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MetaReg tool for large-scale data integration<p>A new computational tool is presented that allows the integration of high-throughput experimental results with the probabilistic mod-eling of previously obtained information about cellular systems. The tool (MetaReg) is demonstrated on the leucine biosynthesis system in S.cerevisiae.</p>

Abstract

MetaReg http://acgt.cs.tau.ac.il/metareg/application.html is a computational tool that models
cellular networks and integrates experimental results with such models. MetaReg represents
established knowledge about a biological system, available today mostly in informal form in the
literature, as probabilistic network models with underlying combinatorial regulatory logic. MetaReg
enables contrasting predictions with measurements, model improvements and studying what-if
scenarios. By summarizing prior knowledge and providing visual and computational aids, it helps the
expert explore and understand her system better.

Rationale
Given the recent accumulation of high throughput biological
data, the task of integrating and analyzing large-scale data-
sets is a major challenge. A variety of computational modeling
approaches have been developed for the analysis of such data-
sets, such as clustering [1,2] and topological interaction net-
work models [3,4]. While these approaches give a broad, low
resolution picture of cellular processes, many biologists are
interested in a specific subsystem, and wish to use the results
from experiments in order to refine the current knowledge on
the system. This analysis of data in the context of the available
knowledge is often performed in an informal manner: The
researcher sketches a diagram of a relevant subsystem
according to the current knowledge. This diagram summa-
rizes and organizes the available knowledge, and assists the
expert in analyzing the predicted state of the system in vari-
ous possible experiments. The predictions are then compared
to experimental measurements, and if a discrepancy is found,

additional experiments are performed, and the diagram is
iteratively refined.

In the case of complex biological systems and massive
amounts of data, manual construction of the model, state pre-
dictions, comparison with data and systematic model refine-
ments are impractical, and automatic computational
methodologies must be employed [5,6]. To address the need
for such an analysis workflow, we developed MetaReg, an
integrative tool for analysis of steady-state, high-throughput
data in the context of specific biological systems. The theoret-
ical foundations of the MetaReg methodology and algorithms
are outlined below in the 'MetaReg's algorithmic layer' sec-
tion (for a complete description, see [7]). While making some
gross simplifying assumptions about the behavior of real bio-
logical systems, the model was demonstrated to be highly
effective on several systems [7-9]. MetaReg enables easy con-
version of the current qualitative knowledge on a particular
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subsystem into a mathematical model, including logical rela-
tions among the biological components. The system is repre-
sented by a probabilistic graphical model called a Bayesian
network [10], which allows distinguishing between regulatory
relations that are known at a high level of certainty and those
that are more speculative. Given the model, MetaReg predicts
the level of each variable under any given genetic perturba-
tion or environmental stimuli. Moreover, MetaReg allows
incorporation of high throughput data, and graphical com-
parison between model predictions and measurements. The
most advanced MetaReg capability is suggesting model
refinements by systematically seeking changes that increase
the fit between model predictions and experimental
measurements.

The MetaReg application
MetaReg core functionality
Figure 1 illustrates the key features of the MetaReg applica-
tion and its workflow. The basic workflow begins with model
construction and its initial analysis through simulations.
Once a current-knowledge model is established, it can be used
to predict component values under any experimental treat-

ment (for example, genetic perturbation, growth environ-
ment). Next, we compare these predictions to the values
observed in the actual experiments under the same treat-
ments, and highlight the discrepancies between them graphi-
cally. MetaReg can also automatically refine the model in
order to reduce such discrepancies. Screenshots of the main
windows from the application are shown in Figure 2. A com-
prehensive manual of the application is available online [11].

Model construction
The first step in utilizing MetaReg is the construction of the
biological system model on the 'model canvas' (Figure 2a). A
MetaReg model consists of a set of biological variables and
their regulatory logics. The 'variables' represent different bio-
logical entities (mRNA, protein, metabolite, and so on). Each
variable may attain several discrete 'states' (three states by
default), representing, for example, the transcript level of an
mRNA, or the activity level of an enzyme. The state of a vari-
able v is influenced by the states of the variables that are con-
nected to v by incoming edges. These variables are called the
'regulators' of v. Most importantly, every variable is assigned
a discrete 'logic', which defines its state given the states of its
regulators. For example, if variable A has two activators B and

Overview of the workflow in MetaRegFigure 1
Overview of the workflow in MetaReg. (a) The available knowledge about the biological system is represented by a mathematical model. (b) The model 
can be manually improved using simulations. (c) The model can be integrated with experimental data. For each experiment we modify the model 
according to the specific treatment and attach the measurements to the model variables. (d) MetaReg predicts the variable states based on the 
experimental treatment and the predictions are visually compared with the measurements. (e) The algorithmic engine proposes refinements to the model 
in order to increase its consistency with the data. The refinement process can be iterated after accepting certain model changes.
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C, its logic might be Max(B, C). We assume all the logics rep-
resent steady-state regulatory relations, and thus the model
represents the steady-state behavior of the biological system.
Every logic is associated with a probability that indicates the
certainty in the prior biological knowledge. For example, if a
logic is known with high certainty, it will be assigned with a
high probability (for example, 90%), and alternative logics
will have low probabilities.

The application offers several tools to help in model construc-
tion. Variables can be selected from and automatically linked
to known databases, such as SGD [12] and NCBI Gene [13]
(Figure 2b). Each variable can be attributed with links to rel-
evant journal publications from PubMed, enabling further

model curation. The application provides several gadgets for
logic definition, including scripting, a tabular editor and a
logic wizard (Figure 2c) for hierarchical construction of com-
plex logics. The type of each regulation, activation (→),
repression (¤) or other (-❍) is automatically deduced based
on the logic of the regulatee (the regulated variable). The
model canvas is fully interactive, including capabilities for
manual or automatic variable positioning and highlighting of
different sets of variables, such as all the metabolites or all the
cycles in the model.

Model simulation
In order to view the behavior of the model in response to dif-
ferent experimental treatments, simulations can be per-

Screenshots of MetaReg core functionsFigure 2
Screenshots of MetaReg core functions. (a) The model display. In the main window, the model canvas allows dynamic model layout, model simulation and 
display of observations (measurements) versus predictions under a particular experiment for each of the model variables. On the right (top to bottom): 
satellite view of the current model, variable lookup and variable property viewer. (b) Selection of variables from a gene database (NCBI Gene or SGD). 
(c) Formulation of a variable's logic using the wizard. (d) The discrepancy matrix, which compares predicted and observed levels for all experiments 
(columns) and variables (rows). (e) A logic suggested by MetaReg's model refinement algorithm. The suggestion can be further edited by the user, and 
incorporated into the model.
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formed. Given a particular experimental treatment, the
possible system states are computed as described in [8]. A
'system state' is an assignment of states to all the variables in
the model. The user can dynamically design an experimental
treatment scenario and visually analyze the system state on
the model canvas. If the model contains cycles, several system
states might be feasible, and the user can navigate among
them.

Data integration
The application can integrate 'observations' (measurements)
from multiple studies. The measured biological components
are automatically matched to the model variables. For exam-
ple, gene expression data are automatically matched to the
corresponding mRNA variables, and protein measurements
are matched to the corresponding protein variables. As part of
the data import, the user must specify the 'experimental treat-
ment' used in each experiment, including the environmental
stimulations and genetic perturbations performed in each
particular experiment. For example, if the experiment was
performed in surplus of nitrogen and on a yeast strain where
Leu3 is knocked out, the experimental treatment is 'Leu3 = 0;
Nitrogen = 2', where Leu3 and Nitrogen are model variables.
Once the data are imported, it is possible to visualize all meas-
ured variables under each of the experiments in a single data
matrix (Figure 2d; see below), or to view the measurements of
a specific experiment projected on the model canvas (Figure
2a).

Comparing predictions with observations
In order to evaluate the model, the 'predicted' levels of each
variable are compared to its 'observed' levels under each
experiment. MetaReg provides a prediction engine that infers
probabilistically the expected level of each variable in each
experiment, given the network model and the experimental
treatment (see [7]). MetaReg supports two visualization tools
to compare these predictions with the observations, both
designed to highlight cases of discrepancies, which are often
the starting point of further research. First, the observed and
the predicted values for a single experiment can be projected
side by side on the model canvas (Figure 2a). The second vis-
ualization tool provides a comprehensive view of the discrep-
ancies across all the experiments, in which each cell contains
color-coded representation of the observed and the predicted
values, along with a representation of the discrepancy
between them (Figure 2d). This view allows simple detection
of discrepancy 'hot-spots' in which the model fails to explain
the data.

Model refinement
Our methodology enables refinement of the model to obtain
better fit between model predictions and observations. The
input of the refinement process is the target variable and a set
of regulators. MetaReg searches among all possible regula-
tory logics and outputs the most significant one. The sug-

gested logic can be further edited by the user (Figure 2e). This
way the user can test hypotheses about variable regulation.

Case study: leucine biosynthesis in 
Saccharomyces cerevisiae
Modeling and simulations
We present a model for leucine biosynthesis and related sign-
aling pathways in Saccharomyces cerevisiae. Building on lit-
erature reports, we constructed a detailed model of known
regulatory relations in this system. The model contains 47
variables (nodes) and 67 regulations (arcs). The model is
available from our web site [14].

Leucine is an essential branched-chain amino acid generated
from pyruvate via α-ketoisovalerate, α-isopropylmalate (α-
IPM) and β-IPM in a linear pathway in which nine catalyzing
enzymes are involved (Ilv2, Ilv3, Ilv5, Leu9, Leu4, Leu1, Leu2,
Bat1, Bat2). The regulation of leucine production is controlled
by several known mechanisms [15].

Several leucine biosynthetic enzymes are subject to transcrip-
tion regulation via the general regulatory pathway of amino
acid biosynthesis. Starvation for any amino acid induces the
translation of Gcn4 via Gcn2. Gcn4 is a transcriptional activa-
tor of enzymes that catalyze several amino acid biosynthesis
pathways, including the leucine biosynthetic pathway.

The control of several catalyzing enzymes is regulated by the
transcriptional activator Leu3. The activity of Leu3 is regu-
lated by α-IPM, an intermediate of the pathway acting as a co-
inducer. When α-IPM is present, Leu3 acts as activator; when
α-IPM is absent, Leu3 acts as repressor [15]. Hence, α-IPM
serves as a sensor of leucine production.

The enzymatic activity of Leu4 is subject to two major con-
trols by metabolites. The first is feedback (end product) inhi-
bition by leucine. At high levels of leucine, Leu4 activity is
inhibited, and causes a reduction in the production of the
pathway. The second control is inactivation by coenzyme A, a
product of the reaction catalyzed by Leu4 and a central energy
metabolite in the mitochondria. This control serves as a link
between the metabolic process and the energy metabolism
context.

In Figure 3, we present a diagram of our model. It includes the
leucine biosynthetic pathway, the catalyzing enzymes and
their transcriptional control. The state of internal leucine
depends on the leucine transport into the cell and on the yield
of the leucine biosynthetic pathway. The transport is
facilitated via amino acid permeases (Bap2, Bap3, Gap1, Tat1)
that are regulated by Gcn4, Leu3, and the TOR signaling
pathways. The model includes four environmental stimula-
tors: 'NH3

' (ammonium), 'rapamycin', 'leucine', and 'amino
acids', which indicates availability of all amino acids except
leucine that are needed to represent the environmental con-
Genome Biology 2008, 9:R1
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ditions enforced on the system. The model graph contains
many cycles. For example, the general nitrogen control regu-
lation (for example, Gcn4 → biosynthetic enzymes → leucine
biosynthesis pathway → internal amino acids → Gcn2 →
Gcn4), the leucine-specific transcriptional regulation via
Leu3 (Leu3 → biosynthetic enzymes → leucine biosynthesis
pathway → α-IPM → Leu3), and autoregulation of Leu3 tran-
scription factor (TF) on LEU3 gene transcription (LEU3 ↔
Leu3). The variables that are part of cycles in the model are
highlighted in Figure 3.

We used three states for each mRNA variable: state '0' repre-
sents reduced transcription level compared to the wild type,
state '1' represents the wild-type transcription level when cells
are grown on YPD medium, and state '2' represents increased
transcription level. Similarly, each protein has three states
reflecting its activity level (high = '2', medium = '1', low = '0').
The modeling of Leu3 is a special case, since we had to repre-
sent its dual role as activator and repressor. We used state '0'
for its repressive mode, state '1' represents no effect (for
example, in the leu3 mutant), and state '2' indicates the Leu3

activator mode. For example, a simulation of the system
behavior in leucine starvation is shown in Figure 3.

Data preparation
We integrated expression profiles from four datasets that
contain treatments pertinent to our model: seven profiles in
rapamycin treatment after 15, 30, 60 and 120 minutes of
incubation and in amino acid deprivation after 1, 1.5 and 2
hours of incubation [16]; six profiles in histidine starvation
and various Gcn4 perturbations [17]; six profiles of chemostat
growth in nitrogen limiting conditions with and without Leu3
perturbation [18]; and six profiles in nitrogen depletion after
8, 12 and 24 hours of treatment and in amino acid and ade-
nine starvation after 1, 2 and 4 hours of treatment [19]. A
complete description of the profiles, the experimental treat-
ments under which they were obtained and the data preproc-
essing, is available in Additional data file 1.

Evaluation of the model in accordance with data
We applied the prediction engine of MetaReg to the collection
of experimental treatments described above. The matches

MetaReg model canvas view of leucine biosynthesis in yeast during simulation of leucine starvationFigure 3
MetaReg model canvas view of leucine biosynthesis in yeast during simulation of leucine starvation. The model includes the extracellular stimuli, leucine 
uptake into the cell by various permeases, the leucine biosynthetic pathway, and its transcriptional regulation by Leu3 and Gcn4. Variable name suffixes 
indicate variable types: 'm' represents mRNA and 'ap' represents active protein. Arrows indicate the direction of regulation. Arrow types represent either 
activation (→), repression (¤) or other (-❍) of a variable; for complex logics, the arrow types are an approximation only. The logics of the regulation are 
not displayed in this view, but are accessible via other windows (Figure 2c). The model canvas enables highlighting of different sets of variables. In this 
snapshot, all the cycles in the model are highlighted in orange. The model is presented here during a simulation of leucine starvation: the values of the 
extracellular stimuli on variables NH3, amino acids, rapamycin and leucine were fixed to states 2, 2, 0, and 0, respectively. The resulting predicted 
(simulated) states of all other variables are presented to the left of their nodes.
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and mismatches between the predictions and the observa-
tions are displayed by the discrepancy matrix in Figure 4b.
While there is a good match for the majority of the compo-
nents and conditions, the matrix reveals several major dis-
crepancies between the model and the microarray
experiments.

The leucine biosynthetic genes LEU1, LEU2, LEU4 and BAP2
show an unexpected decrease in expression in the leu3

mutant strain (Figure 4b, columns 16-18). The reduction was
surprising since Leu3 is known to act as a repressor in these
experiments.

In gcn4 mutant strains, we observed an increase in the mRNA
levels of the leucine biosynthetic genes BAT1, ILV2, ILV3 and
ILV5 following 3AT treatment (histidine starvation; Figure
4a, columns 11-12). In our model the effect of general amino
acid control on these genes is mediated solely by Gcn4. Since

Comparison of measurements and model predictions on the leucine biosynthesis modelFigure 4
Comparison of measurements and model predictions on the leucine biosynthesis model. The expression levels (both predicted and observed) are 
indicated in yellow to blue scale (low to high expression). Discrepancies are indicated in green (observed < predicted) to red (observed > predicted) scale. 
(a) The data collected for the leucine biosynthesis model. Rows correspond to mRNA variables and columns correspond to experiments. Cells are 
colored according to their observed expression levels. Black cells correspond to cases where the mRNA was not measured. The black strip in the top 
portion of LEU3m cells indicates that it was perturbed in the respective experiments. (b) The discrepancy matrix, highlighting differences between 
measurements and predictions. Rows correspond to mRNA variables and columns to experiments. Each cell contains two squares colored in expression 
scale, where the left square indicates observed level and the right indicates the predicted level. The background color intensity indicates the discrepancy 
between the observed and predicted levels. (c) The observed and predicted expression levels for a nitrogen limitation experiment eight hours after 
treatment (Gasch et al. [19], matrices A, B column 20) projected on the model canvas as two colored strips above each variable. The strip right above the 
variable box represents the predicted level. The strip above it (available only for mRNA variables in this case) represents the observed level.
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Gcn4 is absent in these experiments, our model does not pre-
dict such an increase, and a discrepancy appears (Figure 4b,
column 12).

For LEU3, we observed an increase in expression in two gcn4
mutant strains and in nitrogen limitation experiments (Fig-
ure 4b, row 11, columns 11-15). According to the literature,
LEU3 mRNA is upregulated by either Gcn4 or Leu3 TFs. As
no amino acid shortage occurs in these experiments, neither
Gcn4 nor Leu3 are expected to be active, hence the model
predicts a low level of LEU3 mRNA, in contradiction to the
observed increase.

Following a rapamycin treatment, we observed a consistent
decrease in the levels of four biosynthetic genes, BAT1, ILV3,
ILV5 and LEU1. The effect of rapamycin on the biosynthetic
genes is known to be mediated by the TOR pathway through
Gcn4 [20]. It is thus expected that under rapamycin treat-
ment, Gcn4 will be active, while Leu3 will not be active. Con-
sequently, the levels of the leucine biosynthesis genes (LEU1,
ILV3, ILV5, BAT1) regulated by Gcn4 should be alleviated.
Surprisingly, we witness a down-regulation of these genes.

For LEU9, BAT2, BAP3 and TAT1, we could not find any
report on their regulation in the literature, and thus their pre-

dicted level is constant. Hence, the discrepancies merely
reflect the lack of knowledge about them.

Leucine model refinement
In order to improve the fit of the model's predictions to the
observed data, we used MetaReg's refinement algorithm. We
focus here on two representative examples of model refine-
ment. In these examples we suggest improved logics for the
way in which Leu3 and Gcn4 jointly regulate LEU9, BAT2 and
LEU2.

LEU9 and BAT2 have similar expression patterns (Figure 4a),
but we could not find any report on their regulation in the lit-
erature. MetaReg suggests that LEU9 is regulated solely by
Leu3 with no definite regulatory role for Gcn4 (Figure 5a,
LEU9 table, rows 1 and 3). A similar logic is obtained for
BAT2. Note that for Leu3, MetaReg's refinement matches its
known repressive role: when Leu3 acts as a repressor (Leu3 =
0), we observed medium/low transcription of LEU9, even
though the level of the activator Gcn4 is high (Figure 5a,
LEU9 table).

LEU2 expression is known to be affected only by Leu3 [15].
Indeed, the suggested logic (Figure 5) shows that the state of
Gcn4 does not influence Leu2. As expected, when Leu3

Refinement of the leucine biosynthesis modelFigure 5
Refinement of the leucine biosynthesis model. (a) The refined regulatory logic suggested by MetaReg for LEU2 and LEU9. The regulators of both genes are 
the transcription factors Gcn4 and Leu3. For each logic, the two columns on the left represent all possible combinations of the regulators' states and the 
rightmost column is the regulatee's level, colored by an expression scale. Light gray background indicates that the output level predicted for the input 
combination is not statistically significant. (b) Predictions and measurements under specific conditions. MetaReg computes a refined logic based on the 
regulators' predicted activity level and the observed mRNA level of the regulated gene. As an example, the figure shows the predicted levels of Gcn4 and 
Leu3 in four conditions along with the measured (top strip) levels of LEU2. The corresponding predicted levels of LEU2 (bottom strip) match the logic 
suggested by MetaReg for LEU2, as shown in (a). (c) Discrepancy matrices for LEU2 and LEU9 before refinement (LEU9 with a constant level; LEU2 
activated by Leu3 only) and after refinement (using the logics that appear in (a)). Clearly, the automatic refinement process reduces the disagreement 
between the model and the measurements.
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should act as activator (Leu3 = '2') there is high transcription
(LEU2 = '2'). However, we do not detect the expected repres-
sive effect of Leu3 on its targets. When Leu3 should act as
repressor (Leu3 = '0'), we observe medium LEU2 transcrip-
tion (LEU2 = '1') instead of the expected low transcription.

Figure 5b,c illustrates the refinement process. During refine-
ment, MetaReg tests the predicted activity levels of the TFs
(Gcn4 and Leu3) against the observed level of the mRNA in
each experiment (Figure 5b), and computes the best logic
between the regulators' predicted level and the observations.
Consequently, the discrepancies observed for LEU2 and
LEU9 in our initial model (before refinement) are drastically
reduced after refinement (Figure 5c).

In the case of LEU1, BAT1, LEU4, ILV2, ILV3 and ILV5, the
results were similar to LEU2 (not shown). For BAP2, BAP3,
TAT1 and LEU3, MetaReg did not succeed in deriving a high
confidence logical relation, due to inconsistent effects that
could not be explained by the model. For example, for TAT1,
only down-regulation is observed in the data (Figure 4a, last
row). For BAP3, we observe an inconsistency between two
sets of nitrogen depletion experiments in different studies
(Figure 4a, columns 13-15 versus 19-21). This probably indi-
cates that each of those genes is regulated by additional ele-
ments that are not included in the model.

MetaReg's algorithmic layer
In this section, we briefly outline the algorithmic layer behind
the MetaReg application. A full description can be found in
[7].

Modeling prior knowledge
Our model consists of variables X1...Xn, represented by nodes,
and regulations among them, represented by arcs. The set of
variables that together regulate variable Xi are called its 'reg-
ulatory unit', denoted Pai. This is the set of nodes that have
arcs directed into Xi. Each variable can be in one of several
discrete 'states', and its state in any condition is assumed to be
determined by its 'logic', that is, a discrete function of its reg-
ulators' states in that condition. Note that this assumption
implies that the relevant conditions are in steady state. In
order to model our confidence in the prior knowledge, the
logic of a variable Xi is formulated probabilistically as our
level of certainty that the variable attains a certain state given
the state of its regulatory unit. The uncertainty is modeled by
the conditional probability θi(Xi | Pai). This approach allows
us to distinguish between regulatory logics that are known at
a high level of certainty and those that are more speculative.

The experimental treatment is modeled by fixing the states of
each variable that correspond to the environment, and by
changing the regulation function priors to reflect the pertur-
bations (for example, when a gene is knocked out, its level is

set to zero under that condition, irrespective of the levels of its
regulators).

Data integration
In practice, biological measurements are continuous, and one
does not know in advance how to translate them into discrete
states. To overcome this, each logical variable Xi is associated
with an observed real-valued variable Yi, and the conditional
distribution ψi(Yi | Xi) specifies the probability of the variable
Yi to attain a certain observed real value given its state. Hence,
ψi(Yi | Xi) translates the actual measurements into the dis-
crete model without applying any a priori discretization to
the data. In MetaReg, each ψ is modeled as a mixture of
Gaussians.

The complete computational model
Our probabilistic model defines a 'Bayesian score', which
evaluates the fit of the model predictions to the data, meas-
ured as the log likelihood of the data given the model:

where Z is a normalization constant. The conditional proba-
bilities θi are known from our prior knowledge of the biologi-
cal system, and ψ are determined by maximizing a likelihood
score using an Expectation-Maximization procedure. This
model corresponds to a Bayesian network in the case of acy-
clic dependencies, or to a factor graph in the more general
case where the model contains feedback loops.

Computing model predictions
The 'predicted level' is the expected value of a variable Xi

given the model and the experimental procedure applied.
This is obtained by first computing the posterior states distri-
bution of Xi using a standard probabilistic inference method
called Loopy Belief Propagation [21]. This way we obtain a
probabilistic average of all its possible system modes. Then,
the (continuous) predicted level of Xi is its expectation given
θi and its states distribution. The comparison of predicted and
observed levels (both on the model canvas and in a discrep-
ancy matrix) displays both levels as real values.

Logic refinement
Given a target gene and its candidate regulatory unit, the
refinement process searches in the space of discrete regula-
tory logics in order to achieve a logic with a locally maximum
Bayesian score, while fixing the logics of all other variables.
Due to an exponential number of possible logics, we apply a
greedy heuristic. In the case of ties the algorithm chooses ran-
domly among the equally scored improvements. The ψi

parameters depend strongly on the particular model logics,
and thus we re-optimize them using an expectation-maximi-
zation (EM)-like procedure during each step of the logical
refinement procedure. Note that the refinement process uti-
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lizes the Loopy Belief Propagation algorithm, and thus the
solution builds on probabilistic averaging of all possible sys-
tem modes.

Discussion
MetaReg provides a framework for the modeling and analysis
of a biological network vis-à-vis high throughput data. A
major practical need of molecular biologists today is to gener-
ate hypotheses based on network modeling and to iteratively
refine the network. MetaReg is designed exactly for this
purpose - it allows mathematical modeling of a biological sys-
tem, interpretation of high throughput data in the context of
the prior model, and computational refinement of the model
based on the high throughput data. Several other tools with
related capabilities, emphasizing visualization or simula-
tions, are being developed (Table 1). The MetaReg platform is
unique in its modeling and refinement capabilities, which fit
the needs and workflow of biological investigations. It allows
streamlined cycles of probabilistic modeling, laboratory
experimentation and systematic refinement.

MetaReg is implemented efficiently, computing predictions
and logic refinements within a few seconds for 100 nodes, and
within an hour for 6,000 nodes (using a network with no
more than three regulators per variable, 90% certainty level
in all logics, and 100 gene expression profiles). However, the
model has practical size limitations: the prediction algorithm
run-time increases exponentially with the average number of
regulators per variable. Also, for large models with over 300
variables, the automatic layout of the model topology may
take several minutes.

MetaReg formalizes the biological system using discrete com-
ponent states, assuming that the system is in steady state.
Clearly these crucial assumptions are a simplification of the

biological reality. By making such assumptions, we tried to
strike a practical balance between our wish to enable a faithful
description of the biological system and the scarcity of accu-
rate knowledge at very high resolution. Indeed, biological
processes are inherently temporal, but when the sampling
rate (the number and time resolution of experiments) is low
relative to the rate of the regulatory mechanisms, we believe
that our results here as well as in [7-9] show that the steady
state assumption is reasonable.

The accuracy of the prediction and refinement processes may
be sensitive to the model size and the certainty in the logics.
We have shown previously that the algorithms are highly
robust to certainty level on small networks [7]. Indeed, the
results shown in the leucine example were obtained using a
uniform certainty level of 0.99 for all variables, but we
obtained very similar results when using certainty levels of
0.95 and 0.9 (not shown). However, the robustness of our
methods to model size and to certainty levels requires further
systematic exploration.

A major prerequisite to using MetaReg is formalizing high
quality prior knowledge on the pathway of interest. Several
efforts to generate databases of curated knowledge on signal-
ing pathway are currently under way (for example, BioModels
[22], Reactome [23] and SPIKE [24]). Thanks to such efforts,
it will soon be relatively easy to apply the MetaReg methodol-
ogy in studying many additional biological systems.

Availability and requirements
Project name: MetaReg (home page at [25]).

Operating system(s): Windows.

Programming language: Java for the envelope and C++ for
the algorithms.

Table 1

Available tools related to MetaReg

Tool type Tools Description Relation to MetaReg

Network or model 
visualization tools

Cytoscape [28]
Visant [29]
CellDesigner [30]
Reviewed in [31]

Tools for constructing visualizations of 
interaction and regulatory networks. These 
networks can then be integrated with high-
throughput data

These tools offer powerful visualization aids 
and other analysis aids, but they do not 
address regulatory logics and do not offer 
model evaluation or refinement mechanisms

Kinetic and continuous 
modeling tools

Gepasi [32]
BioNetS [33]
Dynetica [34]
PyBioS [35]
Reviewed in [36-38]

Tools allowing detailed dynamical modeling 
with kinetic parameters and differential 
equations

These tools can perform detailed model 
analysis by accurate dynamical simulations, 
but they cannot discover new mechanisms 
and rely on detailed mechanistic 
understanding of the system1

Logical modeling tools BIOCHAM [39]
Bionet [40]
CellNetAnalyzer [41]
GINsim [42]

Tools for modeling regulatory systems using 
various formalisms, for example, Boolean, 
discrete, fuzzy logic and so on

Allow model evaluation through simulations, 
but are not designed for model evaluation 
and refinement in accordance with high 
throughput data

1 In several cases the kinetic and continuous modeling tools have parameter optimization capabilities, but only for the given differential equations 
included in the model. Hence, these tools lack MetaReg's ability to discover unknown mechanism of reaction and changes in model topology. 
Furthermore, kinetic and continuous modeling approaches require either detailed mechanistic understanding or known model parameters (e.g., 
reaction constants), which are commonly unknown, even in well studied systems (e.g., the Leucine biosynthesis pathway studied here).
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Other requirements: Java 1.5 or higher.

License: free for non-commercial users.

Any restrictions to use by non-academics: License needed.

Abbreviations
EM, expectation maximization; IPM, isopropylmalate; TF,
transcription factor.
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