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ABSTRACT

Motivation: High-throughput experiments such as microarray

hybridizations often yield long lists of genes found to share a certain

characteristic such as differential expression. Exploring Gene

Ontology (GO) annotations for such lists of genes has become a

widespread practice to get first insights into the potential biological

meaning of the experiment. The standard statistical approach to

measuring overrepresentation of GO terms cannot cope with the

dependencies resulting from the structure of GO because they

analyze each term in isolation. Especially the fact that annotations

are inherited from more specific descendant terms can result in

certain types of false-positive results with potentially misleading

biological interpretation, a phenomenon which we term the

inheritance problem.

Results: We present here a novel approach to analysis of GO term

overrepresentation that determines overrepresentation of terms in

the context of annotations to the term’s parents. This approach

reduces the dependencies between the individual term’s measure-

ments, and thereby avoids producing false-positive results owing to

the inheritance problem. ROC analysis using study sets with over-

represented GO terms showed a clear advantage for our approach

over the standard algorithm with respect to the inheritance problem.

Although there can be no gold standard for exploratory methods

such as analysis of GO term overrepresentation, analysis of biolog-

ical datasets suggests that our algorithm tends to identify the core

GO terms that are most characteristic of the dataset being analyzed.

Availability: The Ontologizer can be found at the project homepage

http://www.charite.de/ch/medgen/ontologizer

Contact: peter.robinson@charite.de and vingron@molgen.mpg.de

1 INTRODUCTION

High-throughput experiments such as microarray hybridiza-
tions often result in a list of genes (the study set) found to share

a certain characteristic such as differential expression, and

researchers are then confronted with the question of what
differentiates the genes in the study set from the usually much

larger set of all genes on a microarray chip (the population set).

Exploring Gene Ontology annotations in this and in similar

contexts has become a widespread practice to get first insights

into the potential biological meaning of the experiment.

The Gene Ontology (GO) provides structured, controlled

vocabularies and classifications for several domains of molec-

ular and cellular biology (Ashburner et al., 2000). GO is

structured into three domains, molecular function, biological

process and cellular component. The terms of the GO form

a directed acyclic graph (DAG), whereby individual terms are

represented as nodes connected to more specific nodes by

directed edges, such that each term is a more specific child of

one or more parents. For instance, mismatch repair is a child

of (more specific instance of ) DNA repair. The Gene Ontology

Annotation (GOA) Database and several other groups provide

annotations for genes or gene products (hereafter simply

referred to as genes) of over 50 species (Camon et al., 2004a).

The true-path rule is a convention which states that whenever

a gene is annotated to a term it is also implicitly associated with

all the less specific parents of that term.

The most commonly used statistical test involves the

hypergeometric distribution. This approach gives a straight-

forward and simple measure for the overrepresentation of an

individualGO term, and we therefore use the term term-for-term

approach to describe it (see Fig. 1 and Methods Section). It is

applied to all terms individually and generally combined with

some correction method for multiple testing to produce a list of

terms which are accepted as being significantly overrepresented

in the study set. A number of tools have been developed that

implement a term-for-term analysis using the hypergeometric

distribution or similar analyses, most of which are listed at the

GO website (Gene Ontology Consortium, 2006).

The drawback of the term-for-term approach is that it does not

respect dependencies between the GO terms that are caused by

overlapping annotations. As a result of the true-path rule, each

term in GO shares all the annotations of all of its descendants.

A second source of overlapping annotations is that individual

genes can be associated with multiple unrelated terms that are

not connected in the GO DAG except by the root term.
In Alexa et al. (2006), two algorithms were presented which

try to decorrelate the GO graph structure by processing the

GO DAG in a bottom-up fashion, i.e. from most specific

to least specific terms. In the first method, referred to as elim,

the authors propose to eliminate the genes from the sets once*To whom correspondence should be addressed.
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they have been found to be associated with a GO term flagged

as significant. Because this procedure can miss significant

GO terms at less specific levels of the GO graph, the authors
developed a second algorithm, which is referred to as weight.

It examines connected nodes in the GO graph and down-
weights genes that are annotated by less significant neighbors.

A similar algorithm was implemented in the GOstats package

of Bioconductor (Falcon and Gentleman, 2007).
We have developed a novel approach to statistical analysis

of GO term overrepresentation that examines each term in the
context of its parent terms, which we call the parent–child

approach. A preliminary presentation of this approach was
presented in a conference paper (Grossmann et al., 2006).

A related approach was mentioned as a part of a larger compa-

rative analysis of yeast and bacterial protein interaction data in
Sharan et al. (2005). However, algorithmic details were not given

and a systematic comparison with the term-for-term approach

was not carried out. Here, we develop two versions of the parent–
child approach which we both compare systematically with each

other and with the term-for-term approach as well as elim and
weight to show their superiority over these approaches.

2 METHODS

2.1 Background: the term-for-term analysis

Denote the population set as P and the study set as S with sizes of m and

n, respectively. Suppose that the term for which we want to measure

overrepresentation is t. Let Pt be the set of genes annotated to t with

cardinality mt. St and nt are analogously defined for genes in the study

set S that are annotated to t. The situation is depicted in Figure 1A.

Suppose now that � is a set of size n sampled randomly

without replacement from P, and let �t be the number of genes in �

that are annotated to term t. The probability of observing exactly

�t annotations can then be calculated according to the hypergeometric

distribution:

Pð�t ¼ kÞ ¼
mt

k

� �
m�mt

n�k

� �
m
n

� � , ð1Þ

where, in general, m
n

� �
¼ m!

n!ðm�nÞ! is the number of ways of choosing a set

containing n distinct elements out of a set of size m.

As we are interested in knowing the probability of seeing nt or more

annotated genes, we sum the term in (1) from nt to the maximum

possible number of annotations. This is equivalent to a one-sided Fisher

exact test:

ptðSÞ :¼ Pð�t � ntÞ ¼
Xminðmt;nÞ

k¼nt

mt

k

� �
m�mt

n�k

� �
m
n

� � : ð2Þ

2.2 The parent–child approaches

Denote by pa(t) the parents of t and for simplicity suppose first that

t has only a single parent. The probabilities involved the parent–child

approaches are very similar to the one calculated in (1) except for

conditioning on the event that the overlap of the random set � with

Ppa(t) is exactly as observed in the study set. From the true-path rule it

follows that mt�mpa(t) and the setting is illustrated in Figure 1B. Now,

the probability of there being exactly �t annotations is:

Pð�t ¼ kj�paðtÞ ¼ npaðtÞÞ ¼

mt

k

� �
mpaðtÞ�mt

npaðtÞ�k

� �

mpaðtÞ

npaðtÞ

� � : ð3Þ

To calculate significance, we sum over the probabilities for seeing

npa(t) or more annotations up to min (mt, npa(t)) in an analogous manner

to Equation (2).

If term t has more than one parent, it is not immediately apparent

how to calculate the conditional probability in 3 (Grossmann et al.,

2006). We have chosen to examine in detail two approaches which lead

mt

nt

population:m

study: n

A Annotated to t

mt

nt

population:m

study: n

mpa(t)

B Annotated to t

Fig. 1. Differences between term-for-term and parent–child analysis. Imagine that the genes are marbles of different colors in a jar. A marble is black

if the corresponding gene is annotated to t, otherwise it is white. If we draw a certain number of marbles at random and without replacement from the

jar we would expect the same proportion of white and black marbles among them as there was in the jar. We can calculate the probability of drawing

a certain number of black marbles by chance using the hypergeometric distribution, whereby one sums over the upper tail of the distribution to

obtain the probability of seeing at least a certain number of black marbles by chance. This approach is used in both the term-for-term and parent–

child algorithms, though they differ in the definition of the sets that are analyzed as can be seen in the illustrations. (A) In term-for-term analysis, the

probability is calculated of observing nt or more genes annotated to t for a study set of size n given that mt genes (depicted as bold dots) in the

population of size m are annotated to t. (B) In parent–child analysis, we calculate the probability of observing nt genes annotated to t in the study set

given that npa(t) genes in the study set are annotated to the parents of t (npa(t) is given by the intersection of the study set with mpa(t)). See the Methods

section for further description.
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to solutions with a similar formal and computational complexity as the

single-parent solution.

For the first approach, which we call parent–child-union, we define

the sets of parents of a term t in the population and study set as the

union of genes annotated the parents of t:

P[
paðtÞ :¼

[
u2paðtÞ

Pu; S[
paðtÞ :¼ S \ P[

paðtÞ

Therefore, we let mpa(t) and npa(t) be the number of genes annotated to

any of the parents of the respective sets.

For the second approach, which we call parent–child-intersection, we

define the sets of parents of a term t as the intersection of genes that are

annotated to the parents of t:

P\
paðtÞ :¼

\
u2paðtÞ

Pu; S\
paðtÞ :¼ S \ P\

paðtÞ

Hence, we count the number of genes annotated to all of the parents.

2.3 The elim and weight approaches

Both approaches were implemented as described in Alexa et al. (2006)

except that we left out the direct Bonferroni adjustment of the elim

method. For the weight method we chose sigRatioða; bÞ ¼ a
b for

weighting a parent–child node pair.

2.4 Gene Ontology terms and associations

Definitions of GO terms and associations between genes and GO terms

were downloaded from the Gene Ontology consortium (Ashburner et

al., 2000) website at http://www.geneontology.org/. The

associations for yeast and human used in this article were provided

by the Saccharomyces Genome Database (Dwight et al., 2002) and by

the EBI (Camon et al., 2004b). The data were downloaded on 26 June

2007 and comprised of 4449 annotated terms.

2.5 All-subset minimal P-values

Unlike the term-for-term approach, the parent–child approaches capture

a relative overrepresentation. Here, we introduce a measure which

quantifies how well this is possible for a given term t. This all-subset

minimal P-value is defined as

PminðtÞ :¼ min
S�P

ptðS Þ ¼ ptðPtÞ

and marks the least P-value we can get by any possible study set. This

set conforms to the study set made up exactly of all terms in the

population that are annotated to t, or Pt. We will use the measure to

filter out terms for which it is impossible to get a significant P-value

regardless of the study set. For instance, if the annotations of a term t

match those of its parent exactly, then pmin(t)¼ 1.

2.6 Constructing artificial study sets

Artificial study sets with overrepresentation of a single term t were

generated by sampling without replacement a term percentage fterm(t)%

of genes annotated to t from the population together with a noise

percentage fnoise% of genes not annotated to t. The population set P

consisted of all yeast genes annotated to at least a single term.

To create a study set with overrepresentation of two terms t1 and

t2 from one of the three subontologies with fterm(t1) and fterm(t2) and one

noise percentage fnoise parameter, fterm(t1) percent of the genes are

sampled from Pt1 as above. It is possible that some genes annotated to

t2 are also annotated to t1 and have already been included in the study

set. Therefore, genes are sampled from Pt2 only as necessary to obtain

fterm(t2) percent of genes. Finally, fnoise percent genes are sampled from

PnðPt1 [ Pt2 Þ, i.e. genes that are not annotated to either of the terms.

In this work, study sets were created as described using the

population set of all genes in Saccharomyces cerevisiae that are

annotated to at least one GO term. For some experiments, study sets

were created only for terms for which the all-subset minimal P-values for

both parent–child approaches are below 1� 10� 7, in order to consider

only terms for which it is possible to detect an overrepresentation with

the methods under evaluation. This resulted in a total of 1115 different

terms.

2.7 Dataset

The analysis of differential expression in the data derived

from Kunikata et al. (2005) was performed using the limma package

(Smyth, 2004) of Bioconductor (Gentleman et al., 2004). The set of all

differentially expressed genes was used as the study set, and the

population set was taken to be all genes represented on the microarray.

3 RESULTS

3.1 The inheritance problem of the term-for-term
approach

We start by showing that the term-for-term approach is flawed

because it does not take dependencies between parent and child

terms into account. To do so, an artificial study set was

constructed from S.cerevisiae data by overrepresenting the

term DNA repair (GO:0006281) by including fterm(t)¼ 50% of

all genes annotated to the term and fnoise(t)¼ 10% of the

remaining terms in the population. We calculated the term-for-

term P-value for each term and corrected for multiple testing

with the resampling-based Westfall–Young approach (Westfall

and Young, 1993) using 1000 resamplings. As expected, the

term DNA repair itself is significantly overrepresented.

A number of other terms are also flagged as significantly over-

represented including three children of DNA repair (Fig. 2).

This is particularly surprising because it implies that there is

more specific information in the dataset than has been put into

it by means of its construction.
Observe that this also implies that the other eight children

of DNA repair are not interesting for the study set. Both

statements are not supported by the data in Table 1. We claim

that this is an undesired effect that is caused by the fact that the

term-for-term approach ignores the structure of the GO DAG.

This problem is of importance for researchers using such an

analysis to explore the results of microarray or similar experi-

ments. Given the results of the above example, a researcher

might be tempted to examine recombinational repair specifically

and neglect postreplication repair and the other children ofDNA

repair that were not flagged as significant. We consider this

behavior of the term-for-term P-values to be a major drawback

of the method and will refer to it as the inheritance problem.

3.2 Parent–child analysis outperforms term-for-term

analysis with respect to the inheritance problem

The parent–child methods measure overrepresentation of a

term t in the context of annotations to the parents of the term.

Figure 1B presents an intuitive explanation of the approaches.

We have examined two versions of algorithm which we call

parent–child-union and parent–child-intersection. Details are

provided in the Methods section.
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For the following experiments, we created 1115 study sets for

S.cerevisiae genes in which one GO term was overrepresented
as described in the Methods section. The study sets were

analyzed with all methods to get the raw P-values, which were
used to perform receiver operator characteristics (ROC) analysis
for all combinations of term percentages of 75, 50 and 25% and

noise percentages of 10 and 20%. In all settings, the parent–
child approaches outperform the term-for-term approach.

Moreover, the parent–child-intersection approach gives better
results than the parent–child-union approach (Fig. 3).

All approaches loose their power with increasing noise
percentage and decreasing term percentage. At the one extreme
of a very weak signal, where fterm(t)¼ 25% and fnoise¼ 20%

the term-for-term approach hardly performs better than the

random method, whereas the parent–child approaches still have

some ability to detect the overrepresented terms. With
fterm(t)¼ 75% and fnoise¼ 10% the parent–child-intersection

approach perfectly separates the overrepresented terms from

their subterms. The performance advantage of the parent–
child methods is similar when two terms are simultaneously

overrepresented (Fig. 3).
The parent–child algorithms were designed especially to avoid

false-positive results related to the inheritance problem, and the
results presented above clearly demonstrate that they are

superior to the term-for-term and the elim or weight algorithms

in this regard. We note however that each of the three methods
interrogates conceptually different measures of the significance

of overrepresentation, and it is unclear whether a comparison

such as that presented in Figure 3 is a fair comparison of the
different methods. We therefore performed a similar ROC

analysis using different subsets of GO terms with and without
the restriction to terms satisfying a pmin value of 10

�7. When all

terms are taken into consideration (i.e. not just the descendents

of the overrepresented term), then the weight algorithm is
superior to the parent–child algorithms for some but not all of

the combinations of term and noise percentage in this setting,

however, both algorithms are inferior to the term-for-term
approach (Table 2). If all terms in the entire GO graph are

considered that achieve a pmin value of 10�7 or better, then the
parent–child methods are superior for all combinations tested.

3.3 Performance of the parent–child and term-for-term

methods under multiple testing corrections

We next compared the performance of the term-for-term

and parent–child procedures using multiple testing correction.

We did not use ROC analysis because P-values that are
nominally corrected to values more than 1 are truncated to 1.

Moreover, the study sets have different sizes, resulting in

A B

Fig. 2. Artificial overrepresentation of the GO term DNA repair. This term belongs to the biological process subontology, and we therefore restricted

the analysis to terms in this subontology. (A) Term-for-term analysis. A subset of the GO graph with the significantly overrepresented terms and all

their less specific parents is shown. Significantly overrepresented terms are highlighted in green. A total of 12 terms had a corrected P-value below the

significance level of 0.05. (B) Parent–child-intersection analysis. None of the descendants of DNA repair are flagged as significant.

Table 1. Detailed data for the children of the term DNA repair from the

analysis of the artificial study set

Term ID Term name mt nt pt nt/mt (%)

GO:0006302 Double-strand break repair 41 19 0.0 (*) 46.3

GO:0006289 Nucleotide-excision repair 31 15 0.001 (*) 48.4

GO:0000725 Recombinational repair 19 10 0.005 (*) 52.6

GO:0006298 Mismatch repair 20 9 0.077 45

GO:0000726 Non-recombinational repair 24 9 0.261 37.5

GO:0006307 DNA dealkylation 3 3 0.599 100

GO:0006284 Base-excision repair 10 3 1.0 30

GO:0019985 Bypass DNA synthesis 1 1 1.0 100

GO:0045021 Error-free DNA repair 4 2 1.0 50

GO:0006301 Postreplication repair 11 4 1.0 36.4

GO:0006290 Pyrimidine dimer repair 1 1 1.0 100

Notation: mt: number of genes associated with the term in the population set; nt:

number of genes associated with the term in the study set; pt: corrected term-for-

term P-value. P-values with stars (*) are significant (pt50.05). Terms are ordered

by increasing p-values.
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Fig. 3. ROC analysis of GO-term overrepresentation. The ROC curve plots the true positive rate of detecting the overrepresented term as significant as a function of the false-positive rate by

which descendants of the term are flagged as significant, for varying P-value thresholds c2 [0, 1]. A perfect classifier results in a higher significance for t than for all other terms and receives a

ROC score of 1.0. A random classifier would receive a score of �0.5. The first two columns show results for single-term overrepresentation at the specified term percentages and noise

percentages. For the third column, a total of 1000 different pairs of terms from the same subontology with a pmin below 1�10�7 for both parent–child approaches were sampled to construct the

study sets. The performance of the different methods is comparable to the single-term case. Results for all combinations of term percentage from 25 to 90% and noise percentage from 5 to 25%

showed a similar advantage for the parent–child algorithm (data not shown).
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different P-value correction ranges. Instead, we generated 2000
completely random study sets of size 250 and analyzed them

with all three approaches each combined with two procedures
for multiple testing corrections which control the FWER,

the Bonferroni correction and the resampling-based Westfall–
Young correction (Westfall and Young, 1993) with 5000
resamplings (Fig. 4).

As expected, the plots show that the Bonferroni procedure is
much too conservative for all approaches. The best perfor-

mance is given by the Westfall–Young correction in combina-
tion with either of the parent–child approaches. Here, exact
control of the FWER is given. Interestingly, there seem to

be some discretization effects when combining the Westfall–
Young correction with the term-for-term approach. This can

be explained by the fact that there are a large number of terms
with equal P-values in the random study sets.

3.4 A biological example

In the following, we present an analysis of a dataset resulting
from an experiments on the role of the prostaglandin
E3 receptor EP3 (Kunikata et al., 2005), in which saline

(control)-challenged mice were compared against mice exposed

to ovalbumin to induce asthma. We identified 246 differentially

regulated genes with at least one GO annotation. Analysis with

parent–child-union identified 17 overrepresented terms, analysis

with parent–child-intersection identified 10 terms and analysis

with term-for-term identified 63 terms. Figure 5 shows a portion

of the graph emanating from biological process.

The term immune response has a total of nine children.

The term-for-term approach identifies five of them as being

significantly overrepresented, as well as numerous more distant

descendants while parent–child-union identifies only immune

response as being significantly overrepresented. This does not

mean that the terms emanating from immune response are

not important according to this analysis, merely that there is no

statistical evidence to suggest that one particular descendent

is more important than the others. The parent–child-intersection

approach is generally more conservative than the parent–child-

union approach. It identifies physiological response to stimulus

as significant, which is a ancestor of immune response.

Both parent–child methods identify other terms that character-

ize the dataset as being an allergic response including MHC

class II receptor activity, antigen binding and immunoglobulin

complex.

Table 2. ROC scores for selected studies

Setting TfT PCU PCI Elim Weight TfT PCU PCI Elim Weight TfT PCU PCI Elim Weight

1/75/10 0.953 0.873 0.690 0.748 0.883 0.695 0.849 0.748 0.560 0.850 0.992 0.996 0.997 0.676 0.885

1/50/10 0.916 0.829 0.662 0.734 0.808 0.655 0.804 0.717 0.544 0.757 0.981 0.983 0.987 0.653 0.809

1/25/10 0.790 0.724 0.608 0.659 0.649 0.587 0.702 0.665 0.494 0.576 0.871 0.866 0.900 0.656 0.645

1/25/20 0.528 0.529 0.515 0.508 0.470 0.457 0.523 0.588 0.439 0.422 0.622 0.639 0.733 0.578 0.456

2/75/10 0.943 0.887 0.707 0.722 0.882 0.621 0.822 0.770 0.491 0.861 0.985 0.988 0.991 0.675 0.890

2/75/20 0.920 0.863 0.669 0.735 0.834 0.602 0.799 0.735 0.497 0.828 0.983 0.984 0.988 0.694 0.868

5/75/10 0.922 0.877 0.684 0.704 0.852 0.584 0.798 0.760 0.476 0.868 0.965 0.964 0.972 0.695 0.851

The left part lists the results of studies performed on all terms whereas the middle part shows the results when only the subterms of enriched terms are considered.

The right part shows the result when considering only those terms with a pmin below 10�7. The Setting column describes the settings of the artificial study set construction.

Here, the first number represents the number of overrepresented terms, the second number the term percentage and the last number the noise percentage. The best ROC

score for a given combination of settings is shown in bold for each of the three testing scenarios described above.
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Fig. 4. Family-wise error rate plots. Total 2000 random study sets were generated and analyzed with each of the three methods. For any P-value cutoff

c2 [0, 1], the FWER can be estimated as the fraction of terms having a corrected P-value below c. Exact control of the FWER under is given when the

resulting curve follows the main diagonal. Curves below the main diagonal indicate a too conservative procedure, curves above the main diagonal

indicate that FWER control is not given for the procedure. In each plot, correction by the Bonferroni and Westfall–Young methods are compared.
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Fig. 5. Comparison of the three algorithms using real datasets. The study set is made up of genes differentially regulation between mice stimulated with ovalbumin to induce asthma and mice

stimulated with saline (control). An excerpt of the GO graph is shown; each term has up to three bars denoting whether one of the three methods flagged the term as significantly

overrepresented. The top bar represents the term-for-term approach, the middle bar represents the parent–child-union approach and the bottom bar represents parent–child-intersection. It is

apparent that the term-for-term approach identifies many of the descendant terms of response to external stimulus and immune response as significant.
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4 DISCUSSION

In this work, we have presented a novel algorithm for analysis of
overrepresentation of annotations to GO terms. The parent–

child procedure measures overrepresentation conditional on
annotations to the parent of any term, whereas previous
approaches measure overrepresentation of each term in isola-

tion. We have shown that the parent–child procedure
outperforms the standard procedure on two statistical measures.
A second phenomenon that differentiates term-for-term

from parent–child analysis is that the term-for-term approach

is able to pick up skewed distributions of annotations
among the children of a given term. Although the amount of
annotations to these terms might not be significant if analyzed

in isolation, using the parent–child approaches, such skewed
distributions may be identified. For instance, Liu et al. (2004)
analyzed regulation of signaling genes by TGF� during the

Caenorhabditis elegans larval arrest stage (dauer). A number of
genes showed regulation, including many hedgehog-related
genes. The parent–child-union method, but not the term-for-

term method, identified hedgehog receptor activity as signifi-
cant, because 6/16 (38%) annotations of the parent term
transmembrane receptor activity are inherited from the term
hedgehog receptor activity, whereas in the population only

16 of the 864 annotations to transmembrane receptor activity
are inherited from hedgehog receptor activity (6.4%).
The parent–child approaches conceptually measure the over-

representation of terms in a different way than the term-for-
term approach, and it is important to keep this in mind when
interpreting results. In almost all datasets we have analyzed,

the parent–child approaches identify a smaller number of
terms as significantly overrepresented, and the term-for-term
approach will flag many of the descendants of these terms as
being overrepresented as well. Our results suggest that the

term-for-term approach leads to false-positive results in these
cases, in that the measured ‘overrepresentation’ results from the
structure of the GO DAG and the number of annotated genes

rather than truly reflecting the biology of the experiment at
hand. There is an obvious danger for misleading interpretations
of term-for-term analysis.

In contrast to the elim/weight approaches, the results of the
parent–child approaches are derived from a single statistic for
each term. Therefore, but also because the parent–child

approaches’ computational complexity matches the complexity
of term-for-term, more sophisticated multiple test corrections
which are based on permutations such as Westfall–Young can
be applied easily.

The results of our ROC analysis of the parent–child, term-
for-term and elim/weight algorithms showed that each of the
methods has a performance advantage in certain testing

scenarios. It was recently shown that the elim/weight methods
have an advantage over the term-for-term approach among
the top 150–615 significant genes Alexa et al. (2006). Given that

the parent–child methods analyze a different measure of over-
representation than the term-for-term and elim/weight methods,
it is not clear which testing scenarios can be used to fairly
compare the predicted accuracy of these methods on biolog-

ical data. Our analysis clearly shows that the parent–child
approaches are best able to cope with the inheritance problem.

Further experience with newer methods such as the ones

presented here and in Alexa et al. (2006) and Falcon and

Gentleman (2007) will be required to estimate their usefulness

for evaluating biological experiments.

5 CONCLUSION

There is no gold standard for the analysis of biological datasets

for overrepresentation of GO terms, and any comparisons

between methods are bound to be to some extent anecdotal.

However, we have shown that the term-for-term approach can

produce false-positive, and potentially biologically misleading

results because it does not take the graph structure of GO into

account. Our analysis using artificial datasets suggests that

the parent–child approach avoids many of these problems.

We provide an open-source Java implementation of the term-

for-term and both parent–child algorithms within the frame-

work of the Ontologizer at http://www.charite.de/ch/
medgen/ontologizer/.
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