
[16:20 8/8/03 Bioinformatics-btn281.tex] Page: i187 i187–i192

BIOINFORMATICS Vol. 24 ECCB 2008, pages i187–i192
doi:10.1093/bioinformatics/btn281

Segment-based multiple sequence alignment
Tobias Rausch1,∗, Anne-Katrin Emde2, David Weese2, Andreas Döring2,
Cedric Notredame3 and Knut Reinert2
1International Max Planck Research School for Computational Biology and Scientific Computing, Ihnestr. 63-73,
14195 Berlin, Germany, 2Algorithmische Bioinformatik, Institut für Informatik, Takustr. 9, 14195 Berlin, Germany and
3Comparative Bioinformatics Group, Center for Genomic Regulation, Dr Aiguader 88, 08003 Barcelona, Spain

ABSTRACT

Motivation: Many multiple sequence alignment tools have been
developed in the past, progressing either in speed or alignment
accuracy. Given the importance and wide-spread use of alignment
tools, progress in both categories is a contribution to the community
and has driven research in the field so far.
Results: We introduce a graph-based extension to the consistency-
based, progressive alignment strategy. We apply the consistency
notion to segments instead of single characters. The main problem
we solve in this context is to define segments of the sequences
in such a way that a graph-based alignment is possible. We
implemented the algorithm using the SeqAn library and report results
on amino acid and DNA sequences. The benefit of our approach
is threefold: (1) sequences with conserved blocks can be rapidly
aligned, (2) the implementation is conceptually easy, generic and
fast and (3) the consistency idea can be extended to align multiple
genomic sequences.
Availability: The segment-based multiple sequence alignment tool
can be downloaded from http://www.seqan.de/projects/msa.html. A
novel version of T-Coffee interfaced with the tool is available from
http://www.tcoffee.org. The usage of the tool is described in both
documentations.
Contact: rausch@inf.fu-berlin.de

1 INTRODUCTION
Many bioinformatics applications rely on accurate multiple
alignments. These include phylogenetic reconstruction, structure
prediction, homology modeling, and consensus computation in
assembly projects to name just a few. The computation of accurate
multiple alignments is, however, a non-trivial task. The two main
reasons are (1) that our current understanding of biology makes it
hard to precisely define the mathematical properties of a biologically
optimal alignment and (2) that even under highly simplified
formulations (i.e. alignment score maximization) the problem is
known to be NP-Hard (Wang and Jiang, 1994). Using standard
scoring systems, dynamic programming algorithms (Carrillo and
Lipman, 1988; Lermen and Reinert, 2000; Lipman et al., 1989;
Reinert et al., 2000) or techniques from combinatorial optimization
(Althaus et al., 2002, 2006; Lenhof et al., 1999) can be applied
to compute an exact solution. This has certainly some benefits,
but given the NP-hardness of the problem, it is only practical for
alignments involving a few, relatively short sequences.

Hence, in practice, heuristic methods are used. Most algorithms
use the progressive alignment paradigm (Feng and Doolittle, 1987)
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including Clustal W (Thompson et al., 1994), T-Coffee (Notredame
et al., 2000), MUSCLE (Edgar, 2004), and many others. The
progressive approach has two steps. First, using k-mer counts or
pairwise alignment information, an initial guide tree is built and
second, the sequences are incorporated one by one into the final
alignment taking into account the order defined by the tree. During
the progressive alignment phase some tools use the consistency
concept (Gotoh, 1990). Consistency refers to a means of estimating
whether the alignment of two given residues is consistent with
the overall final alignment, or with any suitable collection of
pre-computed pairwise or multiple alignments. In practice, this
consistency is estimated by quantifying how many intermediate
alignments (triplets) support the alignment of the two considered
residues. The value computed in this way is used afterwards as a
local substitution matrix. This strategy ensures the incorporation
of as much sequence information as possible even in the early
stages of the progressive alignment to avoid the inherent pitfalls of
a greedy process. The combination of this consistency measure with
a progressive alignment has been pioneered in the T-Coffee package
(Notredame et al., 2000), and later re-implemented and improved in
a number of other tools.

We propose a segment-based, progressive alignment tool that
uses consistency. The novelty of our approach is to work on
sequence segments rather than on single characters and to provide a
graph-based alignment of these segments that allows arbitrary input
matches. We represent the segments as vertices in an alignment
graph (Fig. 1). Meaningful segments can be defined using pairwise
global and local alignments, maximal unique matches (MUMs)
(Delcher et al., 1999), or external pairwise comparison tools like
BLAST (Altschul et al., 1990). Unfortunately, direct collections of
segments cannot readily be turned into an alignment graph, since
some of the segments may overlap and intersect each other. A
refinement step is therefore needed to split the segments so that
in the final graph all segments are distinct from one another (Fig. 2).
The pairwise refinement algorithm was described in (Halpern et al.,
2002) and used for a pairwise segment decomposition in (Szklarczyk
and Heringa, 2006). In this article, we give the first extension of this
procedure to multiple sequences and use this multiple segment match
refinement algorithm in our graph-based alignment. The resulting
algorithm is used by our two alignment tools, SeqAn::T-Coffee
and SeqAn::M-Coffee, with improved speed and accuracy when
compared to similar programs.

An important property of the algorithm is its ability to deal
equally well with protein datasets and very long genomic sequences.
We evaluated our implementation for proteins on two standard
reference datasets: BAliBASE 3.0 (Thompson et al., 2005, 1999)
and PREFAB 4.0 (Edgar, 2004). For long sequences we used a set
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Fig. 1. Alignment graph: an alignment graph for 3 sequences S0, S1

and S2. Vertices represent arbitrary segments, edges represent matches
or mismatches, and gaps can be inferred from the topology. The order
of adjacent indels is unspecified in an alignment graph. The blue edge
between S1 and S2 connecting the SQY vertices is consistent with the
intermediate sequence S0 whereas the red edge connecting the CC vertices
is not consistent.

Fig. 2. Segment match refinement: overlaps between segment matches are
resolved using the refinement algorithm.

of six adenoviruses and a set of four different dengue serotypes
causing the acute febrile disease dengue fever. We show that for
amino acid sequences we are faster and more accurate than the
previous M-Coffee (Wallace, et al., 2006) and overall more accurate
than the next best tools ProbCons (Chuong et al., 2004) and MAFFT
(Katoh et al., 2002). For large, fairly similar DNA sequences, we
show that we can quickly compute the most accurate large-scale
alignments when compared to the other programs.

The article is structured as follows. We start in Section 2.1
by describing our graph-based model and the multiple alignment
algorithm. This algorithm was derived from T-Coffee but operates on
the segment-based alignment graph. In Section 2.2 we explain how
to refine a given set of segment matches for multiple sequences. In
Section 2.3 we explain how suitable sequence matches can be found
for multiple amino acid or DNA alignments. Finally, we show results
of our implementation in Section 3 and conclude with a discussion
in Section 4.

2 METHODS

2.1 Graph-based multiple alignment
As shown in Figure 1, a multiple alignment Align(S0,S1,S2) of n=3
sequences S0, S1 and S2 can be seen as an n-partite alignment graph
G= (V ,E). Vertices in V represent sequence substrings (segments), edges
in E represent matches or mismatches and gaps are implicitly represented
by the topology of the graph. The last property implies that there is a
one-to-many relationship between alignment graphs and alignment matrices
because alignment graphs do not impose an order on adjacent indels.
Alignment graphs can be converted to an alignment matrix using standard
graph algorithms (Cormen et al., 2001), namely connected components and
topological sort. The former is used to group vertices connected by alignment
edges into a single component, the latter ensures that the order of the
components fits the order of the characters in the sequences. To minimize the
size requirements of the graph, vertices store positions instead of sequence
substrings. In practice, three integers are sufficient: (1) a sequence ID,

(2) a starting position and (3) the length of the segment. The edges carry
weights that indicate the benefit of aligning the segments connected by
the edge.

Alignment graphs are, however, more general in the sense that they can
contain a set of possible alignment edges E where only a subset T ⊂E
constitutes a valid alignment. An example is shown in Figure 2 where
only one edge incident to the CC vertex in S0 can be realized by an
alignment. The set of edges T that is realized by an alignment is called a
trace (Kececioglu, 1993; Sankoff and Kruskal, 1983). The optimal alignment
(maximal trace) corresponds to the trace where the sum of weights of all trace
edges minus possible gap costs is maximal. The pairwise maximum trace can
be computed: (1) using dynamic programming algorithms (Gotoh, 1982;
Needleman and Wunsch, 1970) that allow arbitrary gap costs, or (2) using
chaining algorithms (Abouelhoda and Ohlebusch, 2003; Myers and Miller,
1995) that allow simple gap cost functions or (3) using the heaviest common
subsequence algorithm (Jacobson and Vo, 1992) that simply computes the
heaviest trace without any gap costs.

In short, a single alignment graph contains match information about a
set of sequences. Multiple alignment graphs can be combined by means
of the segment match refinement algorithm described in the next section.
The alignment graph itself is very similar to a T-Coffee library, except that
in a library every segment is divided into single characters. Consistency is
ensured by means of the triplet extension: (1) Traverse all vertices in the
alignment graph and for each source vertex consider all possible pairs of
adjacent vertices. (2) The two target vertices are either connected by an edge
or disconnected. If they are connected, we have found a triplet and increase
the weight of the connecting edge by the minimum weight of the other two
edges. If they are not connected, we simply insert a new edge with minimum
weight. Note that a progressive alignment on an alignment graph aligns two
strings of vertices instead of sequence characters. A profile in terms of an
alignment graph is a string where each position has a set of vertices. Thus,
given a guide tree we can perform a progressive alignment on an alignment
graph of multiple sequences in the same manner as aligning the sequences
themselves. The approach is, however, more generic because a single vertex
can be any group of characters, e.g. a large segment, a gene, or just a single
character.

2.2 Multiple segment match refinement
To facilitate a graph-based alignment we extended the segment match
refinement algorithm introduced in (Halpern et al., 2002) to multiple
sequences. Whereas a greedy method would have to choose between
overlapping segment matches, the segment match refinement algorithm
computes a minimal subdivision of the segments, i.e. it refines the segment
matches such that all parts of all segment matches can be used (Fig. 2). The
set of refined matches, as described below, is as small as possible to keep
the alignment graph small.

Let S ={S0,S1,...,Sn−1} be a set of n sequences with Si =si
0si

1...s
i
|Si |−1

and i∈{0,1,...,n−1}. Let M={M0,M1,...,Mm−1} be a set of m segment
matches with Mk = (Si

uv,S
j
xy) and k ∈{0,1,...,m−1}. Mk is an alignment

between two segments Si
uv =si

usi
u+1...s

i
v−1 and Sj

xy =sj
xsj

x+1...s
j
y−1 with i,j∈

{0,1,...,n−1}, i �= j, 0≤u<v≤|Si|, and 0≤x<y≤|Sj|. For the segment Si
uv

the positions u and v are the boundary positions. We define the Si-support of
M, in short suppSi (M), to be the set of all boundary positions of segments
on sequence Si.

Segment matches can be arbitrary alignments, i.e. gapped alignments.
That is, the lengths of Si

uv and Sj
xy can be different. In these cases, the

algorithm requires projection maps to determine which character si
u+l on

Si
uv with u+l∈{u,u+1,...,v−1} corresponds to a character sj

x+k on Sj
xy

with x+k ∈{x,x+1,...,y−1}. If we exclude reversals we can, however,
subdivide these alignments into exact segment matches where v−u=y−x
always holds. In this case, the projection of si

u+l is simply sj
x+l .

The goal of the algorithm is to refine a set of input segment matches
M into a set of segment submatches M∗ ={M0∗ ,M1∗ ,...,Mm′−1∗ } where all
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submatches cover the original matches. A submatch of Mk = (Si
uv,S

j
xy)∈M is

a match Mk′ = (Si
u′v′ ,S

j
x′y′ )∈M∗ with u≤u′ <v′ ≤v, x≤x′ <y′ ≤y, v′ −u′ =

y′ −x′, and u′ −u=x′ −x. A set M∗ is called a refinement of M if each
Mk′ ∈M∗ is a submatch of a Mk ∈M and the set M∗ tiles M. That is, for
each segment match Mk = (Si

uv,S
j
xy)∈M we have a subset M′∗ ⊂M∗ where

each Mk′ ∈M′∗ is a submatch of Mk and the following two conditions are
true:

[u,v−1]=
·⋃

Mk′ ∈M′∗

[u′,v′ −1]

[x,y−1]=
·⋃

Mk′ ∈M′∗

[x′,y′ −1]

In short, each original match must be tiled by submatches in M∗.
We are, however, interested in a refinement R out of the set of possible

refinements where all segments are either disjoint or identical, i.e. a
refinement without partially overlapping segments. We call such a set of
segment matches R resolved. In a resolved set any (Si

uv,S
j
xy)∈R satisfies the

requirement that [u,v]∩suppSi (R)={u,v} and [x,y]∩suppS j (R)={x,y}.
If we refine every segment match Mk ∈M into single position matches
we obtain a trivial resolved refinement. Hence, the objective is to find a
refinement R of minimum cardinality.

Such a refinement can be constructed by the following algorithm that
successively applies only the necessary cuts to resolve partial overlaps and
terminates when all segments are disjoint or identical. The algorithm refines a
set of input segment matches M and returns an alignment graph constructed
from the refined segment match set R. (1) The algorithm builds a node set Vi

for each sequence Si ∈S. Initially, Vi =suppSi (M). (2) The segment matches
are processed sequentially. For each segment match Mk = (Si

uv,S
j
xy)∈M we

extract the boundary positions u, v, x and y. (3) For each boundary position w
we retrieve all segment matches L={L0,L1,...,Lp−1} that contain w because
these are the segment matches that partially overlap the given segment match.
To perform this search efficiently we use an interval tree Ti for each sequence
Si. Ti stores all segments that the sequence Si contains (Edelsbrunner, 1980).
(4) We now sequentially process L. Let w be the current boundary position
then each Lq = (Si

uv,S
j
xy) with q∈{0,1,...,p−1} and u<w<v is used to

project w onto Sj . Let h be this projected position. Then we have either
h∈Vj or h /∈Vj . If h∈Vj the recursion stops. If h /∈Vj we call h a cut and
insert h into Vj . Then we recurse to (3) using h. (5) At the end of processing
all segment matches each Vi contains all original boundary positions plus
those positions added during the refinement. Note that no superfluous cuts
are made since all positions in Vi are either original boundary positions or
necessary cuts from projections of the former positions. Thus, the refinement
is of minimum cardinality. (6) At the end of the algorithm each set Vi can be
directly used to define segments on Si in the alignment graph. The required
edges can be derived from the original matches in M.

2.3 Generating segment matches
The advantage of our method is that the input can be any set of segment
matches. To illustrate it, we provide two different mechanisms to generate
segment matches.

For protein alignments and short DNA sequences the standard match
generation algorithm takes a set of sequences and builds all pairwise global
and local alignments using the dynamic programming algorithms of Gotoh
(Gotoh, 1982) and Waterman and Eggert (Waterman and Eggert, 1987).
We compute the dynamic programming matrix column-wise and save the
traceback pointers in a reduced alphabet that can be efficiently stored. This
enables us to use these algorithms for fairly long sequences, e.g. a set of
adenovirus genomes.

However, for very long (genomic) sequences algorithms using quadratic
space are impossible to use and space-efficient dynamic programming
algorithms [e.g. Hirschberg’s algorithm (Hirschberg, 1975)] become too

inefficient. For these problem instances we either use the enhanced suffix
array implementation available in SeqAn to compute maximal unique
matches or external tools such as BLAST (Altschul et al., 1990). For
fairly similar sequences, we can also generate segment matches using an
all-against-all comparison of sequences by means of the longest common
subsequence algorithm (Jacobson and Vo, 1992).

3 RESULTS
SeqAn (Döring et al., 2008) is a library of different components for
sequence analysis. Therefore, we implemented all parts of the tool
described in this article as new building blocks within the library.
We implemented basic graph types, graph algorithms, the match
refinement algorithm, progressive alignment strategies and sequence
analysis functions in SeqAn. Then we combined these components
into two command-line tools, namely (1) SeqAn::M-Coffee and (2)
SeqAn::T-Coffee.

3.1 Tools
SeqAn::M-Coffee is a multiple sequence alignment meta-method
extending the original M-Coffee (Wallace, et al., 2006). Using
multiple sequence alignments from arbitrary aligners as input,
it refines the highly consistent alignment matches and rapidly
generates a new meta-alignment that is the most consistent with
all input alignments. We use a protocol similar to M-Coffee but
improved the efficiency by taking advantage of conserved blocks
in the input alignments that can be represented by large segments
in our graph approach. We configured SeqAn::M-Coffee and
M-Coffee with different aligners, i.e. MAFFT (Katoh et al., 2002),
ProbCons (Chuong et al., 2004), MUSCLE (Edgar, 2004), and our
own method SeqAn::T-Coffee described below. SeqAn::M-Coffee
and the original M-Coffee rely on T-Coffee to build the library.
Therefore, we integrated our tool into T-Coffee so that it can
be seamlessly called from the T-Coffee command-line. This also
provides the user with all the convenient options available in
T-Coffee. Hence, SeqAn::M-Coffee and M-Coffee solely differ in
the extension of the library and the progressive alignment.

SeqAn::T-Coffee is our versatile multiple sequence alignment tool
for amino acid and nucleotide sequences. It generates sequence
matches depending on the input as described in Section 2.3. This
set of matches is refined using the match refinement algorithm
described in Section 2.2. The resulting alignment graph is extended
using the triplet extension. Subsequently, a guide tree is built from
pairwise distances using UPGMA (Sokal and Michener, 1958) or
neighbor joining (Saitou and Nei, 1987). The progressive alignment
is computed by means of the very efficient heaviest common
subsequence algorithm (Jacobson and Vo, 1992).

3.2 Evaluation
We compared SeqAn::M-Coffee and SeqAn::T-Coffee for amino
acid sequences with AMAP (Schwartz and Pachter, 2007),
DIALIGN-T (Subramanian et al., 2005), MAFFT (Katoh et al.,
2002), MUSCLE (Edgar, 2004), ProbCons (Chuong et al., 2004),
T-Coffee (Notredame et al., 2000) and M-Coffee (Wallace, et al.,
2006) on the BAliBASE 3.0 (Thompson et al., 2005, 1999)
and PREFAB 4.0 (Edgar, 2004) benchmark alignment datasets.
The results on BAliBASE are shown in Table 1. We used the
standard reference sets RV11–RV50 of full-length sequences and
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Table 1. BAliBASE 3.0: average sum-of-pairs scores (SP) and average total column scores (TC) for all reference sets RV11–RV50

Aligner RV11 (38) RV12 (44) RV20 (41) RV30 (30) RV40 (49) RV50 (16) CPU

SP TC SP TC SP TC SP TC SP TC SP TC Time (s)

AMAP 49.61∗∗ 25.50∗∗ 90.64∗∗ 77.75∗∗ 86.24∗∗ 27.27∗∗ 73.42∗∗ 33.10∗∗ 78.45∗∗ 39.67∗∗ 78.51∗ 42.44∗ 14928
DIALIGN-T 49.30∗∗ 25.32∗∗ 88.75∗∗ 72.55∗∗ 86.29∗∗ 29.20∗∗ 74.66∗∗ 34.90∗∗ 81.95∗∗ 45.22∗∗ 80.14∗∗ 44.25∗∗ 3843
MAFFT 67.11 44.61 93.63 83.75 92.67 45.27 85.55 56.93 91.97 59.69 90.00 56.19 2914
MUSCLE 59.30∗ 35.92∗ 91.70∗∗ 80.36∗∗ 89.21 35.15 80.27 38.27 86.74∗∗ 47.10∗∗ 85.65 48.69 1547
ProbCons 66.99 41.68 94.12 85.52 91.68 40.54 84.60 54.37 90.37 52.88 89.29 56.69 20480
SeqAn::T-Coffee 63.58 39.11 92.99 82.36 92.05 43.34 83.90 52.27 92.23 57.98 88.12 56.50 14596
T-Coffee 58.22∗∗ 31.34∗∗ 92.27 81.18 90.91 37.80 79.09∗ 36.57∗ 86.02∗∗ 48.20∗∗ 86.09 50.62 53970
M-Coffee [mu] 64.00 40.45 93.73 83.84 90.12 39.73 83.40 47.90 87.66∗ 53.33∗ 86.70 51.19 16530
M-Coffee [mp] 69.05 45.71 94.47 86.11 92.45 43.85 86.79 59.37 90.41 56.63 90.28 57.62 15306
M-Coffee [mps] 67.98 44.58 94.40 85.75 92.28 41.98 85.78 56.77 91.17 58.31 89.57 55.75 22062
M-Coffee [mpus] 67.44 42.74 94.53 85.86 92.04 44.78 85.03 56.10 90.12 55.80 89.22 54.69 27730
SeqAn::M-Coffee [mu] 65.84 43.87 93.81 84.25 90.91 43.12 84.87 52.87 91.49 55.80 87.61 52.94 5858
SeqAn::M-Coffee [mp] 68.99 45.05 94.36 85.93 92.73 45.90 86.84 58.40 91.88 57.02 90.66 57.88 5400
SeqAn::M-Coffee [mps] 69.00 45.34 94.53 86.05 93.05 46.78 86.41 58.73 93.07 61.31 90.72 56.50 8274
SeqAn::M-Coffee [mpus] 69.68 46.89 94.70 86.16 92.55 46.56 86.53 58.90 93.29 62.39 90.06 58.94 12455

The total running time is reported in the last column. The number of multiple alignment files in each reference set is given in parentheses. All scores have been multiplied by 100
and the best program is shown in bold face for each column. The wilcoxon rank test was used to assess significant differences from the best method, indicated by ∗(P<0.05) or
∗∗(P<0.01). The submethods for all meta-methods (M-Coffee, SeqAn::M-Coffee) are given in brackets with m, MAFFT; p, ProbCons, u, MUSCLE and s, SeqAn::T-Coffee. For
the meta-methods we excluded the running time of the submethods to highlight the overhead induced by the meta-method.

Table 2. PREFAB 4.0: average Q scores for all PREFAB alignments. Alignments have been subdivided according to sequence identity ranges

Aligner ≤10% 10−20% 20−30% 30−40% 40−100% CPU
(240) (620) (499) (114) (209) time (s)

AMAP 14.76∗∗ 45.92∗∗ 78.96∗∗ 90.33∗∗ 95.19∗ 48980
DIALIGN-T 21.25∗∗ 49.06∗∗ 77.61∗∗ 87.70∗∗ 96.30 23142
MAFFT 33.41 64.38 85.47 93.91 96.92 6078
MUSCLE 27.31∗∗ 58.03∗∗ 82.58∗∗ 91.59 95.90 4008
ProbCons 32.46 63.07∗ 85.54 93.22 96.24∗ 75272
SeqAn::T-Coffee 29.28∗∗ 61.29∗∗ 83.46∗∗ 91.84∗ 96.40 62455
T-Coffee 27.52∗∗ 56.62∗∗ 82.19∗∗ 89.67∗∗ 96.98 263434
M-Coffee [mu] 30.13∗ 61.85∗ 84.60∗ 93.18 96.25 79560
M-Coffee [mp] 34.51 64.87 86.20 93.34 96.65 77118
M-Coffee [mps] 33.26 64.73 85.75 93.44 96.75 97341
M-Coffee [mpus] 33.09 64.77 85.89 93.56 96.30 118813
SeqAn::M-Coffee [mu] 31.46 62.72 85.30∗ 93.59 96.22 29968
SeqAn::M-Coffee [mp] 34.43 65.50 86.54 93.49 96.76 28946
SeqAn::M-Coffee [mps] 33.80 65.41 86.54 93.61 96.60 42746
SeqAn::M-Coffee [mpus] 33.67 65.63 86.50 93.92 96.36 59559

The number of multiple alignment files in each subset is given in parentheses. All scores have been multiplied by 100 and the best program is shown in bold face for each column.
The wilcoxon rank test was used to assess significant differences from the best method, indicated by ∗ (P<0.05) or ∗∗ (P<0.01). The submethods for all meta-methods (M-Coffee,
SeqAn::M-Coffee) are given in brackets with m, MAFFT; p, ProbCons; u, MUSCLE and s, SeqAn::T-Coffee. For the meta-methods we excluded the running time of the submethods
to highlight the overhead induced by the meta-method. All methods show similar levels of score variability and variability tends to decrease for higher sequence identity ranges.

the BAliBASE scoring program to calculate the sum-of-pairs score
(SP) and the total column score (TC) on the core blocks region. The
results on PREFAB are shown in Table 2. We used all reference
files of version 4.0 and scored the alignments with the qscore
program distributed with the PREFAB database. We report the
Q score that is according to the authors of the program equivalent
to the BAliBASE SP score. Results obtained on protein benchmarks
confirm previously reported results: MAFFT and ProbCons show the
highest accuracy while MUSCLE and T-Coffee display similar albeit

slightly lower levels of accuracy. M-Coffee delivers the best results
when combining MAFFT and ProbCons, although this protocol does
not manage to convincingly outperform the stand-alone version
of MAFFT. Scores improve when the SeqAn library is used as a
meta-method. SeqAn::M-Coffee outperforms most of the equivalent
M-Coffee protocols, thus suggesting an improvement resulting from
the segment-based extension. It is also worth mentioning that
SeqAn::M-Coffee outperforms its constituting methods (including
MAFFT) in most cases, thus suggesting that this method is currently
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Table 3. Alignment of six adenoviruses: running time and alignment quality of an alignment of six adenoviruses. The number of columns with at least 6, 5,
4 and 3 identical characters are reported together with the average identity

Aligner =6 ≥5 ≥4 ≥3 Average identity CPU time (s)

DIALIGN-T 7888 12161 18187 27690 48% 1259
SeqAn::T-Coffee 12795 18525 25147 32396 63% 1751
MAFFT* 12450 18011 24624 32084 62% 118
MUSCLE* 50 817 5257 21849 38% 673
SeqAn::T-Coffee* 12911 20078 27011 33147 65% 328

one of the best available multiple aligners. This improvement
over M-Coffee comes along with a significant improvement in
performance, with SeqAn::M-Coffee only requiring half of the CPU
time of the original M-Coffee (see Table 1 and Table 2).

We then evaluated the ability of SeqAn::T-Coffee to deal with
large-scale alignments. For that purpose, we ran all available
packages on a set of six adenoviruses obtained from the NCBI server
(Accession: NC_001460, NC_004001, NC_001405, NC_002067,
NC_003266 and NC_001454). Since no gold reference is available
for these long DNAsequences, we merely evaluated the ability of the
programs to maximize the level of identity within the final multiple
sequence alignment. Our accuracy measure was therefore the level
of sequence identity in each column. We report the number of
columns with at least 6, 5, 4 and 3 identical characters together with
the running times of the programs and the average identity in Table 3.
We first tried all the programs using the same accuracy options as
for the amino acid alignments, possibly turning on some kind of
DNA switch. Using this setting all programs reported an allocation
error, except DIALIGN-T and SeqAn::T-Coffee. We included both
tools in Table 3 and excluded all other tools reporting an allocation
error. We then tried to adapt the other programs to this kind of
alignment task using various command-line options. In cases where
we succeeded, we included the results of the best settings in Table 3
and added a * to the methods. For SeqAn::T-Coffee, we also included
a second method marked with a * that does not use local and
global alignments. This method’s set of input matches consists of
BLAST matches and matches retrieved from pairwise comparisons
using the longest common subsequence algorithm. Since most
programs reported an allocation error on this set of genomes, we
also analyzed a smaller set of closely related virus serotypes causing
dengue fever (Accession: NC_001477, NC_001474, NC_001475
and NC_002640). All programs managed to align this set of
sequences, except ProbCons and T-Coffee. Using the same notation
and analysis as in Table 3 we report the results of all aligners on this
set in Table 4.

4 DISCUSSION
We presented a new graph-based approach to the multiple sequence
alignment problem. Our approach was especially apt to improve
the meta-method M-Coffee and we showed that SeqAn::M-Coffee
is more accurate and faster than the original M-Coffee. Our
primary alignment method SeqAn::T-Coffee was comparable in
performance to the currently best tools ProbCons and MAFFT
and was consistently better than the original T-Coffee. SeqAn::T-
Coffee is faster than ProbCons but due to the computation of
all pairwise alignments slower than MAFFT. We plan to further

Table 4. Alignment of virus serotypes: running time and alignment quality
of an alignment of the four serotypes causing dengue fever. The number of
columns with at least four and three identical characters are reported together
with the average identity

Aligner =4 ≥3 Average identity CPU time (s)

AMAP 930 1390 12% 179
DIALIGN-T 3635 6909 57% 46
MAFFT 5452 7948 69% 33
MUSCLE 5470 7994 69% 76
SeqAn::T-Coffee 5512 8044 69% 69
MAFFT* 5457 7949 69% 2
MUSCLE* 5481 8000 69% 19
SeqAn::T-Coffee* 5748 8321 71% 25
T-Coffee* 5492 8051 69% 98

improve SeqAn::T-Coffee by selecting informative pairs. We are
also planning to take into account the level of segmentation induced
by the procedure. Since this segmentation is a property of the data,
it would probably make sense to use it further, either for estimating
the alignment accuracy, or maybe as an indicator of the phylogenetic
relationship between the considered sequences. Furthermore, since
high segmentation levels work against the algorithm and slow it
down considerably, one could identify the sequences causing the
highest level of fragmentation and delay their integration until a
second iteration. This could easily be implemented using the double
progressive algorithm of MUMMALS (Pei and Grishin, 2006) or
PROMALS (Pei and Grishin, 2007). Extending SeqAn::T-Coffee
with an iterative refinement loop would probably also make sense.
The usefulness of iteration is well supported by the most accurate
aligners (i.e. MAFFT and MUSCLE), and a recent publication
(Wheeler and Kececioglu, 2007) suggests that well designed
iterations could probably improve most of the existing methods. For
long DNA sequences we have illustrated SeqAn::T-Coffee’s ability
to compute the most accurate alignments. However, these results are
only preliminary since proper benchmarks are not yet available for
the validation of long nucleotide sequence alignments.

Extensions and applications of segment-based alignments are
numerous. The approach lends itself to (1) the comparison of
different assemblies, (2) an improved alignment of sequences with
external segment information (e.g. genes or structural features), (3)
an identification of conserved blocks and (4) the rapid computation
of consensus sequences in assembly projects. We plan to investigate
these possibilities in the near future.
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