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Abstract

Mutations in the MID1 protein have been found in patients with Opitz BBB/G syndrome (OS), which is characterised by
multiple malformations of the ventral midline. MID1 is a microtubule-associated protein that stabilizes microtubules and, in
association with the regulatory subunit of protein phosphatase 2A (PP2A), a4, provides ubiquitin ligase activity for the
ubiquitin-specific modification of PP2A. Using Fluorescence Recovery After Photobleaching (FRAP) technology, we show
here that MID1 is actively and bi-directionally transported along the microtubules, and that this movement is directly linked
to its MAP kinase and PP2A-mediated phosphorylation status. Intact transport depends on both kinesins and dyneins and is
inhibited upon colcemide treatments. MID1 proteins carrying missense mutations in the a4 binding domain still bind the
microtubules but cannot be actively transported. Likewise, knock-down of the a4 protein, inhibition of PP2A activity by
okadaic acid and fostriecin or the simulation of permanent phosphorylation at Ser96 in MID1 stop the migration of MID1-
GFP, while preserving its microtubule-association. In summary, our data uncover an unexpected and novel function for
PP2A, its regulatory subunit a4 and PP2A/a4/mTOR signaling in the active transport of the MID1 ubiquitin ligase complex
along the cytoskeleton. Furthermore, a failure in the microtubule directed transport of this protein complex would be an
attractive mechanism underlying the pathogenesis of OS in patients with B-box1 mutations.
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Introduction

Patients with Opitz BBB/G syndrome (OS) are characterised by a

diverse spectrum of ventral midline malformations. The most

characteristic symptoms are hypertelorism, dysphagia and hypospa-

dias. Cleft lip and palate, agenesis of the corpus callosum, tracheo-

esophageal fistulas, congenital heart defects and anal defects are

found additionally with variable penetrance [1]. Migration and

ventral invasion of neural crest cells and epithelial-mesenchymal

transition are the two leading mechanisms during the development

of the affected ventral midline structures [reviewed in [2]].

The X-linked form of the syndrome is caused by mutations in

the MID1 gene, which codes for the MID1 protein, a member of

the RBCC protein family [3]. The protein is characterised by an

N-terminal tripartite motif consisting of a RING finger, two B-

boxes and a coiled-coil domain and a C-terminus containing a

fibronectin Type III [4] domain, a COS domain [5] and a B30.2

domain [reviewed in [6]]. Mediated by the B-box1 domain, MID1

interacts with the regulatory subunit of protein phosphatase 2A

(PP2A), the a4 protein [7], which is the mammalian homologue of

the yeast protein TAP42 [reviewed in [8]]. In this protein

complex, MID1 has ubiquitin ligase activity and thereby regulates

the ubiquitin-specific modification and proteasomal degradation of

the microtubule-associated catalytic subunit of PP2A (PP2Ac).

Additionally, recent results indicate a novel function of the MID1

complex in RNA-binding and localized translation [9].

MID1 is a microtubule-associated phospho-protein with micro-

tubule-stabilizing properties [10]. Its dephosphorylation is mediated

by PP2A, which is targeted towards MID1 by a4. It has been

suggested, that microtubule-association of MID1 is regulated by its

mitogen activated protein kinase (MAPK) and PP2A dependent

phosphorylation at position serine 96 (S96) [11], which is located in

the linker region between RING finger domain and B-Box1 domain.

Most mutations found in OS patients cluster in the C-terminus

of the protein [1,3,12–17] and lead to the loss of microtubule-

association of these proteins [10]. Accordingly, connection

between the ubiquitin ligase MID1/a4 and microtubule-associat-

ed PP2Ac is disrupted, the enzyme accumulates and microtubule-

associated proteins are hypophosphorylated [7]. Mutations in the

B-box1 domain disturb the interaction with a4 and accordingly

with microtubule-associated PP2Ac (BA et al., unpublished data).

In this report, we show that GFP-tagged MID1 protein is bi-

directionally transported along the microtubules, and that this

movement depends on microtubule-integrity and on kinesin and

dynein motor proteins. It is abolished when the MID1 protein

carries mutations in the B-box1 domain, in cells with a4 loss-of-

function, after inhibition of PP2A activity and after exchanging

serine 96 into either glutamic (E) or aspartic acid (D), both
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simulating permanent protein phosphorylation. Interestingly,

microtubule-association of MID1 is not influenced by any of

these mutations or treatments. In conclusion, our data present a

novel function of PP2A and its regulatory subunit a4 in the

microtubule mediated transport of the MID1 protein complex.

Furthermore, by showing interference of mutations in the B-Box1

domain of MID1 with its microtubule-associated transport, they

suggest an attractive mechanism underlying the pathogenesis of

OS in patients with such mutations.

Results

Bi-directional transport of MID1-GFP along the
microtubules

Many microtubule-associated proteins have been shown to

move along the microtubules. In order to study migration of the

ubiquitin ligase MID1 along the microtubules, we transfected

HeLa cells with GFP-tagged MID1 (MID1-GFP) and analysed

them in a laser-scan microscope for FRAP. As described

previously [10,18], wild-type MID1-GFP showed a defined

microtubule-associated pattern. Full recovery of the GFP signal

after bleaching was obtained within a few seconds (30–60 sec,

Fig. 1a). Similarly fast recovery was observed in cell-bodies of F11

cells, a hybrid cell line of mouse neuroblastoma cell line N18TG-2

and embryonic rat dorsal-root ganglion (DRG) neurons (Fig. 1b),

while fluorescence returned significantly more slowly in axons (60–

120 sec, Fig. 1b, c). Detailed analysis of the recovery of the green

signal in axons demonstrated recovery from the centrosome and

from the periphery suggesting a bi-directional mechanism (Fig. 1d).

Transport of MID1-GFP depends on intact microtubule-
dynamics

Microtubule-dependency of the transport of MID1-GFP was

further analysed in HeLa cells treated with drugs that interfere

with microtubule dynamics. While a few bundles were still left

after 3 hours, all microtubules were destroyed after treatment with

100 ng/ml colcemide over a period of 16 hours. As shown in

figure 2A, after 16 h, apart from few green dots resulting from

protein diffusion in the cell, no fluorescence recovery of the MID1-

GFP signal was observed even after 180 seconds. By contrast,

treatment of the cells for 5 hours with 5 mg/ml taxol, a drug that

stabilizes microtubules (Fig. 2b), significantly accelerated fluor-

escense recovery indicating that the transport of MID1-GFP relies

on intact microtubule-dynamics.

Dyneins and kinesins are involved in the transport of
MID1-GFP

Two different classes of molecules are known to actively transport

proteins along the microtubules. While kinesins transport towards

the plus ends of microtubules and therefore the cell periphery,

dyneins are adjusted to the minus ends, which locates at the

organizing centre of microtubules. As suggested from the bi-

directional transport seen in axons of F11 cells (see above), inhibition

of both molecule classes significantly influences the recovery rate of

the MID1-GFP signal. Treatment of cells with 10 mM of Erythro-9-

(2-Hydroxy-3-Nonyl)Adenine (EHNA), an inhibitor of dynein

activity [19], led to inhibition of retrograde transport and

fluorescence recovery only took place from the centrosome (Fig. 3b

and d). On the other hand, treatment of cells with aurintricarboxylic

acid, an inhibitor of kinesin activity [20], resulted in a slow-down of

recovery from both directions as compared to the mock-treated

control (Fig. 3a, c and d). Both analyses were performed in axons.

Mutations in the B-box1 impede transport of MID1-GFP
along the microtubules

Various mutations in the MID1 proteins have been identified in

OS patients [1,3,10,12–17]. Most of those are located in the C-

Figure 1. Recovery of MID1-GFP induced green fluorescence after photobleaching (FRAP). Cells before bleaching (pre-bleach) and extensions
of selected areas at different time-points after bleaching (1 sec, 4 sec, 30 sec and 60 sec in A; 4 sec, 30 sec, 60 sec, 120 sec and 180 sec in B; 0 sec, 4 sec,
30 sec and 60 sec in D) are shown. Scale bars in overview pictures represent 5 mm, scale bares in scale up pictures are 1 mm. A) Recovery of fluorescence in
a cell body of HeLa cells. B) Fluorescence recovery in in the cell body and the axon of an F11 cell. C) Statistical evaluation of recovery rates seen in B relative
to time after bleaching. D) Fluorescence recovery from both directions (periphery and cell body) in the axon of an F-11 cell.
doi:10.1371/journal.pone.0003507.g001

MID1 Transport
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terminus of the protein and interfere with its binding to

microtubules [10]. Apart from these, missense mutations in the

B-box1 domain of the MID1 protein have been identified [1,14].

Proteins carrying these mutations still bind to microtubules (BA et

al., manuscript in preparation), but fail to bind the a4 protein [7]

(BA et al., manuscript in preparation). We have used MID1-GFP

proteins carrying three different mutations in this domain, C145S ,

A130T (both patients identified in this study, see Methods section)

and DVTC [13] for FRAP analysis (Fig. 4a). For comparison, we

analysed two mutations in the coiled-coil domain, C266R [13] and

L295P [1], which also do not affect microtubule binding of the

protein (Fig. 4b). Interestingly, while the last two showed

fluorescence recovery comparable to the wild-type (Fig. 4b, c

and d), no recovery was seen with either of the B-Box1 mutations

(Fig. 4a and d), suggesting that functional B-box1 domain is

required for the correct transport of MID1 at the microtubules.

a4 and PP2A activity are necessary for the transport of
MID1-GFP

Since MID1 interacts with a4, and thereby with PP2A, through

its B-box1 domain, the previous FRAP data pointed towards a

functional role for a4 and PP2A in the microtubule-associated

transport of the MID1 protein. In order to confirm this, we

knocked down a4 with specific RNAi oligonucleotides and

analysed these HeLa cells for fluorescence recovery of MID1-

GFP. Confirming our hypothesis, no recovery could be observed

in cells with a4 knock-down (Fig. 5b and d) even after 180 seconds

, while the recovery rate in cells treated with non-silencing siRNAs

(control, Fig. 5a and d) was comparable to the wild-type. Efficiency

of the knock-down is shown on a Western-blot using an anti-a4

antibody (Fig. 5c). Interestingly, while tubulin staining showed no

changes in microtubules organization in cells with a4 knock-down

compared to cells treated with nonsilencing siRNAs (data not

shown), microtubule association of MID1-GFP seemed to be

slightly disturbed after a4 knock-down (Fig. 5b).

Similarly, treatment of cells with the PP2A inhibitors okadaic

acid (OA) and fostriecin (FST) led to a complete inhibition of

fluorescent recovery (Fig. 6b and c). Full recovery after 30–

60 seconds was seen in the mock-treated control (Fig. 6a and c),

while no recovery was seen after OA and FST treatment after

180 seconds, once again indicating a central involvement of PP2A

activity in the microtubule-associated transport of MID1-GFP.

It has been suggested previously that MAP kinase and PP2A

regulate the phosphorylation status of MID1 on serine 96.

Therefore, its PP2A dependent dephosphorylation could be

necessary for proper microtubule-associated transport along the

microtubules. To test this hypothesis, we produced three different

point mutations on serine 96. Two of them, S96D and S96E,

brought negative charges and thereby simulated continuous

phosphorylation (Fig. 7b), whereas S96A completely inhibited

phosphorylation (Fig. 7c). As expected, while S96A showed recovery

rates comparable to the wild-type (Fig. 7a, c and d), neither S96D

nor S96E were transported or showed fluorescent recovery even

after 180 seconds (Fig. 7b and d). In contrast to the wild-type,

transport of the phosphorylation free S96A mutant along the

microtubules was not inhibited by okadaic acid treatment prior to

analysis (Fig. 7e). Also, cells overexpressing wild-type MID1-GFP

that were pretreated with the MAPK inhibitor UO126 did not react

on okadaic acid treatment, confirming a functional role of MAPK

dependent phosphorylation in the regulation of the transport of the

MID1-GFP protein along the microtubules (Fig. 7f). Surprisingly,

contrary to previously suggested data [11], all S96 mutant proteins

showed undisturbed microtubule-associated pattern. Also, UO126

treatment did not interfere with microtubule-association of the wild-

type protein (Fig. 7f).

Discussion

Active transport of molecules from the cell centre towards the cell

periphery and back, as shown for the ubiquitin ligase MID1 in this

study, is very important for cell function and cell survival in the

embryo. For example, establishment of asymmetry in the Drosophila

oocyte and the early embryo depends on the transport of proteins

and RNA along the microtubules [reviewed in [21]]. Furthermore,

microtubules act as tracks to deliver microtubule plus end-binding

proteins to the leading edge of a polarizing cell in a kinesin-mediated

manner [reviewed in [22,23]]. Following protein recruitment, Rac1

is being activated, lamellipodia are formed and polarised cell-

migration is possible [reviewed in [23,24]]. Migration of neural crest

cells into ventral structures is essential during the development of the

ventral midline [reviewed in [2]]. Mutations in the microtubule-

associated MID1 protein lead to defective establishment of these

structures and the development of the ventral midline disorder OS

[3]. We show here that, while wild-type MID1 is being transported

bi-directionally along the microtubules, proteins carrying mutations

in the B-box1, that have been found in OS patients still bind to the

microtubules, but do not move anymore. Together with the OS

Figure 2. Recovery of MID1-GFP induced green fluorescence
after photobleaching depends on microtubule integrity. Whole
cells before bleaching (pre-bleach) and extensions of selected areas at
different time-points after bleaching are shown. Scale bars in overview
pictures represent 5 mm, scale bares in scale up pictures are 1 mm. A)
FRAP in cells treated with 100 ng/ml colcemid over 3 or 16 hours. B)
FRAP in cells treated with 5 mg/ml taxol over 5 hours.
doi:10.1371/journal.pone.0003507.g002

MID1 Transport
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phenotype and the specific structures involved, these data point at a

MID1 function that is closely related with microtubule dependent

polarisation and migration of neural crest cells.

Interestingly, we have seen a significantly slower transport of

MID1 along axonal microtubules than in the cell body. This could

reflect energy and motor protein supply gradients in the cell with

high concentration in the cell body close to the mitochondria and at

the microtubule-organizing centre and lower concentrations in the

cell peripherie. However, we find an increase in transport speed after

taxol treatment which suggests that MID1 transport speed is in direct

proportion with the stability of the microtubules. Higher transport

speeds close to the microtubule-assembly centre where most stable

microtubules are found would be a logical consequence.

Continuous outward polymerisation of microtubules from the

microtubule organizing center (MTOC) towards the cell periphery

has been demonstrated in the polarised, migrating cell [reviewed

in [25]]. This makes the transport of proteins supporting

microtubule polymerisation to the tip of an outgrowing microtu-

bule an important factor. MID1 has been shown to stabilize

microtubules [10] and, as shown here, its transport along the

microtubules depends on kinesin motor proteins. These observa-

tions would suggest functional similarities to Par-1 which, by also

having microtubule stabilizing properties [26], is a key organizer of

microtubule arrays important for the polarised transport of cell

polarity [reviewed in [27]]. Accordingly, dysfunctional transport of

MID1 in migrating neural crest cells in patients with OS would

lead to a disequilibrium of stabilizing and destabilizing microtu-

bule-associated proteins (MAPs) at the tip of microtubules growing

out towards the leading edge of the cell and could result in either a

slow down of migration or in the misdirection of the cell.

Interestingly, we have observed not only kinesin but also dynein-

dependent transport of MID1. Similarly, both kinesin and dynein

dependent transport in neurons has been shown for Par-3, another

member of the Par-protein family that are widely conserved

regulators of cell polarity and asymmetry [[28,29], reviewed in

[27]]. Reasons for the retrograde, dynein mediated transport of

MID1 could either be a feedback regulation at the outgrowing tip in

order to avoid an excess of microtubule-stabilizing factors which

would perturb the delicate equilibrium of microtubule dynamics.

Additionally it could allow rapid recycling of the MID1 protein for

functions at the centrosome. However, it is striking that, while the

dynein inhibitor EHNA completely stops retrograde MID1

transport, the kinesin inhibitor seems to decelerate both, kinesin-

driven antegrade and dynein-related retrograde transport. This

could reflect a lack of supply at the cell peripherie. When antegrade

transport is blocked and only very limited possibilities are available to

synthesize fresh protein in the cell peripherie, the density of

molecules awaiting retrograde transport shrink, which would result

in a slow down of retrograde transport.

Our data clearly show that by dephosphorylating S96, PP2A

stimulates the transport of the MID1 ubiquitin ligase complex along

the microtubules. For MID1, it has been demonstrated previously

that it interacts with microtubules in a phosphorylation dependent

manner [11]. Treatment of cells with mitogene activated protein

kinase (MAPK) inhibitors led to a partial redistribution of MID1-

GFP from the microtubules and co-expression of MID1-GFP with

a4 resulted in a decrease of MID1 phosphorylation. It was further

suggested that dephosphorylation of MID1 at S96 by a4-associated

PP2A might reduce the association of MID1 with the microtubule

network and result in cytoplasmic localisation. In this study, we have

Figure 3. Recovery of MID1-GFP induced green fluorescence after photobleaching depends on dynein and kinesin motor proteins.
Whole cells before bleaching (pre-bleach) and extensions of selected areas at different time-points after bleaching are shown. Scale bars in overview
pictures represent 5 mm, scale bares in scale up pictures are 1 mm. A) FRAP in a mock treated F-11 cell. B) Retrograde FRAP is inhibited in an F-11 cell
that was treated with 1 mM of the dynein inhibitor Erythro-9-(2-Hydroxy-3Nanyl) Adenine (EHNA) for 30 min. C) Significant slow-down of FRAP in an
F-11 cell after treatment with 10 mM of the unspecific kinesin inhibitor aurintricarboxylic acid (AA) for 30 min. D) Statistical evaluation of recovery
rates seen in A-C relative to time after bleaching. Four cells of each experiment have been analysed (n = 4). P values are given.
doi:10.1371/journal.pone.0003507.g003

MID1 Transport
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Figure 4. Recovery of green fluorescence induced by MID1-GFP mutants after photobleaching. Whole cells before bleaching (pre-
bleach) and extensions of selected areas at different time-points after bleaching are shown. Scale bars in overview pictures represent 5 mm, scale
bares in scale up pictures are 1 mm. A) FRAP of three different MID1-GFP proteins carrying mutations in the B-Box1 domain of MID1 (C145S, A130T
and DVTC in HeLa cells. B) FRAP of two different MID1-GFP proteins carrying mutations in the coiled-coil domain of the MID1 protein (C266R and
L295P) in HeLa cells. C) FRAP of wild-type MID1 in HeLa cells as control. D) Statistical evaluation of recovery rates seen in A-C relative to time after
bleaching. Five cells of each experiment have been analysed (n = 5). P-value is given.
doi:10.1371/journal.pone.0003507.g004

Figure 5. Recovery of MID1-GFP induced green fluorescence after photobleaching depends on the a4 protein. Whole cells before
bleaching (pre-bleach) and extensions of selected areas at different time-points after bleaching are shown. Scale bars in overview pictures represent
5 mm, scale bares in scale up pictures are 1 mm. A) FRAP of MID1-GFP in a HeLa cell transfected with non-silencing siRNA oligonucleotides. B) FRAP of
MID1-GFP in a HeLa cell transfected with two different (upper and lower panel) siRNA oligonucleotides for a4 specific knock-down. C) Western blot
with lysates of HeLa cells transfected with non-silencing siRNAs control or with one (a4 siRNA oligo 1) or the other (a4 siRNA oligo 2)of the a4 specific
siRNAs. Blot was incubated with a specific anti-a4 antibody. Equal loading is demonstrated with an anti-tubulin antibody. D) Statistical evaluation of
recovery rates seen in A and B relative to time after bleaching. Five cells of each experiment have been analysed (n = 5). P-values are given.
doi:10.1371/journal.pone.0003507.g005

MID1 Transport
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Figure 6. Recovery of MID1-GFP induced green fluorescence after photobleaching depends on PP2A activity. Whole cells before
bleaching (pre-bleach) and extensions of selected areas at different time-points after bleaching are shown. Scale bars in overview pictures represent
5 mm, scale bares in scale up pictures are 1 mm. A) FRAP of MID1-GFP in a mock-treated HeLa cell. B) FRAP of MID1-GFP in HeLa cells pre-treated with
either 50 nM of the unspecific PP2A inhibitor okadaic acid (OA) for 30 min (upper panel) or with 200 nM of the specific PP2A inhibitor fostriecin for
30 min (lower panel). C) Statistical evaluation of recovery rates seen in A and B relative to time after bleaching. Five cells of each experiment have
been analysed. P-values are given.
doi:10.1371/journal.pone.0003507.g006

Figure 7. Recovery of MID1-GFP induced green fluorescence after photobleaching depends on serine 96. Whole cells before bleaching
(pre-bleach) and extensions of selected areas at different time-points after bleaching are shown. Scale bars in overview pictures represent 5 mm, scale
bares in scale up pictures are 1 mm. A) FRAP of wild-type MID1-GFP in a HeLa cell. B) FRAP of MID1-GFP proteins carrying a mutated S96, S96D (upper
panel) and S96E (lower panel), in HeLa cells. C) FRAP of MID1-GFP carrying a mutated S96, S96A, in a HeLa cell. D) Statistical evaluation of recovery
rates seen in A-C relative to time after bleaching. Five cells of each experiment have been analysed. P-values are given. E) The S96A mutant does not
react on OA treatment; fluorescence recovers similar to the untreated wild-type MID1-GFP when treating cells that express the S96A mutant with OA.
F) Cells expressing wild-type MID1-GFP show recovery of the fluorescence comparable to the wild-type when treated with the MAPK inhibitor U0126
(upper panel) or pretreated with UO126 and subsequently treated with OA (lower panel).
doi:10.1371/journal.pone.0003507.g007

MID1 Transport
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used three different S96 mutants, two of which simulate continuous

phosphorylation at that position (S96D and S96E), while the third

completely inhibits MID1 phosphorylation at S96 (S96A). Interest-

ingly, all three MID1-GFP mutants showed similar microtubule-

associated distribution as the wild-type (Fig. 7). Also, the MAPK

inhibitor UO126 did not interfere with microtubule-association of

wild-type MID1-GFP in our hands. Instead of phosphorylation

dependency of microtubule-association, we found that the microtu-

bule-associated transport of MID1 heavily relies on the PP2A-

mediated dephosphorylation of its N-terminus. We further show that

this dephosphorylation is closely linked to a4, the mammalian

homologue of the yeast protein TAP42. TAP42, a4 and their

association to PP2A is regulated by the target-of-rapamycin (TOR)

pathway and by rapamycin [30–33], which has been related to

microtubule-associated protein transport [34] and cell migration

[35] before. Our data therefore not only show a novel role of PP2A

in microtubule-associated protein transport, but also bring up

additional evidence that the TOR/mTOR pathways is involved in

the regulation of intracellular protein transport, localized stabilisa-

tion of microtubules and cell migration.

In summary, our data provide evidence that dysfunctional

microtubule directed and PP2A dependent transport of the

microtubule stabilizer MID1 is an important pathomechanism

underlying the ventral midline disorder Opitz BBB/G syndrome.

They further show that association to the regulatory PP2A subunit

a4 is essential for this transport and that point mutations in the a4

binding domain completely destroy the protein’s cellular mobility.

Materials and Methods

Constructs
Two novel mutations found in OS patients have been used: One

patient presented with hypertelorism, broad nasal bridge, strabis-

mus, cleft lip and palate, hypospadias and small ears with a right pre-

auricular pit. He was found to have a de novo 388G.A mutation in

MID1, predicting an A130T change in the B-box1 domain. The

second patient had hypertelorism, down-slanting palpebral fissures,

broad nasal bridge, posteriorly rotated ears, cleft lip and palate, and

hypospadias. He was found to harbour a de novo 433T.A MID1

mutation, predicting a C145S change in the B-box1 domain.

In-vitro mutagenesis experiments were performed on MID1 in

the pEGFP-C1 vector (MID1-GFP) [10] and according to the

instruction manual provided with the QuickChangeH Site

Directed Mutagenesis Kit (Stratagene).

MID1-GFP Transfection and Live Cell Imaging
16105 HeLa per well of a 6-well plate were grown for 24 hours

on glass cover slips and transfected with 1 mg plasmid DNA using

5 ml of lipofectamine (Invitrogen) according to the manufacturer’s

instructions.

26105 F11 cells per well of a 6-well plate were grown for

24 hours in Ham’s F-12 medium supplemented with 10% FCS on

glass coverslips and were transfected using 5 ml of lipofectamine

and 8 ml of Plus Reagent (Invitrogen) in 2 ml OptiMEM. After 2 h

medium was changed to Ham’s F-12 containing 18% FBS.

Medium was changed again after 3 h to Ham’s F-12 supplement-

ed with 10% FBS.

Fluorescence recovery after photobleaching (FRAP) analysis of

MID1-GFP was carried out on cultured F11 neurons and HeLa

cells. Transfected cells were randomly selected and bleached for

between 0.5 and 1.1 s using 100% power from a 25 mW argon ion

laser. Recovery was imaged at low laser power, and cells were

examined for ,4 min, with imaging approximately every 2 sec.

Percent recovery was determined by subtracting arbitrary average

background values outside the cell from average values from the

whole cell or selected subregions, then dividing this by the

difference in fluorescence intensity of the selected region before

bleaching and the average background values (Ispot2Ibkgd (post-

bleach)/Ispot2Ibkgd (pre-bleach). Each of the traces was calculated

from an average percent recovery of n = 5 cells at each time point,

starting at 4 s post bleach.

Series of 50–100 single section images were collected with the

help of a time series programme. For imaging, the laser power was

attenuated to 2% of the bleach intensity. Images were acquired on

an LSM 510 (Carl Zeiss, Jena, Germany) with the Planapochro-

mat 63-/1.4 objective. EGFP fluorescence was detected using the

488 laser line of an argon laser (25% of 25-mW nominal output) in

conjunction with a LP 505 filter. All live cell imaging was done at

room temperature. Images were analysed with the Zeiss LSM

image examiner software and Image J.

Cell Treatment
20–24 h after transfection, cells were treated for 30 min with

50 nM okadaic acid (Sigma), 10 mM U0126 (Sigma), 200 nM

fostricien (Sigma), 10 mM aurintricarboxylic acid (Calbiochem) or

1 mM Erythro-9-(2-Hydroxy-3-Nonyl) Adenine (Calbiochem). In

addition, cells were treated with 100 ng/ml colcemid (Biochrom)

for 3 and 16 h or 5 mg/ml taxol (Sigma) for 5 h. Cells were

washed with PBS and analysed under a LSM 510 microscope as

described above.

siRNA Transfection
16105 HeLa cells were seeded in a 6-well plate 24 hours before

transfection. Cell were incubated with a solution containing 1.5 mg

DNA, 3 ml of siRNA oligo (a4 oligonucleotide 1: sense CGUUG-

CUAUGGCAUCUCAAdTdT/antisense UUGAGAUGCCAU-

AGCAACGdTdT, a4 oligonucleotide 2: sense GUACCUUUUG-

GUGCCAGCGdTdT/antisense CGUUGGCACCAAAAGGUA-

CdTdT, non-silencing oligonucleotide: sense UUCUCCGAACGU-

GUCACGUdTdT/antisense ACGUGACACGUUCGGAGAAd-

TdT, Qiagen), 2 ml dreamfect (Biosiences), and 100 ml of OptiMEM

(Sigma) in 2 ml of medium without antibiotics. Cells were incubated

at 37uC in a humidified incubator with 5% CO2 v/v for 72 h.

Western Blot
200 mg of proteins were loaded on a 12% SDS-page, blotted on

a PVDF membrane (Roche) and incubated with a specific anti-a4

antibody (Trockenbacher et al., 2001) at 4uC overnight. For

loading control, the same blot was incubated with an anti-tubulin

antibody.
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