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Background. Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to
extracellular matrix. To further characterize the molecular mechanisms by which b1 integrins confer radiation and
chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with b1 integrin and A3 Jurkat T-
lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. Methodology/Principal

Findings. Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 mg/
cm2 coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential
(MTP), caspase activation, and protein analysis. Overexpression of b1 integrins enhanced the cellular sensitivity to X-rays and
Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8
activation and MTP breakdown. Usage of stimulatory or inhibitory anti b1 integrin antibodies, pharmacological caspase or
phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated b1 integrin silencing provided
further data showing an interaction between FN-ligated b1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage.
Conclusions/Significance. The presented data suggest that the ligand status of b1 integrins is critical for their antiapoptotic
effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a b1
integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner.
Antagonizing agents targeting b1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively
reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies.
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INTRODUCTION
Integrin-mediated interactions of cells with extracellular matrix

(ECM) are well known to confer resistance to clinically

administered chemotherapeutic drugs or ionizing radiation [1–

8]. These interactions mediate a substantial survival advantage

particularly in isolated tumor cell niches. These residual tumor cell

islands are likely to represent the starting base for the propagation

of highly chemo and radiation resistant clonal cells in hematolog-

ical neoplasias as well as solid tumors [9].

Twenty-four different a/b heterodimeric transmembrane in-

tegrin receptors are formed by 18 a and 8 b integrin subunits,

which control survival, apoptosis, proliferation and differentiation

among other functions in cooperation with receptor-mediated

signaling from soluble growth factors or cytokines [10]. As

integrins lack intrinsic kinase activity, different cytoplasmic protein

kinases recruited to cytoplasmic integrin domains such as integrin-

linked kinase (ILK), focal adhesion kinase (FAK) and phosphati-

dylinositol-3 kinase (PI3K)/Akt have been reported to transmit

signals in normal epithelial cells directly via the PI3K/Akt cascade

to prevent anoikis (apoptosis upon detachment from ECM) [11–

15]. FAK- and NFkB-dependently, integrin-mediated adhesion

regulates the expression of several members of the antiapoptotic

Bcl-2 protein family [16–18]. By downregulating Bim and Bax and

upregulating Bcl-2-like proteins, integrin-mediated cell adhesion

confers resistance in leukemia cells to genotoxic agents such as

Ara-C, bleomycin, fludarabine or ionizing radiation [3,19–21].

The first cue that procaspase-8 might play a critical role in

integrin-mediated survival came from studies focusing on integrin-

mediated death, which is induced by unligated integrins [22]. It

was reported that procaspase-8 binds to the cytoplasmic tail of

b integrins. Inhibition of procaspase-8 cleavage via enhanced

binding of c-Fas-associated death domain-like interleukin-1-

converting enzyme-like inhibitory protein-long (c-FLIPL) to Fas-

associated death domain protein (FADD) also essentially con-

tributes to adhesion-mediated survival in endothelial cells [23] or

mediates drug resistance in myeloma cell lines [24].

Concerning the role of b1 integrins in adherent growing tumor

and normal cells, we uncovered a signaling pathway different from

the apoptosis cascades. A PI3K-dependent signaling cascade from

b1 integrin to the p130Cas/Paxillin/c-Jun N2-terminal kinase

complex has demonstrated to confer an advantage of clonogenic

cell survival in genotoxically stressed normal fibroblasts and cells

from solid tumors [25,26]. With regard to drug- or radiation-

induced apoptosis in leukemia cells such as HL60, ILK promotes

apoptosis upon irradiation via caspase-8 or -9 in an adhesion-

dependent manner [21]. In HL60 cells, Kasahara et al. [27] have
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found that FAK, as another critical mediator of integrin signals,

functions in a prosurvival manner upon exposure to X-rays.

Despite of this interesting discrepancy between ILK and FAK for

cell survival after genotoxic stress, we strongly focused on b1

integrin and the intrinsic and extrinsic apoptotic pathways in this

study.

In addition to anoikis, there is a large number of different

apoptosis-inducing stimuli such as ionizing radiation or cytotoxic

drugs. Radiation-induced genotoxic injury mainly triggers the

mitochondrial cascade involving release of cytochrome c, dATP,

Apaf-1 and procaspase-9 upon Bax translocation to the mito-

chondrial membrane that, subsequently, results in breakdown of

the mitochondrial transmembrane potential (DYm) and autopro-

teolytic cleavage of caspases [28–30]. The extrinsic apoptotic

pathway is activated, for example, by binding of the trimeric

transmembrane tumor necrosis factor (TNF) family member

protein FasL to Fas receptor (FasR) [31]. Subsequently, receptor

oligomerization initiates the recruitment of FADD to FasR and

procaspase-8 for creating a functional death-inducing signaling

complex (DISC) that activates procaspase-3 [32]. Recent studies

using FADD [33], procaspase-8 [34] or procaspase-9 [35]

knockout mice clearly showed that the FADD/procaspase-8

signaling cascade is central and probably non-redundant in

FasR-mediated cell death. While proapoptotic FasL/FasR signal-

ing is promoted by PI3K/Akt in mouse epidermal Cl41 cells [36],

PI3K/Akt acts in an antiapoptotic manner in human hepatocytes,

[37]. At the level of procaspase-8 or -9, the PI3K/Akt cascade

inhibits both the extrinsic and intrinsic apoptotic pathways [38].

In view of the role that cell adhesion-mediated drug and

radiation resistance may play in treatment failure and reduced

tumor control, it becomes necessary to uncover the integrin-

specific molecular mechanisms responsible for evading apoptosis.

We therefore examined FasL-, radiation- and Ara-C-induced

apoptosis in suspension or adhesion cultures of HL60 acute

promyelocytic leukemia and Jurkat T-lymphoma cells with

emphasis on integrin b1, procaspase-8 and Akt. Overexpression

of the integrin b1 subunit in HL60 cells was used as a model to

identify critical signaling pathways participating in the anti-

apoptotic action of this integrin upon cell adhesion to b1 integrin

ligands such as fibronectin and collagen-1. Evidence is provided

showing that a) elevated cell surface expression levels of b1

integrins inevitably require elevated amounts of ligands to act in

an antiapoptotic manner, and, b) a complex formation of b1

integrin with Akt prevents procaspase-8-mediated apoptosis

PI3K-dependently. These data describe a novel mechanism how

the integrin b1 facilitates resistance to apoptosis induced by FasL,

Ara-C and ionizing radiation, which have different modes of

action.

RESULTS

Matrix proteins modulate apoptosis and long-term

survival after radiation and Ara-C
To assess the impact of fibronectin (FN), laminin (LN) or collagen-

1 (COL1) adhesion on short- and long-term survival, HL60 cells

were grown in suspension or on BSA, FN, LN or COL1 prior to

irradiation or Ara-C. Upon treatment, HL60 adhesion cultures on

FN, LN or COL1 showed significant (P,0.01) reduction in

apoptosis relative to BSA or suspension (Figure 1a and b).

Similarly, long-term survival was significantly (P,0.01) improved

after 4 Gy or 6 Gy or 5 mM Ara-C (Figure 1c). These data clearly

indicate that cell-matrix interactions improve survival of HL60

leukemia cells treated with cytotoxic agents that have different

modes of action.

FN concentration determines antiapoptotic effects

of b1 integrin
We next assessed the role of b1 integrin by stable overexpression in

HL60 cells leading to an elevation in total as well as in cell surface

expression of this integrin subunit as determined by Western

blotting on total protein extracts (Figure 2a) and on cytoplasmic,

membrane and nuclear protein fractions (Figure 2b) and by FACS

analysis (Figure 2c). We hypothesized that an overexpression of

this integrin reduces the rate of apoptosis upon cytotoxic stimuli.

Unexpectedly, overexpression of b1 integrin (HL60b1) pro-

nouncedly induced apoptosis after irradiation in suspension and

on 5 mg/cm2 FN relative to HL60 vector controls (HL60VC)

(Figure 2d). In suspension, induction of apoptosis in irradiated cells

was serum dependent (Figure 2d); a finding not further followed on

in this study.

To clarify the adverse effect of b1 integrin-related enhancement

of radiation-induced apoptosis, HL60b1 transfectants were

cultured on increasing FN concentrations under serum-free

conditions (Figure 3a). While HL60VC cells revealed significantly

(P,0.01) less apoptosis starting at 5 mg/cm2 FN, radiation- and

Ara-C-induced HL60b1 apoptosis declined not before 10 mg/cm2

FN (Figure 3a). Performing MTT assays in cells cultured on

increasing concentrations of FN, LN or COL1 gave results

consistent with the apoptosis data sets (Figure 3b and c). These

data suggest that only ligand bound b1 integrin functions in an

antiapoptotic manner. This issue was further addressed by

applying stimulatory or inhibitory anti-b1 integrin mAbs and

peptides. HL60VC and HL60b1 cells adhered to FN but not the

widely used control substratum BSA (Figure 3d). Incubation of

cells with activating mAb TS2/16 promoted adhesion to FN while

inhibitory mAb13 significantly (P,0.01) impaired adhesion

relative to non-specific IgG controls. Adhesion-blocking GRGDS

peptides effectively prevented adhesion of both cell lines to FN in

contrast to GRADSP (Figure 3d). Under suspension, b1 integrin-

activating TS2/16 caused a significant (P,0.01) decrease in

apoptosis after 10 Gy as compared to IgG (Figure 3e). On 5 or

100 mg/cm2 FN, this TS2/16-related antiapoptotic effect further

increased while mAb13 strongly promoted apoptosis in irradiated

cells.

Caspase activation and DYm are influenced by FN-

b1 integrin interactions
To evaluate b1 integrin-dependent regulation of caspase and

PARP cleavage after radiation or Ara-C, cells were analyzed on

increasing FN concentrations or in suspension. At 8 h after treat-

ment, increasing FN concentrations incrementally reduced

cleavage of procaspase-9, -3 and -8 and PARP in adherent, 10-

Gy irradiated HL60b1 cells relative to suspension (Figure 4a).

p116 PARP and procaspase-8 and -9 expression remained

unaffected while procaspase-3 expression slightly declined with

increasing FN concentrations. In parallel, DYm (Figure 4b) and

caspases activation (Figure 4c) were pronouncedly reduced by

increasing FN concentrations in irradiated or Ara-C-treated cells.

Again, HL60b1 cells reacted not until higher FN concentrations,

i.e. 50 and 100 mg/cm2, particularly under Ara-C. In the follow-

ing, we focused on interactions of b1 integrin with procaspase-8.

b1 integrin interacts with procaspase-8 and Akt in

an adhesion-dependent manner
Coprecipitation experiments were performed showing a similar

amount of precipitated b1 integrin or FADD under suspension

and FN adhesion (Figure 5a). In contrast, procaspase-8 and Akt

b1 Integrins and Apoptosis
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were increasingly observable in b1 integrin precipitates in irradiated

HL60VC FN cultures relative to non-irradiated controls; a finding

confirmed by reverse immunoprecipitation (Figure 5a). It remains

unclear whether b1 integrin directly or indirectly interacts with

procaspase-8 and Akt and which role FADD plays in this scenario.

Therefore, HL60b1 cells were treated with FasL.

Similar to suspension conditions (Figure 5b), FasL strongly

induced apoptosis in HL60b1 cells grown on 5 mg/cm2 FN,

a concentration ineffective to diminish apoptosis induction after

irradiation or Ara-C in these cells (Figure 5b). However,

stimulation of b1 integrins using TS2/16 significantly (P,0.01)

decreased the rate of apoptosis relative to IgG and in contrast to

mAb13 (Figure 5b). Inhibitors of procaspase-8 (IETD-fmk) or -3

(DEVD-fmk) prevented apoptosis in FasL-treated FN cultures. In

contrast, PI3K inhibition by Ly294002 promoted FasL-mediated

apoptosis that could only be insufficiently antagonized by TS2/16

acting on upstream localized b1 integrins (Figure 5b). Caspase

cleavage and Akt phosphorylation under identical conditions

exhibited that b1 integrin stimulation with TS2/16 abrogated

procaspase-8 and -3 cleavage in parallel to increased Akt-Ser473

phosphorylation by FasL (lane 3) relative to controls (lane 1 and 2)

(Figure 5c). In contrast, mAb13 inhibited phosphorylation of

Akt-Ser473 while procaspase-8 and -3 were strongly cleaved

(lane 4). Ly294002 abolished Akt phosphorylation (lane 6) and

increased procaspase-8 cleavage in FasL-treated controls (lane 11)

(Figure 5c). Inhibitors of procaspase-8 and -3 blocked cleavage of

their cognate procaspases under FasL stimulation without affecting

Akt (lane 9 and 10) (Figure 5c). A TS2/16-Ly294002 combination

reduced cleavage of procaspase-8 while active procaspase-3 and

Akt-Ser473 remained constant in FasL-treated HL60b1 FN

cultures (lane 14) as compared to IgG and DMSO (lane 12 and

13) (Figure 5c).

Procaspase-8 is critical for antiapoptotic effects of

b1 integrins
To examine whether the b1 integrin-related antiapoptotic signals

are channeled via procaspase-8 and Akt, Jurkat A3 cells deficient

Figure 1. Adhesion to matrix proteins significantly decreases induction of apoptosis in human HL60 acute promyelocytic leukemia cells after
irradiation or Ara-C. (a) At 48 h after treatment in suspension (Susp) or on BSA or FN (5 mg/cm2), cells were harvested and the number of apoptotic
cells was determined by DAPI staining and counting of cells with typically apoptotic nuclear morphology. (b) Apoptosis was also determined in
irradiated (10 Gy) or Ara-C (5 mM) treated HL60 cells grown on 5 mg/cm2 laminin (LN) or collagen-1 (COL1) after 48 h. (c) Limiting dilution analysis was
performed to measure long-time survival. The number of positive wells (i.e. viable and proliferating cells) was used for calculation of survival rates
after ionizing radiation (2, 4 or 6 Gy) or a 48-h Ara-C treatment (5 nM or 5 mM) relative to untreated controls (0 Gy or co). Results represent mean6s.d.
of three independent experiments. Statistics were calculated by comparing adhesion cultures to matrix proteins versus BSA and/or suspension
cultures. *P,0.01.
doi:10.1371/journal.pone.0000269.g001
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for procaspase-8 (Casp-8N) or FADD (FADD-N) were employed

after inspection of protein expression (Figure 6a). Casp-8N cells

demonstrated less radiation-induced apoptosis than FADD-N or

A3 Jurkat cells (Figure 6a). All three cell lines showed significantly

(P,0.01) diminished levels of apoptosis by FN adhesion. Similar to

HL60 cells, irradiation of cells adherent on 100 mg/cm2 FN

showed that mAb TS2/16, in contrast to mAb13, enhances the

antiapoptotic action of b1 integrins relative to IgG (Figure 6b).

This effect was only detectable in procaspase-8 proficient cells but

not in Casp-8N cells. Without affecting Casp-8N cells, incubation

of A3 and FADD-N cells with zVAD-fmk, IETD-fmk or DEVD-

fmk showed a significant (P,0.01) decline in radiation-induced

apoptosis relative to DMSO. Apoptosis in FasL-treated A3 and

FADD-N FN cell cultures significantly (P,0.01) decreased by

TS2/16, IETD-fmk, DEVD-fmk and zVAD-fmk (Figure 6b).

zVAD-fmk and DEVD-fmk effectively reduced while mAb13

induced FasL-mediated apoptosis in Casp-8N cells. These data

suggest that procaspase-8 is critical to radiation- and FasL-induced

apoptosis under adhesion to FN in the examined cell lines.

Knockdown of b1 integrin sensitizes cells to

radiation- and FasL-induced apoptosis
For characterization of b1 integrin/procaspase-8/Akt interactions,

we next performed siRNA-mediated knockdown of b1 integrin

prior to X-ray or FasL exposure. Two different siRNAs (b1.1,

b1.2) mediated b1 integrin silencing (b1.1: 90–98% repression;

b1.2: 80–95% repression) relative to non-specific Duplex XII

(Figure 7a). At maximum knockdown, i.e. 48 h after transfection

with b1.1 or b1.2 siRNA, particularly A3 and FADD-N and to

a lesser degree Casp-8N FN cultures showed significant (P,0.01)

increase in apoptosis after 10 Gy or 300 ng/ml FasL relative to

Duplex XII controls (Figure 7b). Basal levels of apoptosis merely

raised in b1 knockdown A3 and FADD-N cells. Western blot

analysis revealed that b1 integrin knockdown induced procaspase-

8 cleavage and reduced phosphorylated Akt-Ser473 (lane 2, 8, 14)

(Figure 7c). Following irradiation or FasL, b1 integrin silencing led

to elevated procaspase-8 cleavage and diminished phospho-Akt-

Ser473 (lane 4, 6, 10, 12) (Figure 7c). While only treated FADD-N

cells demonstrated raised procaspase-3 cleavage after b1 integrin

knockdown (lane 10, 12) relative to controls (lane 9, 11),

procaspase-3 processing remained unaffected in irradiated or

FasL-exposed A3 and Casp-8N cells (lane 4, 6, 16, 18) (Figure 7c).

These data suggest a dependency of procaspase-8 activation on b1

integrin, which seems critical for initiation of apoptosis by

radiation or FasL. Moreover, it indicates an inverted relationship

between cleavage of procaspase-8 and Akt-Ser473 phosphoryla-

tion.

Signaling of b1 integrin via PI3K/Akt regulates

caspase-8 or -3 activation
In contrast to Duplex XII controls, caspase-8 activity in FN

adherent and irradiated A3 or FADD-N Jurkat cells was

significantly (P,0.01) increased upon b1 integrin knockdown

(Figure 7d). Incubation of cells with IETD-fmk or DEVD-fmk

prior to irradiation effectively blocked caspase-8 or -3 activation,

respectively. Ly294002, however, abrogated the reduced caspase

Figure 2. Overexpression of b1 integrins mediates antiapoptotic effects in irradiated HL60 leukemia cells. (a) HL60 cells were stably transfected
with full-length b1 integrin (HL60b1) or empty vector (HL60VC) as indicated by Western blot analysis. b-actin served as loading control. (b)
Fractionation of membrane (m), cytoplasmic (c) and nuclear (n) proteins was carried out to analyze the distribution of b1 integrins in the transfected
and control cells. Cells were lysed in different buffers and centrifuged according to Materials and Methods. Each protein fraction separated by
Western blotting contains the protein amount from 26105 cells. Histon H3 was detected for the nuclear fraction and a lactate dehydrogenase (LDH)
assay was performed on the cytoplasmic fraction. Numbers shown indicate the absorbance of the cytoplasmic protein fraction monitored at 490 nm
and 690 nm using a spectral-photometer. (c) Level of cell surface expression of transfected b1 integrin in HL60 cells. b1 integrins were stained with
FITC-conjugated anti-b1-integrin antibodies and analyzed by flow cytometry. As control, a FITC-conjugated, isotype-matched non-specific IgG (IgG
control) was used. (d) Induction of apoptosis in serum grown or serum-free HL60b1 and HL60VC suspension (susp) or FN (5 mg/cm2) cell cultures was
examined at 48 h after 2 or 10 Gy (mean6s.d.; n = 3). Students t test compared FN+serum, FN-serum or susp-serum versus susp+serum cultures.
*P,0.01
doi:10.1371/journal.pone.0000269.g002
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activity both in irradiated Duplex XII controls as well as b1

integrin knockdown cells grown on FN Figure 7d). Casp-8N cells

showed less caspase-3 activation than FADD-N and A3 cells.

DISCUSSION
Chemo- and radiotherapeutic responses of leukemia cells are

essentially modified by integrin-mediated adhesion to extracellular

matrix [5,39]. In general, integrin-mediated resistance to cytotoxic

stimuli is well-known but the underlying molecular mechanisms

still remain unsolved. Our findings show in detail that leukemia

cells adherent to fibronectin, laminin or collagen-1, which

represent b1 integrin ligands, are protected from radiation, Ara-

C or FasL-induced apoptosis. These b1 integrin-mediated cell-

matrix interactions inhibit procaspase-8 activation via complex

formation with Akt in a PI3K dependent manner. Additionally, b1

integrin ligation to FN provides stabilization of the mitochondrial

transmembrane potential and impairs both procaspase-3 and -9

activation associated with the intrinsic apoptotic pathway.

Unexpectedly in its extent, increases in b1 integrin total and cell

surface expression inevitably required increased availability of

a ligand, here fibronectin, laminin or collagen-1, for sufficient

antiapoptotic action after different types of cell stress such as

ionizing radiation, FasL or Ara-C. To note, serum depletion also

reduced the rate of radiation-induced apoptosis. It can be

hypothesized that specific growth factors are critical for the

accurate execution of proapoptotic pathways. Extensive experi-

ments have already commenced in our laboratory to elucidate this

observation in more depth. By parallel modulation of both the

intrinsic and extrinsic apoptotic pathway, the functional duality of

the integrin b1 subunit in prosurvival processes is exceptionally

displayed in our study.

Owing to recent findings on procaspase-8 in integrin-mediated

death [22] and cell adhesion-mediated drug resistance [24], we

explored a possible interplay between b1 integrin and procaspase-

8. The use of stably transfected b1 integrin-overexpressing HL60

cells attached to increasing concentrations of fibronectin enabled

us to observe a new role for procaspase-8 in radiation-induced

apoptosis. Moreover, it became clear that the antiapoptotic effect

mediated by b1 integrins is tightly associated with the amount of

ligand bound to b1 integrins expressed on the cell surface. Thus,

unligated b1 integrins signal via yet unknown pathways for

induction of apoptosis, which might be an effective mechanism for

cell removal under specific pathological or physiological circum-

stances. Although this cellular phenomenon has already been

described in adherent growing cells and termed integrin-mediated

death [22], our data point out the similarity between adhesion and

suspension cell cultures with respect to the cellular susceptibility to

integrin signals. Most interestingly, the b1 integrin/procaspase-8/

Akt complex showed to be crucial for cell survival after different

Figure 3. Integrin-mediated cellular resistance to X-rays and Ara-C depends on matrix protein concentrations. (a) After growth in suspension or
FN adhesion in serum-free medium for 1 h, cells were exposed to 10 Gy X-rays or 5 mM Ara-C and apoptosis was measured 48 h thereafter
(mean6s.d.; n = 3). Statistical analysis compared FN versus suspension cultures. *P,0.01. (b) and (c) Cell viability was determined by MTT assay (see
Materials and Methods). Cells (36104) were seeded onto FN, LN or COL1 in triplicate and grown under similar conditions as described for (a).
Experiments were repeated three times and results show mean6s.d.. Statistical analysis compared HL60b1 versus HL60VC cells. *P,0.01. (d)
Adhesion of HL60 transfectants to FN was evaluated in the presence or absence of stimulatory (TS2/16; 1 mg/ml) or inhibitory (13; 1 mg/ml) anti-b1
integrin mAbs or peptides (GRGDS; 500 mg/ml) under serum-free conditions (controls: non-specific anti rat IgG1 or GRADSP employed at equivalent
concentrations). Columns represent mean6s.d. of the absorbance at 630 nm representing cell adhesion (n = 3). P-values were calculated by
comparison of mAbs or peptide versus controls. *P,0.01. (e) Radiation-induced apoptosis was determined in cells grown in suspension or on FN in
the presence of TS2/16 or mAb13 (1 mg/ml; anti rat IgG1 as control) or GRGDS peptide (500 mg/ml; GRADSP as control) under serum-free conditions.
Results represent mean6s.d. (n = 3) and statistics compared mAb or peptide versus controls. *P,0.01.
doi:10.1371/journal.pone.0000269.g003
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stressors such as ionizing radiation, Ara-C or FasL. Exclusively

under FN adhesion, procaspase-8 was increasingly detectable in

the b1 integrin coprecipitate in irradiated cells. Akt, colocalized in

this complex, showed a similar pattern. The data suggest that a b1

integrin/procaspase-8/Akt interrelation already exists when cells

are adherent to FN. After cytotoxic stress, this interaction seems to

be propagated, which is shown by a higher content of b1 integrin,

procaspase-8 and Akt in the coprecipitate. Further experiments

exposing cells to more specific inhibitors for procaspase-8, -3 and

PI3K and anti-b1 integrin stimulatory or inhibitory mAbs

underlined this hypothesis.

To evaluate these effects in Jurkat cells deficient for the critical

molecules of the death receptor cascade, i.e. procaspase-8 and

FADD, procaspase-8 and FADD deficient cells were tested.

FADD-negative cells reacted, in general, similar to A3 Jurkat

control cells under adhesion conditions. Blocking caspase

activation by pharmacological inhibitors reduced radiation- and

FasL-induced apoptosis in contrast to Ly294002. PI3K deactiva-

tion resulted in elevated levels of apoptosis under all tested

treatment regimes. As this indicates that the effect is procaspase-8-

but not FADD-dependent, procaspase-8 deficient Jurkat cells

showed less apoptosis throughout the diverse treatment and

growth conditions tested but retained some of their susceptibility to

b1 integrin modification by anti-b1 mAbs. Despite data that

describe FADD recruitment to FasR in the absence of FasL for

activating procaspase-8 after anticancer drugs or UV-irradiation

[40–42], our observations do not indicate FADD to be critical for

the regulation of radiation-induced apoptosis in FN adherent

Jurkat cells. Our observations strongly argue for an Akt-dependent

antagonization of procaspase-8 that is independent from FADD.

Accomplishing knockdown of b1 integrin by siRNA increased

the sensitivity of Jurkat A3, FADD-N, and Casp-8N cells

particularly to X-rays and to a lesser extent to FasL. In addition

to pronounced augmentation in caspase-8 and -3 activity, elevated

cleavage of procaspase-8 and -3 was associated in all cases with an

attenuated phosphorylation of Akt at S473.

In summary, our data demonstrate, for the first time as to our

knowledge, a regulatory interaction between b1 integrin, Akt and

procaspase-8 selectively assembled after integrin-mediated adhe-

sion of leukemia cells to FN. Due to its critical role in interfering

with apoptosis-triggering agents such as ionizing radiation, FasL

and Ara-C, this complex might essentially contribute to pre-

existing or acquired resistance mechanisms effectively counter-

acting current antitumor therapies. Both, agents targeting b1

integrin signaling and agents targeting the PI3K/Akt pathway

might represent potent novel adjuvant therapeutic options.

Application of such agents in conjunction with conventional

therapies might effectively reduce drug-resistant tumor popula-

tions and treatment failure in hematological malignancies.

MATERIALS AND METHODS

Reagents, antibodies and cell culture
All reagents were purchased from commercial sources: 49,6

Diamidino-2-phenylindole (DAPI; Serva, Heidelberg, Germany),

FITC-VAD-fmk (Promega, Mannheim, Germany), TMRE (tetra-

Figure 4. Adhesion to FN reduces radiation-induced cleavage of procaspase-9, -3, -8 and PARP in a concentration dependent manner. (a)
Following a 1-h growth on either increasing FN concentrations or in suspension, HL60b1 cells were irradiated with 10 Gy. Cells were harvested 8 h
later and total proteins were extracted. After SDS-PAGE and Western blotting, selected proteins were detected using specific antibodies. b-actin
served as loading control. (b) FN adhesion maintains the DYm. TMRE staining of 10-Gy irradiated or Ara-C-treated (5 mM) HL60VC and HL60b1 cells
was analyzed by FACS to determine the amount of DYm low (mean6s.d.) representing the apoptosis-related breakdown of this potential relative to
non-irradiated or non-Ara-C-treated controls ( = 0%). (c) Activation of caspases was determined by FACS analysis in FITC-VAD-fmk-stained cells under
identical conditions. Results (mean6s.d. of three independent experiments) are plotted as arbitrary units (a.u.) showing the fold increase after
normalization to suspension conditions. Statistics were calculated by comparison of increasing FN concentrations versus suspension. *P,0.01.
doi:10.1371/journal.pone.0000269.g004
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methylrhodamine, ethyl ester, perchlorate), MitoTrackerH Red

CMXRos (Molecular Probes, Leiden, Netherlands), zVAD-fmk,

Ly294002, protein-G-agarose beads, diaminobenzidine (Sigma,

Taufkirchen, Germany), DEVD-fmk, IETD-fmk (Chemicon,

Hampshire, UK), GRGDS (H-Gly-Arg-Gly-Asp-Ser-OH) and

GRADSP (H-Gly-Arg-Ala-Asp-Ser-Pro-OH) peptides, G418 (Cal-

biochem, Bad Soden, Germany), VectashieldH medium (Alexis,

Grünberg, Germany), nitrocellulose membranes (Schleicher and

Schuell, Dassel, Germany), ECL (Amersham, Freiburg, Germany).

Antibodies used are: anti-b1 integrin (TS2/16; Perbio, Bonn,

Germany), anti-rat IgG1, anti-mouse IgG1 (Upstate, Hamburg,

Germany), anti-caspase-3 cleaved, anti-caspase-3, anti-caspase-9

cleaved, anti-caspase-9, anti-caspase-8 cleaved, anti-caspase-8,

anti-PARP cleaved, anti-PARP, anti-FADD, anti-Akt-S473, anti-

Akt (Cell Signaling, Frankfurt a.M., Germany), anti-b-actin

(Sigma, Taufkirchen, Germany), anti-b1 integrin (BD, Heidelberg,

Germany); HRP-conjugated goat anti-rabbit and anti-mouse

antibodies (Santa Cruz, Heidelberg, Germany). Anti-b1 integrin

(13) was a generous gift from K.M. Yamada (Bethesda, MA, USA).

FITC conjugated anti-b1-integrin IgG and FITC-conjugated non-

specific anti-IgG antibodies were from Dako (Hamburg, Ger-

many). Anti-Histon H3 was from Acris (Hiddenreich, Germany).

Human promyelocytic HL60 leukemia and Jurkat A3 T-

lymphoma cells were purchased from ATCC (Bethesda, MD,

USA). Caspase-8- and FADD-deficient Jurkat A3 cells were a kind

gift from P. Juo and J. Blenis (Boston, MA, USA). RPMI-1040

GlutaMAX 1TM supplemented with 1% non-essential amino

acids (GIBCO, Karlsruhe, Germany) and 10% FCS (PAA, Linz,

Austria) was applied to culture the cells routinely at 37uC-5%

CO2, pH 7.4. Serum starvation of cells was performed using

RPMI-1040/1% non-essential amino acids without FCS. For all

experiments, asynchronous growing cell cultures were used.

Construction of mammalian b1 integrin expression

vector and DNA transfection
The full-length of human b1 integrin cDNA was generated by

PCR and cloned into the pcDNA3 expression vector using EcoR1

Figure 5. Upon adhesion, b1 integrin-mediated antiapoptotic signaling involves procaspase-8 and Akt. (a) Coprecipitation was performed to
detect interactions between b1 integrin and procaspase-8, FADD or Akt. Cells were prepared as described in Materials and Methods and
immunoprecipitation (reverse immunoprecipitation used anti-caspase-8 mAb) was carried out at 4 h after irradiation using non-specific IgG or anti-b1
integrin antibodies. (b) To analyze the impact of procaspase-8, -3 or Akt on the induction of apoptosis following FasL, HL60VC cells were held in
suspension or plated onto FN and, where indicated, incubated with mAb TS2/16 or 13 (anti rat IgG1 as control) for 1 h. After 30 min, cells were also
exposed to 20 mM of inhibitors for caspase-8 (IETD-fmk), -3 (DEVD-fmk), 10 mM Ly294002 (PI3K) or 0.25 ml/ml DMSO. After additional 30 min,
treatment with 300 ng/ml FasL was accomplished and cells were isolated, stained with DAPI and counted for apoptotic morphology at 48 h
thereafter (mean6s.d.; n = 3). Statistics were calculated by comparing inhibitor-treated cells versus DMSO or IgG. *P,0.01. (c). In parallel, total cell
extracts were isolated, subjected to Western blotting and pro and cleaved forms of caspase-8 and -3 and Akt and Akt-S473 were detected using the
appropriate antibodies. b-actin was the loading control.
doi:10.1371/journal.pone.0000269.g005
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sites (Invitrogen, Karlsruhe, Germany). Subsequent to electro-

poration [21], selection was performed under 1000 mg/ml G418.

The expression of b1 integrin in transfectants was confirmed by

Western blotting. Stable transfectants were pooled and used as

a population designated HL60b1 and HL60VC. All constructs

were sequence verified at IMGM Laboratories GmbH (Martins-

ried, Germany).

Cytotoxicity assays
Cells were induced to undergo apoptosis using ionizing radiation,

Ara-C or FasL. Cells were grown in suspension (polystyrene, BSA

(bovine serum albumin)) or on FN (BD, Heidelberg, Germany)

plus/minus serum for 1 h, irradiated or left unirradiated, treated

with Ara-C (0, 5 nM, 5mM) or FasL (300 ng/ml; Merck,

Germany), prepared by cytospin, washed with 0.9% NaCl and

permeabilized using 4% paraformaldehyde for morphological

evaluation of apoptosis by DAPI staining as published [21].

Irradiation was delivered at room temperature using single doses

of 240 kV X-rays (Isovolt 320/10; Seifert, Ahrensburg, Germany)

filtered with 3 mm Beryllium. The absorbed dose was measured

using a Duplex dosimeter (PTW, Freiburg, Germany). The dose-

rate was approximately 1 Gy/min at 13 mA. FN attached cells

were removed using Trypsin/EDTA solution (GIBCO, Karlsruhe,

Germany). Following DAPI staining, 103 cells were enumerated

using a Leitz Diaplan microscope (Bensheim, Germany). Cells

were counted by three independent observers (D.E., A.F., N.C.).

Interobserver variation was,5%. Where indicated, cells were

incubated with 20 mM pan-caspase (zVAD-fmk), caspase-3

(DEVD-fmk), -8 (IETD-fmk) or 10 mM PI3K (Ly294002) inhibitor

or 0.25 ml/ml DMSO vehicle for 30 min prior to antibody or

peptide exposure and/or treatment. TS2/16, 13, IgG, GRGDS or

GRADSP incubation was accomplished in parallel to seeding cells

on polystyrene or FN prior to treatment. Further, cell viability

was quantified using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenylte-

trazolium bromide (MTT) colorimetric assay. Briefly, cells were

seeded in uncoated or FN-precoated 96-well plates (3 x 104/mL)

overnight and irradiated or treated with Ara-C for 48 h. MTT

(Roche, Mannheim, Germany) solution was added to each well

and incubated for 4 hours at 37uC. The supernatant was

removed, and the MTT-formazan crystals formed by metaboli-

cally viable cells were dissolved in Solubilization solution.

Absorbance at 550 nm and 690 nm was monitored using

a spectral-photometer (Spectra maxH 190, Molecular devices,

Ismaningen, Germany).

Figure 6. Procaspase-8 deficiency greatly decreases radiation-induced apoptosis in FN attached cells. (a) Expression of procaspase-8, FADD and b-
actin was analyzed by Western blotting. Procaspase-8 negative (Casp-8N), FADD negative (FADD-N) and Jurkat A3 cells were irradiated with 10 Gy in
suspension or under adhesion to 100 mg/cm2 FN. (b) Casp-8N, FADD-N and Jurkat A3 cells were exposed to mAb TS2/16 or mAb13 (1 mg/ml; anti rat
IgG1 as control) for 1 h or 20 mM caspase-8 (IETD-fmk), caspase-3 (DEVD-fmk), pan-caspase inhibitor (zVAD-fmk) or 10 mM Ly294002 for 30 min when
adhered to 100 mg/cm2 FN. Subsequently, cells were treated with 10 Gy or 300 ng/ml FasL. After 48 h, the number of apoptotic cells was determined
by DAPI staining and counting. Columns represent mean6s.d. (n = 3). Statistical analysis was performed by comparing treatment conditions versus
controls. *P,0.01.
doi:10.1371/journal.pone.0000269.g006
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Limiting dilution analysis
In average, one cell was plated in every non-coated or FN- or

BSA-precoated well of a microtiter plate. After 1 h, irradiation (0,

2, 4, 6 Gy) or Ara-C (48 h; 0, 5 nM, 5 mM) was delivered and cells

were allowed to grow for 8 days according to Grenman et al. [43].

Proliferation of cells was determined by microscopy and scored for

significant cell growth defined as positive wells. Positive wells were

counted and surviving fractions were calculated in relation to non-

irradiated or non-Ara-C-treated controls.

Protein fractionation
For fractionation of membrane, cytoplasmic and nuclear proteins,

cells were lysed in lysis buffer (50 mM Tris-HCl (pH 7.5), 10 mM

MgCl2, 5 mM EDTA, protease inhibitor cocktail completeH
(Roche, Mannheim, Germany)) and sonicated (261 sec, level 4,

60%) on ice and cytoplasmic proteins were separated from nuclear

and membrane proteins by centrifugation (100,0006g, 15 min,

4uC). Then, the pellet was resuspended in Triton X-100 buffer

(1% Triton X-100, 10 mM MgCl2, 0.2 mM Na3VO4, protease

inhibitor cocktail completeH) to separate membrane proteins

from nuclear proteins by centrifugation (23,0006g, 5 min, 4uC).

After removal of the supernatant containing the membrane

faction, the pellet was resuspended in loading buffer (50 mM

Tris-Base (pH 6.8), 2 ml Glycerol, 10% SDS, 0.5 ml b-

mercaptoethanol, 1 mg bromphenol blue). Each protein fraction

separated by Western blotting contained the protein amount

from 26105 cells. To verify accurate protein fractionation,

Histon H3 was detected in the nuclear fraction and a lactate

dehydrogenase (LDH) assay (Roche, Mannheim, Germany) was

performed on the cytoplasmic fraction. Samples were prepared

according to the manufacturer’s instructions. Absorbance at

490 nm and 690 nm was monitored using a spectral-photometer

(Spectra maxH 190).

Figure 7. siRNA-mediated knockdown of b1 integrin sensitizes parental, FADD-N and Casp-8N cells to radiation-induced apoptosis. (a) Jurkat cell
lines were transfected with two different b1 integrin (b1.1, b1.2) siRNAs or a non-specific Duplex XII (DXII) siRNA. Expression of b1 integrin was
inspected by immunoblotting. (b) Following b1 integrin knockdown, 10 Gy or 300 ng/ml FasL were applied to the cells grown on 100 mg/cm2 FN.
Apoptosis was determined 48 h later by DAPI. (c) In parallel, cell lysates were harvested for analysis of procaspase-8, -3 and Akt expression. (d)
Subsequent to administration of 20 mM caspase-8 (IETD-fmk) or caspase-3 (DEVD-fmk), 10 mM Ly294002 or 0.25 ml/ml DMSO for 30 min, caspase-8
and -3 activity was measured at 4 h after 10 Gy. Statistics were calculated by comparing the level of apoptosis in b1 integrin knockdown cells versus
DXII. *P,0.01.
doi:10.1371/journal.pone.0000269.g007
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Integrin analysis by flow cytometry
The expression level of transfected b1 integrins was measured by

FACS analysis as published [26]. Staining with FITC-conjugated b1

integrin IgGs or FITC-conjugated, isotype-matched non-specific

control IgGs was achieved for 1 h at room temperature. Finally,

prepared cells were resuspended and the FL1 (green fluorescence)

was measured from 104 events using a fluorescence-activated cell

sorter (FACS) Calibur (BD, Heidelberg, Germany) equipped with

a CELLQuest software (BD, Heidelberg, Germany).

Adhesion assay
Cell adhesion to FN was studied according to a previously

published method [44].

Measurement of the DYm
At 24 h after treatment, cells were prepared for measurement of

the DYm using 25 nM TMRE and flow cytometry following the

manufacturer’s instructions as published [21]. Subsequent to a 30-

min staining and washing, cells were resuspended and acquisition

and analysis of data for 104 events was performed using a FACS

Calibur. The radiation-, Ara-C and substratum-dependent

changes of the MTP were analysed from dot plots and histograms

after exclusion of necrotic cells based on forward and side scatter

criteria using CELLQuest software.

Detection of activated caspases
Analysis of activated caspases was performed as previously

described using FITC-VAD-fmk and flow cytometry [21]. At

indicated time points, cells were centrifuged, washed with

phosphate-buffered saline and incubated with FITC-VAD-fmk

for 20 min. After washing, cells were resuspended and acquisition

of data for 104 events was performed after exclusion of necrotic

cells based on forward and side scatter criteria using a FACS

Calibur and CELLQuest software.

Total protein extraction and Western blotting
After 10-Gy X-rays or 300 ng/ml FasL, suspension and FN

adhesion cultures were harvested and lysed on ice using 50 mM

Tris-HCL (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate,

150 mM NaCl, 1 mM EDTA, protease inhibitor cocktail

completeH, 5 mM sodium vanadate and 5 mM sodium fluoride.

Amounts of total protein extracts were determined using BCA

assay (Interchim, Montlucon Cedex, France) and samples were

stored at 2134uC until use. Western blotting was performed as

described previously [26]. Measurements of protein band density

were carried out using ImageQuant version 5.0 software

(Molecular Dynamics, Germany).

Caspase-3 and -8 activity assay
Caspase-3 or -8 activities were measured after 10-Gy X-rays plus/

minus DEVD-fmk or Ly294002 (control: DMSO) in triplicates

using a commercially available ApoAlert assay kit (BD-CloneTech,

Heidelberg, Germany) or Caspase-8 Colorimetric Activity Assay

Kit (Chemicon, Ochsenhausen, Germany) according to the

manufacturer’s instructions. Experiments were repeated three

times.

Coprecipitation experiments
Cells were grown in suspension or on 100 mg/cm2 FN in serum-

free medium 1 h before 10-Gy radiation. Then, cells were treated

for 15 min with 1% formaldehyde to crosslink proteins, a reaction

terminated with 100 mM glycine. Following cell lysis, b1 integrin

was immunoprecipitated with 2 mg of the specific antibody

overnight at 4uC from 250 mg total protein extracts. Subsequently,

protein-G-agarose beads were allowed to incubate for 3 h,

followed by washing and preparation for SDS-PAGE. b1 integrin

and coprecipitated procaspase-8, FADD or Akt were detected by

Western blotting. Non-specific mouse-IgG was used as control.

siRNA transfection
The target sequences that effectively mediate silencing of b1

integrin expression are 59-AATGTAACCAACCGTAGCA-39

(b1.1) and 59-GCGCATATCTGGAAATTTG-39 (b1.2) (sense

sequences) as reported previously [44]. The 21-nucleotide

synthetic siRNA duplex was prepared by MWG (Ebersberg,

Germany) based on Dharmacon 29-ACE technology. Jurkat cells

were transfected with the b1 integrin siRNA or a 21-nucleotide

irrelevant RNA Duplex XII as a control using oligofectamine

(Invitrogen, Karlsruhe, Germany). Depletion of b1 integrin was

confirmed by Western blotting.

Data analysis
Means6s.d. of three independent experiments were calculated

with reference to untreated controls defined in a percentage scale

or 1.0. To test statistical significance, Students t test was performed

using MicrosoftHExcel 2000. Results were considered statistically

significant if P-value of less than 0.05 was reached. All experiments

were repeated at least three times.
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