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ABSTRACT

Motivation: Molecular diagnostics aims at classifying diseases into
clinically relevant sub-entities based on molecular characteristics.
Typically, the entities are split into subgroups, which might contain
several variants yielding a hierarchical model of the disease. Recent
years have introduced a plethora of new molecular screening tech-
nologies to molecular diagnostics. As a result molecular profiles of
patients became complex and the classification task more difficult.
Results: We present a novel tool for detecting hierarchical structure
in binary datasets. We aim for identifying molecular characteristics,
which are stochastically implying other characteristics. The final hier-
archical structure is encoded in a directed transitive graph where
nodes represent molecular characteristics and a directed edge from
a node A to a node B denotes that almost all cases with characteri-
stic B also display characteristic A. Naturally, these graphs need to
be transitive. In the core of our modeling approach lies the problem of
calculating good transitive approximations of given directed but not
necessarily transitive graphs. By good transitive approximation we
understand transitive graphs, which differ from the reference graph in
only a small number of edges. It is known that the problem of finding
optimal transitive approximation is NP-complete. Here we develop an
efficient heuristic for generating good transitive approximations. We
evaluate the computational efficiency of the algorithm in simulations,
and demonstrate its use in the context of a large genome-wide study
on mature aggressive lymphomas.

Availability: The software used in our analysis is freely available from
http://pc56269/software/transApproxs.shtml.

Contact: Juby.Jacob@klinik.uni-regensburg.de,Rainer.Spang@Kklinik.uni-
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1 INTRODUCTION

High throughput genomic approaches have entered molecular dia-
gnostics, generating large amounts of molecular data. Recently,
clinical studies have been conducted, which screen a fixed set of
patients with several complementary high throughput approaches
in parallel (Hummel er al. (2006)). Among the most frequently
used technologies in oncology are transcriptional profiling using
gene expression microarrays (Alizadeh e al. (2000), van de Vij-
ver et al. (2002), Jones et al. (2005)), genomic profiling using
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array CGH or SNP arrays (Solinas-Toldo et al. (1997), Pinkel et al.
(1998), Pollack et al. (1999)). These are typically complemen-
ted by non-genome-wide molecular approaches like fluorescent in
situ hybridization (FISH) and classical immunophenotyping or non-
molecular characteristics like the morphology of cancer tissues, and
clinical data typically including the age and sex of the patient as
well as treatment response or survival. For example, a male cancer
patient can carry two SNPs which are associated with his disease.
At the same time his tumor displays genetic losses of four different
chromosomal locations, and carries one chromosomal translocation.
Moreover, the tumor cells display certain morphological proper-
ties and immunophenotypically express 3 antigens. Finally a gene
expression profile shows a typical pattern for a molecularly defined
subtype of the patient’s disease. No other patient in the study has the
exact same characteristics. Nevertheless, the challenge is to assign
this patient to a well defined subgroup in an hierarchical classifica-
tion scheme of his disease. To do so, intrinsic hierarchical structure
in the integrated data sets needs to be made apparent.
Here we describe a novel computational approach, which is aiming
at uncovering hierarchical structure in complex data sets. We aim
at identifying molecular characteristics, which are stochastically
implying other molecular characteristics. We explain this by an
example: Assume that 95% of all tumors with the immunohisto-
chemical property B also display the expression pattern A. Assume
also that 91% of all tumors with the chromosomal amplification C
and 100% of all tumors with the expression pattern D display the
immunohistochemical property B. A toy dataset representing this
constellation is shown in Figure 1(a). The patients with property A
are a noisy superset of those with property B, while this set con-
tains the two not necessarily disjoint subsets C and D, shown in
Figure 1(b). Up to a small number of exceptions property B implies
property A and properties C and D always imply property B. We
encode this hierarchical structure by the graph shown in Figure 1(c).
Our algorithm aims at extracting such hierarchical structure.

We proceed in two steps, which we call graph construction and
graph consolidation. The latter is based on the transitive approxima-
tion problem and is the main focus of the paper.

The construction step: In the construction step we screen all pairs
of molecular properties for potential noisy subset/superset relations
and encode these in a primary graph by drawing directed edges from
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Fig. 1. Subset/superset relations between molecular properties obser-
ved in patients. (a) A toy dataset on molecular properties A,B,C,D observed
in patients, represented on the y-axis. Black regions of the data code for
the observed property while white regions encode for not observed pro-
perties. (b) Subset/superset relations between molecular properties. Tumors
with molecular property A are a (noisy) superset of tumors with molecular
property B, which is a (noisy) superset of tumors with properties C and D.
(c) Graphical representation of the subset/superset relations. Directed edges
in the graph are drawn from supersets to subsets.

supersets to subsets. More precisely, for any two molecular features
A and B, if a percent or more of patients with feature B also exhibit
feature A then we say B is a noisy subset of A and we draw an edge
from A to B. We obtain the primary graph by screening all pairs
of molecular features for possible subset/superset relation using the
above criteria. We note that in case two or more molecular featu-
res are identical with respect to the cases they include, then we join
them to a single group in the primary graph. The choice of the para-
meter « is based on practical considerations. Clearly a graph that
hardly contains any edge is useless as a hierarchical model and so is
an almost fully connected one. We use « to scale the sparseness of
the primary graph.

The consistency problem: Note that in the subset relation between
the various properties, if property B is a subset of A (denoted in the
graph by the edge A — B) and property C is a subset of B (denoted
in the graph by the edge B — C), then for consistency reasons C
is a subset of A implies also directly. Unfortunately, due to noise
in the data the edge A — C can be missed during graph construc-
tion. More generally, logical consistency is requiring that a graph
representing a hierarchical structure is transitively closed, while the
edgewise construction approach might violate this requirement. For
this reason we calculate transitive approximations of the primary
graph in the graph consolidation step. This step is based on the tran-
sitive approximation problem, which can be formalized as follows:

For a given directed graph ¢ find all transitively closed graphs with
minimal edit distance to g, where the edit distance between two
graphs is the minimal number of edit operations (adding or dele-
ting edges) necessary to transfer the first graph into the second. We
refer to all graphs with this optimality property as optimal transitive
approximations of g.

For undirected graphs, the transitive approximation problem is as
old as Zahn (1964) and has been extensively studied in Delvaux
and Horsten (2004), De Clercq and Horsten (2005). Delvaux and
Horsten (2004) have shown that the problem is NP-complete. The
equivalent problem for directed graphs is less studied. Nevertheless,
Natanzon et al. (1999) show that the optimal transitive approxima-
tion problem is NP-complete also for directed graphs.

Here we develop a heuristic algorithm to calculate good transitive
approximations, which are graphs with a small but not necessarily
optimal edit distance to the original graph. The challenge is to derive
a computationally efficient algorithm.

The paper is organized as follows: In the next section we develop
a heuristic for calculating good transitive approximations and eva-
luate it in section 3 using random simulations. In section 4 we give
technical details of the graph construction step and demonstrate the
use of the two step procedure in the context of a large genomic study
on aggressive lymphomas.

2 TRANSITIVE APPROXIMATIONS
2.1 Notations and definitions

Graphs and Sequential Constructions: Throughout we let G, C
denote the set of all directed, respectively transitive directed graphs
on n nodes. We let g = (V, E) € G denote an arbitrary graph in
G where V = {v1,v2,...,v,} and E = {e1, e2,...,en} denotes
its set of nodes and edges. We use the notation e, € ¢ to denote
that ey, is an edge in g and e ¢ ¢ to denote e, is not an edge in g.
Next, let g 4 ey denote the graph obtained by adding edge ex to g
and g — ey, the graph obtained by removing edge e, from g. For any
random ordering of the edges e1, ..., e,,, we obtain a sequence of
subgraphs gj, of g, by setting go to be the empty graph (graph with
all nodes but no edges) and defining g = gr—1 + €x,0 < k < m.
Note that g,, = g. We call the sequence of subgraphs a sequential
construction (gi )i of g.

Distances and Neighborhoods: For two graphs gi,g2 € G let
d(g1, g2) denote the edir distance between them, i.e. the number
of edges that are different in the two graphs. For g € G, we define
the &-neighborhood of g, denoted by Bs(g), as the set of all gra-
phs with maximal edit distance 0 to g and for 7 C G, we define

B5(~7:) = Ufe]-' Bé(f)-

Transitive Approximations: For g € G, we let 6*(g) denote the
minimum distance of g to a transitive directed graph. We define opti-
mal transitive approximations of g, denoted by So(g), to be the set
of all transitive directed graphs ¢ € C which are at minimal distance
to g. Clearly, So(g) = Bs+(g) N C. Usually, there exist more than
one optimal transitive approximation to a directed graph. We give
an example: Consider the non-transitive graph given in Figure 2(a).
Adding the edge AD and deleting the edge DE results in the transi-
tive graph, shown in Figure 2(b). Deleting edges BD and CD also
results in a transitive graph, which is shown in Figure 2(c). Both
graphs are optimal transitive approximations of the graph in Figure
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Fig. 2. Multiple optimal transitive approximations. A non-transitive refe-
rence graph (a) with two different optimal transitive approximations (b) and

(c).

2(a), with a minimum distance of 2. Finally, we define suboptimal
transitive approximations of g denoted by S, (g) as the set of all
transitive graphs that are y edges short of being at minimal distance
to g.

2.2 Preliminaries

LEMMA 1. Let g be a directed graph with sequential construction
(gk)k- Then for any h € G, we have

|d(gk—1,h) — d(gk, h)| = 1.

Proof: Let! = d(gx—1,h). We have g, = gr—1 + ex. It is easy
to see that if ey, is an edge of h, then d(gx, h) =1 — 1 and if ey, is
not an edge of h then d(gx, h) = I + 1. In either case it follows that
ld(gr—1,h) —d(gk, h)| = 1. g

We next show that when going from gr—1 to gx in a sequential con-
struction, the minimum distance to transitively closed graphs can
at most change by 1. Depending on the edge ey, that is added, the
distance can either increase or decrease by 1.

LEMMA 2. Let g be a directed graph with sequential construction
(9x)k and let 6* (gi) denote the minimum distance of gy to the set
of transitive directed graphs. Then

6" (gr-1) —1 <8 (gx) <" (gr—1) + 1.

Proof: We have g, = gr—1 + ex. Clearly 6*(gr—1) + 1 is an
upper bound for 6*(gx), since by Lemma 1 all optimal transitive
approximations of g, can have at most this distance. On the other
hand ey could be an edge of an optimal transitive approximation
h € So(gk—1). Then d(gr—1,h) = 0" (gr—1). Also since ey, is an
edge of h, by Lemma 1 we have d(gx,h) = d"(gr—1) — 1. We
now show that 6*(gx—1) — 1 is a lower bound. Suppose that there
existed a transitively closed graph ¢ € C with distance d(gx, c) <
0" (gk—1) — 2. Then by using Lemma 1, we have d(gx—1,¢) <
0" (gr—1) — 1, a contradiction to the optimality of §* (gr—1)- O

LEMMA 3. Let g be a directed graph with sequential construction
(gk)k- Then for all f € S,(gr) (0 < k < m), we have

re U

=28 y/<y+2

S (gre—1)-

Proof: Let f € S, (gx), from the definition of suboptimal transitive
approximations it follows that

d(gk, f) = 6"(gr) + - ey

From Lemma 1, we have |d(gk—1, f) — d(gx, f)] = 1.
Thatis, —1 < d(gk—1, f) — d(gk, f) < 1. Using (1) and Lemma 2,
we have

d(gk—hf) S d(gkaf)+1
< 6 (ge)+y+1
< 0"(gr—1) +14+v+1
< 8 (gk-1) v+ 2.
Also
d(g, f) =1 < d(gk-1, f)
3 (gr) +y—1 < d(gk-1,f)
8 (gr—1)+v—2 < d(gr—1, f).

Hence we have
0" (gr—1) +v—2<d(gr—1,f) <" (gr—1) +v+2

The lemma now follows from the definition of suboptimal transitive
approximation. d

The following corollary immediately follows from the previous
lemma.

COROLLARY 1. With the assumptions of Lemma 3 and for f €
So(g), we have

f € So(gm-1)US1(gm-1) U S2(gm—1).

The next lemma shows that suboptimal approximations of gi of
order at most 2 can be constructed from small modifications of sub-
optimal approximations of order at most 4 of the previous subgraph
gr—1 in the sequential construction. From Lemma 2 we observe that
in going from gx_1 to gx, depending on the edge ey that is added,
the minimum distance can at most change by 1. Consequently, for
gi with minimum distance §*(gx) we have that 6 (g ) can equal (i)
o (gkfl) — 1, (i) 6* (gkfl), or (iii) 6* (gk,1) + 1. We have

LEMMA 4. Let g € G be a directed graph with sequential con-
struction (g ) k. For each case indicated by the first column of Table
1, optimal and suboptimal transitive approximations of gi have
the properties with respect to gix—1 as indicated by the respective
columns.

Proof: If ey is an edge of an optimal transitive approximation in
So(gk—1), then we have 6" (gx) = 6*(gr—1) — 1 and row (i) in
Table 1 follows from the definitions and previous lemmas. Simi-
larly, if ey, is an edge of a graph in S1 (gx—1), the minimum distance
to a transitive graph remains the same, yielding row (ii). Finally,
in the case when ey is an edge of a graph in S2(gr—1) we have
0% (gk) = 6" (gr—1) + 1 and row (iii). O

The previous lemma provides updating rules for suboptimal appro-
ximations of g using small modifications of suboptimal approxima-
tions of gr—1. Updating Sy requires Sp, S1 and S> of the previous
subgraph. Updating S requires So, S1, S2, S3 whereas updating Sa
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Table 1. Suboptimal | [1f6"(grx) = | | f € So(gr)ifandonlyif | f" € Si(g)ifandonlyif | f” € Sa(gx) if and only if
transitive approxima- =
tions of gy, of distance | _ 0 (gr—1) — 1 fe€So(gr—1)ander € f | f € Si(gr—1)ander € f' | f” € So(gr—1) andex, & f”
at most 2, with respect @ Orl , "
to gi_1 as discussed in J" € 5o(gk—1) and ey, € f
Lemma 4. 5*(gr—1) fe€Si(gr-1)ander € f | f' € So(gr—1)ander & f | f” € Si(gr—1) and ey, & f”
(ii) or or
f’ S Sg(gkfl) and e € f/ f” S Sg(gkfl) and e}, € f”
6*(gk71) +1 fe So(gkfl) and ey, §§ f f/ € Sl(gk71) and ey, ¢ f/ f” S Sz(gk71) and ey ¢ f”
(iii) or or or
fe Sz(gk71) ande, € f f’ S S3(gk71) and e € f/ f” S 5'4(gk,1) and e, € f”

requires So, S1, S2, S3, S4. Lemma 3 shows that computing S3 and
Sy require S5 respectively Se of the previous subgraph in the con-
struction. In the following we give an alternative to updating S5 and

Sy.

LEMMA 5. With the assumptions of Lemma 4, let P =
Bs(So(gk-1)) U Ba(Si(gk-1)) U Bi(S2(gk-1)) and Q@ =
Ba(So(gk-1)) U Bs(51(gr-1)) UB2(S2(gk-1)) U B1(S3(gk-1))-
Moreover, let P ={h € PN C|d(h, gk—1) = §"(gk—1) + 3} and
Q={heQnC|d(h,gr—1) = 0"(gr—1) +4}. Then S3(gr—1) =
PURwith R = {f € Sa(gr—2) U Ss(gk—2) | d(f, gr-1) =
*(gr—1) + 3} and Si(gr—1) = QU R with R' = {f ¢
S5(gk—2) U Se(gr—2) | d(f, gre—1) = 6" (gr—1) + 4}

Proof: The lemma follows directly from the definition of subopti-
mal transitive approximations.

2.3 Algorithm

We now present a heuristic algorithm for calculating good tran-
sitive approximations of directed graphs. By a good transitive
approximation we understand a not necessarily optimal transitive
approximation, which from a practical perspective is close enough
to the optimum to reveal meaningful hierarchical structure. The
main ingredients of the algorithm are Lemma 4 and Lemma 5.

Let ¢ = (V,E) € G be an arbitrary directed graph with the
set of vertices V' = {v1,v2,...,v,} and the set of edges £ =
{e1,e2,...,em} in an arbitrary but fixed order. Let go C g1 C
--+ C gm = g be the corresponding sequential construction of g.
We will proceed iteratively starting with go by constructing tran-
sitive approximations of g, from transitive approximations of g,
l < k. From Corollary 1 we see that optimal transitive approxi-
mations of g can be derived from suboptimal approximations of
distance at most 2 of earlier subgraphs in the sequential construction
by introducing at most 2 modifications. From Lemma 3 approxima-
tions of distance at most 2 can be constructed from approximations
of distance at most 4 of earlier subgraphs, which again can be con-
structed from approximations of distance at most 6 of even earlier
subgraphs and so on. In this iterative process the number of interme-
diate approximations increases rapidly requiring inordinate running
times for exhaustive enumeration. Therefore we resort to heuristic
as a feasible line of attack. The heuristic aspect of the algorithm is to
calculate in each step only suboptimal transitive approximations of
distances 0,1, and 2 to the optimum and the sets P and () ignoring
possible contributions from the sets R and R’. The motivation is
that for a small number of reference graphs that we examined more
closely, we observed that R and R’ are small and often empty sets.

Nevertheless, ignoring the sets renders our algorithm inexact. Errors
can occur and propagate throughout the whole procedure. Simu-
lation experiments will show that the heuristic still produces good
transitive approximations for most graphs g.

We start with initializing three sets of graphs called Sp, S and S5.
During initialization the sets refer to transitive approximations of the
empty graph go. Since it does not violate transitivity assumptions
it is its own unique transitive approximation. Suboptimal transitive
approximations of distance 1 and 2 are all transitive graphs with 1,
2 edges respectively. The minimum distance to a transitive graph
is 0 and we initialize a variable A with this value. At this stage
we use Lemma 5 and compute P, Q which give suboptimal tran-
sitive approximations of go, of distance 3, respectively 4 stored in
variables S% and ).

Next we add edge by edge along the chosen sequential construction
of g and iteratively update the sets S, S] and S5. Assume that the
sets are updated up to gr—1. We now add ex and use Table 1 and
Lemma 5 to update the sets of transitive approximations. We check
successively among the current sets Sg, S1 and S5 for graphs which
contain the edge ex. If we find a graph in S{, with edge e, we know
that this graph has distance A — 1 to gx. We update A and assign
the graph to the update of S;. We then use row(i) of Table 1 to
fully update the sets S§, S7 and S%. Next we compute P and Q and
update S5 respectively S} ignoring possible contributions from R
and R'.

If instead we find a graph in S; with edge ey, we know that this
graph has distance A to gj. We assign the graph to the update of S
and use row (ii) of Table 1 to update the sets S, S and S5. Sets S5
and S are again updated using P and Q respectively.

If however none of the above holds and we find a graph in S5 with
edge ey, then this graph has distance A + 1 to gx. We update A and
assign the graph to the update of S, and use row(iii) of Table 1 to
update the sets S, S and S5. As before we compute P, @ to update
S5, respectively S4. We continue by adding the next edge from the
sequential construction and proceed as before. After the last edge
is added, the output of our algorithm is the set of good transitive
approximations Sj.

3 EVALUATION ON SIMULATIONS

Running time: To validate the running time performance of the
algorithm, we constructed random reference graphs with fixed num-
bers of nodes N and preset edge probabilities p. For each of the
possible N2 edges a uniformly distributed random number between
zero and one was generated. If this number was smaller than p the
edge was added to the graph. Thus, the expected number of edges is
p * N2, We measured running times on graphs with 10, 15, 20, 25
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Fig. 3. Running times on random graphs. The y-axis gives the average
running time in hours over 20 runs, the x-axis gives the edge probability
encoding the sparseness of the reference graphs.

nodes and edge probabilities from .1 to .9. For each combination
of N and p, 20 random graphs were generated, and the obser-
ved running times on an AMD Athlon machine (1800 MHz clock,
main memory size: 2GB) were averaged. The results are shown in
Figure 3. As expected running times increase both with the num-
ber of nodes in the graph and with its density. We obtain practically
feasible running times below 20 hours for dense graphs up to 15
nodes. For sparse graphs (p < 0.2) even 25 nodes can be compu-
ted in less than 3 hours. In our application where we look at the
hierarchical disease modelling, sparseness of reference graphs can
be controlled by the noise parameter .. Moreover, practical hierar-
chical models will most likely be sparse. Running times depend on
the order of edges in the sequential construction of the graphs. To
quantify the range of running times for the same graph with diffe-
rent orderings of edges, we ran the algorithm on the graph shown in
Figure 2(a) using 120 random orderings of its edges. Running times
varied around an average of 25 seconds with a standard deviation
of 6. Orderings producing early subgraphs g, which are close to
being transitive generally produce short running times. In view of
using the algorithm for larger problems (N > 25) further research
into optimizing the edge ordering appears promising.

Accuracy of approximations: A rigorous validation of the accu-
racy of transitive approximations is not trivial. Ideally, one would
use a large set of reference graphs, for which the complete set of
optimal transitive approximations is known. Unfortunately, this vali-
dation data is hard to produce due to the NP-completeness of the
problem. Instead, we generated random graphs, calculate their tran-
sitive closures, modify the closures by a fixed number k£ of edge
deletions or edge insertions, run our algorithm on the modified gra-
phs, and compare the computed distance A with k. If A is larger
than k, we observe evidence for a non-optimal solution. Clearly,
A < k does not prove optimality of the approximation, but it
also does not contradict it, while A > k indicates a non-optimal
approximation. Along these lines, we generated 30 graphs of sizes
N € {8,10,12,15,20} and report the results in Table 2. Nota-
bly, in no instance we observed evidence for suboptimality of the

approximation. On the contrary, in many cases the algorithm found
transitive graphs at distances below k.

NUMBER OF NODES |k | A<k | A=k | A >k |

8 2| 0.15 0.85 0
8 31 0.18 0.82 0
8 4| 024 0.76 0
8 51 024 0.76 0
10 2| 0.12 0.88 0
10 31 027 0.73 0
10 4| 024 0.76 0
10 5] 033 0.67 0
12 2| 0.06 0.94 0
12 3] 0.18 0.82 0
12 41 021 0.79 0
12 5] 033 0.67 0
15 3] 035 0.65 0
15 41 025 0.75 0
15 51 020 0.80 0
15 6| 031 0.69 0
20 51 040 0.60 0
20 6| 0.26 0.74 0
20 71 029 0.71 0

Table 2. Accuracy of the approximation. Transitive graphs were modified
by performing k edge deletions or insertions and the distance obtained as
a result of the algorithm was compared to k. The first column denotes the
number of nodes of the transitive graph. The second column denotes the
number of edit operations and the following columns give the fraction of
graphs where the distance is smaller, equal or larger than the number of
modifications.

4 A HIERARCHY FOR MOLECULARLY DEFINED
GROUPS OF LYMPHOMAS

We now show the practical use of the procedure in the context of the
classification of mature aggressive lymphomas. We used the data of
a large lymphoma study conducted by the research network Mole-
cular Mechanisms of Malignant Lymphoma published in Hummel
et al. (2006). A total of 220 mature aggressive B-cell lymphomas
were analyzed using various molecular approaches including gene
expression profiling, immunophenotyping, and molecular cytogene-
tic analysis. The data is available from www.ncbi.nih.gov/pub/geo
through the GEO accession number GSE4475. All molecular cha-
racterizations yield binary labels for all lymphomas in the collec-
tion.

Gene expression signatures: Gene expression properties were
summarized in signatures, which were either present or absent in
the profile of an individual lymphoma. Here we used the mBL
signature of (Hummel et al., 2006), which characterizes molecular
Burkitt lymphoma. Lymphomas not presenting the mBL signature
were called non-mBL. Moreover, we used the ABC/GCB signatu-
res (Rosenwald et al., 2002), which defines two subgroups of diffuse
large B-cell lymphomas: Lymphomas with expression profiles simi-
lar to germinal center B-cells (GCB) and lymphomas with profiles
similar to activated B-cells (ABC). Note, that lymphomas with inter-
mediate expression properties between ABC and GCB exist. They
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were excluded from both groups. Although the GCB/ABC signa-
tures were originally only used for DLBCLs, molecular Burkitt
lymphomas also display the GCB signature, and we have included
them into the GCB group.

Immunophenotyping: Histological sections of lymphoma tissues
were stained with antibodies for the biomarkers CD10, CDS5 and
Ki-67. The expression of the corresponding proteins was classified
by expert pathologists into present and absent. In case of the pro-
liferation marker Ki-67, lymphomas with a score greater than 95%
were termed Ki-67 positive.

Cytogenetics: Chromosomal translocations were determined using
interphase fluorescence in situ hybridization (FISH). The group IG-
MYC comprises lymphomas with a translocation of the MYC locus
involving fusion of MYC to the immunoglobulins IGH, IGK or
IGL, “atyp.myc” includes lymphomas with a breakpoint in the MYC
locus, but without fusion of the gene with one of the IG genes, while
bcl6Br denote lymphomas with breakpoints in the BCL6 locus and
IGH-BCL2 denotes fusion of BCL2 to IGH. For every cytogenetic
and immunophenotypic label we included two sets of lymphomas
into the analysis, one with the lymphomas, which are positive for
the label and one with the lymphomas, which are negative for it.
The original dataset contains more molecular features of lympho-
mas than we included in the model. The omitted features were either
present in almost all or almost none of the lymphomas and hence did
not contribute to a hierarchical model. Also for simplicity of calcu-
lations, we excluded all lymphomas where at least one of the 17
modelled features was not assessed, leaving us with 176 remaining
lymphomas.

From this data we constructed a graph based on noisy sub-
set/superset relations, which we then corrected for transitivity by
using our approximation algorithm. Graph construction was done
with several values for the noise parameter «. Small « returned
dense graphs with almost 90% edges, whereas large values yielded
graphs with hardly any edge. a = 0.9 allowing for 10% noise in
the subset relations yielded a primary graph with 10% edge density,
which is well in the range of practically useful hierarchical models.
With this graph as a reference, we ran the transitive approximation
algorithm resulting in six good transitive approximations with an
edit distance of four to the reference graph. In order to choose one
of them, we scored them by averaging the actual accuracy of all
edges in them. By accuracy of an edge we understand the percen-
tage of lymphomas in the daughter node that are also contained in
the parent node. Clearly this accuracy is bound by « from below.
The hierarchical model of lymphomas resulting from the highest
scoring approximation is shown in Figure 4. Some caution in inter-
preting the model is needed. If an entity has two daughter entities
this only means that the daughter entities are essentially included in
the parent. It does not mean that the two daughter entities are dis-
joint, nor does it mean that the two daughter nodes fully cover the
lymphomas in the parent node. The model reflects known properties
of mature aggressive lymphomas. For example, molecular Burkitt
lymphomas (mBL) carry the GCB signature, are CD10 positive, and
do not carry a IGH-BCL2 fusion nor a breakpoint in the locus of the
BCL6 gene, in line with findings of Hummel et al. (2006). As des-
cribed by Rosenwald et al. (2002), lymphomas with an BCL2 break
are also GCB. Moreover ABC, are CD10 negative non-mBLs with
no abberations of the MYC locus. In addition to confirming publis-
hed results, we can also easily identify contradictions of the present
study data to other published data. For example Hans et al. (2004)

Fig. 4. A hierarchical model of molecular subgroups of mature aggres-
sive B-cell lymphoma.

claim that CD10 expression implies the GCB type of DLBCLs. Our
model does not show a directed edge between these features and in
fact the modelled study data is not supporting this claim at all. Fur-
thermore, the WHO proposes the presence of an IG-MYC fusion
and a Ki-67 score larger than 95% as defining criteria for Burkitt
lymphoma (Jaffe er al. (2001)). Neither IG-MYC nor Ki-67 positi-
vity implies Burkitt lymphoma. The disagreement of Ki-67 may be
due to limited reproducibility of the staining of this marker (de Jong
et al. (2007)). Interestingly, low expression of Ki-67 is a feature of
ABC non-mBL cases.

In order to evaluate the influence of the choice of o on the final
transitive graph we ran the transitive approximation algorithm on
primary graphs obtained by varying alpha from 0.85 to 0.95 in steps
of .01. For each alpha we then chose one transitive approximation
by a scoring using the actual accuracy of edges, as described before.
A comparison of the transitive approximation with o = 0.9 to the
transitive approximations with o = 0.85,...,0.95 showed that on
an average 85% of the edges in the various transitive approximations
are shared by the transitive approximation with o = 0.9.

5 DISCUSSION

With the availability of high dimensional data in both biological
and medical research, there is an increasing need to develop new
and efficient strategies to analyze such data. In genomic clinical
studies, where the same patients are characterized by various mole-
cular readouts large and complex datasets are generated. Often these
datasets contain hierarchical structure on molecular characteristics.
In the present paper, we have introduced a novel tool to uncover
hierarchical structure in complex datasets. We aim for identifying
molecular characteristics, which imply other molecular characteri-
stics. The final hierarchical structure is summarized in a directed
transitive graph.




Transitive approximations

Closely associated with constructing hierarchical models of disease
is the problem of transitive approximations of directed graphs.
Formally stated, given a reference graph, the problem is to find
transitive approximations of the reference graph, which are tran-
sitive graphs with minimal edit distance to the reference graph. The
problem is known to be NP-complete for both directed and undi-
rected graphs. Here we have developed an efficient heuristics for
directed graphs and to our knowledge it is the first of its kind. Note
that in principal our algorithm can be used to approximate a refe-
rence graph g by graphs from an arbitrary set G. We did not use
that G = C in our formal arguments. Of course our validations of
the efficiency and accuracy of the algorithm refer only to the transi-
tive approximation problem. We obtain transitive approximation for
sparse graphs with up to 25 nodes in less than three hours, with good
accuracy. Finally we used the algorithm to retrieve a hierarchical
model of mature aggressive B-cell lymphomas, which reproduces
well known results, suggest new relationships between lymphoma
groups and uncovers discrepancies between different studies.
Besides the hierarchical modelling of disease the transitive approxi-
mation algorithm might also be useful in reconstructing signalling
pathways using nested effects models (see Markowetz et al. (2007)).
Here the graph of up- and down-stream relations in molecular
signalling networks is estimated, from phenotypic screens of RNAi
experiments. In a modular approach, this is done by deciding
for each pair (or triple) of signalling molecules, whether they are
up- or down-stream from each other. Combining these estimated
relations for all analyzed signalling molecules yields a reference
graph for the signalling network. Although consistency requires
that up/down-stream relations need to be transitive, noise in the
data leads to non-transitive reference graphs, such that the transitive
approximation algorithm can be used to consolidate the signalling
networks.

The hierarchical modelling approach can be interpreted as a gene-
ralization of the clustering problem. Clustering the binary charac-
terization vectors of lymphomas detects sets of molecular features
that are present in essentially the same lymphomas, suggesting equi-
valence of the features. Going beyond equivalence, we detect with
our approach features that tend to imply each other. While cluste-
ring uncovers a noisy equivalence relation, our algorithm uncovers
a noisy order relation.

Here we have focused on the discrete transitive approximation pro-
blem. The graph construction part of the algorithm is relatively
simple. In a more elaborate modelling approach it could be repla-
ced by a full Bayesian model, which specifies posterior probabilities
for each potential edge. This would lead to a generalization of the
transitive approximation problem, since then one needs to find tran-
sitively closed graphs with optimal posterior probability across all
edges.

We believe that models of hierarchical structure will be a valuable
complementation of the current repertoire of data mining tools. Due
to the general nature of the underlying concept, we expect it to be
useful in many fields of application.
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