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ABSTRACT

Motivation: Transcription factors (TFs) play a key role in gene

regulation by binding to target sequences. In silico prediction of

potential binding of a TF to a binding site is a well-studied problem in

computational biology. The binding sites for one TF are represented

by a position frequency matrix (PFM). The discovery of new PFMs

requires the comparison to known PFMs to avoid redundancies.

In general, two PFMs are similar if they occur at overlapping

positions under a null model. Still, most existing methods compute

similarity according to probabilistic distances of the PFMs. Here we

propose a natural similarity measure based on the asymptotic

covariance between the number of PFM hits incorporating both

strands. Furthermore, we introduce a second measure based on the

same idea to cluster a set of the Jaspar PFMs.

Results: We show that the asymptotic covariance can be efficiently

computed by a two dimensional convolution of the score distribu-

tions. The asymptotic covariance approach shows strong correlation

with simulated data. It outperforms three alternative methods. The

Jaspar clustering yields distinct groups of TFs of the same class.

Furthermore, a representative PFM is given for each class. In contrast

to most other clustering methods, PFMs with low similarity auto-

matically remain singletons.

Availability: A website to compute the similarity and to perform

clustering, the source code and Supplementary Material are

available at http://mosta.molgen.mpg.de

Contact: utz.pape@molgen.mpg.de

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Detection of binding sites is a crucial task in deciphering gene

regulatory networks (Wasserman and Sandelin, 2004). Binding

sites of transcription factors (TFs) are often represented as

Position Frequency Matrices (PFMs) as introduced by Stormo

et al. (1982). Based on this representation, first studies of the

affinity of TFs to DNA sequences were performed (Schneider

et al., 1986; Staden, 1984; Stormo et al., 1982). Stormo (2000)

shows that the score of a sequence is proportional to its binding

energy. Score calculation has been refined to improve discrimi-
nation between sites and non-sites (Berg and von Hippel, 1987;

Hertz et al., 1990; Stormo and Hartzell, 1989). The threshold

for the score can be calculated such that the probability for a
false positive (type I error) is controlled at a certain level

(Rahmann et al., 2003).
Many computational tools deal with ab initio discovery of

new PFMs on a set of related sequences (Tompa et al., 2005).
Since there is no best method, several programs are usually

applied resulting in a redundant set of PFMs. Furthermore,

the methods might discover PFMs similar to known PFMs.
Therefore, either similar PFMs should be removed or merged

into a new PFM. Thus, an appropriate similarity measure for

PFMs is required.
Most similarity measures consider PFMs as probability

distributions. Hence, the distance between the distributions is
used as dissimilarity measure. Due to the position independence

of PFMs, the comparison is done column-by-column which has

been shown to work well (Liu et al., 1990). The Pearson
correlation coefficient which has been shown to be more

effective than other methods (Pietrokovski, 1996) is widely
used. Wang and Stormo (2003) describe the average log-

likelihood ratio method. Schones et al. (2005); Kielbasa et al.

(2005) calculate the independence of the columns of two PFMs
using the �2 statistic (Fleiss et al., 2003). The Kullback-Leibler

distance is also often used (Aerts et al., 2003; Roepcke et al.,

2005). The Tomtom algorithm (Gupta et al., 2007) can use any
of these measures to compute a null distribution of similarity

scores to obtain P-values. An additional measure described by

Kielbasa et al. (2005) does not compute the distance between
the PFM distributions but the correlation between the scores of

the PFMs on a given sequence.
Suzuki and Yagi (1994) show that TFs of the same family

share similarity in the binding profile. The Familial Binding

Profile (FBP) is a generalized binding profile capturing this core
motif of a family of TFs (Sandelin and Wasserman, 2004).

Several approaches perform clustering of TFs into families
based on a Bayesian learning algorithm (Narlikar and

Hartemink, 2006) and unsupervised neural network (Mahony

et al., 2005). Others use as a metrics ungapped local motif*To whom correspondence should be addressed.

� 2008 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://mosta.molgen.mpg.de
http://creativecommons.org/licenses/


alignments (Sandelin and Wasserman, 2004) and similarity
measures (Kielbasa et al., 2005). A comparison of DNA
sequence based approaches is presented by Mahony et al.

(2007).
In spite of the wealth of literature on this topic, to date there

is no ‘natural’ definition of the similarity of two PFMs. Here

we propose what we think is a natural similarity measure: Two
PFMs should be regarded as similar when they describe similar
binding sites. In this case, they yield a high number of

overlapping hits on a random sequence. Hence, the number
of hits on the sequence is correlated between both PFMs.
Considering the number of hits for a PFM on a random

sequence as a random variable, the correlation is captured in
the covariance between the random variables of two PFMs. We
normalize the covariance by the sequence length and compute

the asymptotic covariance for the sequence length approaching
infinity. Furthermore, we introduce a related measure based on
log-odd scores for the maximum overlap probability for the

clustering.
The covariance approach is related to the score correlation

method (Kielbasa et al., 2005): The covariance capturing the

tendency of overlapping hits is derived using the 2D joint score
distributions for each possible overlap between both PFMs.
The two dimensions of the joint distributions correspond to the

score distributions of the two PFMs. On the one hand, the
probability of an overlapping hit is the quantile of the joint
score distribution with both scores greater or equal than the

corresponding thresholds. On the other hand, the score corre-
lation method approximates the correlation between both score
distributions. A higher correlation of the scores is related to a

higher joint probability of scores greater or equal than the
thresholds. Therefore, both approaches are based on similar
ideas. However, the new approach presented here does not use

an approximation for the score correlation and it naturally
summarizes the possible overlap positions by computing the
covariance.

As mentioned above, Gupta et al. (2007) developed the
Tomtom algorithm to compute the null distribution of similarity
scores. Although we use a similar algorithm, we do not compute

the null distribution of similarity scores but of motif scores based
on the PFMs. Hence, we circumvent the arbitrary choice of a
column-by-column similarity measure and, instead, we can use

the covariance for summarization instead of a minimum P-value
statistic.
We show the performance of the new approach by a simu-

lation. We use the ratio of overlapping and non-overlapping
hits in simulated sequences to obtain a similarity between pairs
of PFMs. A generated PFM family is used for comparison with

the �2 test which performed best in Schones et al. (2005), the
Kullback-Leibler distance (Aerts et al., 2003; Roepcke et al.,
2005), and the best Tomtom approach (Gupta et al., 2007)

using the Euclidean distance. Since the exact Fisher-Irwin test
(Bailey, 1977) is as good as the �2 test, we focussed on the latter
one. Furthermore, we omit the score correlation (Kielbasa

et al., 2005) because its performance is similar to the �2 test
(Kielbasa et al., 2005). We also use a subset of Transfac (Matys
et al., 2003) PFMs and correlate the simulated similarities with

our approaches. Finally, we introduce a related similarity
measure based on the maximum overlap probability. Since this

measure automatically returns the position with the highest

overlap probability, we obtain a gapless alignment of the two

PFMs. Hence, we can merge the PFMs. Therefore, we apply

this measure to cluster a set of class labelled Jaspar (Sandelin

et al., 2004) PFMs and compare the class of the members for

each cluster. We also automatically obtain familial binding

profiles for each cluster. The results are compared with the ones

from Mahony et al. (2007).
In the remainder of the article, we develop the statistics

for the computation of the new approaches and shortly review

the alternative methods. We also describe the generation of

the PFM family for the simulation. Finally, we present a

comparison of the approaches, the performance on Transfac

PFMs, the clustering of Jaspar PFMs and discuss the impact of

the results.

2 METHODS

2.1 Binding sites and words

The PFM is a representation of a TF binding site. This matrix contains

the probabilities for each nucleotide at every position. The position

specific scoring matrix (PSSM) is given by the log-likelihood ratios of

the nucleotide distribution of the PFM and the background probabil-

ities. As background model, we use a symmetric i.i.d. model

incorporating the average GC content of the upstream sequence.

We restrict ourselves to the GC content instead of base pair

composition to make the computation invariant with respect to the

choice of the leading strand.

Using the PSSM of a TF A of length nA, we can assign a score to

every position of the sequence with potential binding sites depending

on the observed nucleotide. A position j is a hit if the word

a¼ a0a1 . . . anA�1 at the jth position of the sequence yields a summed

score sA(a) greater or equal to a threshold tA. We denote this event with

an indicator random variable YA
j ¼ 1. Independent of a given sequence,

we can determine for each word a of length nA its score sA(a). Each

word corresponding to a hit (sA(a)� tA) is called a compatible word of

A. The set of all compatible words is denoted by A. We introduce

random indicator variables Ya
j which are 1 if the word at position j of

the sequence is a and otherwise 0. Since a hit of TF A at position j

occurs if the word at position j of the sequence is in A, we obtain

YA
j �

X
a2A

Ya
j ;

since hits are necessarily disjoint at each position.

For simplicity, we start with two TFs A and B each with only one

compatible word: jAj ¼ 1 and jBj ¼ 1. Furthermore, we ignore the

complementary strand for the beginning. Afterwards, we discard this

restriction and allow any size of A and B.

2.2 Asymptotic covariance for words

In this section, we derive the formulas for the asymptotic covariance

between the counts of two words a 2 A and b 2 B (Reinert et al., 2000;

Waterman, 2000). The section follows the presentation in Waterman

(2000) with simplified background model H0 which is defined by an

i.i.d. sequence with background frequencies �(�) for each letter � 2�.

We can compute the probability for an occurrence of a under the

background model H0 by

�a :¼ PH0
ðYa

j ¼ 1Þ ¼
Yna�1

�¼0

�ða�Þ:
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The number of counts in a sequence region of length m is NaðmÞ ¼Pm�na
j¼0 Ya

j . Before we can state the asymptotic covariance, we introduce

some further notation regarding the overlap between two words a

and b.

We define the probabilities �a, b (k) for an overlap of word a with a

word b at position k of a. For that, we use the overlap bit "a, b(k) which

is 1 if the words allow the overlap (ak¼ b0, akþ1¼ b2, . . ., ana�1¼

bna�k�1) and otherwise 0. Without loss of generality, we assume nb � na
and obtain the overlap probability under the background model H0:

�a;bðkÞ :¼ PH0
ðYa

j ¼ 1;Yb
jþk ¼ 1Þ ¼ �a;bðkÞ � �a �

Ynb�1

�¼na�k

�ðb�Þ:

We capture the overlap probabilities for each k in the overlap sum Ga, b

defined as

Ga;b :¼
Xna�1

k¼0

�a;bðkÞ:

The covariance between the counts of A and B on a sequence of length

m is the sum over all covariances between the hit indicator random

variables:

covðNaðmÞ;NbðmÞÞ ¼
Xm�na

i¼0

Xm�nb

j¼0

covðYa
i ;Y

b
j Þ:

Since the covariance between non-overlapping hits is zero, we only have

to consider overlapping hits. The covariance for overlapping hits is

given by

covðYa
i ;Y

b
iþkÞ ¼ EðYa

i � Y
b
iþkÞ � EðYa

i Þ � EðY
b
iþkÞ

¼ �a;bðkÞ � �a�b;

for 0� k� na. Hence, we can express the asymptotic covariance between

a and b:

lim
m!1

m�1covðNaðmÞ;NbðmÞÞ

¼ Ga;b þ Gb;a � ðna þ nbÞ�a�b � �a �a;bð0Þ � �b
� �

:

The two first terms correspond to the overlap probability of a followed

by b and b followed by a. The third term contains the product of the

expected values of the two random variables. Lastly, we add the

covariance for a and b occurring at the same position.

2.3 Asymptotic covariance for binding sites

As we have already seen before, each TF encodes a set of compatible

words. Therefore, we have to generalize the asymptotic covariance to

deal with sets of words. Again, we consider two TFs A and B with sets

of compatible words A and B. Obviously, the length of each word is

the same within each corresponding set. The probability �A for a hit of

TF A is given by

�A :¼ PH0
ðYA

j ¼ 1Þ ¼ PH0

X
a2A

Ya
j ¼ 1

 !
¼
X
a2A

�a:

The definition of the overlap probabilities for TFs follows the same

reasoning. An overlap occurs between TF A and B if any of the words

in A overlap with any of the words in B. Since the events of the

indicator random variables Ya
j for a 2 A and respectively for B are

disjoint for fixed position j, we obtain

�A;BðkÞ :¼ PH0
ðYA

j ¼ 1;YB
jþk ¼ 1Þ ¼

X
a2A

X
b2B

�a;bðkÞ:

The sums iterate over the set of compatible words. In the Algorithm

section, we show how to avoid the summations and to compute the

overlap probabilities efficiently.

The sum of the overlap probabilities is given by

GA;B :¼
Xna�1

k¼0

�A;BðkÞ:

Eventually, we have to define the number of hits for a TF. Again, it is

the sum of the number of hits for the all compatible words:

NAðmÞ :¼
P

a2A NaðmÞ. Hence, we can split up the asymptotic

covariance for the TFs into sums of asymptotic covariances of words

and then rewrite it with the introduced notation:

lim
m!1

m�1cov NAðmÞ;NBðmÞð Þ

¼
X
a2A

X
b2B

lim
m!1

m�1cov NaðmÞ;NbðmÞð Þ

¼ GA;B þ GB;A � ðnA þ nBÞ�A�B � �A �A;Bð0Þ � �B
� �

:

Since we also want to consider reverse complementary overlaps, we

have to further extend the asymptotic covariance. Denoting the reverse

complementary set of words A by A
0 and the corresponding TF

variable by A0, the symmetry of the restrictive background model H0

yields �A¼�A0 and correspondingly for B, and GA0, B¼GA,B 0,

GA0 , B 0 ¼GA,B, �A0 , B(0)¼ �A,B0(0), �A0 , B 0(0)¼ �A,B(0). Hence, we

obtain the following definition for the similarity between two TFs A

and B:

SðA;BÞ :¼ lim
m!1

m�1cov NAðmÞ þNA0 ðmÞ;NBðmÞ þNB 0 ðmÞð Þ

¼ 2 � GA;B þ GA0;B þ GB;A þ GB 0;A

� �
� 4 � ðnA þ nBÞ�A�B

� 2�A �A;Bð0Þ þ �A0;Bð0Þ � 2�B
� �

:

2.4 Algorithm

As mentioned above, overlap probabilities �A,B (�) for the compatible

sets of words still have to be computed. Unfortunately, the enumeration

of compatible words for a TF is NP-hard (Zhang et al., 2007).

Therefore, we avoid enumeration but compute �A,B (�) using the 2D

score distribution of the PSSMs of TF A and B.

In fact, we have to compute the probability of the joint event of

two scores greater than or equal to the threshold since

�A;BðkÞ ¼ PH0
ðYA

j ¼ 1;YB
jþk ¼ 1Þ. This means that the score for TF A

at position j has to be sA� tA and correspondingly at position

jþ k : sB� tB. The two scores induce a 2D distribution. Obviously,

both scores are not independent for 0� k� nA. Since scores are the sum

of the position specific scores of the PSSM we can decompose the scores

into each pair of positions jþ i and jþ kþ i. Then, pairs of scores are

independent. Hence, we can use a dynamic programming algorithm for

each possible shift.

The dynamic programming approach is often used for the computa-

tion of 1D score distributions (Beckstette et al., 2006; Claverie and

Audic, 1996; Rahmann, 2003; Rahmann et al., 2003; Staden, 1989; Wu

et al., 2000). Extension to two dimensions is reported in Pape et al.

(2007):

Here, we briefly review the algorithm: We denote the PSSM for TF A

by �A
�;� . We enlarge �A

�;� with zero to the left and to the right: �A
�;� :¼ 0

for �50 or �4nA and correspondingly for �B. Without loss of

generality, we assume that a prefix of B overlaps with a suffix of A.

The idea is to compute the score distribution of a prefix of length iþ 1

of the TF based on the score distribution of the prefix of length i. Let

Q
ðkÞ
i ðsA; sBÞ denote the probability for a score sA at the first i þ 1

positions of the TF A and a score sB at the first i� kþ 1 positions of the

TF B. This means TF B is shifted by k position to the right of A. We

obtain this probability from the last step for a prefix of length i for a

score minus the score for the new nucleotide. Hence, we have to look up

the score for each nucleotide and sum the corresponding probabilities.
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In the initial step, no nucleotide has been observed. Therefore, we set

the probability for a score of 0–1 and for all other scores to zero.

We obtain for 0� k� nA and 0� i� nAþ k

Q
ðkÞ
�1ðsA; sBÞ :¼

0 if sA 6¼ 0 or sB 6¼ 0;

1 otherwise;

�

Q
ðkÞ
i ðsA; sBÞ :¼

X
�2�

Q
ðkÞ
i�1ðsA ��A

i;�; sB ��B
i�k;�Þ � ��:

After the last step, Q
ðkÞ
nAþkðsA; sBÞ contains the probability to observe

score sA starting at position j and score sB starting at position jþ k.

Since we require scores to be greater or equal to the threshold, we

obtain the overlap probability:

�A;BðkÞ ¼
X
sA�tA

X
sB�tB

Q
ðkÞ
nAþkðsA; sBÞ:

The overlap probabilities for reverse complementary sequences are

obtained similarly by using the correspondingly transformed PSSMs.

We also use some speed improvements similar to those of Beckstette

et al. (2006) which are also reported in Pape et al. (2007).

2.5 Clustering

In this section, we present a clustering approach which yields an FBP

for each cluster and which discards TFs which do not have any

sufficient similarity. The clustering consists of three main steps:

(1) Selection: Select the pair with maximum similarity,

(2) Merging: Create the new FBP for the cluster,

(3) Verification: Discard the new cluster if not all members share

sufficient similarity.

In the following, we describe each step in more detail. First, we have

to change notation slightly. Let Z ¼ fZig be the set of TFs. The goal

is to obtain a set C of disjoint classes Cj � Z. The FBP/representative

of class j is given by r(Cj) while rðCÞ obtains the set of all FBPs.

Furthermore, c(�) returns the class index of a (meta) TF. We initialize

the set of classes C ¼ Z to one class for each TF such that c(Zi)¼ i and

r(Ci)¼Zi.

2.5.1 Selection This step selects pairs X;Y 2 rðCÞ which have

highest similarity. Instead of using the introduced similarity measure

directly, we create a related measure which automatically returns

the overlap position with the maximum similarity. For each shift, we

consider the ratio of the overlap probability and the probability of two

independent hits of X and Y. Obviously, the denominator corresponds

to the probability of two hits under a null model where X and Y are

independent. In contrast, the numerator contains the probability of two

hits considering the dependencies between X and Y. Applying the

logarithm to the ratio yields log-odds scores:

SX;YðkÞ :¼ log
�X;YðkÞ

�X � �Y

� �
:

Taking the maximum over all shifts k and all pairs of X, X0 and Y, Y0,

we can define the similarity measure Smax(X,Y):

SmaxðX;YÞ :¼ max max
k

SX;YðkÞ;max
k

SX0;YðkÞ;

�

max
k

SY;XðkÞ;max
k

SY0;XðkÞ

�
:

Again, we are using certain equalities derived from the symmetric

background model, in detail: SX,Y(k)¼SX 0 ,Y 0(k), SX 0 ,Y(k)¼SX,Y 0(k)

and correspondingly for Y followed by X. We select X*, Y* such that

ðX�;Y�Þ ¼ argmaxðX;YÞ2rðCÞ�rðCÞ;X6¼YS
maxðX;YÞ:

Furthermore, we introduce a threshold d to stop clustering if the

similarity is not sufficiently high. We set the parameter d equal to the

95% quantile of all pair-wise Smax values from the initial set Z.

2.5.2 Merging After selecting one pair of TFs, we create the new

FBP W: Let k* denote the position of maximum overlap probability.

The new FBP consists of the sum of the position count matrices of X

and Y shifted by k* positions. Thus, the length of W is nW¼ nAþ

nB� k*. If the maximum similarity occurs for X 0 or Y 0, we transform

the respective position count matrices accordingly before summation.

Before summation, we enlarge both position count matrices such that

they overlap for each position of the FBP. The enlarged positions are

filled with the background model. It is based on the background

frequencies ��. Since we sum the position count matrices, we have to

obtain counts. Therefore, we multiply �� by the average number of

sequences of the corresponding position count matrix. This automati-

cally corrects the information content of positions which do not overlap

with all members of a cluster by adding the corresponding fraction of

the background distribution. In other words, we take into account the

number of motifs without specific signal at these positions.

2.5.3 Verification Due to the naive merging of TFs, the FBP

might get less and less related to its original members after successive

mergings. Hence, the clusters are no longer homogeneous but become

more and more heterogeneous over the number of clustering steps.

To prevent this, we ensure that the new FBP always has a high

similarity to each of its members. The merge of the pair X and Y is

discarded if any of the following inequalities does not hold:

8V2CcðXÞ;W2CcðYÞ
: SmaxðV;WÞ > d

In case all inequalities hold, we update C by removing X and Y and

adding the new cluster with its FBP W and members Cc(X) and Cc(Y).

If at least one inequality does not hold, we skip the merging and mark

the pair X and Y such that they cannot be merged. Then, the procedure

starts with the selection step, again. The three steps are iterated until no

non-marked pair of TFs has a similarity greater than d.

2.6 Alternative approaches

Since we compare the new approaches with existing alternative app-

roaches, we give a brief review of those in this subsection. The alter-

native approaches presented here are based on a column-by-column

comparison. The course of action is the same for all approaches: In the

first step, a score or P-value is obtained for each position for each

possible shift/gapless alignment. In a second step, the scores/P-values

for each position are summarized yielding a score/P-value for each

shift. Finally, the score/P-value for all shifts are summarized to one

final value.

2.6.1 �2 test As introduced in Schones et al. (2005), the �2 statistic
is used to compute the probability whether two columns are drawn from

the same multinomial distribution. Let nX� be the number of bases � 2�

for PFM X. The marginal for PFM X is nX¼
P

� 2� nX�. The nucleotide

marginals for two PFMs X and Y are denoted by n�¼ nX�þ nY�. The

overall number of counts is n*. Denoting the observed number of counts

with an upper index o and the expected number of counts by

neX� ¼ nX � n�=n
�, we obtain a P-value using a �2 statistic with three

degrees of freedom:

X
�2�

noX� � neX�
� �2

neX�
þ

noY� � neY�
� �2

neY�

 !
	 �2

3

The P-values for all columns are summarized using the geometric mean.

The final P-value is the minimum of the P-values for each shift.
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2.6.2 Kullback-Leibler distance The Kullback-Leibler distance

(Kullback, 1959) is often used as a similarity measure in this context

(Aerts et al., 2003; Roepcke et al., 2005). Using above notation the

symmetric form is defined by

1

2

X
�2�

noX�
noX

log
noX� � n

o
Y

noX � noY�
þ
noY�
noY

log
noY� � n

o
X

noY � noX�

� �" #

The distances for the positions are summarized using the mean. The

overall distance is obtained by taking the maximum over all shifts.

2.6.3 Tomtom using euclidean distance The Tomtom algorithm

(Gupta et al., 2007) can use any column-by-column similarity measure.

The authors show that the euclidean distance introduced in this area by

Choi et al. (2004) performs best. The distance is defined by

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
�2�

noX�
noX

�
noY�
noY

� �2

vuut :

The sum of the distances for all position are the so-called raw scores.

The Tomtom algorithm approximates a null distribution of these raw

scores to obtain a P-value. The P-values for all nk shifts are summarized

by computing the P-value for the smallest observed P-value p* by

1� (1� p*)nk.

2.7 Data

In this section, we describe the simulation, the Transfac and Jaspar set

of PFMs and their preprocessing. In a first step, we compute PSSMs

from the PFMs by taking the log-likelihood ratio of the nucleotide

frequencies of the binding site and the background model. To ensure

strictly positive ratios one adds pseudocounts in a step called

regularization. We add pseudocounts to the position specific distribu-

tions according to the information content of the position (Rahmann,

2003). In fact, positions with low information content are shifted

towards the background distribution. For positions with high

information content, the difference to the background distributions is

enforced. In general, one has to determine a threshold for each PFM.

The threshold controls the probabilities of the type I error � and the

type II error 	 given by �¼PH0
(s� t) and 	¼PH1

(s5t), where H0 is

the null model for random sequences and H1 the model for the binding

site. Probabilities � and 	 can be computed by the convolution of the

position-specific scores and the respective nucleotide probabilities as

weights (Rahmann, 2003). We set the threshold such that the

probability of at least one false positive hit on a sequence of length

500 is � 10% and if possible �¼	 (see Pape et al. (2006) for details).

2.7.1 Simulation We compare the new similarity measures to

existing approaches by using a simulation as reference: 10 000 sequences

of length 10 000 are generated with an arbitrarily selected GC-content

of 50%. After detecting all binding sites for a set of PFMs each with a

threshold as defined earlier, we compute the number of overlapping hits

NAB between all pairs of TFs A and B. Based on these counts, we

compute the simulated similarity as Ŝ(A,B)¼NAB/NA where NA

denotes the number of hits of TF A. We get a symmetrical measure

by using the average: Ŝsym(A,B)¼ (Ŝ(A,B)þ Ŝ(B,A))/2. In addition, we

compare Smax with Ŝmax (A,B)¼max {Ŝ(A,B), Ŝ(B,A)}/2.

The comparison is visualized by scatter plots for all pair-wise

similarities. One dimension corresponds to the simulated similarity

while the other dimension shows the computed similarity. We quantify

the agreement between both measures using the Pearson correlation

coefficient.

2.7.2 Sampling PFMs We generate a family of PFMs where the

members are gradually more similar to each other. We sample the PFM

column by column using a Dirichlet distribution with different

parameter sets (Schones et al., 2005). The blueprint is the consensus

sequence ‘ACGTACGT’. We choose this sequence because it contains

palindromic as well as repeat features. Such features are crucial for a

realistic test setting since they determine the overlap probabilities. The

count matrix is based on 60 sequences where 30 sequences have the

consensus letter at each position and 10 sequences for each of the other

nucleotides. The counts for each position serve as parameters for the

Dirichlet distribution to sample the multinomial frequency distribution

per position. Thus, we have one parameter set for consensus letter ‘A’:

(30, 10, 10, 10), one for ‘C’ (10, 30, 10, 10), and so on for ‘G’ and ‘T’.

To modify the sharpness of the Dirichlet distribution, we multiplied the

parameter set by a power of ten for some PFMs (see Supplementary

Material). Furthermore, we shift the PFM relative to the consensus.

In combination, we also reduced the length or added positions with

samples from a Dirichlet distribution with non-informative parameters

(1, 1, 1, 1). In this manner, we sampled 10 PFMs, see Supplementary

Material for sequence logos (Crooks et al., 2004).

2.7.3 Transfac PFMs As a further test set, we used a vertebrate

subset of Transfac (Matys et al., 2003) PFMs of version 11.1. We

selected 279 of the 588 vertebrate PFMs due to the following filtering:

The position specific nucleotide distributions for some PFMs are

similar to the background distribution. In these cases, they cannot be

used for binding site detection since the score for a binding site is not

significantly higher than a score for a random sequence. Such PFMs

can be selected by assessing the average information content per

position and the power of a PFM (Rahmann et al., 2003). Thus, PFMs

are discarded if either they have an average information content550%

or a type II error 	 based on the balanced threshold greater than 15%.

Instead of using the balanced threshold for sequence annotation, we

always set � to 10%. Otherwise, very powerful PFMs have such a small

� that hits occur rarely and, therefore, the simulation obtains too few

overlapping hits leading to bad estimates for the simulated similarity

values.

2.7.4 Sequences The similarity for the Transfac PFMs is com-

puted for two sets of sequences: random sequences and human

promoter sequences. The random sequences are generated as above

but with an average GC content equal to the human promoter

sequences (44.86%). The human promoter sequences are based on

Ensembl v46 (Hubbard et al., 2005). For each Ensembl ID, we take the

sequence region �10 000 to þ200 relative to the transcription start site.

If this sequence overlaps with another Ensembl gene entry, we cut the

sequence at that position.

2.7.5 Clustering of Jaspar PFMs The clustering is based on

Jaspar (Sandelin et al., 2004) PFMs using the data set analyzed by

Mahony et al. (2007). The set consists of 13 classes each with closely

related members. The classes are bZIP cEBP (4 members), bZIP CREB

(4), bHLH (10), ETS (7), Forkhead (8), high mobility group (HMG: 6),

HOMEO (8), MADS (5), NUCLEAR (8), REL (6), TRP (5), zinc

finger DOF (4) and zinc finger GATA (4).

We assess the consistency of the clusters using the leave-one-out-cross-

validation (LOOCV) approach following Sandelin et al. (2004) and

Mahony et al. (2007): For each PFM except the singletons, we remove its

contribution to the corresponding FBP. Then, we compute the similarity

between the PFM and all FBPs and singletons. If the similarity between

the PFM and its corresponding (modified) FBP is maximal, we call it

a correct classification. A high percentage of correct classifications

suggests a consistent clustering. In contrast to Mahony et al. (2007), we

do not count singletons as misclassifications. Otherwise, more singletons

in the clustering automatically lead to a lower consistency althoughmore

homogeneous clusters might have been retrieved. This occurs as soon as

some PFMs only share weak similarity with all other PFMs. Hence, we
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include singletons as FBPs for classifying although we do not classify the

singletons.

3 RESULTS

3.1 Comparison with alternative approaches

In this article, we propose two new measures for similarity

between PFMs. The first measure S is the asymptotic

covariance between the number of hits of two TFs. For the

purpose of clustering, we introduced the related measure Smax

which computes the maximum log-odds score for the overlap

probabilities. Figure 1 compares the new and three alternative

measures with the measure computed by simulations.

In Figure 1A the �2 test is compared with simulation. One

observes a rough correlation although the highest simulated

pair-wise similarity has a �2 similarity of 0. The Kullback-

Leibler distance is shown in Figure 1B. Of course, the pairs with

high Kullback-Leibler distance correspond to low simulated

similarities. The measure can be used to separate similar and

dissimilar pairs of TFs without too many false positives, e.g.

with a low cut-off of 0.5. In addition, visualization of the rank

transformed values shows that a rough ordering of similar pairs

is possible (see Supplementary Material). The Tomtom app-

roach based on the euclidean distance (see Fig. 1C) shows a

similar behavior. In general, more pairs with high simulated

similarity have a very small computed similarity. In contrast,

the asymptotic covariance in Figure 1D denoted by S shows a

strong linear correlation. There are no crucial disagreements

between the simulation and the computation. The measure Smax

which only captures the highest similarity grows with the

simulated values but flattens for high values. Since we only

consider the maximum overlap probability, differentiation

between highly similar PFMs becomes more difficult. Still,

an ordering is possible also for these values as shown in the

rank transformed plots in the Supplementary Material.
A quantitive comparison value is given by the Pearson

coefficient for the correlation between the simulated measure

and the computed similarity measure. We obtain a Pearson
coefficient of 0.509 (0.786 after rank transformation) for the �2

measure. The Kullback-Leibler distance, which is a distance
instead of a similarity, has a negative correlation coefficient of
�0.402 (�0.803). Although in this case, the Pearson correlation

is a bad measure since the regression line is perpendicular to the
x axis (see Fig. 1B). The distance from the Euclidean Tomtom

approach has a small correlation coefficient of�0.292 (�0.674).
The asymptotic covariance shows a strong linear correlation
with a Pearson correlation coefficient of 0.997 (0.993). The

measure Smax obtains a correlation coefficient of 0.76 (0.986).

3.2 Transfac set

Figure 2A shows the analysis on simulated sequences for the
pairs of 279 Transfac PFMs. The asymptotic covariance has a

strong linear correlation while, again, Smax flattens for higher
similarity values. The analysis for human promoter sequences
(Fig. 2) is similar but in general more scattered. The Pearson

coefficient for S on simulated sequences is 0.952. The maximum
measure obtains a Pearson coefficient of 0.615. The Pearson

coefficient for the human promoter sequences for S is smaller
(0.886) than for simulated sequences. In contrast, the Pearson
coefficient increases for the maximum measure to 0.665. This is

mainly due to the fact that the correlation is non-linear and the
correlation coefficient is supported by the higher variance for

low similarity values.

3.3 Clustering

The Jaspar set contains classes of closely related TFs. The

clustering of the 13 classes with a total of 79 PFMs yields 14
clusters which are shown in the Supplementary Material. Three

of four bZIP EBP PFMs are contained in the clustering,
forming one homogeneous cluster. All four bZIP CREBs also
form one homogeneous cluster. Eight of eleven bHLH are

clustered forming two homogeneous clusters (size three and
five). All seven ETS factors belong to one homogeneous cluster.

All six Forkhead PFMs belong to one cluster which also
contains four HMGs in a separate branch. One of the
remaining two HMGs is clustered in a small cluster with one

HOMEO. Five of the remaining seven HOMEOs are in one
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Fig. 1. Scatter Plot of all pair-wise similarities for the simulation

(x axis) and the calculated similarity (y axis). (A) contains �2, (B) the
Kullback-Leibler distance, (C) the Tomtom result using the euclidean

distance, and (D) consists of the asymptotic covariance S (blue circles,

left axis) and Smax (red crosses, right axis).

Fig. 2. Scatter Plot of each pair-wise similarity of Transfac PFMs

between S (blue circles) and Smax (red crosses) based on (A) simulated

sequences and (B) human promoter sequences.

Natural similarity measures for PFMs

355



homogeneous cluster, as well, as all five MADS PFMs. Seven
of eight NUCLEAR receptors are contained in one homo-
geneous cluster. All six RELs belong to one homogeneous

cluster. Two of the five TRPs are contained in a heterogeneous
cluster with all four zinc finger DOFs, two of the remaining
three TRPs are also clustered together homogeneously. Finally,

two of the four zinc finger GATAs are forming one
homogeneous cluster. Altogether, eleven of the 14 clusters are
homogeneous, containing 49 of 67 PFMs while twelve PFMs

are not clustered at all.
We compare our clusters (including the eight zinc fingers) with

the corresponding results from the clustering in Mahony et al.
(2007) based on an ungapped Smith-Waterman alignment with

the Pearson correlation coefficient as scoring function. This
clustering from Mahony et al. (2007) including the eight zinc
fingers is very similar to the clustering without the zinc fingers in

Figure 8 (Mahony et al., 2007) but yields 16 clusters and two
singletons (personal communication). The subtle differences
are considered below. We yield seven times the same clusters:

ETS, Nuclear Receptor, bZIP CREB Subgroup, bZIP cEBP
Subgroup, MADS, HOMEO Subgroup and the TRP-cluster/
IRF Subgroup with zinc finger DOFs. Another five clusters are

modified: The REL-like group becomes a homogeneous cluster
since En1 from the HOMEO group and Chop-cEBP from the
bZIP group are removed. The bHLH-ZIP cluster does not

contain the correct member Arnt-Ahr any more. The TRP-
cluster/Myb Subgroup lacks the correct memberMYB-ph3. The
HMG/Forkhead Group 1 does not contain the wrong member

Pbx from the HOMEO group. Our HMG/HOMEO mix
contains different TFs from the same classes HMG and
HOMEO, specifically HMG-1 and En1. We also obtain a

cluster for the zinc finger GATA PFMs but only containing two
in comparison to three in Mahony et al. (2007). Instead of the
mixed cluster including the zinc finger GATA1, the bHLH

TAL1-TCF3 and the Forkhead FOXL1, we obtain an extended
bHLH Subgroup cluster with TAL1-TCF3 and the two other
bHLHs NHLH1 andMYF. The two latter ones are clustered by

Mahony et al. (2007) into a single cluster. In fact, all three
members share the consensus CA*CTG justifying the extension
of the cluster. The heterogeneous cluster HMG/Forkhead

Group 2 with two members does not appear in our analysis.
Furthermore, we performed the LOOCV test on our

clustering. All 67 PFMs are classified correctly while excluding

the 12 singletons. The high number of correct classifications is
not surprising since the clustering algorithm intrinsically
computes a consistent clustering by testing in each step the

similarity between all members and their respective FBP.
In comparison, Mahony et al. (2007) obtain 72 of 77 correct
classifications likewise without counting the two singletons as

wrong classifications. Hence, Mahony et al. (2007) assign more
PFMs to clusters while increasing the number of heterogeneous
clusters and decreasing the consistency of the clustering.

Instead, we obtain more singletons leading to a more stringent
and more consistent clustering.
The clustering automatically generates an FBP for each

cluster. All FBPs are given in the Supplementary Material. As
an example, the FBP for the bZIP CREBs is printed here in
Figure 3. Since we automatically consider the number of

supporting PFMs per position by using the background model

for non-overlapping positions in each merging step, the cor-

responding positions do not obtain high information content.

4 DISCUSSION

We have introduced two new measures of similarity for PFMs.

One main difference is that these new similarity measures

depend on the regularization method, the parameter which

represents the threshold to detect a hit, and on the background

model. To remove redundancies in a set of PFMs, we consider

this an advantage because the detected binding sites in a

sequence also depend on these parameters. In fact, the

similarity measure is able to capture the differences between

the results of two different parameter sets. As an extreme

example consider two different PFMs with the same length and

both with a threshold such that all words are accepted. Due to

their co-occurring hits, these PFMs have the highest similarity.

Increasing the threshold decreases the number of words with

scores higher than the threshold. Therefore, similarity should

decrease as it does in the new approaches. The background

model also can have a high influence on the results. For

example, two overlapping PFMs without CpG dinucleotides

are very similar within a CpG island because both differ from

the background. In a CpG poor background model, both

PFMs are hidden within the background, thus, neither they

achieve a high similarity nor are their hits correlated. Again,

this is advantageous for removing redundant PFMs in a set.

Furthermore, extending the similarity measure for higher order

Markov models is possible although calculation of the 2D score

distribution will become time consuming.
In contrast to the advantageous effect on the removal of

redundancies, the dependence of the result on the parameter

choices is unwanted for clustering. Although the clustering is

robust against small changes, of course, big differences in the

parameters do change the result. For example, changing the

GC content to 40% changes the composition of four clusters by

1–2 insertions/deletions per cluster and adds a new small cluster

of size two. Instead, substituting the regularization method by a

Fig. 3. FBP of the bZIP CREB cluster with the multiple alignment

containing the four TFs TCF11-MafG, bZIP910, bZIP911 and CREB1.
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simple addition of pseudocounts (0.01) only has a minor effect

by changing the composition of one cluster slightly.

The analysis considering 279 Transfac PFMs shows that the

similarity measure is not only applicable to artificial PFMs but

also to real binding sites. The comparison between simulated

sequences and human promoter sequences shows that for no

pair of TFs the simulated similarity significantly differs from

the theoretical similarity. Large differences, e.g. high simulated

similarity and low theoretical similarity, might give evidence for

competitive binding due to more overlapping binding sites than

expected by chance. Since we do not observe such deviations,

either signal to noise ratio is too low or competitive binding

sites evolve to be similar regarding their sequence.
The clustering of the Jaspar set yields a high number of

homogeneous clusters. In addition, only a minor fraction of

PFMs are not clustered at all. Hence, it seems that, indeed, the

similarity between PFMs is captured appropriately. Further-

more, the clustering yields a FBP/representative for each cluster

containing the characteristic properties of its class members.

In this article, we have introduced two new measures of

similarity. In contrast to existing measures, we give a natural

interpretation of the similarity, which is especially useful in

practice. We use a statistical framework to derive the measure,

resulting in the asymptotic covariance. To the best of our

knowledge, we give the first formulas and efficient calculation

in the context of PFMs. Of course, the measures can also be

applied to arbitrary set of words, i.e. experimentally verified

binding sites, although computation becomes inefficient for

large sets. We also show that the similarity measure outper-

forms existing approaches and that the concept can successfully

be applied to clustering.
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