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ABSTRACT

Summary: The analysis of gene regulatory networks (GRNs) is a
central goal of bioinformatics highly accelerated by the advent of
new experimental techniques, such as RNA interference. A battery
of reverse engineering methods has been developed in recent years
to reconstruct the underlying GRNs from these and other experimen-
tal data. However, the performance of the individual methods is
poorly understood and validation of algorithmic performances is still
missing to a large extent. To enable such systematic validation,
we have developed the web application GeNGe (GEne Network
GEnerator), a controlled framework for the automatic generation of
GRNs. The theoretical model for a GRN is a non-linear differential
equation system. Networks can be user-defined or constructed in a
modular way with the option to introduce global and local network
perturbations. Resulting data can be used, e.g. as benchmark
data for evaluating GRN reconstruction methods or for predicting
effects of perturbations as theoretical counterparts of biological
experiments.
Availability: Available online at http://genge.molgen.mpg.de
Contact: hache@molgen.mpg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Inferring gene regulatory networks (GRNs) from experimental data
is a challenging task becoming increasingly important with routine
practical use of corresponding experimental techniques, such as
RNA interference combined with microarray or next generation
sequencing. Various computational algorithms for reconstructing
GRNs from experimental data have been developed in the last
decades (see Supplementary Material for an overview). Besides
the algorithmic developments, the actual assessment of methods
performances remains a challenge, primarily due to the lack of
experimental benchmark data. However, such systematic validation
is crucial, since it shows strengths and weaknesses of the methods
and their suitability for the specific problem domain (time series or
perturbation experiments, noisiness of data, etc.).

Availability of experimental data, with a few exceptions, such as
the network described by Davidson et al. (2002), is still the major
bottleneck for GRN reconstruction. Hence, generating simulated
data derived from theoretical considerations is still the method
of choice for constructing benchmark datasets and for conducting
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performance studies on individual methods. These theoretical
models should reflect features and complexity of real regulatory
processes. They allow performance analysis under well-defined
conditions using appropriate network characteristics, network
complexity, noise levels, missing data or other hidden information.
This knowledge can aid further algorithmic developments and guide
improvements of experimental as well as analytical methods.

There are some tools that provide such forward GRN modeling
approaches, such as SynTReN (den Bulcke et al., 2006), RENCO
(Roy et al., 2008) or SynBioSS (Hill et al., 2008). However,
despite of their usefulness they lack some features such as
automatic generation of different network types, manipulation of
network structure, simulation of global and local perturbation and
visualization of simulation results in a single framework, specialized
for GRNs (Supplementary Material).

To meet the above mentioned requirements, we have developed
the GRN generator GeNGe (GEne Network GEnerator), a web
application to model GRNs of different types. The GRNs are used to
set up a deterministic ordinary differential equation (ODE) system.
The gene regulatory model system is composed of instances of
mRNAs and proteins acting as transcription factors (TFs) and their
corresponding target genes. Non-linear kinetics based on the logic
described by Schilstra and Nehaniv (2008) are used to describe
the influence of sets of independently or jointly binding TFs on
the expression of a gene. Various dynamics can be modeled,
such as oscillation and bistability (Supplementary Material). Global
perturbations (network noise) or local perturbations of a single or
multiple network nodes can be simulated and the resulting time
series are visualized in order to display the perturbation effects.
All results can be downloaded and used for validation of reverse
engineering methods or studies of the network dynamics.

Moreover, GeNGe offers features for the topological
characterization of GRNs. Network parameters are computed,
such as in- and out-degree distributions, average path lengths and
clustering coefficients. Furthermore, by varying parameters of the
kinetic laws or by choosing different kinetics, in silico analyses
can be performed, e.g. on the effects of knock-downs (partial
knock-downs) of a single gene or groups of genes. The results can
be used to define critical network nodes and suitable candidates for
perturbation experiments and thus guide future experimental work.

2 FUNCTIONALITY
The workflow of GeNGe is divided into three levels (Fig. 1). In the
first level, the network level, networks are added to a network
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Fig. 1. Flowchart of the simulation process. It is divided into three levels,
the network level, to generate a network topology; the kinetic level, to select
kinetic laws of the dynamic model; and the simulation level, to set the
parameter values and simulate time series with local or global perturbation.

repository that will be used for further analyses and simulations.
GeNGe provides several pre-defined GRNs, such as a part of the
developmental network in sea urchin described by Davidson et al.
(2002), artificial networks and network motifs. Furthermore, the
upload of user-defined networks, in form of tables or adjacency
matrices, is supported. Various artificial networks can be generated
such as random networks, scale free networks and networks
composed of small regulatory network motifs (Barabási and Oltvai,
2004; Bollobás et al., 2003; Lee et al., 2002). Network parameters
can be adjusted by the user to generate networks with specific
topological characteristics. Furthermore, it is possible to change any
network by adding or deleting nodes and edges as well as associated
regulation strengths. TFs are assumed to bind independently on the
DNA. Nevertheless, sets of jointly binding TFs can be specified.
The networks can be visualized and diverse topological measures
are calculated, e.g. in- and out-degree distributions, average path
lengths and clustering coefficients.

In the next level, the kinetic level, kinetics of the model are
specified. Degradation of mRNA and protein can be modeled by
a linear or a Michaelis–Menten kinetic. The translation is described
by a linear kinetic law. For the transcription dynamic, different non-
linear kinetic laws can be selected. In the third level, the simulation
level, parameters of individual kinetic laws can be specified or
set randomly. Based on the network topology, the kinetics and the
parameters, an ODE system of the network is set up and exported to
PyBioS simulation engine via a web-services based API (Wierling
et al., 2007). Besides unperturbed time series analysis, global
perturbations (such as Gaussian noise) as well as single or multiple
local network perturbations (e.g. knock-downs) can be introduced
and the resulting steady states of the system are computed. The
procedures can be repeated with different settings and used in an
iterative way.

All resulting time series can be visualized. For knock-down
experiments, the ratio of each network node of the knock-down and
control simulations is calculated and visualized in the network graph.
All results, including the networks in the format of Systems Biology
Markup Language (SBML), time series and simulation parameters

Fig. 2. Example workflow in GeNGe. (A) Pre-defined network ‘Simple
Oscillator’ is selected. (B) A kinetic schema for transcription and degradation
is specified. (C) Local perturbations (knock-down) of gene lacI of degree
80% is selected. (D) Simulated time courses of the mRNA and proteins for
control (blue) and knockdown (red) can be visualized or downloaded.

can be downloaded for further analyses. More details about the
network and data generator is given in the Supplementary Material.

3 EXAMPLE
An Example workflow in GeNGe is shown in Figure 2 which is
adapted from the synthetic repressilator by Elowitz and Leibler
(2000). The pre-defined network ‘Simple Oscillator’ is added to the
network repository. A local perturbation of gene lacI is introduced
with a knock-down degree of 80%. The control and knock-down
time series are calculated. The oscillations of the mRNAs and
proteins are still observable with this rate of knock-down, however,
there are changes in frequency and amplitude. A breakdown of
the oscillations is observable at 97% rate of knock-down (data not
shown).

Whereas the effect of local perturbations is straightforward in
small networks, in larger networks the impact of such perturbations
on the steady state of the system is less obvious and thus simulations
can guide experimental work in selecting the most promising
candidates. An example given in the Supplementery Material shows
that knock-downs of genes encoding highly connected TFs with
many targets have not always a large impact on the global system
state. In contrast, TFs with critical positions within the network can
have a large downstream effect even if they have only a few direct
targets.
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