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ABSTRACT

Motivation: Statistical assessment of cis-regulatory modules
(CRMs) is a crucial task in computational biology. Usually, one
concludes from exceptional co-occurrences of DNA motifs that the
corresponding transcription factors (TFs) are cooperative. However,
similar DNA motifs tend to co-occur in random sequences due to high
probability of overlapping occurrences. Therefore, it is important to
consider similarity of DNA motifs in the statistical assessment.
Results: Based on previous work, we propose to adjust the window
size for co-occurrence detection. Using the derived approximation,
one obtains different window sizes for different sets of DNA motifs
depending on their similarities. This ensures that the probability
of co-occurrences in random sequences are equal. Applying the
approach to selected similar and dissimilar DNA motifs from human
TFs shows the necessity of adjustment and confirms the accuracy
of the approximation by comparison to simulated data. Furthermore,
it becomes clear that approaches ignoring similarities strongly
underestimate P-values for cooperativity of TFs with similar DNA
motifs. In addition, the approach is extended to deal with overlapping
windows. We derive Chen–Stein error bounds for the approximation.
Comparing the error bounds for similar and dissimilar DNA motifs
shows that the approximation for similar DNA motifs yields large
bounds. Hence, one has to be careful using overlapping windows.
Based on the error bounds, one can precompute the approximation
errors and select an appropriate overlap scheme before running the
analysis.
Availability: Software to perform the calculation for pairs of position
frequency matrices (PFMs) is available at http://mosta.molgen.mpg.
de as well as C++ source code for downloading.
Contact: utz.pape@molgen.mpg.de

1 INTRODUCTION
An important goal in computational biology is to decipher the
transcriptional regulation of genes. Interaction of nearby tran-
scription factors (TFs) initiate or inhibit transcription of a gene
(Arnone and Davidson, 1997; Fickett, 1996; Yuh et al., 1998).
They mainly bind to DNA upstream of genes by recognizing
TF-specific sequences which can be summarized by a DNA motif.
TFs which combinatorially regulate genes are called cooperative.
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Such TFs are assumed to have exceptionally many DNA motif
occurrences in proximity to each other. Thus, a significant number
of co-occurrences of the corresponding DNA motifs can be used to
assess the strength of cooperativity.

The set of DNA motif occurrences upstream of a gene is called
a cis-regulatory module (CRM; Berman et al., 2002). A CRM is a
sequence region with dense clusters of DNA motif occurrences as
demonstrated experimentally (Clyde et al., 2003; Harbison et al.,
2004) and computationally (Lifanov et al., 2003; Wagner, 1999).
In general, they can be divided into CRMs bound by the same TF,
homotypic CRMs, and heterotypic CRMs bound by different TFs
(Brown et al., 2002; Wagner, 1997). Homotypic CRMs are often
detected using a scoring function (Papatsenko et al., 2002; Wagner,
1999), e.g. FLYENHANCER (Markstein et al., 2002), SCORE
(Rebeiz et al., 2002) and CLUSTER (Lifanov et al., 2003). Common
programs to find heterotypic CRMs are ClusterDraw (Papatsenko,
2007), ModuleSearcher (Aerts et al., 2003), MCAST (Bailey and
Noble, 2003), eCISANALYST (Berman et al., 2004), Cister (Frith
et al., 2001), Cluster-Buster (Frith et al., 2003) and TargetExplorer
(Sosinsky et al., 2003).

CRMs can be detected using ab initio discovery of new (e.g.
Gupta and Liu, 2005; Zhou and Wong, 2004) or based on known
DNA motifs. We assume that the DNA motifs are known. Many
approaches have been proposed integrating different kinds of data
for improving CRM prediction (Manke et al., 2005; Pilpel et al.,
2001; Yu et al., 2006). Since the main characteristic of CRMs
is their high local density of DNA motif occurrences, one essential
data source is always the DNA sequence annotated with DNA
motif occurrences. Here, we focus on DNA motifs represented
by position frequency matrices (PFMs; Stormo, 2000). Other
approaches compute the cooperative binding energy of multiple sites
of TFs (Frith et al., 2004; GuhaThakurta and Stormo, 2001) using
thermodynamical models.

Based on the PFM representation, GuhaThakurta (2006) classifies
the approaches to find CRMs into hidden Markov models (Crowley
et al., 1997; Frith et al., 2001) and occurrence-based approaches. We
further divide the occurrence-based approaches into two categories
(Fig. 1): (i) relying on small distances between DNA motif
occurrences (Klingenhoff et al., 1999; Wagner, 1999; Wasserman
and Fickett, 1998) and (ii) based on co-occurrences of DNA motifs
in a small window (Berman et al., 2002; Bleser et al., 2007; Frith
et al., 2002; Hannenhalli and Levy, 2002; Klein and Vingron, 2007).

© 2009 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



[13:17 4/8/2009 Bioinformatics-btp143.tex] Page: 2104 2103–2109

U.J.Pape et al.

Fig. 1. Two different approaches to detect CRMs: upper panel illustrates
approaches which are based on short distances between DNA motif
occurrences. Lower panel visualizes detection of CRM considering
occurrences in windows.

The method to compute statistical significance is a difficult problem
(Krivan, 2004) and can be solved by:

(i) assuming position independence of occurrences (Frith et al.,
2002; Wagner, 1999; Wasserman and Fickett, 1998),

(ii) employing randomizations (Bleser et al., 2007; Hannenhalli
and Levy, 2002) or

(iii) exact calculation (Boeva et al., 2007).

The position independence of binding site occurrences is strongly
violated for (self-)similar PFMs (Pape et al., 2008a; Wagner,
1999). The significance calculation based on randomization
also encounters problems for similar PFMs, hence, they are
usually removed from the analysis (Hannenhalli and Levy, 2002).
In addition, incorporating the complementary strand introduces
further dependencies and worsens the results. The exact calculation
(Boeva et al., 2007) based on an Aho–Corasick automaton (Aho
and Corasick, 1975) has high computational complexity such that
solutions for longer PFMs are hard to obtain.

In Pape and Vingron (2008), we propose a fast and accu-
rate approximation for the significance calculation of CRMs
circumventing the position independence assumption, incorporating
similarity between PFMs, and incorporating the complementary
strand. We define a CRM to be a sequence region, which we call
a window, of defined length where all DNA motifs of a given set
have at least one occurrence. This is called the co-occurrence event.
Thus, we assume that TFs only interact if their motifs occur within
the window size. Although long-range interactions are reported,
especially in higher organisms (e.g. Yoshida et al., 1999), it is
impossible to predict such interactions on the sequence level due to
high stochastic noise. In fact, the larger the window the higher the
probability for the co-occurrence event to be in a random sequence.
Hence, the length of the window has to be small to get statistically
significant CRMs. Using TransCompel (Matys et al., 2006) to get
a first idea of a good choice for the window size shows that 98%
of the 375 known vertebrate composite elements have a distance
of less than 100 bp (Klein and Vingron, 2007). We compute the
probability of a CRM which is the probability of the co-occurrence
event in a random sequence given a window length. Considering
the overlap probabilities between the occurrences of the TF binding
sites, we capture the (self-)similarities of the PFMs and most of the
dependencies introduced by the complementary strand.

In this article, we extend the approach such that one can compute
the length of the window for a specific set of DNA motifs by defining
the probability of the co-occurrence event as parameter. We focus
on pairs of DNA motifs. Intuitively, the results show that for similar
PFMs the length of the window is smaller than for dissimilar PFMs
given the same probability. Due to this computation, one can adjust
the window size based on the similarity of the PFMs. Hence, by using
different window sizes for sets of PFMs sharing different degrees of
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Fig. 2. Proposed algorithm to compute cooperativity of a pair of TFs: first,
divide sequence into windows. Second, count windows containing at least
one hit of each TF. Compute corresponding count distribution under random
sequence model to obtain P-value for cooperativity.

similarity between their PFMs, one can obtain equal co-occurrence
probabilities for all sets. Therefore, follow-up analyses do not
have to consider the similarity between PFMs anymore. Otherwise,
similar PFMs would yield more co-occurrence events than dissimilar
PFMs just due to their similarity. This would generally bias statistics
based on the number of co-occurrence events. Hence, window size
adjustment by considering the similarity of PFMs is necessary. We
provide strong evidence for this by comparing our approach with an
approach ignoring similarities based on simulated data.

Furthermore, one is interested in whether specific TFs are
generally involved in the same CRMs. We call this cooperativity of
TFs. In Pape and Vingron (2008), we also show how to compute
the significance of cooperativity. The sequence is divided into
equal-sized non-overlapping windows covering the whole sequence
(Fig. 2). Based on the count distribution, we compute a P-value for
the number of observed CRMs (windows with the co-occurrence
event). In case of non-overlapping windows the count distribution
is exact except for the approximations in the calculation of the
co-occurrence event. The accuracy of the approximation is shown
by comparison with a simulation study (Pape and Vingron, 2008).
In contrast, overlapping windows introduce further dependencies.
Therefore, we show in this article how to compute error bounds using
the Chen–Stein method. Applying these error bounds to selected sets
of PFMs show that similar PFMs retrieve high approximation errors
due to stronger dependencies between overlapping windows. Again,
these results are supported by a simulation.

In the next section, we first show that the approach can generally
be extended to sets of PFMs. Afterwards, we focus on pairs of PFMs
for simplicity. There, we derive formulae for the window length
and explicitly state the Chen–Stein error bounds. Furthermore,
we introduce the independence approach ignoring similarities and
describe the dataset of human TFs and how the PFMs are selected.
Section 3 applies the formulae for window length and the Chen–
Stein error bounds to selected pairs of TFs and compares the new
approach with the independence approach based on simulated data.

2 METHODS
We assume that each TF is given by a PFM. For each position j of a sequence,
we have an indicator random variable Yj(A) which is 1 if the summed score
at this position reaches the threshold. We denote the random variables for the
complementary strand by a prime, e.g. Y ′

j (A). The threshold can be controlled
by the type I error αA :=P(Yj(A)=1)=P(Y ′

j (A)=1) in a random sequence.
The model for the random sequence is assumed to be an i.i.d. sequence
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defined by the GC content. We assume this simple background model, since
it causes the distribution of hits on both strands to be equal.

As stated before, a CRM is a window of given length w with at least one hit
for TF A and one hit of TF B. We split up the calculation of this co-occurrence
event into three parts: Let Nw(A)=∑w

j=1(Yj(A)+Y ′
j (A)) denote the random

variable for the number of hits of TF A in a random sequence of length
w where we allow hits overlapping the boundary of the window. Now, we
can state the probability p(w) of a CRM in a given window of length w by
p(w) :=P(Nw(A)>0,Nw(B)>0). Calculation using the inclusion–exclusion
formula results in

p(w) = 1−P(Nw(A)=0)−P(Nw(B)=0)

+P(Nw(A)=0,Nw(B)=0). (1)

Applying transformations as described in Pape and Vingron (2008) yields
for the probability of the co-occurrence event p(w)≈1−e−rA·w −e−rB ·w +
e−rAB ·w where rA and rB correspond to rates for the occurrence of TF A
and B, respectively, and rAB contains the joint rate of A and B considering
overlaps.

2.1 Sets of PFMs
So far, we derived formulae to compute the co-occurrence probability for
pairs of PFMs. Here, we briefly extend the approach to deal with a set T of
PFMs with size |T |. Equation (1) reduces the calculation of the co-occurrence
probability to compute the (joint) events of zero counts of the PFMs. For a
set of TFs, we apply the inclusion–exclusion formula on the count variables
of all PFMs:

P(min
T∈T

Nw(T )>0) = 1−
∑
T∈T

P(Nw(T )=0)

+
∑
T∈T

∑
U∈T \T

P(Nw(T )+Nw(U)=0)

−···
Hence, one only has to compute the probabilities for zero counts for all
subsets U of the power set of T . Calculation of these probabilities is
straightforward using the same technique as described in Pape and Vingron
(2008) and are given in Pape (2008).

2.2 Calculate window size
From now on, we only consider pairs of PFMs although extension to sets of
PFMs is possible. In practice, the probability for the co-occurrence event is
given as parameter and the window size has to be computed. In this case,
we have to find the roots of

1−e−rA·w −e−rB ·w +e−rAB ·w −p.

Using the Newton approach, we obtain following recursion starting from a
chosen initial value w0:

wi+1 =wi − 1−e−rA·wi −e−rB ·wi +e−rAB ·wi −p

rAe−rA·wi +rBe−rB ·wi −rABe−rAB ·wi
.

In case one requires a closed formula, one can also apply a Taylor expansion
to the formula for the co-occurrence probability. For example, the formula
for a second-order expansion which already gives accurate results for small
p is given with a=rAB −rA −rB and b=r2

AB −r2
A −r2

B by

w(p)= a

b
+
√(a

b

)2 + 2p

b
.

2.3 P-value for cooperativity
Previously, we have shown how to compute the co-occurrence probability
p(w) in a given window. To compute cooperativity, we suggest to decompose
the sequence into non-overlapping windows of equal size and count the
number x of CRMs (windows with the co-occurrence event). We define for

each window i a Bernoulli random variable Wi which is 1 if the corresponding
window contains a co-occurrence event and otherwise 0. Denoting the
number of windows by m=n/w with sequence length equal to n, we define
W :=∑m

i=1 Wi. The number W of windows with co-occurrence events is
distributed as Poisson P(ϑ) with ϑ =p(w)·m if p(w)→0 and m→∞.

2.4 Bounds for overlapping windows
Considering overlapping windows necessitate the step size s as parameter, the
number m of windows becomes m=n/s−w+1. We assume that n,s,w are
chosen such that m,n,s,w are positive integers and s<w< 1

2 n. Obviously,
overlapping windows are dependent on each other. In this case, we can still
use a Binomial or Poisson distribution but the dependencies lead to an error
in the approximation. Using the Chen–Stein method (Chen, 1975), the error
can be quantified. The quantification is done in terms of the total variation
distance. Let U and V be any two random processes with values in the same
space E, then the total variation distance between their distributions [denoted
by L(·)] is

dTV
(
L(U),L(V )

)= sup
D⊂E

|P(U ∈D)−P(V ∈D)|

where D is assumed to be measurable. Here, we focus on the Poisson
approximation since it obtains slightly better error bounds. Thus, we calculate
the bound for dTV(L(W ),P(ϑ)). Let I :={i :0< i≤m} denote the index set
of the Bernoulli variables. The main idea is to define for each Bernoulli
variable Wi a neighborhood set Bi ⊆ I of random variables which have strong
dependencies with Wi. We also require i∈Bi. In our case, there are only local
dependencies since only overlapping windows are dependent on each other.
Therefore, we capture all dependencies in the sets Bi which means that for
each window i the set Bi contains the index i and the indices of overlapping
windows to the left and to the right. Hence, we obtain the bound derived
from Theorem 1 in Arratia et al. (1990) using an improved bound (Barbour
et al., 1992) dTV(L(W ),P(ϑ))≤ϑ−1(1−e−ϑ )(b1 +b2) with

b1 :=
∑
i∈I

∑
j∈Bi

E[Wi]·E[Wj], b2 :=
∑
i∈I

∑
j∈Bi,j 
=i

E[Wi ·Wj].

The bound b1 is straightforward to compute as it only contains the first
moment. We have to consider the fact that the Bis for the first and last
few windows contain less dependent variables than windows in the middle
of the sequence. Let r =w/s, then for example, the first window has r−1
overlapping windows, thus, |B1|=r since we also include index 1 in the
set. The second window additionally overlaps with the first window, thus,
|B2|=|B1|+1. The set size is incremented by 1 until the (r+1)-th window
as this window has equal number of overlaps to the left and to the right.
At the end of the sequence, the set size is decremented in the same way.
Hence, we obtain b1 =p(w)2

(
r(1−r+2m

)−m).
The second bound b2 is more complicated to calculate because it contains

the second moment. Since we consider Bernoulli variables, the second
moment is the probability that both variables are equal to one: E[WiWi+k]=
P(Wi =1,Wi+k =1). Considering only two PFMs A and B, we can write this
probability in terms of the count random variables by decomposing it into
four disjoint events as illustrated in Figure 3.

Denoting the size of each non-overlapping part by d =k ·s while the
overlapping part has a length of v=w−d, we obtain for the second moment:

E[WiWi+k] = p(v)+
(

1−e−drA
)2[

1−e−vrB −p(v)
]

+
(

1−e−drB
)2[

1−e−vrA −p(v)
]

+p(d)2e−vrAB .

To compute the bound, we observe that E[WiWi+k] is independent of
i since all Wis are identically distributed and have the same pairwise
dependencies. Therefore, we clarify notation by defining ζk :=E[WiWi+k].
For the same reason, we also obtain ζk =E[WiWi−k]. Using the further
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Fig. 3. The four disjoint events for two windows where the dark gray area
indicates the overlap. Regions containing an A or B must necessarily contain
at least one hit of the corresponding PFM, while Ā and B̄ label regions
where the respective PFM must not occur. In blank regions, any PFM and
combinations of PFMs might be present.

definition of ζ =∑r−1
k=1ζk , we yield for bound b2 applying the same logic

as above:

b2 = 2·
r∑

i=1

[
ζ +

i−1∑
k=1

ζk

]
+2(m−2r)ζ

= 2

(
mζ −rζ +

r∑
i=1

i−1∑
k=1

ζk

)
.

Here, we assume that the empty sum (
∑i−1

k=1ζk for i=1) is equal to 0.

2.5 Alternative independence approach
To assess the necessity to incorporate dependencies into the calculation,
we compare the results with an approach ignoring dependencies. For the
probability of no hits, we obtain

P(Nw(A)=0) ≈ (
1−αA

)2w
,

P(Nw(B)=0) ≈ (
1−αB

)2w
,

P(Nw(A)+Nw(B)=0) ≈ [(
1−αA

)·(1−αB
)]2w

.

Since we also consider the complementary strand, we have to double the
window size w. For the rates, we obtain

r∗
A ≈2αA −α2

A, r∗
B ≈2αB −α2

B,

r∗
AB ≈2[1−(1−αA) ·(1−αB)]−[1−(1−αA)·(1−αB)]2.

The factor 2 and the substraction of the squared probability is necessary
to incorporate the complementary strand. Eventually, we obtain for the
co-occurrence probability p∗(w) in a sequence of length w

p∗(w)=1−e−r∗
A·w −e−r∗

B ·w +e−r∗
AB ·w.

Obviously, the approach does not incorporate similarities between PFMs
A and B.

2.6 Data
The PFM set used here is the vertebrate_non_redundant_minFP set from the
TRANSFAC database (v. 11.3) (Matys et al., 2003). Since, despite the name,
the set contains more than one PFM per TF (214 in total), we only select the
first PFM per TF and obtain a set of 142 PFMs. Hence, we are left with a set
of one PFM per TF. However, the remaining similarities between PFMs in
this set are not negligible. To show this, we measure the similarity between
all pairs of PFMs by the limiting covariance (Pape et al., 2008b). Then, we
select the pair of PFMs with highest similarity (0.0002): S8 (V$S8_01)
and CHX10 (V$CHX10_01). We use this pair for our analysis. To assess
the influence of similarity, we also select a very dissimilar pair of PFMs.
Given S8, the most dissimilar PFM is HIC (V$HIC1_02) with a similarity

Fig. 4. Logos (Crooks et al., 2004) of the selected PFMs CHX10, S8 and
HIC. The first two motifs share the motif ‘AATTA’and, therefore, are similar.
The third PFM has no similarity to other PFMs.

of −0.000004. The similarity between CHX and HIC is higher with a value
of −0.000003. Hence, we define a pair of similar PFMs S8 and CHX10 and
two pairs of dissimilar PFMs S8 and HIC as well as CHX and HIC (Fig. 4).

All analyses regarding PFMs are performed based on a balanced type I
error (α) in a sequence of length 500 controlled at a level of 10% [see Pape
et al. (2006) for details]. In a step called regularization, we add pseudo-counts
to the position-specific distributions of the PFM according to the information
content of the position (Rahmann, 2003). Simulated sequences are generated
i.i.d. with 50% GC content.

3 RESULTS
In this section, we analyze the influence of the similarity between
PFMs on the co-occurrence probabilities. First, we determine the
window size for each pair such that the co-occurrence probability
is 1%. Next, we confirm the approximated window size by a
simulation. Based on these results, we compare the approximated
cooperativity distributions for all pairs with the corresponding
empirical distributions and the results from the independence
approach. Finally, we apply the approach to overlapping windows
and report the accuracy of the approximation.

3.1 Co-occurrence probability
First, we apply the formulae for the window size given a co-
occurrence probability of P=0.01 to all pairs of PFMs. The
pair of similar PFMs S8:CHX10 yields a window size of 54 bp
for both Newton iteration and Taylor expansion. Computing the
co-occurrence probability for the window size 54 bp yields exactly
0.01. Hence, both approximations are very accurate. The most
dissimilar pair S8:HIC yields for the same given co-occurrence
probability a window size of 297 bp using Newton iteration and
281 bp using Taylor expansion. The corresponding co-occurrence
probabilities are 0.01 and 0.009. Hence, the Newton iteration is
slightly more accurate than the Taylor expansion. The dissimilar pair
CHX:HIC yields a window size of 266 bp using Newton iteration
and a slightly smaller window of 252 bp using Taylor expansion.
Again, the window size derived from the Newton iteration is exact
such that it leads to a co-occurrence probability of 0.01, while the
Taylor extension yields 0.009.

In comparison to the similar pair, one obtains an ∼5-fold larger
window size for the dissimilar pairs. Since similar PFMs tend to
have overlapping hits, their probability of co-occurrence which
includes overlapping hits is high. Therefore, an occurrence of one
PFM increases the probability of an occurrence of the other PFM.
In contrast, dissimilar PFMs cannot overlap. Thus, presence of one
PFM decreases the probability of an (overlapping) occurrence of the
other PFM. Due to the big difference in the window sizes, it is very
important to consider the similarity between PFMs. The presented
approach shows that one can simply adjust the window size.
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A B C

Fig. 5. Histograms of empirical co-occurrence probabilities for (A) the most
similar pair S8 and CHX10 with window size 54 bp, for (B) the most dis-
similar pair S8 and HIC with window size 297 bp and for (C) the dissimilar
pair CHX and HIC with window size 266 bp.

Hence, one would use a window size of 54 bp for the similar pair and
of 297 bp and 266 bp, respectively, for the dissimilar pairs. Then, all
pairs have almost equal co-occurrence probabilities.

We verify this prediction by a simulation study. After annotating
100 random sequences each of length 1 000 000 bp with the
corresponding PFMs, we count the number of co-occurrence events
given above window sizes. The histograms for all three pairs are
shown in Figure 5. The left panel contains the histogram for the
similar pair S8:CHX. The distribution has a mean of 0.007 and a
SD of 0.0006. Hence, the approximated co-occurrence probability of
0.01 is slightly biased towards lower probabilities. The reason is that
the approximation of the co-occurrence probability only considers
first-order dependencies between occurrences. This means overlaps
between more than two occurrences are ignored. The center panel of
Figure 5 shows the histogram for the most dissimilar pair S8:HIC.
The mean is 0.012 with SD 0.002. Thus, the empirical probability
is slightly higher than our approximation but the difference is still
within one SD of the mean. The right panel contains the dissimilar
pair CHX:HIC. The distribution has a mean of 0.009 and an
SD of 0.002. Therefore, our approximation slightly overestimates
the co-occurrence probability. Anyhow, the approximation of the
co-occurrence probability is very accurate. Since dissimilar PFMs do
not strongly overlap, the corresponding first-order approximations
yield more accurate results.

In contrast, applying the window size of one of the dissimilar
pairs (e.g. 297 bp) to the similar pair would yield a co-occurrence
probability of around 0.04 (retrieved by simulation). Hence, by
adjusting the window size the difference between co-occurrence
probabilities decreases from almost 3- to 4-fold to quite comparable
co-occurrence probabilities. As we will see next, such small
differences already have strong influence on the cooperativity
P-values.

3.2 Cooperativity
Based on the co-occurrence probabilities and the window sizes, one
can compute P-values for cooperativity. This is done by counting the
number of windows with a co-occurrence event. The P-value is the
probability for at least as many co-occurrence events as observed.
A simulation with 10 000 sequences of length 100 000 bp is used as
reference. In each sequence, we count the number of co-occurrence
events. The frequencies of the counts are the empirical distribution.

Fig. 6. Comparison of the log10 P-values of the approximation (y-axis) and
the simulation (x-axis). Red cross indicates the new approach while green
circles correspond to the independence approach. Upper panels are based on
non-overlapping windows with size such that co-occurrence probability is
1%. Left panels show the most similar pair S8:CHX10 with window size
54 bp, center panels contain the most dissimilar pair S8:HIC with window
size 297 bp, and the right panels belong to the dissimilar pair CHX:HIC with
window size 266 bp. Lower panel considers overlapping windows where two
neighboring windows overlap by 10%, yellow area indicates Chen–Stein
bounds.

Figure 6 compares the log10 P-values of two approximations and
the simulation. The left panel shows the computations for the similar
pair S8:CHX. The approximation of the independence approach
strongly underestimates the P-values, while the new approach yields
P-values differing only by around one order of magnitude from the
empirical values. The reason for the huge underestimation is the
high-overlap probability of the PFMs. Therefore, the co-occurrence
probabilities are underestimated leading to the underestimation of
the cooperativity P-values. The new approach considers overlap
probabilities and, therefore, corrects against similarity. Using
overlapping windows (lower panel, overlap of 10%) yields similar
results. Since the Chen–Stein error bound is 0.21, it is not possible
to obtain P-values smaller than this value. Hence, with such an
overlapping window scheme, it is impossible to obtain significant
P-values.

The center panels of Figure 6 contain the comparisons for the most
dissimilar pair S8:HIC. The independence approach overestimates
the P-values by one order of magnitude, while the new approach
underestimates the values by around half an order of magnitude. The
underestimation can be explained using the results of the last section:
the new approach underestimates the co-occurrence probabilities.
Thus, fewer windows with a co-occurrence event are expected,
therefore, the probabilities are lower. The results for overlapping
windows (lower panel) are very similar, again. The Chen–Stein error
bound has a value of 0.07. Again, such a high approximation error
makes it difficult to obtain significant P-values.

The dissimilar pair CHX:HIC is compared in the right panels
of Figure 6. The independence approach slightly overestimates the
P-values, as well as the new approach. However, the new approach
is more accurate. The overestimation can be explained by the
overestimation of the co-occurrence probabilities. For overlapping
windows, the results are similar except for the smallest P-values.
However, the smaller the P-values the more simulations are needed.
Thus, the smallest P-values have weakest support. Since they are
outliers, we do not consider them. The Chen–Stein error is also 0.07.

In summary, we can state that the independence approach works
for dissimilar pairs of PFMs while it cannot be used for similar pairs.
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In contrast, the new approach incorporates the similarity and returns
accurate approximations for all pairs of PFMs independent of the
shared similarity. Furthermore, overlapping windows lead to high
approximation errors such that overlapping windows should be
used carefully. However, using the new approach one can compute
the approximation error before performing the analysis. Based
on this, one can ensure that the overlapping scheme can yield
significant P-values at least theoretically. Here, the analysis is
done for sequences of length 100 000 bp. The Chen–Stein bounds
implicitly depend on the sequence length because the number of
windows is considered. Therefore, we also analyze the bounds for
smaller sequences in the next section.

3.3 Overlapping windows for small sequences
Assuming a sequence length of 1000 bp, we compute Chen–Stein
error bounds for the cooperativity P-values. Using 54 bp long
windows which overlap by 10% yields an error bound of 0.04
for the similar pair S8:CHX10. Hence, it will still be difficult
to obtain significant results since one cannot obtain P-values less
than 0.04. In general, similar PFMs have a high approximation
error for overlapping windows since overlapping occurrences induce
high dependencies between two windows. In contrast, the dissimilar
pairs S8:HIC and CHX:HIC have error bounds of 0.002 and 0.003
for window sizes of 297 and 266 bp, respectively. The bounds are
smaller for two reasons: first, the windows are larger and thus
fewer windows are used for the sequence. Second, dependencies
between overlapping windows are smaller since dissimilar PFMs
have smaller overlap probabilities. Hence, in case of dissimilar
PFMs one can use overlapping windows and still obtain significant
cooperativity.

4 DISCUSSION
In conclusion, we can state that detection of significant
co-occurrences and cooperativity based on PFM occurrences is a
difficult problem due to strong dependencies induced by similarity
between PFMs. We show a reasonable approximation to adjust the
window size such that co-occurrence and cooperativity probabilities
are comparable between similar and dissimilar PFMs. Therefore,
statistical followup analyses can ignore the similarity issue. Instead,
the interpretation of cooperativity changes slightly: the window
size defines the longest distance between two motifs such that the
corresponding TFs are assumed to interact. Therefore, similar pairs
of interacting TFs are required to have smaller distances between
occurrences than dissimilar pairs of TFs. This is due to the fact that
interaction over longer distances cannot be predicted with sufficient
statistical support for similar TF pairs.

Furthermore, we propose a new approximation for cooperativity
using overlapping windows. Using the Chen–Stein technique, we
can bound the approximation error. Results show that similar PFMs
imply strong dependencies between overlapping windows. This
leads to high approximation errors. In contrast, dissimilar PFMs
yield low approximation errors. Based on our error bounds, one
can precompute the approximation errors and select an appropriate
overlap scheme before running the analysis. We give strong evidence
for the accuracy of our approach and the necessity of incorporating
similarities by comparison with the empirical distribution and the
independence approach.

Our results underline the difficulty in applying overlapping
windows especially for similar motifs. However, it is important to
use overlapping windows, otherwise, a motif occurring at the end
of one window with another occurring at the beginning of the next
window would not be counted as a co-occurrence event although
the distance between them might only be a few base pairs. Hence,
one could derive statistics for the distances between motifs instead
of using windows (see Fig. 1). The distance between two successive
occurrences of the same motif follows an exponential distribution
with the Poisson rate as a parameter assuming independence between
the occurrences (Wagner, 1999). As shown in Pape et al. (2008a),
the independence assumption does not generally hold. This makes
derivation of the distance distribution already complicated for only
one TF. Extension to more than one TF is even more difficult since
the order of overlapping motifs has to be considered.

The main shortcoming of the approach is the limitation to an
i.i.d. background model. Extension to a Markov model is not
straightforward since calculation of co-occurrence probabilities rely
on the independencies between sequence positions. In addition, we
require the distribution of occurrences on both strands to be equal.
This can be justified by Chargaff’s second law (Chargaff et al.,
1951). Furthermore, in contrast to coding sequence, there is no
motivation to handle both strands in the upstream region differently.
Therefore, modeling of CpG islands and other higher order sequence
features cannot be done by using a more elaborate sequence
model. However, one can circumvent this problem by using
different window sizes for different sequences incorporating the
respective GC content. Another strategy could use a mixture Poisson
distribution based on different rate parameters ϑ incorporating
variable GC content as approximation.
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