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Abstract
Background: For over 30 years potentials of mean force have been used to evaluate the relative
energy of protein structures. The most commonly used potentials define the energy of residue-
residue interactions and are derived from the empirical analysis of the known protein structures.
However, single-body residue 'environment' potentials, although widely used in protein structure
analysis, have not been rigorously compared to these classical two-body residue-residue
interaction potentials. Here we do not try to combine the two different types of residue interaction
potential, but rather to assess their independent contribution to scoring protein structures.

Results: A data set of nearly three thousand monomers was used to compare pairwise residue-
residue 'contact-type' propensities to single-body residue 'contact-count' propensities. Using a
large and standard set of protein decoys we performed an in-depth comparison of these two types
of residue interaction propensities. The scores derived from the contact-type and contact-count
propensities were assessed using two different performance metrics and were compared using 90
different definitions of residue-residue contact. Our findings show that both types of score perform
equally well on the task of discriminating between near-native protein decoys. However, in a
statistical sense, the contact-count based scores were found to carry more information than the
contact-type based scores.

Conclusion: Our analysis has shown that the performance of either type of score is very similar
on a range of different decoys. This similarity suggests a common underlying biophysical principle
for both types of residue interaction propensity. However, several features of the contact-count
based propensity suggests that it should be used in preference to the contact-type based
propensity. Specifically, it has been shown that contact-counts can be predicted from sequence
information alone. In addition, the use of a single-body term allows for efficient alignment strategies
using dynamic programming, which is useful for fold recognition, for example. These facts,
combined with the relative simplicity of the contact-count propensity, suggests that contact-counts
should be studied in more detail in the future.
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Background
Accurate descriptions of the different non-covalent inter-
actions involved in protein folding and stability are essen-
tial for a number of related problems. Potential energy
functions based on such terms have been widely used to
facilitate: fold recognition [1-3], homology modelling
[4,5], docking [6], ab-initio structure prediction [7-9],
sequence design [10] and the analysis of protein folding
kinetics [11,12]. In each case, the purpose of the potential
function is to discriminate between a variety of alternative
conformations, selecting the most energetically favoura-
ble (assumed to be the most native) for further analysis
[13]. Different potential energy functions have been
defined at different levels of structural resolution [14]. At
the atomic level, various pairwise inter-atom potentials
(force-fields) have been developed from the detailed anal-
ysis of small, protein-like compounds. These include:
ECEPP [15,16], MM [17,18], AMBER [19,20], CHARMM
[21-23] and GROMOS [24]. Potential functions between
distinct groups of atoms have also been defined, typically
between pairs of residues [8,25-28] or idealised elements
of secondary structure [9,29-34]. These 'potentials of
mean force' (mean-fields) have the nature of free energies
[27,35], and may be derived by conformational averaging
[7] or, more commonly, by empirical methods as
described below.

There are two commonly used methods for deriving
empirical potential energy functions [36]. The first
method employs a statistical analysis of the observed
'interactions' [8,25,26,37,38]. In this method, the
observed occurrence of a particular interaction is weighted
by its expected occurrence in a given reference state
[27,39]. The resulting statistical interaction propensities
can be either converted into energies using the Boltzmann
distribution [8,25,26,38] or log-odds scores [40,41].
However, it has been shown that these two types of pro-
pensity are essentially the same [36]. In the second
method, a potential function can be directly optimised in
order to discriminate between native and near-native
(decoy) structures [42]. This technique resembles
machine learning, and has been applied in a variety of dif-
ferent ways, usually by maximising the discrimination
between an average decoy and the native structure [43-
46]. Either of the above two methods may be applied to
any feature of the protein structure that can be parameter-
ised [9]. In the current work, we focus on the statistical
analysis of residue interaction propensities. Previously, a
variety of different methods have been applied to derive
empirical residue-residue interaction potentials, often
yielding remarkably consistent results [27]. However, the
physical basis of the empirically derived potentials
remains ambiguous [47]. Specifically, it has been shown
that protein structures are inconsistent with the assump-

tions that underlie the use of the Boltzmann distribution
[28,48].

The major criticism of empirical residue-residue interac-
tion potentials is that they ignore the protein/solvent
boundary [27,28,48]. Consequently, there is an apparent
attractive force between residues that co-segregate into the
protein surface or core regions [28]. To address this, sev-
eral groups have developed residue-specific environment
potentials. These residue-specific environment potentials
are usually correlated with hydrophobicity, measuring the
extent to which each residue is buried in the protein core.
In this way these single-body environment potentials cap-
ture information about the protein/solvent boundary.
Such potentials have been combined with residue-residue
interaction potentials: as a 'solvent correction factor'
[49,50], as an ad-hoc repulsive term [38], and using a
Bayesian framework to avoid over-counting [40].

The above combination of two-body, residue-residue
interaction potentials with single-body, residue-specific
environment potentials raises the question as to which
type of potential is the most specific for the native protein
structure. To address this question, we separated statistical
residue interaction propensities into two different types of
score: a two-body, residue-residue 'contact-type' score,
and a single-body, residue 'contact-count' score.

These two types of score can be expected to capture quali-
tatively different kinds of residue interaction propensities.
The resulting propensities can be understood in terms of
biophysical properties of protein structure. For example,
the contact-type score can encode the fact that hydropho-
bic residues tend to interact with other hydrophobic resi-
dues in preference to hydrophilic residues. In contrast, the
contact-count score can encode the fact that bulky hydro-
phobic residues tend to have more residue-residue inter-
actions than small hydrophilic residues.

Here we report a comparison of two-body, residue-residue
'contact-type' scores and single-body, residue 'contact-
count' score, as described below.

Results
Two different types of residue interaction propensity are
studied here, contact-type and contact-count. The 'two-
body' residue contact-type propensities are based on the
distinct amino acid types of a pair of contacting residues.
The 'single-body' residue contact-count propensities are
based on the discrete number of residue-residue contacts
made by each distinct residue type. These two different
interaction propensities are captured by the contact-type
and contact-count scoring matrices, respectively. An
example contact-type scoring matrix is given in Table 1,
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Table 1: An example of data from a contact-type scoring matrix

ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE LEU LYS MET PHE PRO SER THR TRP TYR VAL

ALA 0.27 -0.12 -0.19 -0.23 -0.06 -0.21 -0.39 0.11 -0.01 0.32 0.31 -0.42 0.00 0.26 -0.05 -0.05 0.05 0.12 0.19 0.35
ARG -0.33 -0.38 -0.24 -0.30 -0.43 -0.36 -0.15 -0.22 -0.03 0.00 -0.72 -0.31 -0.01 -0.18 -0.27 -0.22 -0.10 -0.03 -0.01
ASN -0.04 -0.30 -0.28 -0.34 -0.57 -0.09 -0.19 -0.02 -0.14 -0.47 -0.30 -0.01 -0.20 -0.13 -0.09 -0.10 0.02 -0.07
ASP -0.44 -0.41 -0.48 -0.70 -0.18 -0.19 -0.14 -0.22 -0.43 -0.44 -0.15 -0.29 -0.28 -0.24 -0.19 -0.08 -0.15
CYS 0.67 -0.33 -0.63 -0.08 -0.02 0.15 0.12 -0.57 -0.06 0.19 -0.19 -0.13 -0.11 0.03 0.07 0.14
GLN -0.36 -0.67 -0.26 -0.27 -0.10 -0.09 -0.64 -0.34 -0.08 -0.26 -0.28 -0.23 -0.13 -0.08 -0.11
GLU -0.77 -0.45 -0.39 -0.23 -0.27 -0.53 -0.57 -0.27 -0.46 -0.51 -0.44 -0.38 -0.23 -0.25
GLY 0.16 0.02 0.16 0.08 -0.43 -0.10 0.15 -0.04 -0.01 0.04 0.08 0.14 0.19
HIS 0.16 0.09 0.07 -0.55 -0.11 0.16 -0.08 -0.05 -0.03 0.11 0.16 0.09
ILE 0.71 0.55 -0.13 0.24 0.55 -0.03 0.09 0.20 0.28 0.43 0.58
LEU 0.58 -0.26 0.15 0.49 -0.01 0.02 0.12 0.27 0.35 0.51
LYS -0.63 -0.56 -0.23 -0.49 -0.47 -0.41 -0.45 -0.20 -0.22
MET 0.24 0.25 -0.23 -0.20 -0.11 0.09 0.14 0.16
PHE 0.60 0.04 0.10 0.16 0.39 0.47 0.48
PRO -0.04 -0.15 -0.11 0.06 0.09 0.02
SER -0.04 -0.03 0.01 0.07 0.07
THR 0.06 0.05 0.13 0.21
TRP 0.48 0.35 0.26
TYR 0.42 0.37
VAL 0.59

An example of one of the contact-type scoring matrices used in this work. The scores are defined as described in the Methods Section. In this matrix residue-residue contacts were defined using 
a 12 Å distance threshold between Cβ atoms and using a sequence separation filter to remove short-range interactions.
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and the scores for some residues in an example contact-
count scoring matrix are shown in Figure 1. The scores in
these matrices reflect the observed residue interaction pro-
pensities in a set of native structures, and are defined in
comparison to simple, random models of residue interac-
tion. (For details see the Methods Section.)

Both types of scoring matrix were constructed using sev-
eral different definitions of residue-residue interaction.
Three different structural criteria were used to define resi-
due-residue interaction. Firstly, we tested the effect of the
choice of atomic interaction site, representing each resi-
due by either the Cα atom or the Cβ atom, or both. Sec-
ondly, the contact distance threshold was varied between
6 and 20 Å in increments of 1 Å, giving a total of 15 differ-
ent distance cutoffs. Thirdly, we applied a sequence sepa-
ration filter, either considering all interactions or only the
long-range interactions. Long range interactions were
defined as interactions between residues that are more
than 10 residues apart in the protein sequence [51,52].
The combination of these criteria gave a total of 3 (Cα, Cβ
or both) ×15 (distance cutoffs) ×2 (all or long range con-
tacts) = 90 different residue-residue contact definitions.

The following three sections present the different contact-
type and contact-count scoring matrices. First, the scoring
matrices themselves are described, as they provide infor-
mation on the nature of the captured residue interaction

propensities. Second, the results of scoring native and
'fully-random' protein structures are presented. Third, the
matrices are used to evaluate several sets of protein decoy
structures.

In summary the results show that; i) the contact-count scores
are much more specific than the contact type scores com-
pared to random models of residue-residue interaction, ii)
the Cβ-Cβ interaction captures the most specific residue inter-
action information compared to other atomic interaction
sites, iii) both scores can identify 'unusual' proteins in the
training set, iv) in contrast to point i, both scores perform
equally well on the task of discriminating between decoy
structures. The apparent contradiction between point i) and
iv) will be returned to in the Discussion.

The magnitude of the scoring matrices
The 'mean absolute score' of a scoring matrix (MAS) was
defined as the mean of the absolute value of the score in
each cell of the matrix. The magnitude of MAS gives the
degree to which the observed residue interaction propen-
sities deviate from random. In other words, MAS meas-
ures the 'information content' of the observed interaction
propensities encoded in the scoring matrix. The value of
MAS would be equal to zero if residue interactions
occurred at random, i.e. without any particular interaction
propensities. The mean absolute score for each different
contact-type and contact-count scoring matrix is shown in
Figure 2, and are described in detail below.

Contact-type
The sequence separation threshold has the biggest effect
on the mean absolute score (MAS) of the contact-type
scoring matrices (Figure 2). Without sequence separation
filtering, the contact-type scoring matrices tend to have
smaller values of MAS. This clearly shows the effect of
including the inherently non-specific short-range contacts
in the scoring matrix. The scoring matrices that include
short-range contacts are 'more random', with respect to
the observed contacts encoded in the matrix. A similar
effect is seen with increasing contact distance threshold.

Contact-count
The values of the 'mean absolute scores' (MAS) of the con-
tact-count matrices are consistently larger than those of
the contact-type matrices (Figure 2). The number of ele-
ments in the contact-count scoring matrix may vary with
the residue-residue contact definition used (Figure 3).
However, the value of MAS is comparable between the
different types of scoring matrix because MAS is the mean
absolute score over all elements in the matrix. The com-
parison suggests that the 'number of contacts per residue
type' is consistently more informative than the 'residue-
residue contact-type', given any of the residue-residue
contact definitions used here. Unlike the contact-type

An example of data from a contact-count scoring matrixFigure 1
An example of data from a contact-count scoring 
matrix. An example of some data from one of the contact-
count scoring matrices used in this work. The scores are 
defined as described in the Methods Section. In this matrix 
residue-residue contacts were defined using a 12 Å distance 
threshold between Cβ atoms without filtering for short-range 
interactions. Scores are shown for selected residues as 
trends across the range of observed 'number of contacts'. 
Missing values for a residue indicate cells of the matrix that 
were removed due to lack of data.
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Magnitude of the contact-type/count scoring matricesFigure 2
Magnitude of the contact-type/count scoring matrices. Each point gives the mean absolute score (MAS) of each cell in a 
particular residue interaction propensity scoring matrix. The different scoring matrices result from the different (given) resi-
due-residue contact definitions used in matrix construction. The broken lines indicate the trend for the matrices with 
sequence separation filtering and the solid lines give the trend for the matrices without sequence separation filtering.
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matrices, the contact-count matrices appear consistently
more informative when short-range contacts are included.

Summary
The 'Mean Absolute Score' shows that contact-count
matrices are consistently more specific than the contact-
type matrices. At all the distance thresholds, either with or
without the sequence separation filtering, the values of

MAS are largest for the Cβ-Cβ contacts, then the Cα-Cβ con-
tacts, then the Cα-Cα contacts. This shows that the Cβ atom
captures the specific side chain interactions more accu-
rately than either of the other two definitions.

Scoring native protein structures
Each of the scoring matrices was derived from a data set of
3, 070 monomers (see the Methods Section for details).
As a simple test, each of the native proteins was scored
using the contact-type and contact-count scoring matrices
which had the highest value of MAS (as described above).
Using either the contact-type or the contact-count scoring
matrices, there were some proteins that scored signifi-
cantly worse than average. Examination of the 130 worst
cases showed that they were caused by a few anomalies
and annotation errors.

There were 86 very small proteins and protein fragments.
These included, for example, the structure of single Cα-
helices and extended, coiled-coil proteins. There were 25
membrane associated proteins, including alpha helical
and beta-barrel lipoproteins. There were 12 proteins that
adopted an extended conformation in complex with
either DNA or several large ligand groups. Another four
structures were found to be Cα only models, containing
only the backbone and no side-chain information.

Interestingly, in this group we found 3 structures of pro-
tein subunits from oligomeric proteins. These cases were
incorrectly annotated monomers in the data set. These
subunits appear 'non-native' because they would make
many additional residue contacts in the native oligomer.
For this reason the artificially isolated subunit is effec-
tively 'non-native' and scored badly as a result.

Size of the contact-count scoring matricesFigure 3
Size of the contact-count scoring matrices. Each point 
gives the number of different 'number of contact-bins' in the 
different contact-count scoring matrices. The broken lines 
indicate the trend for the matrices with sequence separation 
filtering and the solid lines give the trend for the matrices 
without sequence separation filtering (as described in the 
text). The plot shows how the 'number of contact-bins' var-
ies with the contact definition.

Table 2: Summary of the nine different decoys sets from decoys-R-us

Decoys Range of RMSD

DataSet NoP NoR MLen NoD MD Min. Median Max.

vhp-mcmd 1 36 33 6256 6256 0.5 7.3 12.8
hg-structal 29 4338 141 870 30 0.5 3.0 30.3
4-state-reduced 7 448 60 4659 666 0.8 5.5 9.4
ig-structal-hires 20 4548 224 400 20 0.7 2.1 6.4
ig-structal 61 13893 224 3720 61 0.7 2.0 6.8
fisa 4 241 52 2003 501 2.8 7.4 14.1
fisa-casp3 4 368 82 5995 1499 3.6 11.6 20.9
lmds 10 534 48 4346 435 2.4 7.8 13.5
semfold 6 440 68 32718 13037 0.1 10.7 15.1
lattice-ssfit 8 565 67 8288 2000 4.7 9.8 15.6

Totals 150 25411 69255

The nine different sets of decoys taken from the Decoys-R-Us database [54]. For each decoy set, the number of proteins (NoP) in the set is given, 
along with the total number of residues (NoR) and the mean length of the proteins (MLen). The total (NoD) and mean (MD) number of decoys 
per-protein is also given. Within each decoy set, the range of RMSD values over all the decoys in the set are indicated, along with the median of that 
distribution.
Page 6 of 14
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An examination of 130 randomly selected proteins from
the data set showed only a few protein fragments and
DNA binding proteins. There were several proteins found
binding large ligand groups, but the relative extent of the
ligand was small compared to the cases found above.
There were no trans-membrane structures found in the
random sample.

For the above reasons, these 130 cases were removed from
the data set giving a total of 2, 940 monomers. The matri-
ces were re-calculated over this new data set for use in the
following sections.

Scoring 'decoy' structures
In this section we describe a realistic benchmark of score
performance [53] using several standard sets of 'near-
native' protein decoys [54]. Here the scores are used to
evaluate the decoys with reference to the Cα RMSD of the
decoy to its corresponding native structure. The Cα RMSD
is used as an independent measure of decoy quality in
order to evaluate the various scores.

Description of the decoy sets used
Nine different sets of decoys were used in the current
work. The structures of the decoys were taken from the
Decoys-R-us database [54]. Each decoy set uses a particu-
lar method to generate several 'near-native' protein struc-
tures using a given native protein structure. Some
additional information for the different decoy sets is given
in Table 2. The different methods include: energy minimi-
sation (lmds and vhp-mcmd), homology modelling (hg-
structal, ig-structal, and ig-structal-hires), systematic ran-
domisation with subsequent filtering (4-state-reduced
and lattice-ssfit), ab-initio (semfold) and de-novo methods
(fisa and fisa-casp3).

The relationship between decoy 'quality' and score
When assessing the relationship between decoy 'quality'
and the residue interaction propensity score, several dif-
ferent measures of score performance are important [53].
Here we apply two different measures of score perform-
ance, collected from the decoys as described below. The
first measure is the Spearman rank correlation coefficient
(S). The value of S shows whether the interaction propen-
sity score can accurately discriminate between decoys of
varying quality. The second measure is the Z-score of the
native structure compared to the decoys with respect to
interaction propensity score (Z). A large and positive Z
indicates a clear discrimination of the native conforma-
tion from that of the decoys using the interaction propen-
sity score.

The nine different decoy sets were analysed separately,
and each decoy was scored using the different residue con-

tact-type and contact-count scoring matrices as described
above. The two different measures of score performance
described above (S and Z) were calculated for each pro-
tein. For each decoy set we always report the mean value
of S and Z over all the proteins in the set, given a particular
residue-residue contact definition. In the following sec-
tions we refer to the 'best' score for a decoy set as the con-
tact definition that had the best mean performance (on S
or Z) over all the proteins in the set.

The best values of S per decoy set
Focusing only on the best performing scoring matrices, we
saw considerable variation between decoy sets. The best
values of S per decoy set varied between 0 and 0.7 (Table
3). Four of the nine decoy sets showed very little correla-
tion (S below 0.30). Another four had some correlation (S
between 0.3 and 0.6) and only two of the nine showed a
reasonable correlation between score and quality (S above
0.6).

The best scoring contact-type and contact-count scoring
matrices have very similar performance over the nine dif-
ferent decoy sets. The nine different contact-type and con-
tact-count S values in Table 3 have a Spearman rank
correlation coefficient of 0.95. This clearly shows that the
contact-type and contact-count scores have equivalent
performance on the discrimination task. In all cases, a
strong (or weak) correlation using the contact-type scores
implies a strong (or weak) correlation using the contact-
count scores.

Table 3: The best results for each of the nine different decoy 
sets

Type Count

Decoy Data Set Spearman Z-Score Spearman Z-Score

vhp-mcmd -0.69 1.87 -0.57 2.92
hg-structal -0.57 1.61 -0.68 1.44
4-state-reduced -0.52 2.51 -0.45 1.94
ig-structalhires -0.41 1.59 -0.38 1.62
ig-structal -0.33 1.22 -0.28 1.59
fisa -0.30 1.36 -0.36 2.59
fisa-casp3 -0.18 0.03 -0.25 1.43
lmds -0.13 0.86 -0.12 1.72
semfold -0.09 - -0.09 -
lattice-ssfit -0.03 3.76 -0.09 3.36

Mean value -0.33 1.65 -0.33 2.07

Table of the best results for each of the nine different decoy sets. The 
values given are the mean over each protein in the decoy set, and are 
the best obtained using any of the different residue interaction 
propensity scores.
Page 7 of 14
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The best values of Z per decoy set
The best values of Z for contact-type and contact-count are
less strongly correlated, having a Spearman rank correla-
tion coefficient of 0.7 (Table 3). In addition, the best Z do
not correlate well with S. For one case in particular (lat-
tice-ssfit) weak S is accompanied by a large Z (Table 3).

In general, the best contact-type scoring matrices have
worse Z than the best contact-count scoring matrices
(Table 3). In one case in particular (fisa-casp3), the best

contact-type Z is very small (0) and the contact-count Z is
moderate (1.4). However, the difference in the Z between
the two different score types is not significant (p = 0.1, df
= 8).

In the above two paragraphs we described the relative per-
formance of the best contact-type and contact-count scor-
ing matrices. The important question of which residue-
residue contact definitions give the 'best' performance of
S and Z is addressed in the following paragraph.

Mean performanceFigure 4
Mean performance. The mean value of S (upper) and Z (lower) for the contact-type (left) and contact-count (right) scoring 
matrices over the nine different decoy sets. The means were calculated as the mean of the mean value per decoy set, rather 
than the mean over the total set of proteins. The broken lines indicate the trend for the matrices with sequence separation fil-
tering and the solid lines give the trend for the matrices without sequence separation filtering.
Page 8 of 14
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Choosing a specific residue-residue contact definition
The choice of a specific residue-residue contact definition
can have a large and significant effect on the results of the
scoring matrices. The performance can vary, not just
between count and type scoring matrices, but also
between different decoy sets. For example, the best S for
the contact-count score occurs at Cβ-Cβ 8 Å without
sequence separation for the 4-state-reduced decoy set, but
at Cβ-Cβ 14 Å without sequence separation for the fisa
decoy set. Using these contact definitions the values of S
are 0.45 and 0.35 for the two decoy sets, respectively.
Exchanging the contact definitions in these two cases, S
falls to 0.40 and 0.25, respectively.

The ultimate aim of a scoring function is to rank near-
native protein decoys according to their similarity to the
native structure. The performance of the scoring function
on this task should be independent of the method used to
generate the decoys. For this reason, it is informative to
look at the overall performance of each different scoring
matrix across all the different decoy sets. The mean values
of S and Z for each different scoring matrix over each
decoy set are presented in Figure 4.

The best performance of the contact-type scoring matrices
is obtained by defining residue-residue contact using Cβ-
Cβ atoms with a distance threshold of 12 Å. This is
obtained without sequence separation filtering, including
short-range contacts. The best performance of the contact-
count scoring matrices occurs at slightly longer distance
threshold of 14 Å (Figure 4). Overall, the contact-count
and contact-type matrices show a similar pattern of per-
formance across different residue-residue contact defini-
tions. The best Z are generally found using the contact-
count scoring matrices. Both types of scoring matrix have
a maximum in Z when using Cβ-Cβ atoms with a distance
threshold of 8 Å. In addition, the Z of the contact-count
scoring matrices is also high between 10 and 16 Å

Discussion
Early work on single-body 'residue environment' poten-
tials was very promising [2,3,55-63]. However, the effec-
tiveness of these potentials has never been directly
compared to two-body 'residue pair' potentials in detail.
Here we do not try to combine the two different types of
residue interaction propensity score, but rather to assess
their independent contribution to scoring protein struc-
tures. The objective is to examine how much information
is stored in the two types of measure and to compare their
performance on the realistic task of ranking a set of decoy
structures.

The magnitude of the scoring matrices
To address the question of which type of residue contact
propensity score contains the most specific information

about protein structure, we assessed the mean absolute
score (MAS) of the cells in the different scoring matrices.
The score in each cell measures the strength of a certain
residue contact propensity. In this sense, magnitude of the
MAS gives the degree of 'non-randomness' or information
content of the given residue contact propensity. The MAS
suggests that, whatever the residue-residue contact defini-
tion used, the 'single-body' residue contact-count propen-
sities were stronger or more informative than the 'two-
body' residue contact-type propensities.

As the residue-residue contact definition was changed, we
observed changes in MAS that were consistent with previ-
ous observations [64]. The most informative contact-type
and contact-count matrices were obtained using Cβ-Cβ
contacts at 6 Å without sequence separation filtering and
using Cβ-Cβ at 7 Å with sequence separation filtering,
respectively. However, the pattern of change in MAS that
occurred as a consequence of changing residue-residue
contact definition were not seen in the score performance
on the task of scoring protein decoys.

Scoring native protein structures
Scoring the data set of 3, 070 native proteins highlighted
some problematic structures. Some of the worst scoring
proteins in this set when using either the contact-type or
the contact-count scoring matrices were all found to be
membrane proteins. It is not surprising that the residue
contact propensities derived from a data set of mostly
globular proteins are not generally the same as the pro-
pensities seen in membrane proteins.

Further down the list of the worst scoring native proteins,
we find some protein subunits of oligomeric proteins that
were incorrectly annotated monomers. These subunits
appear 'non-native' because they would make many addi-

Performance of the two different types of scoreFigure 5
Performance of the two different types of score. The 
best values of S and Z for the contact-type and contact-count 
scoring matrices. Each point represents one of the nine 
decoy sets studied in this work, encompassing the scores 
from 150 proteins and 244,794 decoys.
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tional residue-residue contacts in the native oligomer. The
artificially isolated subunit is effectively 'non-native'.

Ranking near-native protein decoys
Firstly, we observed that the decoys in some sets cannot be
successfully ranked by either the contact-type or the con-
tact-count scores. These sets of decoys are all considered
equally 'native' (or equally 'non-native') by the residue
contact propensity scores, despite having a range of differ-
ent RMSD values to the native structure [54]. We observed
that these decoy sets lacked decoys in the range of 1 to 5 Å
RMSD, having less than 25% of the decoys below 5 Å. This
observation suggests that the scores might perform better
on decoys that are closer to native.

Secondly, and perhaps more importantly, we observe that
the two different kinds of score perform equally well on
the different decoy sets (Figure 5). The contact-type and
contact-count performance in terms of both rank correla-
tion coefficient (S) or Z-score (Z) are both highly corre-
lated. The correlation of the best performance is 0.97 for S
and 0.67 for Z.

Finally, we observed that the specific residue-residue con-
tact definition that gave the best performance varied
between the different decoy sets studied. However, similar
trends in performance were observed at any given residue-
residue contact definition across all sets.

Several other groups have reported good performance on
similar discrimination tasks using single-body residue
burial terms. For example, in Godzik et. al. 1992 [60] it
was reported that, in most cases, a burial term alone is a
sufficient indicator of the native sequence compared to
two- and three-body residue interaction terms. A Bayesian
scoring function developed in Simons et. al. 1999 [9] sug-
gested that residue burial scores have comparable per-
formance to residue contact scores. Similarly, in Zhou et.
al. 2004 [65] the authors concluded that the the residues
solvent accessible surface area appears to be the most
important among several different single-body terms
tested. In addition, several groups have used a similar def-
inition of residue contact-count as an approximation for
burial [48,50,65-67]).

The current work suggests that counting contacts between
Cβ atoms using a distance threshold around 12 Å provides
the most discriminative single body residue contact-count
score (Figure 4). Similar observations have also been con-
firmed in the literature. For example, in Karchin et. al.
2004 [68] the best results were obtained with a 14 Å con-
tact definition between Cβ atoms.

However, in a number of studies a distance threshold of 9
Å between Cβ atoms was used to count contacts [64,69]. In
one such study, it was stated that the 9 Å distance thresh-
old used resulted in a slightly better performance than

other cutoffs tested [69]. This difference may result from
the specific count normalisation procedure applied in that
work.

Only two different sequence separation filters were
assessed in detail in this work, considering either all inter-
actions or only the long-range interactions. Long range
interactions were defined as interactions between residues
that are more than 10 residues apart in the protein
sequence. Results collected using alternative sequence
separation thresholds of 5, 8 or 12 showed gave very little
change in the scores collected. Using a sequence separa-
tion threshold of 2 showed scores that were roughly in
between those of 0 and 10. It important to note that when
scoring near-native decoys, sequence-separation filtering
has very little effect on the performance of the score, as all
decoys and the native protein have the same primary
sequence.

Cooperativity in protein folding
It has long been suggested that pairwise potentials may
not capture the inherent cooperativity of protein folding
(for example see [14,70]). Here we have presented results
for the effectiveness of the contact-count score, suggesting
that indeed higher order interactions are indeed impor-
tant in protein structure. For example, it has been shown
that contact-count can be estimated from a four-body res-
idue-residue interaction potential [71]. However, the per-
formance of such a four-body potential, assessed using the
(SNAPP) score [72], is not significantly better than an
equivalent two-body potential [73]. Despite this observa-
tion, four-body potentials are becoming much more com-
monly used as a way to better capture the cooperativity of
protein interactions [74].

Future directions
The work presented here represents a basic comparison of
contact-type and contact-count scores. There are several
ways in which this basic work should be extended. How-
ever, it is important to note that the two scores compared
in this work are far from optimal. It is known that distance
dependent all-atom scores are more effective at discrimi-
nating between native and non-native protein structures
[48,69]. Developing the current work along these lines
will be an important task for the future. In particular, it
remains to be seen if the findings presented here at the res-
idue level are consistent with observations at the atomic
level.

We did not directly compare the statistical potentials
derived in this work to similar potentials described by
other authors in the literature. To extend the analysis pre-
sented here, our potentials should be compared directly
with those in the literature (for a good example of this
type of comparison see [75]) Additionally, a comparison
of the important amino acid properties such as hydropho-
bicity and electrostatics should be performed.
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In this work we did not address combinations of the two
scores. The two types of potential studied perform equiv-
alently, suggesting that they are based on a similar
underlying principle. However, if a combination of
scores improves the overall performance this would
show that the scores carry different information.
Although that an ideal scoring function should work in
all possible cases, correlation between RMSD and score
is usually only significant for RMSD below about 3 Å
[76]. For this reason it would be useful to compare the
scoring functions on decoys within specific ranges of
RMSD from the native.

Conclusion
In this work we assessed the independent contribution of
two different types of residue contact propensity to scor-
ing protein structures. The main finding is that the con-
tact-type and contact-count scores showed equivalent
overall performance in the task of ranking protein decoys.
Although the two different score types perform equiva-
lently, the ability to automatically predict the number of
contacts made by a residue [68,77,78] allows for a greater
range of applications. In addition, a single-body term is
amenable to an efficient dynamic programming method
for alignment optimisation [3,65,79].

The work presented here represents our preliminary
investigation of a multi-body potential for evaluation of
protein structure. In future it should be possible to com-
bine the contact-type and contact-count scores to better
take into account the inherent cooperativity of protein
folding.

Methods
The data set of native proteins and protein decoys
The non-redundant data set of monomers
The scoring matrices were derived from a non-redundant
set of high-quality protein monomers. This set of 3, 070
proteins was selected using the following protocol. Only
the monomers from the BioUnit section of the Protein
Data Bank (PDB) [80,81] were selected, excluding puta-
tive structures of dimers, trimers, and the other multi-sub-
unit proteins. The resulting monomeric proteins were
further filtered by size, having more than 20 amino acids,
and by resolution, being better than 3 Å. Finally, the
chains were made non-redundant at 30% sequence iden-
tity using BLASTClust [82]. The resulting set of 3, 070
monomers was used throughout this analysis.

The data set of 'near-native' protein decoys
Nine sets of protein decoys were taken from the Decoys R
us database [54]. In total this data set included 244, 794
decoys derived from 150 native proteins.

Constructing the scoring matrices
Contact-Type
Given the fraction of residues of type x and of type y (Px
and Py), the probability of randomly observing a contact
of type xy is,

Pxy = Px·Py (1)

where Pxy is the probability of a 'random' contact of type
xy (for example see Table 1). This formula is obtained by
assuming that contacts are made between randomly
selected pairs of residues, assuming statistical independ-
ence. In this way, we make no assumptions about the dis-
tribution of contacts within the protein, such as the
distribution of the number of contacts per residue.

The observed and expected probabilities of a contact of
type xy can be combined into a score using the log-odds
ratio;

The magnitude of the score Sxy gives a measure of how
'non-randomly' the pair xy occurs. The score is positive
when xy is observed more often than expected and nega-
tive when xy is observed less often than expected.

Contact-Count
The contact-count scoring matrix is created in a similar
way to the contact-type scoring matrix. However, instead
of using the frequency Pxy to denote the probability of a
residue-residue contact between residue type x and type y,
we use Pxn to denote the probability of a residue of type x
having exactly n residue-residue contacts. The probability
Pxn is defined as,

Pxn = Nxn/Nn (3)

where Nxn is the observed number of residues of type x
having exactly n contacts and Nn is the total number of res-
idues with exactly n contacts (for example see Figure 1).
The values of n were taken from those observed over all
residues. The 'random' value of Pxn is simply taken to be
equal to Px, the fraction of residues of type x. Using this
value assumes that there is no particular effect on the over-
all amino acid composition when filtered by a given
number of contacts. Again the observed and expected
probabilities can be combined as in Equation 2. Using
this method, the magnitude of the score Sxn can be easily
interpreted as a measure of 'compositional bias' given a
certain number of residue-residue contacts.

S
Pxy

obs

Pxy
expxy =

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

log (2)
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Undersampling
Certain residue-residue contact definitions could lead to
low counts in the scoring matrices. For example, if the
overall number of observed residue-residue contacts is
low, certain contact-types may become rare. Similarly, if
the number of different contact-counts spans a wide
range, instances of a given residue type with a given con-
tact-count may become rare. To address this issue of
undersampling, if a cell of a scoring matrix was based on
fewer than 5 observed or expected counts, that score was
discarded. Those specific classes of contact were therefore
ignored when scoring protein structures, being neither
penalised nor rewarded.

Although a threshold of 5 observed or expected counts
was used to filter undersampled classes in the results pre-
sented here, it should be noted that both the contact-type
and contact-count scores appear very robust, showing
only small changes in MAS when discarding cells with
fewer than 50 observed or expected counts. The complete
set of counts and scores for the contact-type and contact-
count scoring matrices are included as additional files (see
Additional file 1).
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