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Abstract. Partially supervised or semi-supervised learning refers to ma-
chine learning methods which fall between clustering and classification.
In the context of clustering, labels can specify link and do-not-link con-
straints between data points in different ways and constrain the resulting
clustering solutions. This is a very natural framework for many biological
applications as some labels are often available and even very few label
greatly improve clustering results.

Context-specific independence models constitute a framework for simul-
taneous mixture estimation and model structure determination to obtain
meaningful models for high-dimensional data with many, possibly unin-
formative, variables. Here we present the first approach for partial learn-
ing of CSI models and demonstrate the effectiveness of modest amounts
of labels for simulated data and for protein sub-family determination.

1 Introduction

Historically, clustering and classification or learning from unlabeled data and
learning from labeled data were considered antipodes in machine learning with
little common ground. For several application areas however, problems occupy
a middle ground between them: we will focus on examples from molecular bi-
ology and on improving clustering approaches. For example, disease sub-types
are often defined by clustering patients based on clinical data; clusters and their
representatives are subsequently used for predicting disease outcome or choos-
ing optimal treatment strategies (e.g., [1]). A pure unsupervised approach has to
ignore information about known sub-types, which otherwise, even if incomplete,
at least provides a lower bound on the number of sub-types. Moreover, it will
violate known positive links between patients diagnosed and confirmed to suf-
fer from the same sub-type and negative links between patients diagnosed and
confirmed to be afflicted by distinct sub-types. The incomplete set of sub-type
labels provides constraints which should not be violated in the final clustering
solution.
The same general considerations about clustering and partial information apply,
if we replace patients by genes and disease sub-type by cell cycle phase [2], or
if we replace patients by proteins and disease sub-type by functionally related
sub-group [3]. Generally speaking, pretending complete ignorance about cluster
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Fig. 1. Variants of partially-supervised clustering: The clustering instance of bivari-
ate data (left) becomes easier once labels are introduced (middle). Here data points
connected with a red solid line (positive constraint) share the same label. Negative
constraints, indicated by dashed blue lines, result implicitly from positive constraints.
A more flexible formulation (right) allows explicit specification of positive and negative
constraints and allows to specify weights, indicated by edge weights, for the pair-wise
constraints.

structure is not reflective of the availability of unlabeled mass data and sparse,
labeled high quality data for a wide range of biological settings.

A recent book [4] presents a nice overview of semi-supervised learning. A lot
of the literature concentrates on improving classification motivated by the ob-
servation that decrease in classification error is exponential in the proportion
of labeled data [5]. Since then, a number of approaches followed the same gen-
eral idea. They range from classifying text documents by constructing weighted
graphs [6], partitioning graphs by min-cuts controlled by labeled examples [7],
or inferring the (minimal) sub-manifold from labeled and unlabeled data and us-
ing the labeled samples for classification [8]. Cozman [9] studied how supervised
mixtures get corrupted by unlabeled examples, which can also be interpreted
in the framework of transductive learning [10]. More recently, a framework for
integrating labeled data when learning Hidden Markov Random Fields [11] was
introduced.

For clustering several variants under several names—partially supervised, semi-
supervised learning, respectively constrained clustering—have been proposed.
We will concentrate on clustering with mixture models [12], as mixtures have
been identified as the model of choice for complex data such as gene-expression
time-courses [13] and provide a sound statistical framework for extensions. The
first bioinformatics application for which partial learning was proposed was con-
cerned with improving clustering of gene expression time-courses [14]. A mix-
ture with hidden Markov model components was trained with a variant of the
expectation-maximization (EM) algorithm which essentially implemented a hard
assignment of genes to clusters. The two steps of the EM are, first, computing
posterior probabilities for component models given the data based on current
model parameter estimates and second, estimating updated parameters from



the data where the posteriors specify the influence a particular data point has
in the estimation of the parameters (see [15] for details ). Recall that unlike the
k-means algorithm all the data points contribute to the estimation of every com-
ponent; the weighting by posterior means that ill-fitting data points contribute
less. The label can be effectively used in the EM by setting the posterior of data
points with the same label to unity for the same designated component. These
explicit positive constraints (i.e., link these data points, cf. Fig. 1) do not say
anything about the parameters of the designated component, they just make sure
that the labeled points assigned contribute maximally to the estimation of its
parameters. While data points can have distinct labels, each label corresponding
to one specific component, negative constraints only arise implicitly between all
pairs of data points with distinct labels. For example, it is not possible to specify
two negative constraints between two pairs of data points. The advantages are
an easy implementation and that the local convergence result of the EM still
apply [14]. Noteworthy is the very large positive effect on clustering quality even
small quantities (less than 1%) of labels.

The hard assignment can be relaxed to soft assignment by specifying posterior
distributions which do not put all the mass on one component. Both implemen-
tation and theory remain unchanged. However, even for the soft assignment, it
is not possible to directly use information about pair-wise similarity or dissim-
ilarity of data points, a type of information often abundant in bioinformatics,
in the EM. In other words the constraints are not weighted and a reformula-
tion in terms of the posteriors is likely cumbersome. Recently [16, 17] a new
approach was proposed to use additional soft constraints for observations in the
form of pair-wise positive (link) respectively negative (do-not-link) constraints
w+

ij respectively w−
ij ∈ [0, 1], which reflect the degree of linking for each pair of

observations; cf. Fig. 1 (right).

In parallel to this development several approaches and many applications were
introduced which essentially combine mixture estimation and model structure
determination to improve learning on instances with many, possibly uninfor-
mative variables, with sparse data and, ultimately, arrive at more meaningful
models for high-dimensional data. The central idea of these approaches is to au-
tomatically adapt model complexity to the degree of variability present in a given
data set. This notion of context-specific independence (CSI) arose in the Bayesian
network community [18–20] and has been successfully applied in mixture model
framework for application such as clustering of gene expression data [21], tran-
scription factor binding site detection [22], subtype discovery in complex genetic
disease data [23] or clustering and functional annotation of protein families [3].

In the following we propose the first approach to combine CSI structure learning
with the integration of prior knowledge in a partially supervised learning setup,
using hard constraints on the component posteriors for labeled data.



2 Methods

2.1 CSI Mixture Models

Let X1, ..., Xp be random variables. Given a data set D with N samples, D =
x1, ..., xN with xi = (xi1, ..., xip) a conventional mixture density is defined as

P (xi) =

K∑

k=1

πk fk(xi|θk), (1)

the non-negative πk are the mixture coefficients,
∑K

k=1 πk = 1 and each compo-
nent distribution fk is a product of distributions over each of the Xi,(i = 1, ...,
p) parameterized by parameters θk = (θk1, ..., θkp),

fk(xi|θk) =

p∏

j=1

Pj(xij |θkj). (2)

The full parameterization of the mixture is then given by θ = (π, θ1, ..., θk).
For a data set D of N samples the likelihood under mixture M is simply the
product of the mixture densities of each sample

P (D|M) =
N∏

i=1

P (xi). (3)

The central idea of the CSI extension to the mixture framework is that it is
unnecessary to have unique parameters θkj for all components in each feature.
Rather the number of parameters should be adapted to the degree of variability
observed in the data. This means that multiple components share parameters for
features where there is no discriminatory information for the induced grouping
of the data. The CSI principle is visualized in Fig. 2. On the left side the model
structure of a conventional mixture is visualized. Each cell of the matrix repre-
sents an uniquely parameterized distribution and there is a unique distribution
for each component in each feature. The matrix on the right shows one possible
CSI structure. Here cells spanning multiple rows represent which components
share parameters in each feature. For instance for feature X1 and X3 compo-
nents C4 and C5 share parameters, for feature X2, C1 is uniquely parameterized
and for feature X4 all components share a parameterization.
Formally the CSI mixture model is defined as follows: For the set of K component
indexes C = {1, .., K} and features X1, ..., Xp let G = {gj}(j=1,...,p) be the CSI
structure of the model M . Then gj = (gj1, ...gjZj

) with Zj given by the number
of subgroups for Xj and each gjr, r = 1, ..., Zj is a subset of component indexes
from C. That means, each gj is a partition of C into disjunct subsets where each
gjr represents a subgroup of components with the same distribution for Xj .
The CSI mixture distribution is then obtained by replacing fkj(xij ; θkj) with
fkj(xij ; θgj(k)j) in (2) where gj(k) = r such that k ∈ gjr . Accordingly θM =
(π, θX1|g1r

, ..., θXp|gpr
) is the full model parameterization and θXj |gjr

denotes the
different parameter sets in the structure for feature j. The complete CSI model
M is then given by M = (G, θM ).
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Fig. 2. Model structure matrices for a) conventional mixture model with five compo-
nents over four features and b) corresponding CSI mixture model.

2.2 Partially supervised learning

The learning task in the CSI setup consist of inferring the parameterization of
the mixture Θ and the CSI structure G. For the former, the standard technique
is the Expectation Maximization (EM) algorithm [24], for the latter we apply a
Bayesian approach in the structural EM framework [25, 22]. One central quantity
for both of these algorithms is the posterior of component membership given by

τik =
πk fk(xi|θk)

∑K

k=1 πk fk(xi|θk)
, (4)

i.e., τik is the probability that a sample xi was generated by component k.
In the EM algorithm the posterior is essentially a weight that determines the
contribution of a sample to the parameters of a component. In the structure
learning the posterior is used to compute the expected sufficient statistics of
candidate structures, which then can be evaluated by the model posterior in an
efficient manner (see [22] for details).
For the partially supervised case, a number of samples is assigned to components
a priori by the labels. For a labeled sample xi with label l this means τik = 1 for
k = l and 0 for all other k. This binds the contribution of the sample to parameter
estimation and structure learning to a specific component. In the same way that
this modification of the posterior implements partially supervised learning for the
parametric EM, it gives rise to the partially supervised Structural EM algorithm
in the CSI structure learning framework [21, 25, 22].

3 Results

3.1 Simulation study

In order to demonstrate the impact of a small number of labels on parameter es-
timation and structure learning we compared the performance of models trained
with and without labels on simulated data. The generating model G was a Gaus-
sian mixture with uniform weights on the three components over 12 features. The
first two features were informative for the discrimination of the components, the
remaining ten were uninformative with equal randomly chosen parameters for
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Fig. 3. Example simulated data for the first two informative features. The distinct
classes are indicated by carets, rectangles and circles respectively.

all components. An example data set for the informative components is shown in
Fig. 3. Two components were rather compact with diagonal covariance matrices
and diagonal entries 0.5, the other component was more spread out (diagonal
covariance with diagonal entries 1.5). The components with smaller variance
each overlapped to a degree with the central large-variance component. The ten
uninformative features provided the opportunity for the structure learning to
adapt model complexity in the learned models.

We sampled 30 data sets of size 120 from G and trained CSI mixtures with and
without labels. For the latter three labels were used for each component. The
average performance of the models over the 30 data sets with respect to the true
component labels is summarized in Tab. 1

Unlabeled Partially Labeled

Sensitivity 92.76% SD 3.96% 92.10% SD 4.13%
Specificity 71.47% SD 15.13% 91.56% SD 4.34%

Table 1. Average sensitivity and specificity for labeled and unlabeled data over 30
simulated data sets.
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Fig. 4. Average sensitivity and specificity of clustering of the nucleotidyl cyclase data
for different numbers of labels. Standard deviations are shown by error bars.

It can be seen that the addition of three labels for each components yields a
considerable increase in specificity of the trained models. To assess the impact
of the labeling on the structure learning we considered the edit distance of the
learned structures to the true structure in G with respect to merge/split oper-
ations in the structure matrix. For instance the edit distance of Fig. 2a) to 2b)
is nine since nine merges are needed to convert a) into b) (the same holds for
splits in the other direction). The average edit distance of the models based on
unlabeled data was 6.3 (SD 4.71), the labeled data yielded an average distance
of 0.17 (SD 0.38). This indicates a greatly increased precision in the structure
learning for the labeled data.

3.2 Protein sequence data

In order to examine the effect of labels in the data on a true data set we applied
CSI mixture models on a multiple sequence alignment of nucleotidyl cyclase
family protein sequences. We used the model extensions previously introduced
for CSI for protein data [3]. The 132 sequences fall into subgroups of guany-
lyl cyclases (GC) and adenylyl cyclases (AC). We used the true classification
into these subgroups as labels for the partially supervised learning. Labels were



chosen randomly in equal numbers for GC and AC subgroups. The average sen-
sitivity and specificity for different numbers of labels is shown in Fig. 4. It can be
seen that qualitatively both sensitivity and specificity increase with the amount
of prior knowledge considered, i.e. the number of labels assigned to the data set.
It is noteworthy that for 60 labels (45% of the data set labeled) there is a drop
in performance. This can probably be attributed to the random choice of labels.
If by chance a poor selection of labels is chosen, for instance only labels from
one boundary region of a cluster, the partially supervised approach may actually
mislead the parameter estimation.

4 Discussion

The results on the simulated data indicate that a partially supervised setup
even for a small number of labels greatly increases the clustering performance.
While sensitivity was similar for unlabeled and labeled data, the addition of
labels yielded greatly increased specificity. This was the expected result from
the literature on partially supervised learning. A more interesting question was
how much the CSI structure learning would be impacted by the labels. The
vastly smaller structure edit distance to the true CSI structure of the generating
model we observed for the partially supervised case, indicates that the structure
learning can also greatly benefit from the addition of labels.
When applying the partially supervised learning on protein data the picture was
somewhat more noisy, though the advantage of the labeling could still be seen.
The rather high variance in results we observed can probably be attributed to the
inherent noisiness of the data and the random choice of labels. Taken together
the results suggest that the partially supervised learning can bring considerable
improvement to both the parameter estimates and the learned CSI structure but
one should be aware that in order to fulfil its potential the appraoch requires
high-quality labels.
There are several open questions regarding the objective formulation for partially
supervised learning of CSI models, in particular if pair-wise constraints need to
be included, as the CSI structure controls cluster membership only indirectly
and, more importantly, not variable-wise but rather by all variables simultane-
ously. This suggests that pair-wise constraints could negate the computational
advantages gained by the independence assumption between variables. Never-
theless, the bioinformatics applications directly drive the need for partially su-
pervised learning and our results show that non-trivial improvements can be
realized on realistic instances from applications.
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