tissue-specific sequence signals reside
within proximal promoters while signals outside of this well-defined
region get overshadowed by sequence noise. Recently, databases
assigning enhancer elements to genes based on synteny became
available (Engstrom et al., 2008), which in future will allow
to incorporate more accurately the distal regulatory modules for
the affinity predictions and potentially improve tissue-specific TF
binding predictions.

In addition, recent data indicate that genes can be categorized as
having either a sharp TSS usually associated with a TATA box or
a broad TSS often residing in CpG islands (Carninci et al., 2006).
In this context it is interesting to note that we find a strong TATA
box enrichment in many of the tissue categories for which we also
find functional TF—tissue associations (Supplementary Table S4). In
this context, our definition of a sharp TSS may hamper the accurate
selection of the putative proximal promoter region when dealing
with broad TSSs.

In general, the successful recovery of functional TF associations
is strongly dependent on the definition of an appropriate set of genes
acting in the same biological context as the TF. Given the substantial
number of TF-tissue associations recovered by our method, we
anticipate that PASTAA could also be applied directly to a non-
ranked group of genes acting in a different functional context such
as a metabolic pathway. Recently, two papers by Sinha et al. (2008)
and Warner et al. (2008) predicted a considerable number of TFs
and motif combinations associated with distinct gene sets. Sinha
et al. (2008) also make use of the advantage of integrating weak and
strong TF binding signals, but in contrast to PASTAA, both methods
rely on predefined gene sets.

It is important to realize that our method as well as others merely
suggest likely regulators based on statistical arguments of over-
representation and enrichment. While statistical significance does
not ensure biological relevance, it is reassuring to observe that our
method recovers many known associations among the top ranking
predictions. Nevertheless, all statistical efforts are hampered by the
complex interplay of important alternative regulatory mechanisms

such as post-transcriptional modifications, DNA methylation or
epigenetic modifications that may force a further subdivision of
functionally related genes according to the underlying regulatory
mechanisms.
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